1 10 1	10	111	ott	on
	10	սս	сu	\mathbf{u}

▲□▶▲□▶▲□▶▲□▶ □ のQの

SUPERFLUID VORTICES IN A WALL-BOUNDED FLOW

L. Galantucci, M. Quadrio, P. Luchini

Dip. Ingegneria Aerospaziale, Politecnico di Milano Dip. Meccanica, Università di Salerno

Ancona, 17 settembre 2009

Model

Results and Conclusions

▲□▶▲□▶▲□▶▲□▶ = 三 のへで

STRUTTURA DELLA PRESENTAZIONE

1 INTRODUCTION

HE⁴ CHARACTERISTICS

The phase diagram of He4.

国际 化国际

= 900

HE II: QUANTUM FLUID

- very low temperatures
- indistinguishable particles
- Bose-Einstein quantum statistics

Introduction	Thermal Counterflow	Model	Results and Conclusions
<i>Two-fluid</i> MOI	DEL		

• Tisza (1940) , Landau (1941-1947)

SUPERFLUID QUANTIZED VORTEX-LINES

REGIONS OF CONCENTRATED SUPERFLUID VORTICITY

- very small regions
- circulation of \boldsymbol{v}_s quantized $\Gamma = n \frac{h}{m}$, $n \in \mathbb{N}$
 - London (1954), Landau & Lifshitz (1955): vortex-sheets
 - Onsager (1949), Feynman (1955): vortex-lines

HALL & VINEN, 1956

• studies on uniformly rotating He II

- thermodynamical discussion
- experimental study

QUANTIZED VORTEX-LINES

MUTUAL FRICTION FORCE Hall & Vinen, 1956

vortex lines = *scattering centres* ↓ *momentum transfer* collision *rotons, phonons* – vortex lines ↓ MUTUAL FRICTION FORCE

THEORY OF MUTUAL FRICTION IN UNIFORMLY ROTATING HE II

$$\boldsymbol{f}_D = -\alpha \rho_s \Gamma \widehat{\boldsymbol{\omega}}_s \times \left[\widehat{\boldsymbol{\omega}}_s \times \left(\overline{\boldsymbol{v}_n} - \overline{\boldsymbol{v}_s} \right) \right] - \alpha' \rho_s \Gamma \widehat{\boldsymbol{\omega}}_s \times \left(\overline{\boldsymbol{v}_n} - \overline{\boldsymbol{v}_s} \right)$$

- $\alpha = \alpha(T)$, $\alpha' = \alpha'(T)$
- $\widehat{\boldsymbol{\omega}_s}$ // axis of rotation
- $\overline{\boldsymbol{v}_n}$ and $\overline{\boldsymbol{v}_s}$: average over $\ell \gg \ell_0$

Model

Results and Conclusions

MUTUAL FRICTION Schwarz, 1978

- generic He II system
 - *vortex tangle*
 - $\overline{\boldsymbol{\omega}}_{s} = \mathbf{0}$

THEORETICAL FORMULATION

- \boldsymbol{v}_n and \boldsymbol{v}_s *local*
- vortex curvature
 - self induction • $\boldsymbol{v}_i(\boldsymbol{s}) = \frac{\Gamma}{4\pi} \int_L \frac{(\boldsymbol{z} - \boldsymbol{s}) \times \boldsymbol{d}\boldsymbol{z}}{|\boldsymbol{z} - \boldsymbol{s}|^3}$

$$f_D = -\alpha \rho_s \Gamma s' \times [s' \times (v_n - v_s - v_i)] - \alpha' \rho_s \Gamma s' \times (v_n - v_s - v_i)$$
$$v_L = v_s + v_i + \alpha s' \times (v_n - v_s - v_i) - \alpha' s' \times [s' \times (v_n - v_s - v_i)]$$

NUMERICAL SIMULATIONS

SCHWARZ, 1988

- *prescribed* \boldsymbol{v}_n and \boldsymbol{v}_s
- v_i computed with *LIA*
- analysis of vortex *topology*
- preliminary study of *reconnections*

AARTS, DE WAELE, SAMUELS, BARENGHI (1994–1997)

- *kinematic* simulations
 - \boldsymbol{v}_n prescribed
 - uniform
 - Poiseuille
 - ABC model flows
- \boldsymbol{v}_n and \boldsymbol{v}_s coupling

500

NUMERICAL SIMULATIONS

BARENGHI, SAMUELS (2001), IDOWU et al. (2001)

- *self-consistent* algorithm
- *Lagrangian* description v_L
 - vortex *filament* method
 - Local Induced Approximation for v_i
- Navier–Stokes *Eulerian* equations v_n

•
$$\frac{\partial \boldsymbol{v}_n}{\partial t} + (\boldsymbol{v}_n \cdot \nabla) \boldsymbol{v}_n = -\frac{1}{\rho} \nabla p - \frac{\rho_s}{\rho_n} s \nabla T + \boldsymbol{v}_n \nabla^2 \boldsymbol{v}_n - \frac{1}{\rho_n} \boldsymbol{F}_n$$

• local F_{ns}

BUT

• *all* past simulations performed in *unbounded* domains

IMPORTANCE OF SOLID BOUNDARIES

- Vortex–lines *nucleation*
- Vortex–lines *dynamics*

THERMAL COUNTERFLOW

IMPORTANCE

- unique phenomenon
- two-fluid model
- fundamentals of vortex–line dynamics

•
$$\dot{Q} \Rightarrow q = \rho s T \overline{v}_n$$

• two-fluid model equations

$$\rho_n \frac{\partial \boldsymbol{v}_n}{\partial t} + \rho_n (\boldsymbol{v}_n \cdot \nabla) \, \boldsymbol{v}_n = \eta_n \nabla^2 \boldsymbol{v}_n - \frac{\rho_n}{\rho} \nabla p - \rho_s s \nabla T$$
$$\rho_s \frac{\partial \boldsymbol{v}_s}{\partial t} + \rho_s (\boldsymbol{v}_s \cdot \nabla) \, \boldsymbol{v}_s = \frac{\rho_s}{\rho} \nabla p + \rho_s s \nabla T$$

20

THERMAL COUNTERFLOW

• *steady-state*

• *small* velocities

$$\begin{cases} \nabla p = \rho s \nabla T \\ \nabla p = \eta_n \nabla^2 \boldsymbol{\nu}_n \end{cases}$$

•
$$\boldsymbol{v}_n(\boldsymbol{x}) = \frac{|\nabla p|}{2\eta_n} y(y - 2\delta) \hat{\boldsymbol{x}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• $\dot{Q} > \dot{Q}_* \Rightarrow$ vortex-lines *nucleation*

mutual–friction

•
$$\nabla T_{eff} > \nabla T$$
 , $\nabla p_{eff} > \nabla p$

 \Rightarrow

no steady-state

MASS FLUX CONDITION

•
$$\overline{\boldsymbol{v}}_s = -\frac{\rho_n}{\rho_s}\overline{\boldsymbol{v}}_n$$

COMPUTATIONAL METHOD

- thermal-*channel*-counterflow
- bidimensional domain
- solid boundaries

Nvortex-points dynamics

$$\begin{array}{c} & & \\ & &$$

$$\boldsymbol{\nu}_L(x_k, y_k, t) = \left[\left(1 - \alpha' \right) \left(\nu_s^{ext} + \nu_{s,i}^x \right) - \alpha' \nu_n(y) \pm \alpha \nu_{s,i}^y \right] \hat{\boldsymbol{x}} +$$

+
$$\left[\left(1 - \alpha' \right) v_{s,i}^{y} \mp \alpha \left(v_{n}(y) + v_{s}^{ext} + v_{s,i}^{x} \right) \right] \hat{y}$$

- $\boldsymbol{v}_{s,i}(\boldsymbol{x}, t)$: superfluid induced velocity
- $\boldsymbol{v}_n(\boldsymbol{x}) = -v_n(\boldsymbol{y})\boldsymbol{\hat{x}}$, $v_n(\boldsymbol{y}) \ge 0$, parabolic profile
- $\boldsymbol{v}_s^{ext} = \boldsymbol{v}_s^{ext} \hat{\boldsymbol{x}} = -\frac{\rho_n}{\rho_s} \overline{\boldsymbol{v}}_n$: uniform superfluid velocity

COMPUTATIONAL METHOD

- irrotational
- incompressible

• complex-potentials

VORTEX IN A PLANE CHANNEL

- conformal mapping
- *images* method $v_j(z) = v_j^x - iv_j^y = \mp i \frac{\hbar}{m} \frac{\pi}{4\delta} \left\{ \operatorname{coth} \left[\frac{\pi}{4\delta} \left(z - \overline{z_j} \right) \right] - \operatorname{coth} \left[\frac{\pi}{4\delta} \left(z - \overline{z_j} \right) \right] \right\}$

•
$$v_{s,i}(z_k) = v_{s,i}^x - iv_{s,i}^y = \sum_{j \neq k} v_j(z_k) \pm i \frac{\hbar}{m} \frac{\pi}{4\delta} \operatorname{coth}\left[\frac{\pi}{4\delta} \left(z_k - \overline{z_k}\right)\right]$$

VORTEX-POINTS NUCLEATION

N constant

•
$$y^* = \frac{2}{\pi} \arctan\left(\frac{\pi}{4} \frac{1}{\nu_s^{ext}}\right)$$

NUMERICAL RESULTS

$T(^{\circ}K)$	1.5
ρ_n/ρ_s	0.143
α	0.078
α'	6.25×10^{-3}
$\Delta p_{tot}(Pa)$	10
$L_x(m)$	0.1
$\eta_n(Pa \cdot s)$	3×10^{-7}
<u>δ</u> (<i>m</i>)	3×10^{-5}

- $\overline{v}_n = 0.10 \text{m/s}$
- $v_s^{ext} = 0.014 \text{m/s}$

• vortex-points sign-separation

$$v_L^{y} = (1 - \alpha') v_{s,i}^{y} \mp$$

$$\mp \alpha \left(v_n(y) + v_s^{ext} + v_{s,i}^{x} \right)$$

• + vortices 1

– vortices ↑

- $y^* \sim \delta$
 - vortex *nucleation* on *centerline*

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Model

Results and Conclusions

NUMERICAL RESULTS SURFACE PLOTS OF $v_{c_i}^{x}$

 t_1

 t_3

 t_2

 t_4

NUMERICAL RESULTS

VS L

- similarities
 - qualitative locking
 - Samuels , 1992
 - Barenghi et al., 1997

- differences
 - centerline peak

•
$$\langle v_{s,i}^{x} \rangle(y) \Big|_{y=0,2\delta} \neq 0$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Sac

æ

SUMMARY AND FUTURE WORK

SUMMARY

- bidimensional numerical simulation of *He* II thermal–*channel–counterflow*
- first simulation in *wall bounded geometry*
- focus on:
 - vortex-points *dynamics*
 - vortex-points *nucleation*
 - superfluid *induced* velocity *profile*
 - $\langle v_{s,i}^{x} \rangle(y)$ **vs** $v_{n}(y)$

FUTURE WORKS

- compute *v*_{s,i} mass-flux
- implement vortex-points *feedback* on normal fluid
- verify numerically *flattening* of *normal fluid profile*