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We have performed bidimensional numerical simulations of He II channel counterflows. Peculiar to
this research is the presence of solid boundaries in the geometry of the system studied. The vortex-
points dynamics is analyzed via a complex-potential-basedalgorithm which computes the temporal
evolution of the vortex-points positions. The results of the research are discussed in terms of the
superfluid induced velocity profile which is compared to the Poiseuille velocity profile of the normal
fluid. Similarities and differences are examined and we argue that the dissimilarities between the
two profiles are related to the vortex-points nucleation region and to the different dynamics that
characterize vortex-points of opposite sign.

1 INTRODUCTION
The interest of the scientific community upon superfluid flowsof He4’s liquid phase at tempera-

turesT below theλ phase-transition temperatureTλ = 2.17oK (the liquid phase is usually indicated
asHe II) significantly increased in the last ten years. This rising enthusiasm concerning superfluid
physics considerably contributed in turning this branch ofmodern physics in one of the most impor-
tant fields in low temperature physics. This increasing interest is due to three concurring motivations:
i) new features recently discovered which gave birth to several new research topics regarding the pe-
culiar characteristics of He II superflows; ii) the number ofdistinct physical systems where He II
theoretical models can be employed; and, iii) important industrial applications of cryogenic Helium.

New insight has been also achieved thanks to the increasing computational power available to
numerical simulations of the properties exhibited by the HeII system. The computational cost re-
quired by a correct and accurate numerical analysis of He II superflows is ultimately related to the
very wide range of spatial (and, therefore, temporal) scales which must be simultaneously resolved
[1]. The most accurate and recent numerical studies of He II flows ([2, 3, 4] just to mention some
of the scientific works carried out in the last ten years) would not have been able to account for
the smallest dynamically significant scales and interactions without leveraging the power of modern
computers. These simulations have brought to light many similarities between the so-calledQuan-
tum Turbulence, associated to turbulent phenomena observed in quantum liquids (i.e. fluids, as He
II, where the quantum effects are predominant with respect to classical issues) and ordinary classical
turbulence [5, 6, 7]. Such characteristics play a fundamental role in high-technology industrial ap-
plications of He II flows, such as cryogenic cooling systems for large-scale superconductor devices
employed in high-magnitude and high-precision magnetic field generation. This technology is cru-
cial in particle accelerators (e.g LHC at CERN, Génève, TESLA at DESY, Hamburg) and nuclear
fusion experiments.

Recent large-scale simulations have also contributed to enhancing our knowledge of the dynam-
ics of the quantized vortex-lines which are peculiar to superfluid and condensed-matter systems. The

1



insight gained with the numerical studies of the temporal evolution of He II quantized vortex-lines
can be therefore extended to all physical systems displaying quantized vorticity and topological de-
fects. Examples of such systems are: vortices in superconductors, internal structures of neutron stars
and pulsars, dislocation in solids, disinclinations in liquid crystals, Bloch lines in magnetic materials,
micro-topological defects in Bose-Einstein condensates [8].

To the best of our knowledge, however, all of the numerical studies published so far were per-
formed in unbounded He II physical systems; in other words, none of them considered He II flows
in proximity of a solid wall. The total absence of numerical simulations of He II superflows in
wall-bounded geometries is one of the main motivations of the present work, that recongnizes the
essential role played by solid walls in vortex-line dynamics and nucleation. Solid boundaries, in
fact, strongly influence the velocity profiles of both the superfluid fraction (its wall-normal veloc-
ity component vanishes on the solid boundary) and of the normal fluid component (that is affected
also by the additional no-slip condition), and therefore determine the velocity field of the quantized
vortex-lines. In addition, the solid walls heavily influence thethermally activated nucleationof the
vortex-lines by determining a particular shape of the energy barrier which must be overcome in order
to produce nucleation events [9].

The numerical study presented here analyzes a bidimensional He II channel counter-flow. In the
dimensionality of the problem considered the evolution of the vortex-lines is obviously replaced by
the simplervortex-pointsdynamics. The outline of the paper is as follows. After a short illustration
in §2 of the peculiar characteristics of the liquid phase He II, and the numerical simulations of He
II superflows performed in the past will be presented. In §3 the properties of the particular physical
system considered here will be shortly described, while in §4 the characteristics of the theoretical
and numerical models employed will be concisely outlined. Finally, in §5 the main results will be
presented and discussed.

2 THE LIQUID PHASE He II
The intrinsic characteristics of He II have motivated several fundamental works since the first

experimental results obtained employing He4 at temperatures belowTλ. The early experiments
analysing the properties of He II [10, 11] revealed the possibility of He II inviscid flows and led
to the development of thetwo-fluid model. This phenomenological description of He II, elaborated
separately by Landau [12, 13] and Tisza [14], considers He IIas an intimate mixture of two in-
separable fluid components which penetrate each other: thenormalcomponent and thesuperfluid
component. According to this model, each fluid component hasits own density and velocity fields,
ρn andvn for the normal fluid andρs andvs for the superfluid component. The total density of He
II is ρ = ρn + ρs. In the two-fluid model, the viscosity and the entropy associated to the superfluid
component are zero, and its flow is considered irrotational.Therefore, the superfluid component
is similar to a classical, inviscid Euler fluid. The normal fluid component, on the other hand, is
described as a gas of thermal excitations, namedphononsandrotonsaccording to the normal fluid
linear momentum. The normal component carries the entire entropy and viscosity of He II and is
therefore similar to a classical, viscous Navier-Stokes fluid.

The relative proportion of normal and superfluid componentsis a function of the absolute tem-
peratureT ; this function has been determined experimentally by Langer & Reppy [15], Mehl&
Zimmermann [16] (in liquid-helium gyroscope experiments)and Andronikashvili [17] (with the
oscillating-disc experiment). The two-fluid model explains many observed characteristics of He II
flows. Among them we mention thethermal counterflowand thesecond sound propagation. This
model was found however to be incomplete. Studies by Onsager[18], London [19] and Feynman
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[20], appeared in fact soon afterwards and suggested the possible existence of small regions of
concentrated vorticity in the superfluid. These regions were supposed to be either bi-dimensional
vortex-sheets[19] or one-dimensionalvortex-lines[18, 20]. In both formulations the non-zero su-
perfluid vorticity would be confined in the mentioned vortical structures around which the circulation
of the superfluid velocity fieldvs is quantized to integer multiples ofh/m4 (whereh is the Planck
constant andm4 is the mass of a He4 particle).

Soon thereafter, in 1956 Hall and Vinen [21, 22] demonstrated, both theoretically (thermodynam-
ically) and experimentally, that the correct model for confined superfluid vorticity is the Onsager-
Feynman vortex-lines formulation. In their papers, Hall and Vinen also derive a mathematical ex-
pression for themutual friction force, that is the mechanism through which the two components
of He II exchange momentum. Momentum transfer arises from collisions between the vortex-lines,
belonging to the superfluid fraction, and the elementary excitations (phonons and rotons) which con-
stitute the normal fluid. The mathematical expression of themutual friction force, deduced by Hall
and Vinen, and therefore valid for uniformly rotating He II only, was extended by Schwarz [23] to
generic He II systems exhibiting superfluid quantized vortex-lines of any geometry. In this work,
Schwarz accounts for the curvature of the vortex-lines (which is absent in uniformly rotating He II
where the vortex-lines are straight) and deduces a general mathematical expression for the mutual
friction force. The latter has been a crucial advancement insuperfluid physics. From the general
expression of the mutual friction force, in fact, Schwarz derived, in the same paper, the equation of
motion of a vortex-line element, which represents the starting point and the core of the first numerical
algorithms elaborated in the following decades.

Schwarz himself [24] pioneered the numerical approach, by simulating in 1988 the spatial and
temporal evolution of a quantizedvortex tanglein a thermal counterflow. Due to the computational
resources available at the time, the algorithm waskinematic, i.e. the normal fluid and the superfluid
velocities were given at the beginning of the calculations and never modified. In the following
decade, the increasing computer power was leveraged by numerical codes which prescribed the
motion of only one component, usuallyvn. Different assumptions were made about the normal fluid:
uniform flow [25], Poiseuille flow [25, 26], a Gaussian vortex[27], ABC flows [28]. The kinematic
approach was also used to study the behaviour of the normal fluid by assigning the topology of
superfluid vortices [29].

All the different kinematic approaches listed above, however, are limited by thea priori prescrip-
tion of at least one velocity field. The existence of the mutual friction force implies that the normal
fluid velocityvn and the superfluid vortex-lines mutually influence during their evolution. As a con-
sequence, ten years ago Barenghi and Samuels [1] elaborateda numerical algorithm which allowed
the normal fluid and the superfluid vortices to determine eachother self-consistently. This com-
putational code employs a Lagrangian algorithm, based on vortex filaments methods, to determine
the spatial and temporal evolution of the discrete vortex-lines elements and an Eulerian calculation,
based on modified Navier-Stokes equations, to resolve the normal fluid velocity field. The algorithm
employed by Barenghi and Samuels was later slightly modifiedby Idowu et al. [2] to take into
account the extreme locality of the mutual friction force inthe circumstance of a quantized vortex
tangle numerical simulation.

3 THERMAL COUNTERFLOW
The thermal counterflow, that is the subject of this paper, isa unique fluid dynamic phenomenon

existing in He II. It is a direct consequence of the two-fluid structure which characterizes the liquid
phase. As the dominant heat transfer process in He II, thermal counterflow has been extensively
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analyzed since its discovery in 1950s, focusing especiallyon two major aspects: i) the hydrodynamic
characteristics of the two fluid components and their interaction under different physical conditions;
ii) the fundamentals of vortex-lines dynamics and their effects on the hydrodynamics of the two
fluid components. A typical experimental setup [30, 31] is illustrated in Fig. 1. Two He II reservoirs

Figure 1: He II thermal counterflow experimental setup

are connected by a channel whose width2δ is small with respect to its lengthLx and depthLz. A
heater placed in one of the reservoirs supplies a constant heat flux and creates a uniform temperature
gradient∇T across the channel. Since entropy is only carried by the normal fluid, the heat transfer
by the normal flow is the only mechanism of heat transfer in He II which is, therefore, of the nature
of convection [32]. As a consequence, the heat density flux vector q in the channel is given by the
following identity

q = ρsTvn (1)

wheres is the entropy per unit mass andvn is the normal fluid velocity averaged over a channel
cross section. Mass conservation implies a zero net mass fluxover the channel cross sections and
allows the calculation of the uniform velocity field of the superfluid fraction which, added to the
vortex-lines’induced velocity, constitutesvs.

The He II thermal counterflow, as anticipated, can be easily understood in terms of the two-
fluid model. According to the latter, the equations of motionof the two fluid components are the
following:

ρn

∂vn

∂t
+ ρn (vn · ∇)vn = ηn∇

2
vn −

ρn

ρ
∇p − ρss∇T (2)

ρs

∂vs

∂t
+ ρs (vs · ∇) vs =

ρs

ρ
∇p + ρss∇T (3)

whereηn is the dynamic viscosity coefficient of the normal fluid. If there is no explicit time depen-
dence of the velocity fields and the latter are either very small or laminar, the equations (2) and (3)
reduce to London’s equation

∇p = ρs∇T (4)

and Poiseuille’s equation for classical hydrodynamics

∇p = ηn∇
2
vn (5)
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Equation (4) is very important because it states that a temperature gradient implies the simul-
taneous presence of a pressure gradient. The latter causes the flow of the normal fluid which is
characterized by a parabolic velocity profile obtained by the integration of equation (5) with the
standard no-slip boundary conditions. The normal fluid velocity profile is given by the following
expression

vn(x) = −vn(y)x̂ =
|∇p|

2ηn

y(y − 2δ)x̂ (6)

wherevn(y) ≥ 0. The uniform superfluid velocity field is obviously directedin the opposite direc-
tion in order to satisfy mass conservation. Under the current hypotheses, temperature and pressure
gradients are a linear function of the steady heat fluxQ̇ supplied by the heater [30].

The condition of time-independent and small velocity fieldsis valid as long aṡQ is smaller than
a threshold value. Above this threshold, the dynamics of thetwo He II fluid components undergo a
change, due to the nucleation of vortex-lines which interact with both the normal and the superfluid
fractions. This interaction, at constant heat fluxQ̇ > Q̇∗, is responsible for an increase of the
magnitude of the temperature and pressure gradients.

4 THE MODEL
The algorithm elaborated in the present work performs the two dimensional numerical simula-

tion of the dynamics ofN vortex-points. The latter are the intersections ofN straight vortex-lines
with the channel’s longitudinal cross section which coincides with our computational domain. The
bidimensionality of the system implies that all theN vortex-lines are parallel to thez axis which
is orthogonal to the channel’s section considered. The mathematical expression employed for the
velocity vL of a generic vortex-point is the bidimensional version of the expression deduced by
Schwarz in [23]:

vL = v
ext
s + vs,i + αs

′ ×
(

vn − v
ext
s − vs,i

)

+ α′
(

vn − v
ext
s − vs,i

)

(7)

In the expression above,α andα′ are temperature-dependent adimensional friction coefficients re-

lated to Hall and Vinen’s [21, 22] constantsB andB′ by the expressionsα =
ρnB

2ρ
, α′ =

ρnB′

2ρ
;

vs,i(x, t) is the superfluid induced velocity field generated by the remaining N − 1 vortex-points;
v

ext
s = vext

s x̂ is the uniform superfluid velocity field which is characteristic of thermal counterflows
and guarantees a zero net mass flow across the channel;s

′ is the unit vector tangent to the vortex-line
(s′ = ±ẑ depending on the sign of the vortex-point);vn(x) is the velocity field of the normal fluid
which is still given by expression (6). In fact, for simplicity, in the present work the feedback of
the vortex-lines’motion on the normal fluid is neglected and, therefore, the Poiseuille profile (6) is
valid provided that∇p is replaced by∇ptot, in order to considerthe effect of the vortex-lines on the
pressure field.

In the geometry analyzed in this study and with axes orientedas shown in Fig. 1, the expression
(7) for the velocity of thek-th vortex-point, whose position at a generic instantt is (xk(t), yk(t)),
assumes the following form:

vL(xk, yk, t) =
[

(1 − α′)
(

vext
s + vx

s,i

)

− α′vn(y) ± αvy
s,i

]

x̂ +

+
[

(1 − α′) vy
s,i ∓ α

(

vn(y) + vext
s + vx

s,i

)]

ŷ (8)

The reasons why in the realization of the algorithm we employSchwarz’s formulation instead of
Idowu et. al’s [2], which accounts for the locality of the mutual friction force, are three: (a) in the
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present work, as affirmed previously, we have not consideredthe feedback of the vortex-lines on
the normal fluid velocity field; (b) the absence of the vortex-lines’ auto-induction velocity field and
(c) the constant direction ofs′ due to the fact that the vortex-lines, in the bidimensional geometry
considered in this work, do not present any curvature.

The superfluid induced velocity fieldvs,i generated by the remainingN − 1 vortex-points is
computed employing a complex-potential-based formulation. The latter is applicable in the system
studied due to bidimensionality of the flow, the irrotationality of the velocity field created by each
single vortex-point (the vorticity field is the sum ofN Dirac δ-functions centered in the vortex-
points) and the incompressibility of the flow. The latter property of the flow is valid even if a
temperature gradient is present across the channel. In counterflow experiments, in fact, the order
of magnitude of the temperature difference is10−3◦K. This temperature gap between the two He II
reservoirs is not sufficient to create an appreciable variation of the normal and superfluid densities
ρn(T ) andρs(T ).

The mathematical expressions of the complex potential of the flow and the corresponding com-
plex velocity is deducible employing two equivalent but different methods. The first of the latter is
based on the properties ofconformal mappings[33, 34]. With the means of these transformations
it is in fact possible to determine the mathematical expression of the complex potential of a single
vortex-point in a channel by mapping conformally the latterin the upper imaginary half-plane. In
this transformed geometry the expression of the complex potentialwj(z) is easily determinable due
to the fact that only one vortex-point image must be considered. The result obtained in the mapped
geometry is then re-transformed in the original geometry employing the inverse conformal map.

The second theoretical framework which is possible to employ in order to derive the expression
of the complex potential considers, instead, the infinite pair of images of a single vortex-point and its
complex conjugate with respect to the channel’s walls [35].The complex potential of a vortex-point
is then obtained computing the series which originates fromsumming the infinite complex potentials
of the vortex- point, its complex conjugate and the corresponding images. This last method coincides
with the framework employed in the present work in which, forbrevity, we will only report the results
of the theoretical study realized by Greengard [35].

The complex potentialwj(z) of thej-th vortex-pointzj in a channel flow is given by the follow-
ing expression

wj(z) = ∓ı
h

2πm
log

sinh
[

π
4δ

(z − zj)
]

sinh
[

π
4δ

(z − zj)
] (9)

where
h

m
is the quantum of circulation (h is Planck’s constant) and the∓ in front of the right hand

side of (9) depends on the sign of vortex-point. The consequent complex velocity fieldvj(z) is then
given by the following identity

vj(z) = vx
j − ıvy

j = ∓ı
~

m

π

4δ

{

coth
[ π

4δ
(z − zj)

]

− coth
[ π

4δ
(z − zj)

]}

(10)

where~ =
h

2π
. The complex superfluid induced velocity fieldvs,i(zk) in the position occupied by

thek-th vortex point is finally given by the following expression

vs,i(zk) = vx
s,i − ıvy

s,i =
∑

j 6=k

vj(zk) ± ı
~

m

π

4δ
coth

[ π

4δ
(zk − zk)

]

(11)

wherezk = xk + ıyk and the last term is the complex velocity generated by its complex conjugate
zk.
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T (◦K) ρn/ρs α α′ ∆ptot(Pa) Lx(m) ηn(Pa·s) δ(m)
1.5 0.143 0.078 6.25 × 10−3 10 0.1 3 × 10−7 3 × 10−5

Table 1: Numerical values of the relevant physical quantities characterizing the thermal counterflow
analyzed in this work

The periodicity in thex direction is treated only partially, i.e. we have considered only one
vortex-point image with respect to the computational domain’s boundaries in thex direction. Em-
ploying this procedure an error decreasing exponentially with the aspect ratio of the channel is
committed and, therefore, to minimize this error it is sufficient to consider a channel whose length
is significantly larger than its width.

The velocity fieldv
ext
s is instead determined imposing a zero net mass flux conditionin thex

direction
v

ext
s = −

ρn

ρs

vn (12)

(the superfluid mass flux arising from the velocity fieldvs,i is neglected in the present work). Having
determined all the terms which appear in equation (8) the numerical code elaborated in the present
work computes the temporal evolution of the positions of theN vortex-points starting from com-
pletely randomN initial positions. In the circumstance where a vortex-point collapses on a wall the
number of vortex-points is kept constant by nucleating a vortex-point in a position where its velocity
is zero due to the simultaneous action ofv

ext
s and the velocity field generated by its complex conju-

gate. This distance from the walls (positive vortex-pointswill nucleate close to the upper wall while
the negative ones in proximity of the lower) is indicated with y∗ and it is given by the following
expression:

y∗ =
2

π
arctan

(

π

4

1

vext
s

)

(13)

5 NUMERICAL RESULTS AND DISCUSSION
The values of the relevant physical quantities characterizing the system studied in this work are

extracted by the experimental data illustrated by Childers& Tough in [30] and are reported in Table
1. The values of∆ptot andLx employed generate a total pressure gradient∇ptot = 100Pa/m.
The latter, with the values ofηn andδ reported in Table 1, implies thatvn = 0.10m/s andvext

s =
0.014m/s.

Employing these numerical values we have realized numerical simulations of a He II thermal
channel counterflow. We have focused the attention on the superfluid induced velocity profile
〈vx

s,i〉(y). The 〈·〉 operator denotes an average taken over thex direction (analitical average) and
over time (numerical average). The results obtained can be observed in Fig. 2 where two velocity
profiles corresponding to two different values of the vortex-points numberN are plotted.

The first observation which can be made is that the velocity profiles tend to assume an almost
parabolic profile, i.e. a profile which is qualitatively similar to the normal fluid velocity profile. This
qualitative locking betweenvs,i andvn has already been observed by Samuels in laminar pipe flow
of He II [26] and Barenghiet al. in regions of high magnitude normal fluid vorticity [28].

The reason why the superfluid induced velocity profile〈vx
s,i〉(y) has the nearly parabolicy de-

pendence shown in Fig. 2 is the different dynamics to whom positive and negative vortex-points
are subject. From equation (8), in fact, it can be easily observed that they component ofvL has an
opposite sign for positive and negative vortex-points. More precisely, positive vortex-points have a
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Figure 2: Superfluid induced velocity profile〈vx
s,i〉 for N = 10 (continuous line) andN = 20

(dashed line)

negativevy
L and move therefore towards the bottom wall, while the negative vortex-points migrate

towards the top wall. As a consequence, a vortex-pointsign-separationtakes place and produces the
superfluid induced velocity profile illustrated in Fig. 2.

However, despite the similarities between the shape〈vx
s,i〉(y) andvn(y), two main differences

can be observed in Fig. 2. The first dissimilarity between thetwo profiles can be noticed in the central
region of the channel where the superfluid induced velocity profile shows a peak. This is due to the
fact that in our numerical simulationsy∗ ∼ δ and therefore both positive and negative vortex-points
nucleate in proximity of the channel’s centerline. Immediately after their respective nucleation, the
vortex-points move towards the walls as explained in the previous paragraph generating a relatively
large negative value ofvx

s,i in the central region of the channel. This phenomenon, whichconcerns all
the nucleated vortex-points, accounts for the peaked shapeof 〈vx

s,i〉(y) near the channel’s centerline.
The second qualitative difference between〈vx

s,i〉(y) andvn(y) regards the behaviour in the near-wall
region. In the latter, in fact,〈vx

s,i〉(y) is positive due to the combined action of the vortex-points and
their nearest images with respect to the wall. The plots of〈vx

s,i〉(y) reported in Fig. 2 also show, as
it could have been expected, that a larger value ofN implies to larger absolute values of〈vx

s,i〉(y).
The values of〈vx

s,i〉(y) reported in Fig. 2 imply that the superfluid mass flux which originates
from the induced fieldvs,i must be considered while computing the total superfluid massflux. As
a consequence, the expression (12) forv

ext
s is no longer valid and should be replaced by a time-

dependent expression which takes into account the superfluid mass flux arising fromvs,i. This issue
and the feedback of the motion of the vortex-lines on the normal fluid velocity field are relevant
topics which will be treated in future works.
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