Superfluid vortices in a wall-bounded flow
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We have performed bidimensional numerical simulations®ilithannel counterflows. Peculiar to
this research is the presence of solid boundaries in the gepiof the system studied. The vortex-
points dynamics is analyzed via a complex-potential-batgatithm which computes the temporal
evolution of the vortex-points positions. The results of tesearch are discussed in terms of the
superfluid induced velocity profile which is compared to tlésBuille velocity profile of the normal
fluid. Similarities and differences are examined and we aithat the dissimilarities between the
two profiles are related to the vortex-points nucleatioriae@nd to the different dynamics that
characterize vortex-points of opposite sign.

1 INTRODUCTION

The interest of the scientific community upon superfluid flefkle*’s liquid phase at tempera-
tures? below the\ phase-transition temperatufg = 2.17°K (the liquid phase is usually indicated
asHe II) significantly increased in the last ten years. This risinthaesiasm concerning superfluid
physics considerably contributed in turning this brancimofiern physics in one of the most impor-
tantfields in low temperature physics. This increasingegeis due to three concurring motivations:
i) new features recently discovered which gave birth to sdveew research topics regarding the pe-
culiar characteristics of He Il superflows; ii) the numbemddadtinct physical systems where He Il
theoretical models can be employed; and, iii) importanusidal applications of cryogenic Helium.

New insight has been also achieved thanks to the increasimgutational power available to
numerical simulations of the properties exhibited by thelHsystem. The computational cost re-
quired by a correct and accurate numerical analysis of Hegéslows is ultimately related to the
very wide range of spatial (and, therefore, temporal) scateich must be simultaneously resolved
[1]. The most accurate and recent numerical studies of HeWdl([2, 3, 4] just to mention some
of the scientific works carried out in the last ten years) woubt have been able to account for
the smallest dynamically significant scales and interastisithout leveraging the power of modern
computers. These simulations have brought to light manyasiities between the so-call€@uan-
tum Turbulenceassociated to turbulent phenomena observed in quantuiddidi.e. fluids, as He
II, where the quantum effects are predominant with respedtissical issues) and ordinary classical
turbulence [5, 6, 7]. Such characteristics play a fundaaiente in high-technology industrial ap-
plications of He Il flows, such as cryogenic cooling systeorddrge-scale superconductor devices
employed in high-magnitude and high-precision magnetid fieneration. This technology is cru-
cial in particle accelerators (e.g LHC at CERN, Généve, TE&LDESY, Hamburg) and nuclear
fusion experiments.

Recent large-scale simulations have also contributedharezing our knowledge of the dynam-
ics of the quantized vortex-lines which are peculiar to sfipiel and condensed-matter systems. The



insight gained with the numerical studies of the temporalion of He Il quantized vortex-lines
can be therefore extended to all physical systems disgayiiantized vorticity and topological de-
fects. Examples of such systems are: vortices in supercboidyinternal structures of neutron stars
and pulsars, dislocation in solids, disinclinations inuldjcrystals, Bloch lines in magnetic materials,
micro-topological defects in Bose-Einstein condensa&gs [

To the best of our knowledge, however, all of the numeriaadigts published so far were per-
formed in unbounded He Il physical systems; in other wordsenof them considered He Il flows
in proximity of a solid wall. The total absence of numericehslations of He Il superflows in
wall-bounded geometries is one of the main motivations efgtesent work, that recongnizes the
essential role played by solid walls in vortex-line dynasnémd nucleation. Solid boundaries, in
fact, strongly influence the velocity profiles of both the erffuid fraction (its wall-normal veloc-
ity component vanishes on the solid boundary) and of the abfioid component (that is affected
also by the additional no-slip condition), and thereforeedmine the velocity field of the quantized
vortex-lines. In addition, the solid walls heavily influenthethermally activated nucleatioof the
vortex-lines by determining a particular shape of the epbagrier which must be overcome in order
to produce nucleation events [9].

The numerical study presented here analyzes a bidimensienachannel counter-flow. In the
dimensionality of the problem considered the evolutiorheftortex-lines is obviously replaced by
the simplewvortex-pointddynamics. The outline of the paper is as follows. After a sHloistration
in 82 of the peculiar characteristics of the liquid phase KHand the numerical simulations of He
Il superflows performed in the past will be presented. In &3ptoperties of the particular physical
system considered here will be shortly described, whiledintt® characteristics of the theoretical
and numerical models employed will be concisely outlinethaly, in 85 the main results will be
presented and discussed.

2 THE LIQUID PHASE He ll

The intrinsic characteristics of He Il have motivated sal/&undamental works since the first
experimental results obtained employing’Hat temperatures belo@,. The early experiments
analysing the properties of He Il [10, 11] revealed the gmbsi of He Il inviscid flows and led
to the development of thisvo-fluid model This phenomenological description of He Il, elaborated
separately by Landau [12, 13] and Tisza [14], considers Heslan intimate mixture of two in-
separable fluid components which penetrate each othendireal component and thsuperfluid
component. According to this model, each fluid componenitsasvn density and velocity fields,
pn @ndw,, for the normal fluid angh, andwv for the superfluid component. The total density of He
Ilis p = pn + ps. In the two-fluid model, the viscosity and the entropy asas@al to the superfluid
component are zero, and its flow is considered irrotatiofi&lerefore, the superfluid component
is similar to a classical, inviscid Euler fluid. The normalidlicomponent, on the other hand, is
described as a gas of thermal excitations, naptezhonsandrotonsaccording to the normal fluid
linear momentum. The normal component carries the entitt@@y and viscosity of He Il and is
therefore similar to a classical, viscous Navier-Stokesd flu

The relative proportion of normal and superfluid componéengsfunction of the absolute tem-
peraturel’; this function has been determined experimentally by Ladgdeppy [15], Mehl&
Zimmermann [16] (in liquid-helium gyroscope experimerasd Andronikashvili [17] (with the
oscillating-disc experiment). The two-fluid model expgimany observed characteristics of He |l
flows. Among them we mention thteermal counterflovand thesecond sound propagatiof his
model was found however to be incomplete. Studies by OngaggrLondon [19] and Feynman



[20], appeared in fact soon afterwards and suggested thabfm®xistence of small regions of
concentrated vorticity in the superfluid. These regionsenserpposed to be either bi-dimensional
vortex-sheet§l 9] or one-dimensionalortex-lineg[18, 20]. In both formulations the non-zero su-
perfluid vorticity would be confined in the mentioned vortisiuctures around which the circulation
of the superfluid velocity field, is quantized to integer multiples af/m4 (whereh is the Planck
constant andn, is the mass of a Heparticle).

Soon thereafter, in 1956 Hall and Vinen [21, 22] demonstidieth theoretically (thermodynam-
ically) and experimentally, that the correct model for coall superfluid vorticity is the Onsager-
Feynman vortex-lines formulation. In their papers, HalllAfinen also derive a mathematical ex-
pression for thanutual frictionforce, that is the mechanism through which the two companent
of He Il exchange momentum. Momentum transfer arises froliisimms between the vortex-lines,
belonging to the superfluid fraction, and the elementarjtations (phonons and rotons) which con-
stitute the normal fluid. The mathematical expression oftlgual friction force, deduced by Hall
and Vinen, and therefore valid for uniformly rotating He Hlg, was extended by Schwarz [23] to
generic He Il systems exhibiting superfluid quantized vctiees of any geometry. In this work,
Schwarz accounts for the curvature of the vortex-lines ¢ig absent in uniformly rotating He 11
where the vortex-lines are straight) and deduces a geneatthlematical expression for the mutual
friction force. The latter has been a crucial advancemestiperfluid physics. From the general
expression of the mutual friction force, in fact, Schwarrk, in the same paper, the equation of
motion of a vortex-line element, which represents theistgpoint and the core of the first numerical
algorithms elaborated in the following decades.

Schwarz himself [24] pioneered the numerical approach,jioylsting in 1988 the spatial and
temporal evolution of a quantizeartex tanglen a thermal counterflow. Due to the computational
resources available at the time, the algorithm Wiaesmatic i.e. the normal fluid and the superfluid
velocities were given at the beginning of the calculationd aever modified. In the following
decade, the increasing computer power was leveraged byrinaineodes which prescribed the
motion of only one component, usuathy,. Different assumptions were made about the normal fluid:
uniform flow [25], Poiseuille flow [25, 26], a Gaussian vor{ex], ABC flows [28]. The kinematic
approach was also used to study the behaviour of the nornidltfiuassigning the topology of
superfluid vortices [29].

All the different kinematic approaches listed above, hasveare limited by the priori prescrip-
tion of at least one velocity field. The existence of the muftietion force implies that the normal
fluid velocity v,, and the superfluid vortex-lines mutually influence durirgjtievolution. As a con-
sequence, ten years ago Barenghi and Samuels [1] elabaratederical algorithm which allowed
the normal fluid and the superfluid vortices to determine egtbler self-consistently. This com-
putational code employs a Lagrangian algorithm, based oiexdilaments methods, to determine
the spatial and temporal evolution of the discrete voriegd elements and an Eulerian calculation,
based on modified Navier-Stokes equations, to resolve threaidluid velocity field. The algorithm
employed by Barenghi and Samuels was later slightly modbigddowu et al. [2] to take into
account the extreme locality of the mutual friction forcettie circumstance of a quantized vortex
tangle numerical simulation.

3 THERMAL COUNTERFLOW

The thermal counterflow, that is the subject of this papex usique fluid dynamic phenomenon
existing in He Il. It is a direct consequence of the two-fluidisture which characterizes the liquid
phase. As the dominant heat transfer process in He Il, tHesouaterflow has been extensively



analyzed since its discovery in 1950s, focusing espeaallyvo major aspects: i) the hydrodynamic
characteristics of the two fluid components and their irttiiwa under different physical conditions;
i) the fundamentals of vortex-lines dynamics and theieef§ on the hydrodynamics of the two
fluid components. A typical experimental setup [30, 31]lissilrated in Fig. 1. Two He Il reservoirs
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Figure 1: He Il thermal counterflow experimental setup

are connected by a channel whose wiglthis small with respect to its length,. and depth’.,. A
heater placed in one of the reservoirs supplies a constahflhe and creates a uniform temperature
gradientV7" across the channel. Since entropy is only carried by the alditaid, the heat transfer
by the normal flow is the only mechanism of heat transfer in IHehiich is, therefore, of the nature
of convection [32]. As a consequence, the heat density flaiove in the channel is given by the
following identity
q = psTo, (1)

wheres is the entropy per unit mass amg is the normal fluid velocity averaged over a channel
cross section. Mass conservation implies a zero net mass¥kixthe channel cross sections and
allows the calculation of the uniform velocity field of thepsufluid fraction which, added to the
vortex-lines’induced velocity, constitutes.

The He Il thermal counterflow, as anticipated, can be easiljetstood in terms of the two-
fluid model. According to the latter, the equations of motadrthe two fluid components are the
following:

ov, n
pn% + pn (vn : V) Un = Unv%" B %Vp — pssVT (2)
0vg Ps
PSW +ps (Vs - Vv, = ?Vp + pssVT )

wheren,, is the dynamic viscosity coefficient of the normal fluid. Iétle is no explicit time depen-
dence of the velocity fields and the latter are either veryllsondaminar, the equations (2) and (3)
reduce to London’s equation

Vp = psVT 4)

and Poiseuille’s equation for classical hydrodynamics

Vp = T]nVQUn (5)



Equation (4) is very important because it states that a testye gradient implies the simul-
taneous presence of a pressure gradient. The latter caweséisw of the normal fluid which is
characterized by a parabolic velocity profile obtained by ititegration of equation (5) with the
standard no-slip boundary conditions. The normal fluid e#joprofile is given by the following
expression

Vol s
o, y(y —20)@ (6)

whereuv,, (y) > 0. The uniform superfluid velocity field is obviously directedthe opposite direc-
tion in order to satisfy mass conservation. Under the ctitmgpotheses, temperature and pressure
gradients are a linear function of the steady heat@supplied by the heater [30].

The condition of time-independent and small velocity figkigalid as long as) is smaller than
a threshold value. Above this threshold, the dynamics ofiloeHe Il fluid components undergo a
change, due to the nucleation of vortex-lines which intevath both the normal and the superfluid
fractions. This interaction, at constant heat flix> (., is responsible for an increase of the
magnitude of the temperature and pressure gradients.

v (®) = —von(y)2 =

4 THE MODEL

The algorithm elaborated in the present work performs treedimensional numerical simula-
tion of the dynamics ofV vortex-points. The latter are the intersections\bktraight vortex-lines
with the channel’s longitudinal cross section which cailes with our computational domain. The
bidimensionality of the system implies that all thé vortex-lines are parallel to the axis which
is orthogonal to the channel’s section considered. The enaditical expression employed for the
velocity v, of a generic vortex-point is the bidimensional version af #xpression deduced by
Schwarz in [23]:

v = v v, +as’ x (v, — v —wg) + o (v, — v —vy) 7

In the expression above,anda’ are temperature-dependent adimensional friction coeffisire-
B - PnB/.

2p “ = 2p
v,i(x,t) is the superfluid induced velocity field generated by the iring NV — 1 vortex-points;
vt = p*t3 is the uniform superfluid velocity field which is charactéd®f thermal counterflows
and guarantees a zero net mass flow across the chahisahe unit vector tangent to the vortex-line
(s’ = £z depending on the sign of the vortex-point);(x) is the velocity field of the normal fluid
which is still given by expression (6). In fact, for simptigiin the present work the feedback of
the vortex-lines’motion on the normal fluid is neglected atherefore, the Poiseuille profile (6) is
valid provided thaW¥p is replaced byWp,., in order to considerthe effect of the vortex-lines on the
pressure field.

In the geometry analyzed in this study and with axes orieageshown in Fig. 1, the expression

(7) for the velocity of thek-th vortex-point, whose position at a generic instarst (zx (¢), yx (t)),
assumes the following form:

lated to Hall and Vinen'’s [21, 22] constansand B’ by the expressions =

vi(ze,yet) = [(1—a) (vf" +0;) —dva(y) £ avl;] &+

+[(1—a) ol Fa(valy) + 0™ +02:)] 9 ®

The reasons why in the realization of the algorithm we em@ofwarz’s formulation instead of
Idowu et. als [2], which accounts for the locality of the mutual frictidorce, are three: (a) in the



present work, as affirmed previously, we have not considdredeedback of the vortex-lines on
the normal fluid velocity field; (b) the absence of the vorliees’ auto-induction velocity field and
(c) the constant direction of due to the fact that the vortex-lines, in the bidimensioredmgetry
considered in this work, do not present any curvature.

The superfluid induced velocity field; ; generated by the remaining — 1 vortex-points is
computed employing a complex-potential-based formutatithe latter is applicable in the system
studied due to bidimensionality of the flow, the irrotatibiyeof the velocity field created by each
single vortex-point (the vorticity field is the sum af Dirac J-functions centered in the vortex-
points) and the incompressibility of the flow. The latter peay of the flow is valid even if a
temperature gradient is present across the channel. Interfion experiments, in fact, the order
of magnitude of the temperature differenca (s *>°K. This temperature gap between the two He II
reservoirs is not sufficient to create an appreciable vaniaif the normal and superfluid densities
pn(T) andps(T).

The mathematical expressions of the complex potentialefltw and the corresponding com-
plex velocity is deducible employing two equivalent bufeiient methods. The first of the latter is
based on the properties obnformal mapping§33, 34]. With the means of these transformations
it is in fact possible to determine the mathematical expoessf the complex potential of a single
vortex-point in a channel by mapping conformally the lattethe upper imaginary half-plane. In
this transformed geometry the expression of the complesmtia w; () is easily determinable due
to the fact that only one vortex-pointimage must be considei he result obtained in the mapped
geometry is then re-transformed in the original geometrpleging the inverse conformal map.

The second theoretical framework which is possible to egnpl@rder to derive the expression
of the complex potential considers, instead, the infinifegfdmages of a single vortex-point and its
complex conjugate with respect to the channel’s walls [36f complex potential of a vortex-point
is then obtained computing the series which originates §omming the infinite complex potentials
of the vortex- point, its complex conjugate and the corresireg images. This last method coincides
with the framework employed in the present work in which Hoevity, we will only report the results
of the theoretical study realized by Greengard [35].

The complex potentiab; (=) of the j-th vortex-pointz; in a channel flow is given by the follow-
ing expression

w;(2) = F1 h log sinh [% (z — zj)]

2mm sinh [4_6 (z — Z)]

(9)

Whereﬁ is the quantum of circulatiorh(is Planck’s constant) and the in front of the right hand
m

side of (9) depends on the sign of vortex-point. The consetgp@mplex velocity field, (z) is then

given by the following identity

m

- zj)} — coth [1 (z — z—j)} } (10)

h
vi(2) =vj —wi =F - {coth [ v

Y 45

whereh = i The complex superfluid induced velocity field;(z;) in the position occupied by
s
the k-th vortex point is finally given by the following expression

h
vsi(2k) = v:f,i — wi’_j = 2 vj(z) £ ZE% coth L% (zk — E)] (11)

wherez;, = xi + 1y, and the last term is the complex velocity generated by itspgexnconjugate
Zr.



T(CK) | pn/ps « o Apior(Pa) | Ly(m) | nn(Pa-s) o(m)
1.5 0.143 | 0.078 | 6.25 x 1073 10 0.1 3x 1077 | 3x10°°

Table 1: Numerical values of the relevant physical quatitharacterizing the thermal counterflow
analyzed in this work

The periodicity in ther direction is treated only partially, i.e. we have consideoaly one
vortex-point image with respect to the computational dersgioundaries in the direction. Em-
ploying this procedure an error decreasing exponentiaiti ¥he aspect ratio of the channel is
committed and, therefore, to minimize this error it is sudfit to consider a channel whose length
is significantly larger than its width.

The velocity fieldv¢** is instead determined imposing a zero net mass flux condititine
direction P
et = —p—:m (12)
(the superfluid mass flux arising from the velocity fielg; is neglected in the present work). Having
determined all the terms which appear in equation (8) theetioal code elaborated in the present
work computes the temporal evolution of the positions of Me&ortex-points starting from com-
pletely randomV initial positions. In the circumstance where a vortex-pomllapses on a wall the
number of vortex-points is kept constant by nucleating &xepointin a position where its velocity
is zero due to the simultaneous actiongf! and the velocity field generated by its complex conju-
gate. This distance from the walls (positive vortex-poimilsnucleate close to the upper wall while
the negative ones in proximity of the lower) is indicatedhwjt and it is given by the following
expression:

*

2 1
y* = — arctan T (23)
T 4 pert

5 NUMERICAL RESULTS AND DISCUSSION

The values of the relevant physical quantities charadéteyithe system studied in this work are
extracted by the experimental data illustrated by Childefi®ugh in [30] and are reported in Table
1. The values ofAp;,; and L, employed generate a total pressure gradeépnt,; = 100Pa/m.
The latter, with the values of,, andd reported in Table 1, implies that, = 0.10m/s andv&*t =
0.014m/s.

Employing these numerical values we have realized numesicaulations of a He 1l thermal
channel counterflow. We have focused the attention on ther8uja induced velocity profile
(v:)(y). The(.) operator denotes an average taken oventitgrection (analitical average) and
over time (numerical average). The results obtained carbberved in Fig. 2 where two velocity
profiles corresponding to two different values of the vonp@ints numberV are plotted.

The first observation which can be made is that the velocibfiles tend to assume an almost
parabolic profile, i.e. a profile which is qualitatively slarito the normal fluid velocity profile. This
qualitative locking between, ; andv,, has already been observed by Samuels in laminar pipe flow
of He 11 [26] and Barenghet al. in regions of high magnitude normal fluid vorticity [28].

The reason why the superfluid induced velocity profilg;)(y) has the nearly paraboligcde-
pendence shown in Fig. 2 is the different dynamics to whonitigesand negative vortex-points
are subject. From equation (8), in fact, it can be easily oleskthat the; component ofy;, has an
opposite sign for positive and negative vortex-points. &lprecisely, positive vortex-points have a
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Figure 2: Superfluid induced velocity profileg ;) for N = 10 (continuous line) andV = 20
(dashed line)

negativev and move therefore towards the bottom wall, while the negatbrtex-points migrate
towards the top wall. As a consequence, a vortex-migrt-separatiortakes place and produces the
superfluid induced velocity profile illustrated in Fig. 2.

However, despite the similarities between the shage)(y) andv, (y), two main differences
can be observedin Fig. 2. The first dissimilarity betweerreprofiles can be noticed in the central
region of the channel where the superfluid induced velocibtfile shows a peak. This is due to the
fact that in our numerical simulationg ~ ¢ and therefore both positive and negative vortex-points
nucleate in proximity of the channel’s centerline. Imméeliaafter their respective nucleation, the
vortex-points move towards the walls as explained in theipus paragraph generating a relatively
large negative value of? , in the central region of the channel. This phenomenon, wtnciterns all
the nucleated vortex-points, accounts for the peaked stfaé ;) (y) near the channel’s centerline.
The second qualitative difference betweef, ) (y) andv, (y) regards the behaviour in the near-walll
region. In the latter, in factw? ;) (y) is positive due to the combined action of the vortex-points a
their nearest images with respect to the wall. The plot®®f)(y) reported in Fig. 2 also show, as
it could have been expected, that a larger valu&/ ofplies to larger absolute values off ) (y).

The values ofv?,)(y) reported in Fig. 2 imply that the superfluid mass flux whiclyorates
from the induced fiéld;s_,i must be considered while computing the total superfluid rflags As
a consequence, the expression (12)46% is no longer valid and should be replaced by a time-
dependent expression which takes into account the supbnilass flux arising frone ;. This issue
and the feedback of the motion of the vortex-lines on the mbiffaid velocity field are relevant
topics which will be treated in future works.
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