Streamwise-traveling waves in a pipe flow: experimentally assessing the turbulent drag reduction

F.Auteri, A.Baron, M.Belan, A.Bertolucci, G.Gibertini, M.Quadrio

Dip. Ing. Aerospaziale Politecnico di Milano

XX AIDAA Conference – Milano
June 30, 2009
Outline

1. Background
2. The traveling waves
3. Experimental setup
4. Results
Outline

1. Background
2. The traveling waves
3. Experimental setup
4. Results
Spanwise wall forcing of turbulence
A long story made short

Spanwise forcing may decrease turbulent friction drag:

1985 Bradshaw & Pontikos 1985: sudden spanwise pressure gradient

1992 Jung et al. 1992: harmonic spanwise wall oscillation

1993- many papers on the oscillating-wall technique
Spanwise wall oscillation: the essentials
Quadrio & Ricco, JFM 04

\[w(x, y = 0, z, t) = A \sin(\omega t) \]

- Large reductions of turbulent friction
- Basic mechanism still elusive
- Does an optimum period \(T_{opt} \) exist?
- Unpractical
Turbulent fluctuations at the wall possess a convection velocity

Known concept (Kreplin & Eckelmann) in the ’70

Re-discovered (!) by Kim & Hussain ’93

Re-re-discovered (!!!) by Quadrio & Luchini ’03
The oscillating wall made stationary

\[w(x, y = 0, z, t) = A \sin(\kappa x) \]

- Convection allows translating the oscillation into a steady forcing
- Existence of an optimal wavelength \(\lambda_{opt} = U_w T_{opt} \)
- Easily implemented as a passive device (sinusoidal riblets)
Outline

1. Background
2. The traveling waves
3. Experimental setup
4. Results
The traveling waves: a natural extension

Purely temporal forcing

The oscillating wall:

\[w = A \sin(\omega t) \]

- Infinite phase speed

Purely spatial forcing

The steady waves:

\[w = A \sin(\kappa x) \]

- Zero phase speed

Combined space-time forcing

The traveling waves:

\[w = A \sin(\kappa x - \omega t) \]

- Finite phase speed \(c = \omega / \kappa \)
First results: a DNS study
Quadrio et al., JFM 2009

- DNS pseudo-spectral code
- Powerful system with 268 dual-core Opteron CPUs, 280GB RAM, 40TB disk space
- Turbulent plane channel flow at $Re_\tau = 200$
- Approx. 4 centuries of CPU time (or 500MWh of power)
Unexpected results!
Waves may yield both DR and DI
How much power to generate the waves?

- Power $\sim w \frac{\partial w}{\partial y}|_{y=0}$
- Upper bound to energetic cost
- Similar to drag reduction map!
- Ratio of energy save to cost up to 30:1
- Up to 25% net energy save
Motivation for a laboratory experiment

Devise a proof-of-principle experiment to:

- confirm DR and DI
- improve our understanding of the traveling waves
- explore further the parameter space (Re, A)
| 1 | Background |
| 2 | The traveling waves |
| 3 | Experimental setup |
| 4 | Results |
Our experimental setup
The main design choices

- Geometry of **cylindrical pipe**: naturally periodic in spanwise (azimuthal) direction
- Friction is measured through pressure drop
- Spanwise velocity at the wall is achieved by moving the wall
- Temporal variation is achieved by unsteady control of the wall velocity
- Spatial variation is achieved by **slicing the pipe into** thin, independently-movable **axial segments**
Notable difficulties

- Low-budget experiment
- Small pressure drop
- Water
The pipe
A closed-circuit water pipe
The rotating segments
60 slabs with 6 independent motors
The transmission system
Shafts, belts and rotating segments
The control system

- Motion of the slabs is feedback-controlled
- Dynamometric sensors to feed back angular speed
- Fully automated test management
Flow parameters and procedure

- Working fluid is water
- $U_b = 0.9 \text{ m/s}$
- $Re = 4900$
- $Re_\tau = 180$

- System degassed after filling
- **Temperature** is continuously monitored
- Flow rate is continuously monitored
- Re is adjusted at every measurement point by changing U_b
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Background</td>
</tr>
<tr>
<td>2</td>
<td>The traveling waves</td>
</tr>
<tr>
<td>3</td>
<td>Experimental setup</td>
</tr>
<tr>
<td>4</td>
<td>Results</td>
</tr>
</tbody>
</table>
Experimental conditions
<table>
<thead>
<tr>
<th>Background</th>
<th>The traveling waves</th>
<th>Experimental setup</th>
<th>Results</th>
</tr>
</thead>
</table>

SHOW MOVIE HERE?
Drag changes
Bulk units

![Graph showing drag changes](image)

- N=2
- N=3
- N=6
- N=inf

Axes:
- Horizontal: $\omega R / U_b$
- Vertical: %DR

Legend:
- N=2: Red solid line
- N=3: Green dashed line
- N=6: Blue dotted line
- N=inf: Pink square marker
Comparison with DNS & plane channel

Inner units
Discussion

Quantitative disagreement between DNS and experiment

- Spatial transient?
- Cylindrical vs planar geometry?
- Difference in GSL
- Difference (small) in Re and A
Conclusions

- DR is confirmed
- 26% DR is one of the largest ever measured
- Quantitative uncertainty
- Demonstrated existence of T_{opt} for oscillating pipe
Understanding the physics
The lifetime T_ℓ of turbulent structures
Unsteadiness in the convecting reference frame

Oscillating wall

- Forcing on a timescale $\gg T_\ell$ does not yield DR
- Timescale: oscillation period T

\[T_\ell = \frac{\lambda}{x} U_w - c U_w \]: convection velocity at the wall

\[c = \frac{\omega}{\kappa} \]: phase speed
Unsteadiness in the convecting reference frame

Oscillating wall
- Forcing on a timescale $\gg T_\ell$ does not yield DR
- Timescale: oscillation period T

Traveling waves
- Forcing on a timescale $\gg T_\ell$ does not yield DR
- Timescale: oscillation period \mathcal{T} as seen in a convecting reference frame

\[
\mathcal{T} = \frac{\lambda_x}{U_w - c}
\]
- U_w: convection velocity at the wall
- $c = \omega/\kappa$: phase speed
How spanwise forcing really works
Quadrio et al., JFM 2009
One step back
Extending the laminar Stokes solution

- Laminar flow
- Transverse, alternating boundary layer
- Qualitative similarity

\[w(y, t) \]
\[w(y, x) \]
\[w(y, x - ct) \]
The generalized Stokes layer
An analytical approximate solution

\[w(x, y, t) = A \Re \left\{ Ce^{2\pi i(x - ct)/\lambda_x} \text{Ai} \left[e^{\pi i/6} \left(\frac{2\pi u_y,0}{\lambda_x v} \right)^{1/3} \left(y - \frac{c}{u_y,0} \right) \right] \right\} \]

- \(\delta_{GSL} \ll h \)
- Neglect streamwise viscous diffusion
- Threshold velocity to discriminate flow regimes
Using the GLS solution
Thickness of the GLS