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Turbulent drag reduction
Source: Airbus
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Feedback control of wall turbulence

Actuators: zero-net-mass-flux wall blowing/suction
Sensors: pressure and skin friction components
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The plant: turbulent channel flow

Incompressible flow between two plane, parallel, infinite walls

Flow is spatially invariant in x and z
Efficient DNS at moderate Re (and ≈ 108 d.o.f.s)
State variables: v -η



university-logo

Introduction The response function Wiener-Hopf design of compensators Results & discussion

State of the art
A very young field

Hope for linear control (Kim & Lim, 2000)
Modern Optimal Control Theory
Unsolved problem of Kalman-filter-based estimator
State-space formulation
Additional challenge: billions of d.o.f.
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A recent step ahead?
Luchini & Quadrio, PoF 2006

The problem
Poor system model: NS
equations linearized about
the mean velocity profile
Turbulence dynamics is
missing

The solution
Enrich the model: the
average linear response
function
Turbulent diffusion is
accounted for
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Goal of the present work

Use the average impulse response in the full control
problem
Lay down a computationally-efficient procedure



university-logo

Introduction The response function Wiener-Hopf design of compensators Results & discussion

The feedback control problem

K

n
d

xy
C+ + H

u

n: turbulent fluctuations in the uncontrolled flow
Aim: design K to minimize

J = E{xHQx + uHRu}
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What is H?
A numerical measurement

Measurement technique: wall forcing with a small
space-time white Gaussian noise
Cross-correlating the perturbed field with the wall forcing
defines H
H embodies more physics: turbulent diffusion is accounted
for (on average)
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The average impulse response
Wall-normal forcing

Hv (x , y , z, t+ = 5) Hη(x , y , z, t+ = 5)
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The average impulse response

Hv (x , y , z, t+ = 15) Hη(x , y , z, t+ = 15)
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The average impulse response

Hv (x , y , z, t+ = 25) Hη(x , y , z, t+ = 25)
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Why we’ve got stuck in 2006

Comment
A state-space realization of
H is computationally
unaffordable
Our system is LTI with
stationary stochastic
forcing
Our system has
Nin,Nout � Nstates

Implication
Standard control design
techniques cannot be
employed
A frequency domain
approach is feasible and
convenient
This can (must) be
exploited for efficiency



university-logo

Introduction The response function Wiener-Hopf design of compensators Results & discussion

Switch to frequency domain!
F.Martinelli, PhD thesis, PoliMi 2009

K

n
d

xy
C+ + H

u

Rewriting the objective functional in frequency:

J =

∫ +∞

−∞
Tr [Qφxx (f )] + Tr [Rφuu(f )] df .

Substituting, J is not quadratic in K .
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The optimal compensator in frequency domain

J may be written as a quadratic form of the Youla parameter
K = (I − KCH)−1K as:

J =

∫ +∞

−∞
Tr
{

Qφnn + QHK Cφnn + QφnnCHK
H

HH + . . .

. . .+QHK CφnnCHK
H

HH + QHKφddK
H

HH
}

+ . . .

. . .+Tr
{

RK CφnnCHK
H

+ RKφddK
H
}

df .

Minimization yields the best compensator (that is non-causal)
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How to enforce causality?

Introduce a Lagrange multiplier Λ:

J =

∫ +∞

−∞
Tr
{

Qφnn + QHK +Cφnn + QφnnCHK
H
+HH . . .

. . .+QHK +CφnnCHK
H
+HH + QHK +φddK

H
+HH

}
+ . . .

. . .+Tr
{

RK +CφnnCHK
H
+ + RK +φddK

H
+

}
+ Tr [Λ−K

H
+] df .
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A Wiener-Hopf problem

Minimization leads to the (linear) Wiener-Hopf problem:

(HHQH + R)K +(CφnnCH + φdd ) + Λ− = −HHQφnnCH

Solution yields directly the compensator’s frequency
response (no separation theorem required)
φnn appears in functional form: full space-time structure of
the noise easily accounted for
Scalar equation for the SISO case: superfast FFT-based
solution
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The procedure
Measure⇒ design⇒ test

Response function and noise spectral densities are
measured via DNS and Fourier transformed in x and z
Compensator is designed by solving the Wiener-Hopf
problem wavenumber-wise
Compensators are tested in a full nonlinear DNS
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Compensator kernel in physical space

u(x , z, t) =

∫
K (x − x ′, z − z ′, t − t ′)y(x ′, z ′, t ′) dx ′dz ′dt ′
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Performance assessment

Parametric study addressing:
Choice of the objective functional
Experimenting with R and φdd

Effectiveness of the sensors
Re effects

More than 300 DNS (≈ 40 years of CPU time) run at the
supercomputing system located at the University of Salerno.
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Best performance results

Dissipation Energy
Reτ τx τz p τx τz p
100 2% 0% 0% 0% 0% 0%

180 8% 6% 0% 0% 0% 0%

Energy norm is not effective
Dissipation norm is effective
Pressure measurement is useless
With dissipation, performance improves with Re
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“Inverse” Re-effect

d〈U〉
dy

∣∣∣
w

= − 1
UB

〈 ∑
(α,β)6=(0,0)

D(α, β)

︸ ︷︷ ︸
Dturb

+
1
2

∫ 1

−1

(∂Û
∂y

)
(0,0)

(∂Û
∂y

)∗
(0,0)

dy︸ ︷︷ ︸
Dmean

〉

Dturb is affected directly by zero net mass flux wall
blowing/suction
Dmean is affected indirectly via nonlinear interactions
between fluctuations and the mean flow
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“Inverse” Re-effect
Laadhari, PoF 2007

The relative contribution of Dturb to the total dissipation
increases with Re!

Reτ Dturb Dmean
100 26.8% 73.2%

180 39.5% 60.5%
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Critical discussion
Importance of selecting the cost function

Present compensators are the best possible LTI
Their performance is poor

The cost function is probably the sole important degree of
freedom
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Conclusions

A novel compensator design formulation in frequency
domain has been proposed
It is extremely efficient
It exploits a measured linear model of the turbulent
channel flow
The time-space structure of the state noise is accounted for
Feedback compensators can be designed from
experimentally measured data
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