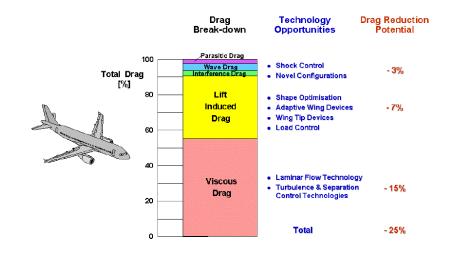
Wiener-Hopf design of feedback compensators for drag reduction in turbulent channels

Fulvio Martinelli, Maurizio Quadrio and Paolo Luchini

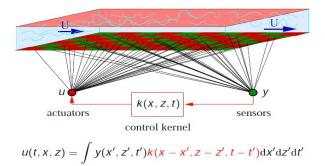
Dip. Ing. Aerospaziale del Politecnico di Milano

XX AIDAA Conference – Milano 29 Giugno 2009

Outline

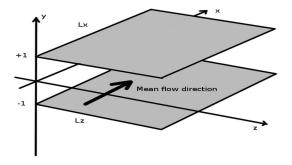

Wiener-Hopf design of compensators

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ


Wiener-Hopf design of compensators

Turbulent drag reduction Source: Airbus

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●


Feedback control of wall turbulence

- Actuators: zero-net-mass-flux wall blowing/suction
- Sensors: pressure and skin friction components

The plant: turbulent channel flow

Incompressible flow between two plane, parallel, infinite walls

- Flow is spatially invariant in x and z
- Efficient DNS at moderate Re (and $\approx 10^8$ d.o.f.s)
- State variables: ν-η

State of the art A very young field

- Hope for linear control (Kim & Lim, 2000)
- Modern Optimal Control Theory
- Unsolved problem of Kalman-filter-based estimator
- State-space formulation
- Additional challenge: billions of d.o.f.

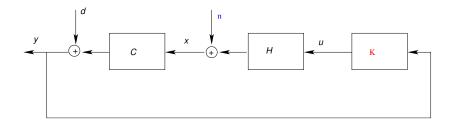
A recent step ahead? Luchini & Quadrio, PoF 2006

The problem

- Poor system model: NS equations linearized about the mean velocity profile
- Turbulence dynamics is missing

The solution

• Enrich the model: the average linear response function


◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 Turbulent diffusion is accounted for

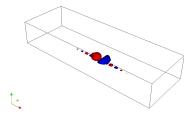
Goal of the present work

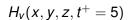
- Use the average impulse response in the full control problem
- Lay down a computationally-efficient procedure

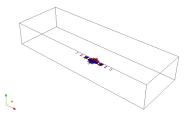
The feedback control problem

- n: turbulent fluctuations in the uncontrolled flow
- Aim: design *K* to minimize

$$J = E\{x^H Q x + u^H R u\}$$

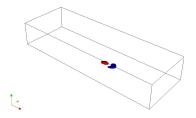

・ロット (雪) (日) (日)

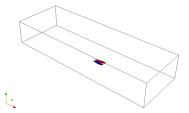

э


What is *H*? A numerical measurement

- Measurement technique: wall forcing with a small space-time white Gaussian noise
- Cross-correlating the perturbed field with the wall forcing defines *H*
- *H* embodies more physics: turbulent diffusion is accounted for (on average)

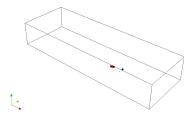
The average impulse response Wall-normal forcing

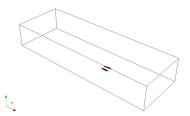



 $H_{\eta}(x, y, z, t^+ = 5)$

・ロト・雪・・雪・・雪・・ 白・ 今々ぐ

The average impulse response


 $H_v(x, y, z, t^+ = 15)$


 $H_{\eta}(x, y, z, t^+ = 15)$

・ロト・日本・日本・日本・日本・日本

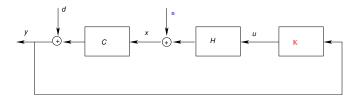
The average impulse response

 $H_v(x, y, z, t^+ = 25)$

 $H_{\eta}(x, y, z, t^+ = 25)$

Why we've got stuck in 2006

Comment


- A state-space realization of *H* is computationally unaffordable
- Our system is LTI with stationary stochastic forcing
- Our system has N_{in}, N_{out} « N_{states}

Implication

- Standard control design techniques cannot be employed
- A frequency domain approach is feasible and convenient
- This can (must) be exploited for efficiency

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Switch to frequency domain! F.Martinelli, PhD thesis, PoliMi 2009

Rewriting the objective functional in frequency:

$$J = \int_{-\infty}^{+\infty} Tr[Q\phi_{xx}(f)] + Tr[R\phi_{uu}(f)] df.$$

Substituting, *J* is not quadratic in *K*.

(日) (日) (日) (日) (日) (日) (日)

The optimal compensator in frequency domain

J may be written as a quadratic form of the Youla parameter $\overline{K} = (I - KCH)^{-1}K$ as:

$$J = \int_{-\infty}^{+\infty} Tr \Big\{ Q\phi_{nn} + QH\overline{K}C\phi_{nn} + Q\phi_{nn}C^{H}\overline{K}^{H}H^{H} + \dots \\ \dots + QH\overline{K}C\phi_{nn}C^{H}\overline{K}^{H}H^{H} + QH\overline{K}\phi_{dd}\overline{K}^{H}H^{H} \Big\} + \dots \\ \dots + Tr \Big\{ R\overline{K}C\phi_{nn}C^{H}\overline{K}^{H} + R\overline{K}\phi_{dd}\overline{K}^{H} \Big\} df.$$

Minimization yields the best compensator (that is non-causal)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

How to enforce causality?

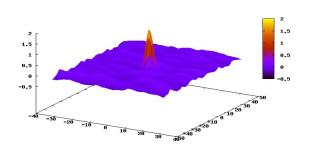
Introduce a Lagrange multiplier Λ :

$$J = \int_{-\infty}^{+\infty} Tr \Big\{ Q\phi_{nn} + QH\overline{K}_{+}C\phi_{nn} + Q\phi_{nn}C^{H}\overline{K}_{+}^{H}H^{H} \dots + QH\overline{K}_{+}C\phi_{nn}C^{H}\overline{K}_{+}^{H}H^{H} + QH\overline{K}_{+}\phi_{dd}\overline{K}_{+}^{H}H^{H} \Big\} + \dots + Tr \Big\{ R\overline{K}_{+}C\phi_{nn}C^{H}\overline{K}_{+}^{H} + R\overline{K}_{+}\phi_{dd}\overline{K}_{+}^{H} \Big\} + Tr[\Lambda_{-}\overline{K}_{+}^{H}] df.$$

A Wiener-Hopf problem

Minimization leads to the (linear) Wiener-Hopf problem:

 $(H^{H}QH + R)\overline{K}_{+}(C\phi_{nn}C^{H} + \phi_{dd}) + \Lambda_{-} = -H^{H}Q\phi_{nn}C^{H}$

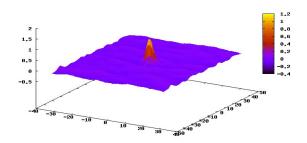

- Solution yields directly the compensator's frequency response (no separation theorem required)
- φ_{nn} appears in functional form: full space-time structure of the noise easily accounted for
- Scalar equation for the SISO case: superfast FFT-based solution

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The procedure Measure \Rightarrow design \Rightarrow test

- Response function and noise spectral densities are measured via DNS and Fourier transformed in x and z
- Compensator is designed by solving the Wiener-Hopf problem wavenumber-wise
- Compensators are tested in a full nonlinear DNS

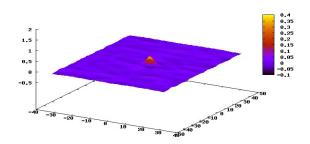
Compensator kernel in physical space


it=0

$$u(x,z,t) = \int K(x-x',z-z',t-t')y(x',z',t')\,dx'dz'dt'$$

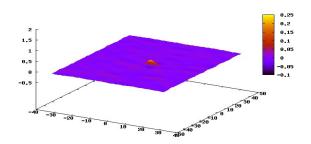
・ロン ・四 と ・ ヨ と ・ ヨ と

3


Compensator kernel in physical space

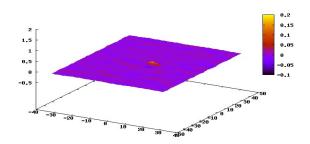
$$u(x,z,t) = \int K(x-x',z-z',t-t')y(x',z',t')\,dx'dz'dt'$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □


Compensator kernel in physical space

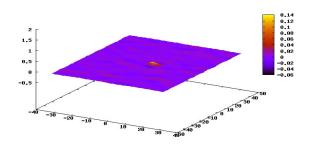
$$u(x,z,t) = \int K(x-x',z-z',t-t')y(x',z',t')\,dx'dz'dt'$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ


Compensator kernel in physical space

$$u(x,z,t) = \int K(x-x',z-z',t-t')y(x',z',t')\,dx'dz'dt'$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □


Compensator kernel in physical space

$$u(x,z,t) = \int K(x-x',z-z',t-t')y(x',z',t')\,dx'dz'dt'$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Compensator kernel in physical space

$$u(x,z,t) = \int K(x-x',z-z',t-t')y(x',z',t')\,dx'dz'dt'$$

Performance assessment

Parametric study addressing:

- Choice of the objective functional
- Experimenting with R and ϕ_{dd}
- Effectiveness of the sensors
- Re effects

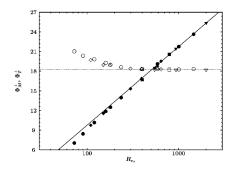
More than 300 DNS (\approx 40 years of CPU time) run at the supercomputing system located at the University of Salerno.

Best performance results

	Dissipation			Energy		
$Re_{ au}$	τ_{X}	τ_{z}	р	τ_{X}	τ_{z}	р
100	2%	0%	0%	0%	0%	0%
180	8%	6%	0%	0%	0%	0%

- Energy norm is not effective
- Dissipation norm is effective
- Pressure measurement is useless
- With dissipation, performance improves with Re

(ロ) (同) (三) (三) (三) (三) (○) (○)


"Inverse" Re-effect

$$\frac{d\langle U\rangle}{dy}\Big|_{w} = -\frac{1}{U_{B}}\Big\langle \underbrace{\sum_{(\alpha,\beta)\neq(0,0)} D(\alpha,\beta)}_{D_{turb}} + \underbrace{\frac{1}{2} \int_{-1}^{1} \left(\frac{\partial \hat{U}}{\partial y}\right)_{(0,0)} \left(\frac{\partial \hat{U}}{\partial y}\right)_{(0,0)}^{*} dy}_{D_{mean}} \Big\rangle$$

- *D_{turb}* is affected directly by zero net mass flux wall blowing/suction
- *D_{mean}* is affected indirectly via nonlinear interactions between fluctuations and the mean flow

"Inverse" *Re*-effect Laadhari, PoF 2007

The relative contribution of D_{turb} to the total dissipation increases with Re!

$Re_{ au}$	D _{turb}	D _{mean}
100	26.8%	73.2%
180	39.5%	60.5%

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Critical discussion Importance of selecting the cost function

- Present compensators are the best possible LTI
- Their performance is poor

The cost function is probably the sole important degree of freedom

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusions

- A novel compensator design formulation in frequency domain has been proposed
- It is extremely efficient
- It exploits a measured linear model of the turbulent channel flow
- The time-space structure of the state noise is accounted for
- Feedback compensators can be designed from experimentally measured data