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Abstract. A DNS-based measurement of the mean impulse response fufastistationary
homogeneous isotropic turbulence (HIT) is proposed andiedrout here for the first time.
A zero-mean white-noise volume forcing is used to probe ttieitent flow and the response
function is obtained by accumulating the space-time catieh between the white forcing and
the velocity field. The interest of this research lies in thee@l role played by the mean impulse
response of HIT in the context of renormalized perturbattmsure theories, starting from
the Direct Interaction Approximation (DIA) theory of Kraichn. Measuring (through a DNS
numerical experiment) the actual measured response emabléor the first time to compare it
with the available theoretical predictions.

A computer code has been developed and equipped with pgi@N#P) computing capabil-
ities specifically to carry out this research. Even thoughresults are still limited to relatively
low values of the Reynolds numbe¢,, a preliminary analysis is however possible. Very good
agreement is obtained with the Kraichnan'’s picture of randamvection effects, both in terms
of time scaling and of characteristic form of the responsefion. Further work is needed to
establish whether random convection dominance still effdat response behavior in presence
of a well-developed inertial range of scales, i.e. at highes,.
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1 INTRODUCTION

The concept ofmpulse response tensof a turbulent flow lies at the heart of the Direct
Interaction Approximation (DIA) theory, developed 50 ygago [8] by the great theoretical
physicist Robert Kraichnan, to tackle the turbulence clesuoblem analytically. Since then,
along the theoretic path génormalized perturbationsseveral closures have been proposed
such as the Local Energy Transfer (LET) theory introducedlicComb [16], and eventually
within a Lagrangian framework, as done by Kraichnan himgkdf 11] and others [3, 6]. In
all such theories, either Eulerian or Lagrangian, clossigchieved by means of a closed set of
integro-differential equations, where the unknowns aeetto-points, two-times velocity cor-
relation tensor and the response tensor itself. (An exae|i LET where a propagator tensor
plays the role of the response tensor.) In general, the eqsabf motion after closure must
be solved numerically: the only analytical, although appr@ate, solution has been derived by
Kraichnan for the response tensor from DIA equations fortiméncase of HIT.

During the last decades, comparison betweertrilneHIT statistics and the corresponding
theoretical predictions has been carried out by means of BiNikcreasing values oke, and
available experimental data, in the stationary as well dserfreely decaying regime. Encour-
aging results both for LET theory and Lagrangian closure® leeen reported [17, 18, 5, 6].
Up to the present day, however, the comparison between lh@ai@d and the actual response
function has never been addressed, due to the completeflagherimental information about
it. However this is not a minor issue at all for closure thesrias stressed by McComb in
Ref. [17], the differences among the various theoretical@gghes rely upon the form of the
response or propagator equation, whereas the covarianaéa@uis most often treated in equiv-
alent ways.

In recent years Luchiret al. in Ref. [14] have proposed a method to carry out the Eulerian
DNS-based measurement of the mean impulse response oliéentrflow, and have described
the response function of a fully developed turbulent chafioe to small-amplitude perturba-
tions applied at the wall. Due to lack of isotropy, this resg® tensor is quite complicated,
and does not directly relate to the previous theories, strweas conceived in the framework of
turbulence control (hence the emphasis on wall flows and feading), where it is achieving
its first results (see for example Ref?],[to be presented at this same Conference). The mea-
surement technique proposed in [14], however, providesiiistiae required tools to obtain the
impulse response tensor for HIT, where volume forcing hdsetoonsidered.

Describing the response function in the simpler framewdtdId is the goal of the present
work. The knowledge of the response function could pave ajina way to improve our un-
derstanding of turbulence dynamics, and looking at it in,k¥fiere only non-linear dynamics
among scales is present, is a perfectly suited starting.pdims paper intends therefore to de-
scribe the measurement of the Eulerian HIT response, giegereliminary results, obtained
at low values ofRe,, that enable us to analyze the characteristic form of thegorese and its
characteristic scales, and to compare them with theofgtiedictions.

The paper is organized as follows. In the ng2t the required theoretical background is
briefly reviewed, with special focus on the DIA theory. The ®idased measurement technique
is described i3, where the numerical procedure is validated against thidade analytical
viscous solution, and accuracy considerations are disdu$s§4 the actual response function
in HIT is presented and compared with the theoretical ptidfis. Lastly, section 5 is devoted
to a concluding discussion.
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2 THE THEORETICAL BACKGROUND

The method of renormalized perturbations, to which beldhtha abovementioned closure
theories, was first developed in quantum mechanics to télc&lerell-known many-body prob-
lem [15], which is common to several fields of physics. In gnsblem, where strong non-linear
interactions couple the whole set of degrees of freedontdheergence of truncated power se-
ries in the appropriate scale parameter — i.e. the Reynolageauin turbulence — cannot be
achieved. Hence the failure of traditional small pertudos methods, that are limited to the
case of weak interactions only. In extreme synthesis, thedmental idea at the roots of renor-
malized perturbation theory is to rewrite the abtare expansionby means of series partial
summations over infinite terms (with the aid of Feynman diagg) or by means of reversion
of functional power series. In both cases, the approximedealts turn out not to suffer from
strong non-linear interactions.

Due to the complexity of the analytical tools required, ia tallowing sections we will limit
ourselves to describing the statistical homogeneousisiatform of the DIA closure equations,
by underlying its main achievements and drawbacks.

The starting point is the statement of Navier-Stokes EqQuat{NSE) in wave-vector space:

(% + V/{2> ui(K,t) = Mijm(K) /uj(p, tum(k — p,t)dp + Py (k) f;(K, 1), (2)

wherew;(k, t) is the Fourier coefficient of thecomponent of the velocity field, function of
time ¢t and wavevectok, P;;(k) = 0;; — K 2k;r; is the projection tensor in Fourier space,
and the third order tensa¥/;;,,(k) = —i/2(knPij(K) + Kk;P;n(k)) is introduced as a short-
hand. Lastlyf(x,t) denotes an external stirring body force, i.e. the energyrdy force in the
isotropic stationary case, which is assumed as prescnibsiiistical terms. Since the closure
will be obtained at second order in the hierarchy of thesiatil moments, the mean correlation
tensor of the turbulent velocity field is introduced dirgatl its spectral form:

Qij(K’?tvt/) = <ui(’<"’vt>uj(_’<’7t/)>’ (2)

where the notatiok-) indicates the ensemble averaging operator. In the homogsrigotropic
case considered here, the tensor functiynboils down to a scalar functio@:

o~

Qij(’(“'atat/> = Pij(’("')Q("@t?t/)? (3)

wherex = ||k||. If stationarity is assumed, the time dependence reduckysteriemporal
separationy =t — t/, leading to the simplest forr@(«, 7) for the correlation function:

~

Q(k,7) = Q(k, t, t — 7). 4)

2.1 The definition of the impulse response function

Following Sagaut and Cambon [21], the most general definihiothe instantaneous im-
pulse response tensor of a turbulent velocity fiele, t) with respect to an external volume
force f(k,t), is given in terms of the following input-output relationtxeen infinitesimal
perturbationsd(-) (note the different notation from the Dirac’s delta funatig- )):

t
6u,»(n,t):// Hip(k, &' 6,88 fr (k! 1) dt dK'. (5)
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It is essential to realize that the perturbation hasoghastic meaningn the sense that it is
performed around a particular random realizatiomathich is itself solution of the fully non-
linear NSE in Fourier space. Therefakg,(k, ', t,t') has a random nature, and an integral
formulation not only in time but also in wave-vector spaceeiguired. In fact the instantaneous
response tensor has the meaningairagent Green’s functiorelated to aandom and nonlinear
state, satisfying the instantaneous response equation:

d 2
— H / / —
(at—l—y/{) (K, K, 1)

= 2M;jm(K) /uj(p, OHpn(k — p, &' t,8)dp + Py (k)d0(k — K)ot —t'), (6)

which is derived from a&tochastic Green function formalisapplied to the linearized form of
Eq. (1). The response tendocality in wave-vector spadellows only after averaging:

<Hz > = Hin(K,, t, t/)(S(K, — K/,). (7)

As for the correlation tensor, exploiting statistical reqty and stationarity results in scalar
response functions, respectivélyandg, defined as follows:

Hin(k, 1, 1) = P(K)G(k, 1, 1), (8)

g(K‘?T) = g("iut7t_7-)' (9)
The causality property holds for both the previous functjdrence:

~

G(k,t,t')y =0 fort <t andVk. (10)

This is obviously a consequence of the realizability of tigaaimical system to which the
response belongs. Moreover as indicated by Kraichnan in[Blethe scalar response igeal
functionwhich is unit bounded:

G(k,7)| <G(k,07) =1, V71 >0andVk. (11)

This is not surprising, since unit scale factor for deltactions implicitly appears in Eq. (6),
and the various contributions to the response cannot be impfrease than they are at zero time
separation.

2.2 The Direct Interaction Approximation

Even though the original statement of DIA theory, presetgdraichnan in Ref. [8], was
not explicitly based on renormalized perturbations theseyeral such methods have been suc-
cessful since then in re-deriving the DIA equations: thentceview of Kaneda [4] summarizes
up to 8 different ways of doing that. In fact, as observed byCdimb [17], the renormalization
framework seems to better support DIA theory rather tharmtlggnal Kraichnan’s hypothesis,
on a theoretically rigorous base. As a consequence, ttagpirgtation of the DIA has become
the leading one among researchers. The renormalized tlenivaf DIA has been given by
Wyld [22] with the use of Feynman diagrams. Instead the sgdigough not completely self-
explicative, way in which DIA equations can be derived isrfdun the classical textbooks by
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Figure 1. Turbulent-diffusive part of DIAs analytical @snse (—) and Gaussian-convective response
exp(—1/2udr?7?) (), see§2.3.

Leslie [13] and by McComb [17]. Starting from power seriesaxgons of both the correlation
and the response function, the following closure equatimabtained:

~ t ~ ~ ~
(% + wf) Gk, t,t') = ‘/L(&p) V G(p.t.5)G(r,5,t)Q(||k — pl, ¢, 5)ds| dp +
t,
+ 6(t =1,

t/
/ G, t',5)O(p. 1, 5)O(||k — pl|,t. s)ds +

(55 + ) Gttty = [ Liop)

- 1

t t/
_/ G(p,t,s)Q(||lk — pl|,t, S)Q(H,t/,s)d8:| dp +/ G(k,t',s)F(k,t,s)ds.

- - (12)
Here L(k,p) denotes a scalar function (with geometric meaning) thag¢gdke following
form:
a(r? +p?) — kp(1 +2a2)|(1 — a?)kp
L, p) = 1202+ 9) — mp(1 + 202))1 = o)

K* + p* — 2Kpa

wherea is the cosine of the angle betweerandp; see Refs. [13] and [17] for further details.
At the same timeF (x, t,t') is the scalar counterpart of the volume force correlatioisoe in
the homogeneous isotropic case:

, (13)

~

(filk, ) fj(—k, 1)) = Fij(k,t,t') = Pij(k)F(k,t, 1), (14)

which is assumed prescribed.
Starting from the system (12), Kraichnan obtained the falhg approximate solution for
the mean impulse response function:
J1(2ugkT)
UK T

2

G(k,T) = exp(—vKT) (15)
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whereu indicates the r.m.s. of the fluctuating turbulent field, alhds the Bessel function of
the first kind. The inviscid part of Kraichnan’s analyticalion is illustrated in Fig. 1. What
might surprise at first sight is that at each scalthe time decay of the response function is
dominated by the local energy-range time scélgx) !, and this remains true even when
belongs to the universal range of scales. From analytieaktigation of the DIA equations at
statistical equilibrium, Kraichnan indeed derived aniiapower law exponent of 3/2 for the
energy spectrum in the inertial subrange. This deviatiomfthe well-established Kolmogorov
—5/3 law is due to an energy cascade that, though local in wavesruspace, is regulated
by the energy-containing scales, and not by the viscousseal required by the first similarity
hypothesis of the Kolmogorov K41 theory [7]. In particulbetanalysis by Edwards reported in
[13] highlights that a true Kolmogorov scaling is embeddethie covariance equation, but not
in the response equation, since its wave-number integaahgailar forx — 0 if Kolmogorov
scaling is assumed. In deriving the above form of the respdmsction, Kraichnan indeed
introduced a fixed lower cutoff on the integration wave-nemtomain, located at the boundary
of the energy-containing range. Only by introducingaahoclower cutoff that is variable and
proportional tox, Kolmogorov scaling can be restored, thus correctiqgpsteriorithe original
formulation of the DIA equations.

2.3 The Postulate of Random Galilean Invariance and Eulerianlosures

A Random Galilean Invariance (RGI) postulate was introdugelaichnan in 1964 [9] to
explain the failure of DIA in yielding the Kolmogorov inealirange scaling. At the same time,
related arguments provided a rationale for a further remgrkf the closure theories, that were
translated into the more cumbersome Lagrangian form, theiscoming the difficulties implied
by the Eulerian formulation of the equations.

The RGI postulate is a statistical restatement of the wedhkndeterministic Galilean invari-
ance principle that is at the roots of classical mechanit#sistochastic form, the space-time
uniform relative velocity between two observers becomesdom vector witlzero meanthat
changes its orientation and magnitude in each realizafitimecstochastic system, according to
a prescribed statistical distribution, such as the commaunsGian one. Kraichnan argued that
turbulent statistics of all order which are simultaneousiynputed, i.e. at zero time separation,
must beinvariant with respect to the Galilean random grooptransformations. In particu-
lar this is important when modeling third-order correlagovhich are known to be associated
with energy transfer among scales, and which appear in thgspectrum equation in their
simultaneous form. In fact the DIA closure results in theragjmnation of the abovementioned
simultaneous triple correlations with non-simultanecusnis of @ andg. As a consequence,
the RGI requirement is not satisfied, and spurious effectsamelaxation process of third-order
moments are introduced, that lead to a local time scalingrigighg to the energy-containing
range. This explains why the energy transfer along the greargicade is regulated by the level
of excitation at low wave numbers, thus causing the dewidtiom the Kolmogorov spectrum
in the inertial subrange.

In the Kraichnan’s analysis, violating RGI is equivalent tpieture where the undistorted
sweeping effect of the largest eddies over the smallestdomates the relaxation process of
the Eulerian response and correlation functions over thelewiange of scales. This effect of
random convectioon the temporal scaling of the response function can beriditexd by means
of an idealized convection problem (described in Ref. [9}hef form:

ou

i —iKk - vu(K,t), (16)
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wherewu(k,t) is a random fluctuating velocity field, resembling turbulkeffitctuations, con-
vected by a uniform constant velocity that randomly varies from realization to realization
of u, with ||u|| < ||v||. Assuming that at the initial time the two variables areistiaglly
independentwith a normal distribution, the exact Eulerian responsefiom can be shown to
be equal taQ(k, ¢, t’), with the following analytic expression:

~ ~

Gk, t,t") = Q(k,t,t') = exp(—%vgﬁzz(t —t"), witht> ¢, (17)

whereuy is the r.m.s. value of the distribution. Eq. [(16) can be considered as a simplified
form of the NSE, where both viscous and non-linear terma are neglected. Extending the
previous result to the fully turbulent case, the turbulewieEan response is likely to be affected
by a spurious diffusive behavior due to the random conveaticdhe large eddies over smaller
eddies, without distortion of the former. Following thisadmgy, v, in Eq. (17) assumes the
meaning of the r.m.s. of turbulent fluctuations, and tumid&aussian convective response will
be written as:

G(k,7) = exp(—%ugm%’), with 7 > 0. (18)

In Fig.|1 the Gaussian convective response is shown togettiethe DIA response solution.
The two functions overlap forugx < 1, as happens for the so-callehdom oscillatomodel
problem when a Gaussian behavior is assumed: in this cadkisasted in Ref. [13] and [4],
the exact solution takes the same form of Eq. (18) and the adsgm with the DIA approxi-
mation as shown in Fig. 1 still holds. Also from this examplis evident that oscillations in the
DIA solution are rather unphysical: as pointed out by Kragh himself, a monotone behavior
should be observed.

More recently McComiet al. started a discussion [19] on the relevance of the RGI postulat
and the limits of Eulerian approach to the closure problerheyTargued that, for a properly
constructed ensemble of transformations to inertial figR&1 is implied by invariance in ev-
ery realization both of NSE and of the relations among steéilsmoments that are derived from
them. A new invariance requirement into statistical meatsais therefore not required, since
RGI follows as a corollary of deterministic Galilean invaré@. At the same time numerical
integration of both DIA and LET equations, carried out in thage0.5 < Re, < 1009 for
freely decaying HIT, appears to question the predicted dante of convective scaling in both
the response and the correlation function. Numerical emdéndicates that convective scaling
is effective at lowRe,, Re) < 4.5, but Kolmogorov scaling begins to be effectiverat, ~ 40
and becomes the proper scalingiat, ~ 1000, when a wide inertial range of scales is clearly
developed. However, the latest papers on the subject by MbGam coworkers come back to
their own previous analysis with renewed criticism, owiagew results in the stationary forced
regime and due to a reworking of LET equations. Ref. [20] shinasLET theory, which is the
only Eulerian closure leading to the Kolmogorov scalingha inertial range, can be rewritten
only in terms of single point, single time functions due te firoperty of the propagator, and
this may possibly reconcile LET behavior with Kraichnamsbysis.

As an intermediate conclusion, the investigations of McCamdb coworkers definitely raise
some questions about the actual behavior of the responsidnnSuch questions are addressed
by numerical experiments as the ones proposed in this paper.
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Figure 2: Comparison of compensated energy spectrum ford¢difiputedE () for severalRe values are shown
together with the spectrum taken from Ref. [[12JRt, = 84 (black line).

3 MEASURING THE RESPONSE FUNCTION BY DNS

The measurement @f described in this paper is carried out by means of a forced DNS
stationary HIT on a cubic domain, whose edge length chosen to bé = 27 for convenience
so thatk, = 27/L = 1 without loss of generality. A numerical code has been d@etoon
purpose and equipped with parallel (shared-memory) comgpetpabilities. The code imple-
ments a traditional Galerkin-Fourier scheme applied tos/éecity-vorticity formulation of the
incompressible Navier-Stokes equations. Exact removiiefliasing error is obtained with
the 3/2 zero-padding rule; time integration is performedri®ans of a third-order low-storage
Runge-Kutta (Williamson) scheme; see Ref. [1] for additiomainerical details. The forcing
scheme has been carefully implemented following the pronssstated in Ref. [12], the no-
tation of which is used here. The Kolmogorov scale is indidawith n, with x; = 1!, the
instantaneous dissipation ratesisthe forcing-containing shell is; and the mean energy in-
jection rate isP, that equalge) at statistical stationarity. A standard resolutiorkgf,.n = 1.5
is adopted, wherg,,,., indicates the maximum resolved wave-number in each diredtf the
Fourier space. The code has been tested by simulating sthiodeed HIT, and by comparing
its results to the energy spectra published in Ref. [12], & rsé values ofRe). A comparison
of this kind is shown in Fig 2, that shows excellent agreerbentveen computed and published.

3.1 The response measurement technique

In Ref. [14] Luchini, Quadrio & Zuccher have proposed an iratode method for measur-
ing the impulse response of a turbulent velocity field, resgrto the statistical statement of
the input-output relation for a linear system, i.e. the trputput correlation. This approach
is primarily motivated by the problem of low signal-to-neigatio (S/N), since impulsive per-
turbations, externally introduced in the turbulent fieldeasure its response, must be small

1At later times the two velocity vectors are no longer statisly independent.
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compared to turbulent fluctuations for linearity impliedbg. (5) to hold.

When dealing with the stochastic response of a linear sysiedomdamental mathematical
tool is represented by th&hite-noise processit is well known from filtering theory [2] that
when a linear system is fed by a white noise, the correlateiwéen the input and the output
is proportional to the impulse response of the system, owdgrige delta-correlated property of
the white-noise input. We employ here an independently igéee random volume forcing as
the input; by computing its cross-correlation with the et field, the whole wave-number
dependency of the response function is obtained at oncéegame time forcing is uniformly
distributed over time and space, thus leading to larger iamajel within the linearity constraint.
Therefore the proposed method is much better than a detistimiforcing, be it either periodic
or impulsive, which would lead to unaffordable simulatipas stressed in Ref. [14].

Starting from Eq./(5), the input-output correlation can béten as:

(dui(k, )8 f;(—k,t — 7)) =
- / / Mt~ V)00 — ) (SR8t ) did, (19)

where Eg./(7) has been used owing to the average operatah@nesponse causality property
allows the extension towardsoc of the upper bound of time integral. Assumifij(x,t) =

ew; (K, t), with e scale factor and; (k, t) independently generated zero-mean white-noise signal
with identity covariance matrix, one has:

Bfu(K ) fi (=Kt — 7)) = 0p0(t' —t +7), (20)
and the cross-correlation at the Lh.s. of Eqg. (19) will lesuthe properly scaled response
tensor:

(Sui(k, )0 fi(—k,t — 7)) = €Hyj(k, 7). (21)
We shall denote by (k, t) the turbulent velocity field when volume forcing with whiigsal
is applied. If the perturbation is small enough for lineatd hold, i.e.c < 1, it follows that:

u(k,t) = u(k,t) + du(k,t), (22)

whereu,(k,t) indicates a different realization of the turbulent fluctogtfield respect to the
original fieldu(k, t), as a consequence of non-linearity and stochastic behavN8E. Then
computing the correlation betweenands f results in:
w(k, )0 fi(—Kk,t — T 1
(i (. 1) f]€(2 )) =5 (ue, (£, 0)0 fi(—K,t — 7)) + (dui(K, )0 f;(—K,t — T))].
(23)

Since the applied random perturbation on forcing is untated to turbulent fluctuations,

the term(u,, (k. )0 f;(—k,t — 7)) will be averaged out in the previous equation, leading to:

(Wi(Kk,t)0f;(—K,t —T))
62
where the input-output correlation law, Eq. (19), has bessduo handle the non vanishing
term at r.h.s. of Eq. (23). In this way it is still possible t@asure the turbulent response using
the cross-correlation between the white-noise input aaduhole turbulent velocity field. As
a last observation, in the HIT case Eq. (8) provides us withrarenient way of accumulating
just the scalar version of the response function, by measkeaif averaging over tensor trace:

%Hii(n, 7)dS (k) = 87K*G(k, T). (25)

= Hij(h'/,T), (24)

9



Marco Carini and Maurizio Quadrio

3.2 The purely viscous Stokes’ response: validation of the rasurement procedure

The Stokes owiscousresponse represents the zero-order term in the expansies s&g
as introduced in the context of renormalized perturbatiditse Stokes responsé”), can be
easily derived from Eq. (6) after removal of the non-lineamnts, thus providing the solution
for pure viscous dynamics of the velocity field. Its analgtiform reads:

GO (k, ) = exp(—vK?7). (26)

It is important to notice that the Stokes response hdstarministicnature, due to the lin-
earity of the Stokes operator: Kraichnan usually refers &ststatistically sharp”. The exact
solution for the Stokes case provides an useful tool for Higlation of the full measurement
procedure. To this purpose, the Stokes response can bestiisved from a DNS of the fully
non-linear NSE throughaumerical linearizationIn this way the algorithm to be employed for
the true measurement in the turbulent case is unchanged,rulkinitial condition is adopted,
the simulation is not forced, and only the white-noise pidtion is applied. It < 1, no evo-
lution to turbulence dynamics is produced, and non-lineansO(e?) are negligible respect to
linear onegD(¢) which define the Stokes equation.

The Stokes response has been measured in numerical experiwith a spatial resolution
of 322 modes (with aliasing), mainly to keep small the computatiaost which is obviously
the same as in the turbulent case. Table 1 summarizes thretdiation parameters employed
for the measurement of the response function; they are tieengpamplitudes, the number of
stored time correlationd',, their time separatiod\r, and the averaging timg,,.

A comparison between the exact response and its point-wesesunes in théx, 7) plane
is illustrated in Fig.| 3. It demonstrates good agreemenwvé&en the measured and the ex-
act solution. Global accuracy tests have been conducted tis¢ > norm of the local error

E(r,7) = GOk, 7) — GV (K, 7):

1 1/2
1€l L2,y = (D_/ ( )SQ(I{,T)dl{dT) , (27)
m J Dy, (k,T

whereD,, = [1, kmaz] X [0, N.AT] indicates the time-wave-number range covered inthe)
plane with areaD,,. A piece-wise linear interpolation of measured data is useperform
the above integral. A linear dependence with respeet & well as with respect to the delta-
correlation time resolution\r is confirmed by the|£||;2p,,) trends of Fig.4. Similarly, from
the same figure one sees that the the error due to averageroteetifine interval scales approx-
imately with order—1/2, as expected from central limit theorem and ergodicityhmanalysis
of the global order of accuracy, the asymptotic behavioe, tuall the different contributions,
has been removed to emphasize the interested trend aloRé&g. 8 (top and center) the time
decay of the Stokes response:dt, = 8 is plotted: convergence to the exact solution at small
time separations (compared to local viscous time scate?®)!) is obtained with smaller time
steps employed for the discretization of the white noiséadarrelation Ar. In the same fig-
ure (bottom), the measured Stokes response plotted atatiffevave numbers correctly shows
a collapse (within the accuracy limits) when local viscaosetscaling is adopted fofr.

4 RESULTS

Several DNS runs have been carried out to measure the impdpense of the turbulent
flow in the HIT setting: Table 2 summarizes the discretizai@rameters adopted for each

10
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Run N. Arvk? € TaVK]

max

1 50 9.172E-3 1E-3 0.91720

2 50 9.172E-3 1E-3 9.1720
3 50 9.172E-3 1E-3 91.720
4 50 4.586E-2 1E-3 0.91720
5 50 4.586E-2 1E-3 9.1720
6 50 4.586E-2 1E-3 91.720
7 50 4.586E-2 1E-3 910.20
8 50 9.172E-2 1E-3 0.91720
9 50 9.172E-2 1E-3 9.1720
10 50 9.172E-2 1E-3 91.720
11 50 9.172E-2 1E-3 910.20
12 50 2.293E-1 1E-3 0.91720
13 50 2.293E-1 1E-3 9.1720
14 50 2.293E-1 1E-3 91.720
15 50 4.586E-1 1E-3 0.91720
16 50 4.586E-1 1E-3 9.1720
17 50 4.586E-1 1E-3 91.720
18 50 4.586E-2 5E-4 91.720
19 50 4.586E-2 1E-3 91.720
20 50 4.586E-2 5E-3 91.720

21 50 4.586E-2 1E-2 91.720

Table 1: Discretization parameters for the Stokes resporesssurements, wits2? modes (with aliasing)Ar =
At andkmaz /Ko = 10.

Ry 4/3 Ky 1/3
N Kmaz/Ko Ka/ko P Kf/ko Rez(—) Re,, u0<—>

Kf P
64 20 13 1 1 31 46 1.4635
128 42 28 1 3 20 55 1.7862
192 63 42 1 3 34 77 1.8453

Table 2: Parameters and results of reference for performi@@®NS.
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N Reyn Run N, Arugkg € Tavtioka  Ncore (SMP)  Comp. time [h]
1 100 0.0571 0.005 1712.3 2 3.4

64 46 2 100 0.0381 0.005 11415 2 3.4
3 100 0.0190 0.005 570.77 2 3.4
4 100 0.0095 0.005 285.39 2 3.4
1 150 0.1595 0.0038 5583 4 46.7
128 55 2 150 0.0798 0.0038 2791.5 4 46.7
3 150 0.0520 0.0038 1820.5 4 46.7
4 150 0.0322 0.0038 1128.7 4 46.7
1 150 0.2418 0.0033 8463.8 8 89.4
192 77 2 150 0.1397 0.0033 4890.2 8 89.4
3 150 0.0672 0.0033 2351 8 89.4
4 150 0.0484 0.0033 1692.8 8 89.4
5 150 0.0322 0.0033 11285 8 89.4

Table 3: Discretization parameters for the DNS-based measent of the HIT response function.

DNS resolution, whereas Table 3 lists all the simulatiors tbd to response measurements,
together with the discretization parameters pertainirtheaesponse function. Given the avail-
able computational resources, the valuegief are low or moderate, ranging froe, = 46

to Rey = 77.

In Fig. 6 an assessment of the convective scaling of the embvesponse is provided, lim-
ited to the universal viscous subrange of scales. The apipsrell deviations that are observed
at the lower wave numbers are due to residual time-averagjiray, and could be removed
by employing a longer simulation time. Fig. 8 offers a mor¢aded comparison between
the available analytical response, provided by Kraichmamalysis, and the measured one at
Kk = Kgq, I.e. at the Kolmogorov scale, and Be, = 55. At time separations smaller than
the local energy time scale, i.eugx < 1, the response is in very good agreement with the
DIA response formulae and the viscous Gaussian-convestikgion. This latter result does
not come as a surprise: even though the turbulent field isGeunssian, at times smaller than
the characteristic correlation time the Gaussian appration is still good, see [13]. The unex-
pected result is that the Gaussian convective solutidragfiroximates very well the measured
response at larger times, whereas the DIA solution deviedasit. This is also documented by
Fig. |7, where point-wise measurements in tker) plane for the universal dissipative range
are reported together with the viscous Gaussian-coneeatialytical function. Only near to the
exponential-tail region, i.e. forugx =~ 3, the measured response appears to deviate from the
Gaussian solution, with the former decreasing faster thautetter.

5 CONCLUSIONS

The impulse response function of homogeneous isotropititence has been measured via
DNS and described in some detail. The measurement methdzbkasvalidated by computing
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Figure 8: Measured response for rungiat, = 55. Top: the whole response time decay at Kolmogorov scale
compared with DIA and viscous Gaussian-convective saluti€enter: a zoom of the picture on the top for
Tugk < 1. Bottom: a zoom of the picture on the top in the near expoaktdil region.
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the same quantity for purely viscous dynamics, for which aalical solution is available.
Based on this test case, the order of accuracy with respeetévad discretization parameters
has been assessed and shown to follow the expected trendsprdposed methodology has
then proved to be effective in the quantitative descriptibthe response behavior within the
universal equilibrium range of scales. The analysis in thigarsal dissipative range confirms
the theoretical prediction of energetic-range scalinghefresponse, and establish such scaling
as the dominant one, at least in the rang&ef considered here. A somewhat surprising result
is that the solution provided by Kraichnan in Ref. [9] to theldem of idealized convection, de-
scribed in§2.3, shows an extremely good fit to the measured responstdoywith deviations
limited to the near exponential-tail region. This impliésit the large-scale fluctuations can
be interpreted rightfully as a near-Gaussian field. Howevere accurate measurements are
required to reliably describe the deviation from Gaussyaniwing to the unavoidable residual
error due to finite averaging time.

A more thorough description of the response function andsofelevant time scales obvi-
ously calls for an extension of this study to higher valueskef, to reach at least where a
well-defined inertial range develops. When such data willN@glable, the fundamental ques-
tion about a possible vanishing of convective scaling ifaxf Kolmogorov scaling could be
properly answered, thus enlightening the current contsi&keabout Eulerian approach to the
closure problem. If Kolmogorov scaling should indeed beoveced at higherke,, then the
local relaxation processes of the turbulent response wweilchptured. This would open a new
scenario in turbulence modeling, leading to a class of respdased turbulence models that
might offer the substantial advantage of being free fronustdjple empirical parameters, since
more turbulence physics would be contained into the respbased description.
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