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SOMMARIO

Il controllo attivo di correnti turbolente di parete è una disciplina emergente, che sta attirando sempre maggiore
attenzione da parte della comunità aerospaziale; le tecniche di controllo attivo sono infatti promettenti in diversi
settori tecnologici di interesse aeronautico, come la riduzione di resistenza, il controllo della separazione, la
soppressione attiva del rumore o il controllo del miscelamento.
In particolare, sono stati recentemente ottenuti risultati interessanti utilizzando la teoria del controllo ottimo per
ridurre la resistenza di attrito del flusso turbolento in un canale piano mediante un sistema di controllo attivo
distribuito e ad anello chiuso. È stato dimostrato che è possibile ottenere una sostanziale riduzione di resistenza
mediante un’azione di controllo limitata, attraverso un soffiamento-aspirazione esercitato a parete con un flusso
di massa netto nullo. Tuttavia, questi risultati sono statiottenuti solo per un unico valore (estremamente ridotto)
del numero di Reynolds (basato sulla “bulk velocity” e sullasemialtezza del canale) pari a Re= 1450.
Ad oggi, la dipendenza delle prestazioni di questi controllori dal numero di Reynolds non è stata ancora diretta-
mente considerata. L’obiettivo di questo lavoro è quello diverificare le prestazioni dei controllori ottimi a numeri
di Reynols piú elevati. A questo scopo, sono riportati e discussi i risultati di simulazioni numeriche dirette a valori
più elevati di Re, con particolare riferimento alle prestazioni ottenibili in termini di riduzione della resistenza di
attrito e dell’energia cinetica turbolenta. Verrà inoltreanalizzato come il flusso turbolento risponde inizialmente
all’azione del controllo.

ABSTRACT

Active control of turbulent wall flows is an emerging discipline, which is gaining more and more attention from the
aerospace community; active control techniques look in fact promising in many technological areas such as drag
reduction, separation delay, noise suppression and mixingenhancement.
In particular, encouraging results have been recently obtained by using modern linear control theory in the design
of active distributed feedback controllers, aimed at reducing skin friction drag in turbulent channel flow. It has
been shown that a substantial reduction of the skin frictiondrag can be achieved with a limited control effort, by
using wall blowing and suction at the channel walls with zeronet mass flux. However, these results have been
obtained for a limited value of the Reynolds number, as low asRe= 1450, where Re is based on the bulk velocity
and the channel half-width.
To date, the Reynolds-number dependence of the effectiveness of these controllers has not been directly addressed.
Aim of the present paper is thus to address the performance ofoptimal controllers at higher Reynolds numbers; to
this purpose, results of direct numerical simulations performed at higher values of Re are reported and discussed.
In particular, skin friction drag as well as turbulent kinetic energy reduction are quantified and an indication of a
possible scaling law for the initial response to the controlis reported.



1. INTRODUCTION

Feedback control of turbulent wall flows is an emerging discipline in fluid mechanics, which often employs the
geometrically simple plane channel flow as a model problem: it shows the complexity of wall flows, but at the
same time it is amenable to an efficient Direct Numerical Simulation (DNS).
The past few attempts at developing effective control strategies via distributed blowing and suction at the walls are
based on a linear state-space representation obtained fromthe governing equations: the Navier-Stokes equations are
linearized around the laminar Poiseuille solution and written in the Orr-Sommerfeld-Squire form, which involves
equations for the wall-normal velocity and vorticity components. Optimal control theory is then applied to this
system, in order to design feedback control kernels or stateestimators.
Successful applications of linear theory to the control of turbulent flows can be basically ascribed to T.Bewley and
coworkers. Bewley and Liu [1] first demonstrated the application of this approach to the stabilization of linearized
plane Poiseuille flow, and computed the control for a single wave-number pair. In a follow-up paper, Högberg et
al. [2] computed the optimal feedback control kernels, by extending the aforementioned procedure to the entire
flow state. They tested their control and showed in a low-Re case that a significant expansion of the basin of
attraction of the laminar state in transitional channel flowcould be obtained. Similar control kernels, applied to a
fully developed turbulent channel flow, succeeded in reducing significantly skin friction drag. Moreover, in [3] a
relaminarization of aReτ = 100 turbulent channel flow was obtained by using a number of optimal control kernels
selected through a gain-scheduling technique.
To date, these encouraging results have been obtained for relatively low values of the Reynolds number; obviously,
from the viewpoint of practical applications, the performance of such linear controllers at higher Reynolds number
must be assessed. Iwamoto et al. suggested in Ref. [4] that anoptimal controller with the ability of suppressing
near-wall velocity fluctuations would be even more effective at higherRe. This is somewhat contrary to the
common belief that drag reduction performance assessed in alow-Reenvironment is deemed to scale negatively
with Re. An example where a similar debate is ongoing can be found in the context of the discussion concerning
another (open loop) technique for the reduction of turbulent friction drag: spanwise oscillation of the wall. Results
of direct numerical simulations carried out by J.-I.Choiet al. [5] indicate that the drag reduction properties of this
technique severely degrade withRe; on the other hand, experimental evidence reported in Refs.[6] and [7] suggest
that the effect, if any, is below the accuracy of the measurements and hence quite small.
The present paper attempts to clarify this question for the closed-loop distributed control of turbulent wall flows.
To this aim, suitable optimal control kernels are first designed and computed according to the technique introduced
in Ref. [2]. Well resolved direct numerical simulations of turbulent channel flow controlled through distributed,
time-dependent blowing and suction applied at the channel walls are then performed atRe= 1450 andRe= 3333.
This corresponds to values of the Reynolds numberReτ defined on the basis of the friction velocity ofReτ = 100
andReτ = 200 respectively. The main results in terms of skin frictiondrag reduction, turbulent kinetic energy
suppression and control effort are reported. We will devoteour attention also at the initial phase when the control
is applied to a previously unperturbed turbulent flow, by searching for a scaling law for the initial transient response
of the turbulent system to the wall boundary forcing.

2. CONTROLLER DESIGN

We shall consider the incompressible flow in a plane channel having dimensionsLx, 2δ andLz in the streamwise
(x̂), wall-normal (ŷ) and spanwise (ˆz) directions, respectively; corresponding velocity components are denoted by
û, v̂ andŵ.
In this study, the controller is designed along the lines developed by Bewley and coworkers, in particular as de-
scribed in Ref. [2]. The governing incompressible Navier-Stokes equations are linearized around the laminar
Poiseuille solution and rewritten in the well-knownv-η formulation, whereη denotes the wall-normal vorticity
component. This formulation offers the well-known advantages that pressure disappears from the evolutive equa-
tions and that the computation becomes optimally fast when aFourier expansion is adopted for the homogeneous
directions. In the present context, it is worth noting that the implicit satisfaction of the incompressibility contraint
eases setting up the control problem, by bringing to light the two degrees of freedom of the mathematical problem.
Fourier transforming thev andη equations in the homogeneous directions ˆx andẑyields:

∆v̇ = [−iαU∆+ iαU ′′ +∆∆/Re]v = Lv

η̇ = [−iβU ′]v+[−iαU +∆/Re]η = Cv+Sη
(1)



which corresponds to a transformation into the well-known Orr-Sommerfeld-Squire form; hereα andβ denote the
wavenumber inx andzdirections, respectively; variables with the hats droppeddenote Fourier coefficients, the dot
denotes time differentiation, andU(y) is the laminar Poiseuille solution.
Before entering the design of the controller, the system (1)should be recast in standard state-space form, and
boundary control must be accounted for properly. To this aim, the solution to the differential system (1) is decom-
posed as:

v = vh +vp and η = ηh +ηp (2)

wherevp andηp are chosen to account for inhomogeneous boundary conditions onv. In particular, it is convenient
to choose the particular solutionsvp andηp as separable functions:

vp(y, t) = gv(y)φ(t) and ηp(y, t) = gη(y)φ(t)

andgv(y) andgη(y) are chosen as solution of the problem:

Lgv = 0

Cgv +Sgη = 0

with inhomogeneous boundary conditions onv.
Solution of the two-point boundary value problem with homogeneous boundary conditions for ˙vh leads to the
state-space form of the governing equations:

v̇h = ∆−1Lvh− φ̇∆−1∆gv = Lvh− φ̇∆−1∆gv

η̇h = Cvh +Sηh− φ̇gη = Cvh +Sηh− φ̇gη
(3)

We now introduce the auxiliary stateφ :
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This corresponds to the standard state-space form, to whichoptimal control theory will be applied:

ẋ = Ax+Bφ̇

Note thatφ̇ is the time derivative of the wall blowing/suction velocityv, i.e. the time derivative of the control that
will have to be computed and applied runtime.
Controllers are designed by applying optimal control theory to this system. In particular, the problem is stated as the
search for a proportional controllerK such that the control laẇφ = Kx stabilizes the system while minimizing some
cost functional. A convenient quadratic cost function can be derived from the energy of the flow perturbations;
within the present framework, energy can be conveniently written as

E = ∑
α,β

1
8k2

∫ 1

−1
w(y)

(

k2|v|2 + |
∂v
∂y

|2 + |η |2
)

dy= ∑
α,β

E(α,β )

whereE(α,β ) denotes the contribution of single wavenumber pairs to the total energy of flow perturbations.
The functionw(y) is an arbitrary weighting function that can be used to assigndifferent weights to states located in
different positions along the wall-normal direction; whenw(y) = 1, the usual definition of turbulent kinetic energy
is obtained. It is straightforward to rewriteE(α,β ) as a quadratic function of the state, as follows:

E(α,β ) = xHQx (4)

whereH denoted conjugate traspose andQ is an hermitian nonnegative definite matrix.
Let us introduce the following quadratic functional:

J =
∫ +∞

0
(xHQx+uHRu)dt (5)

whereR is a positive definite hermitian matrix, corresponding to the weight of the control effort. The optimal
control problem is now reduced to the minimization of the functionalJ, constrained by the state-space equation.



Figure 1: Three-dimensional view of the velocity convolution kernel K̂v(x̂, ŷ, ẑ) for the forcing at the lower wall.
Isosurfaces refer to the±5%of the peak value. The spatial convolution of this kernel inx̂ andẑ directions with the
wall normal velocity component v yields the first part of the control signalφ̇(x,z, t) at the wall at each time instant,
as indicated by(6).

MatricesQ andRare design parameters; it can be shown [8] that the optimal feedback gain matrixK can be found
by

K = −R−1BHP

whereP is the so-called stabilizing solution to the following algebraic Riccati equation:

PA+AHP−PBR−1BHP+Q = 0

The solution to the optimal control problem described aboveis computed for each wavenumber pair (α,β ) by
solving a number of one-dimensional problems. Controllersare reconstructed for the full velocity and vorticity
fields v and η from (2). Fourier transforming back to physical space yields the so-called control convolution
kernels; these kernels relate the control signalφ̇(x̂, ẑ, t) at a given time to the velocity and vorticity fields in the
whole domain via the following convolution integrals:

φ̇(x̂, ẑ, t) =
∫

Kv̂(x̂−x,y, ẑ−z, t)v̂(x,y,z) dxdydz+
∫

Kη̂(x̂−x,y, ẑ−z, t)η̂(x,y,z) dxdydz (6)

A three-dimensional view of a control kernelKv̂(x̂, ŷ, ẑ) is shown in fig.1, whereas fig. 2 shows a three-dimensional
view of a control kernelKη̂(x̂, ŷ, ẑ).

3. DIRECT NUMERICAL SIMULATION OF A CONTROLLED TURBULENT CHANNEL FLOW

3.1. Numerical method
The controlled channel flow is simulated numerically with DNS by using the computer code and the computing
system developed by Luchini & Quadrio and described in [9]. The code is a parallel solver of the Navier-Stokes
equations for an incompressible flow in a plane channel. Timeadvancement employs the usual semi-implicit
approach, where nonlinear terms are advanced explicitly with a low-storage Runge-Kutta scheme, and viscous
terms are advanced implicitly. The mixed spatial discretization employs Fourier expansions in the wall-parallel



Figure 2: Three-dimensional view of the vorticity convolution kernel K̂η(x̂, ŷ, ẑ) for the forcing at the lower wall.
Isosurfaces refer to the±25%of the peak value. The spatial convolution of this kernel inx̂ andẑ directions with
the wall normal vortcity componentη yields the second part of the control signalφ̇(x,z, t) at the wall at each time
instant, as indicated by(6).

directions, and fourth-order accurate compact explicit finite differences schemes discretize differential operators in
the wall-normal direction. The locality of finite difference operators in physical space allows us to exploit a simple
partitioning of the data among different computing machines, and this results in excellent parallel performance.
The amount of communication is reduced by a carefully designed parallel algorithm, so that a computing system
can be assembled without requiring expensive networking hardware. Such computing machines, called Personal
Supercomputers in Ref. [9], are available in dedicated modeboth at the Dipartimento di Ingegneria Aerospaziale
del Politecnico di Milano and at the Dipartimento di Meccanica dell’Università di Salerno. The system at the
former site is a development machine, made by 10 dual-CPU single-core Intel Xeon boxes. The latter is our
present production machine, assembled with 64 dual-CPU dual-core AMD Opteron computers. With a global
amount of 256 cores, this machine provides us with the computing throughoput required for the present study.
Computing the control kernels requires the efficient solution of the algebraic Riccati equations, one for each
wavenumber pair. These equations are solved using the generalized Schur method [10] implemented in the Matlab
routinecare. This method has a complexity of order≈ O(N3), whereN is the number of states; thus the overall
complexity of the algorithm for the computation of the wholekernel is≈ O(nx ·nz ·n3

y), wherenx andnz denote
the number of modes in streamwise and spanwise directions, respectively, whereasny is the number of points in
the wall-normal direction. The computation of the kernels used in the present work for the high-Recase required
some days of supercomputer time.

3.2. Discretization and computational parameters
Two direct numerical simulations of the controlled turbulent channel flow are performed atRe= 1450 andRe=
3333.Reis defined based on the channel half-widthδ and the bulk velocityUb. The dimensions of the channel in
homogeneous directions areLx/δ = 4π andLz/δ = 2π. In theRe= 1450 case, the domain is discretized using 64
grid points iny direction and 128×128 Fourier modes in ˆx andẑdirections; in theRe= 3333 case, 128 grid points
in the ŷ direction and 256×256 Fourier modes are used.
Control kernels presented here have been computed for each wavenumber pair using an energy weighting function
w(y) = 1+U ′(y)2, as suggested by Högberg et al. in Ref. [3]. Moreover, as baseflow U(y) turbulent mean flow
profile has been used, instead of the laminar profile, in orderto obtain a state space representation which is closer
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Figure 3: Reduction of friction drag achieved by the active controller at Re= 1450. τcon is the space-time mean
value of the friction in the controlled case, andτun is the corresponding value of the uncontrolled case.

Re % skin friction reduction % turbulent kinetic energy reduction
Re= 1450 28.2 % 45.7 %
Re= 3333 27.2 % 36.6 %

Table 1: Summary of contrller performance at different values of Re.

to the real flow system. A control effort weighting matrixR= ρ I , whereI denotes the identity matrix, has been
used for each wavenumber pair, withρ = 0.01.
The same temporal integration scheme used to advance the governing equations is used also to integrate the control
derivativeφ̇(x̂, ẑ, t) to obtain the control history. At each time step, the controlsignal φ̇(x̂, ẑ, t) is first computed
directly in Fourier space, for each wavenumber pair. The wall blowing-suction distribution is then obtained by
time integration, and the boundary conditions are eventually updated to advance the solution to the next time step.
Simulations are carried out for a time intervalT = 1400h/Ub for the Re= 1450 case andT = 500h/Ub for the
Re= 3333 case. The time step size is set at 0.030h/Ub and 0.012h/Ub, respectively. The severe stability limitations
(and the consequent required minuscule time step size) thatwould have occurred had a Chebyshev discretization
of the wall-normal direction been employed are avoided by our finite-difference discretization.

4. RESULTS

Controlling the turbulent channel flow with the optimal controllers designed to minimize turbulence fluctuations
and (indirectly) friction drag leads to the results reported in figs. 3 and 4, for the caseRe= 1450, and in figs. 5 and
6 for the caseRe= 3333.
Looking first at the low-Recase, in fig. 3 it is shown that, after an initial transient in which drag increases, an
equilibrium state is reached in which the controller is capable to reduce drag by approximately 30%; fig. 4 shows
that turbulent kinetic energy, which is the main target of the control strategy, is reduced up to 45%, after the initial
transient rise. These results agree with what can be inferred from Ref. [2] at the sameRewithout the use of the
gain-scheduling technique.
The same qualitative behavior is obtained for the case at higherRe, and is illustrated in figs. 5 and 6. A summary of
the performance of the controllers forRe= 1450 andRe= 3333 is reported in table 1. Since no earlier attempt of



0 200 400 600 800 1000 1200 1400
0

0.5

1

1.5

t

E
co

n / 
E

un

 

 

Controlled flow
Fully turbulent (average)

Figure 4: Reduction of turbulent kinetic energy achieved bythe active controller at Re= 1450. Econ is the mean
value of the fluctuations energy in the controlled case, and Eun is the corresponding value of the uncontrolled case.

essaying the control performance at this high value ofReis available in the literature, these results are of interest.
They indicate that no significant drop in the amount of drag reduction takes place whenReis almost doubledRe,
and this is very good news. It must be said, however, that a more substantial increase inRewould be needed
to draw definite conclusions on this matter, sinceRe= 3333 is still low-Re. The key issue here is the capability
of a wall-based control to interact with the overlying boundary layer in its full extent, and it is well-known that
increasingRe increases the relative importance of the outer layer when compared to the wall-layer. From this
viewpoint, observing aRe-dependency on the decrease of turbulent kinetic energy is reasonable, since energy is an
integral quantity which is affected both by outer and innel layer dynamics.
The variance of control velocity at the wall is reported against time in fig.7, for the caseRe= 1450. It is shown
that, after an initial transient corresponding to the transient in kinetic energy and skin friction, the control effort
reaches an equilibrium state. Fig. 8 shows the same curve obtained atRe= 3333.
The initial transient response of the flow when the control isapplied is reported in the following figures in terms
of both skin friction and fluctuations energy. Variables aremade non-dimensional in viscous units based on the
uncontrolled flow.
These results, although based on the analysis of single realizations, suggest that the average flow response at small
t+ in terms of space-mean friction might collapse on a single curve, when made nondimensional in viscous units,
as indicated by fig. 10. On a longer time scale, however, fig. 11shows that these curves diverge from each
other. The energy curves, moreover, show a significantly less evident collapse. This is at least partially understood
by considering that friction is a wall-based quantity, whereas energy, though weighted throughw(y), is a global
quantity whose scaling is non-trivial.

5. CONCLUSIONS

In this paper, the Reynolds-number dependence of the performance of optimal controllers aimed at reducing skin
friction drag in turbulent channel flow is addressed.
The initial response of the flow when control is switched on has been analyzed, and our results suggest that the
initial transient of the skin friction could indeed scale inviscous units.
Concerning the fundamental question of whether the performance of the controllers is deemed to decrease withRe,
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Figure 5: Reduction of friction drag achieved by the active controller at Re= 3333. τcon is the space-time mean
value of the friction in the controlled case, andτun is the corresponding value of the uncontrolled case.
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Figure 6: Reduction of turbulent kinetic energy achieved bythe active controller at Re= 3333. Econ is the space-
time mean value of the friction in the controlled case, and Eun is the corresponding value of the uncontrolled
case.
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Figure 7: Control effort at Re= 1450.
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Figure 8: Control effort at Re= 3333.
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Figure 9: Scaling of the initial transient response of the turbulent kinetic energy to the control.
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Figure 10: Scaling of the initial transient response of the skin friction to the control.
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Figure 11: Initial transient response of the skin friction to the control, observed on a longer time scale.

our reliminary results indicate that the performance of optimal controllers in reducing skin friction is insensitive
to the value ofRe, at least in the limited range ofRetested. However, the controller’s ability of reducing turbulent
kinetic energy, i.e. its primary target, is reduced by doubling Re. More tests are thus needed in order to gain a
definite understanding ofReeffects, but the present study suggests that he performancedrop might be not too
dramatic. We are currently working at an increase of the maximum value ofRewe are capable of dealing with for
a direct numerical simulation with feedback control.
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