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ACTIVE-FEEDBACK TURBULENT DRAG REDUCTION
OUR LONG-TERM OBJECTIVE
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ACTIVE-FEEDBACK DRAG REDUCTION: HISTORY (1)

Instantaneous feedback (’opposition’) control of a turbulent
flow: Choi, Moin & Kim (JFM 1994)
Spatially localized convolution kernel through modern
(Kalman-filter based) optimal control applied to the
linearized Navier–Stokes equations: Högberg & Bewley
(Automatica, 2001)
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ACTIVE-FEEDBACK DRAG REDUCTION: HISTORY (2)

Realization that more physical information could be
embodied in the controller if the linearized NS problem is
replaced by a mean linear response of the full turbulent
flow to external disturbances (Luchini, unpub. 2001)
First measurement via DNS of such response function
(Quadrio & Luchini, IX Eur.Turbulence Conf. 2002)
Deadlock in 2002: How to design the controller?

Solution: Wiener-based LQ control! (Luchini, Bewley &
Quadrio, APS meeting 2005)
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THE LINEAR RESPONSE

Average response of the turbulent flow to a Dirac δ(t, x, z):

uj(t, x, y, z) =
∫

Hij(t− t′, x− x′, y, z − z′)δi(t′, x′, z′)dt′dx′dz′, i = 1, 2, 3

H answers the question: How to act at the wall here and now to
achieve the desired effect there and after a given time?

PROBLEM: TURBULENCE!

A turbulent flow has large noise, while forcing amplitude must be
small

Solution: phase-locked averages to extract deterministic part of
the signal from background noise (Employed by Hussain &
Reynolds, JFM 1972)
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TWO POSSIBLE STRATEGIES

RESPONSE TO A δ FUNCTION

– Small amplitude for
linearity, since forcing
power is concentrated

+ All frequencies obtained at
once

RESPONSE TO SINUSOIDAL

FORCING

+ Large amplitude for
linearity, since forcing
power is distributed

– One single frequency
obtained at a time

Both approaches require unaffordable computational loads
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THE RIGHT WAY TO GO
MEASURING THE INPUT-OUTPUT CORRELATION

H
in out

Rin,out(t) =
∫

H(t− t′)Rin,in(t′)dt′

If input is white noise then Rin,in = δ(t′) and Rin,out = H

Turbulent fluctuations will be averaged out just as in
phase-locking
Forcing power is uniformly distributed, all frequencies are
obtained at once
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COMPUTATIONAL PARAMETERS

DNS with b.c. for ui at one wall made by a (space-time) uniform
distribution with given amplitude.

Turbulent channel flow at Reτ = 180
Standard domain size: Lx = 4πh, Ly = 2h and Lz = 4.2h

Standard spatial resolution: Nx = 192, Ny = 128 and
Nz = 128
Averaging time ∼ 105 viscous time units
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COMPUTATIONAL TOOLS

DNS pseudo-spectral code
Parallel strategy to exploit
commodity hardware (Luchini &
Quadrio JCP 2006)
The ’Personal Supercomputer’:
Powerful dedicated system with
128 Opteron CPUs, 100GB RAM,
4TB disk
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LINEARITY CHECK (1)
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LINEARITY CHECK (2)
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THE Hv RESPONSE AT t = 0
AN ANALYTICAL SOLUTION

Laplace eq. in 3d for potential ϕ(x, y, z)
Decouples for each wavenumber pair after Fourier transf.
Simple b.c. in Fourier space: ϕ̂y(0) = 1, ϕ̂y(2) = 0
Solution:

ϕ̂(y) = −Cosh[κ(2− y)]
κSinh(2κ)

κ =
√

α2 + β2
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THE POTENTIAL RESPONSE
Hvu , ANALYTICAL (TOP) VS COMPUTED TURBULENT (BOTTOM)
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THE POTENTIAL RESPONSE
Hvv , ANALYTICAL (TOP) VS COMPUTED TURBULENT (BOTTOM)
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THE POTENTIAL RESPONSE
Hvw , ANALYTICAL (TOP) VS COMPUTED TURBULENT (BOTTOM)
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3D, TIME-VARYING PLOTS

Comparison between computed turbulent and computed
’laminar’ response
Visualization of the full tensor Hij(t, x, y, z)
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CONCLUSIONS

Complete turbulent response tensor shown here for the
first time
Analytical potential component at t = 0 compares very well
with measurements
Turbulent H differs significantly from laminar H!!
Possible significant implication for feedback control

CONTROLLER KERNELS AVAILABLE

We have the spatio-temporal kernels for drag reduction, if
someone has the (MEMS) technology to test them
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FUTURE WORK

Full understanding of spatio-temporal structure of H

Further (more refined?) measurements
Laboratory experiments welcome for higher-Re flows
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