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Abstract

The Direct Numerical Simulation (DNS) of the Couette–Taylor flow in the fully turbulent regime
is described. Following Quadrio & Luchini (Eur. J. Mech. B / Fluids, 21, 413–427, 2002), the in-
compressible Navier–Stokes equations in cylindrical coordinates are transformed into two scalar
equations for the radial component of velocity and vorticity vectors, with the divergence-free
condition accounted for implicitely. The spatial discretization is mixed, with spectral schemes in
the homogeneous directions, and finite differences in the radial direction. Main improvements are
the use of fourth-order, compact explicit finite-differences schemes, and an innovative parallel
strategy designed to obtain high parallel performance on a distributed/shared memory machine
made by personal computers. A computationally demanding DNS is then carried out to sim-
ulate for the first time the Taylor–Couette flow in the turbulent regime. Statistical quantities
are computed to complement the existing experimental information available for the turbulent
Taylor–Couette flow, with a view to compare it to planar, pressure-driven turbulent flow at
the same value of the Reynolds number. The main source for differences in flow statistics be-
tween plane and curved-wall flows is attributed to the presence of large-scale vortical structures
generated by curvature effects.

1. Introduction

The flow in the gap between coaxial rotating cylinders, known as the Couette–Taylor flow
(CTF hereinafter), is among the most investigated problems in fluid mechanics (see [1] for
a recent overview), owing to its engineering applications [2], as well as to its relevance as
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prototypical flow in the study of transition to turbulence and of fully-developed turbulent
flows over streamwise-curved surfaces.
Many experimental studies have dealt with the instabilities developed by the CTF when
the value of the Reynolds number is increased such that the laminar regime is taken over
by a sequence of bifurcations, eventually leading to chaotic behavior. Less is known about
the turbulent regime, since a smaller number of laboratory experiments and essentially
no Direct Numerical Simulation (DNS) studies are available. The lack of DNS studies
can be ascribed – at least in part – to the difficulties of implementing an efficient method
for the numerical solution of the incompressible Navier–Stokes equations in cylindrical
geometries, as well as to the computational demand of such a simulation in turbulent
regime. A satisfactory quantitative description of the turbulent CTF, leveraging the full
space-time information that could be made available by a DNS, is as yet missing.
In this paper a numerical method for the DNS of the Navier–Stokes in cylindrical coordi-
nates is presented, which is designed to compute the Couette–Taylor flow in the turbulent
regime. The method relies on the strategy developed by Quadrio & Luchini [3] for the
DNS of a turbulent flow in an annular pipe: the main enhancements used here since that
paper are a much better spatial accuracy, and the ability of the code to exploit parallel
computing on commodity hardware. The capabilities of the cylindrical Navier–Stokes
solver are thus made comparable to those of its cartesian counterpart, recently described
in [4].
The newly developed numerical method is then used to carry out what we believe is the
first DNS of the turbulent Couette–Taylor flow. We shall focus on a so-called small-gap
geometry, identical to that considered by Andereck, Liu & Swinney [5]. In the analysis of
the results, emphasis will be placed on the assessment of low-order flow statistics, and on
some theoretical issues that concern turbulent flows with wall curvature. As described at
length in the review paper [6] by Patel & Sotiropoulos, this might considerably impact the
modeling of turbulent flows, as well as on current experimental practices. For example,
when measuring the skin friction in a turbulent flow over a curved wall, one often resorts
to methods (like the Clauser plot) which imply the validity of the law of the wall, and
which require moreover the numerical values of its parameters (i.e. the slope of the
logarithmic part of the profile, given by the inverse of the von Kármán constant, and
its intercept) to be known in advance. A further example occurs in the derivation of the
CTF friction law, i.e. a formula relating the friction coefficient to the value Re of the
Reynolds number: such derivation, actively discussed in literature [7–10], is often based
on assumptions about the shape of the mean velocity profile. A DNS, with its ability to
evaluate the skin friction directly, and to plot the velocity profile in the law-of-the-wall
form without implicit assumptions, is a poweful tool to complement experimental data
in this research areas. Of course the main limitation of DNS lies in the limited values of
the Reynolds number typically affordable in the numerical simulations. This is the reason
why in this paper a method is developed with emphasis on computational efficiency.
A DNS at a relatively high value of Re will also offer the opportunity to observe to what
extent a planar, pressure-driven and fully-developed turbulent flow (like a channel flow)
presents analogies to the CTF. Besides direct curvature effects, which are not dominant
in the present low-curvature geometry, a noticeable difference that could significantly af-
fect the near-wall turbulence is the presence in the turbulent CTF of large-scale toroidal
vortical structures. The laminar solution is known to be unstable above a well-defined
(and curvature-dependent) critical value Rec of the Reynolds number, above which such
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structures, known as Taylor vortices, are quickly generated [11]. As Re increases fur-
ther, the Taylor vortices undergo a series of transformations, after which they eventually
reappear in the turbulent regime [12]. In his illuminated paper [13], Townsend surmised
that turbulence in the CTF is basically of two different kinds, with one contribution
from the wall shear and the other from the large-scale structures. DNS is the perfect
tool to analyze the full flow field to the aim of revealing presence and characteristics of
these large-scale structures, that are absent either in the plane channel and in the plane
Couette flows.
The outline of the paper is as follows. In §2 the geometry of the problem and its numerical
simulation will be presented, first by recalling in §2.1 the main ingredients of the method
developed in Ref. [3], and then by describing its extension in §2.2. A validation of the
computer code as well as a critical comparison of its results to available data will be
given in §3, together with a quantitative assessment of its computational performance.
Successively, in §4 the numerical simulation of the turbulent CTF will be described, with
regards to discretization parameters and computational procedures. In §5 results will be
presented in terms of averaged and instantaneous properties of the flow. Lastly, §6 will
contain a conclusive summary.

2. Problem definition and numerical method

We consider a Taylor–Couette apparatus made by a moving inner cylinder, with radius
Ri rotating at an angular velocity Ωi, and a concentric, outer fixed cylinder with ra-
dius Ro. In figure 1 the geometry employed in the present work is sketched: the radial
coordinate is r, the axial and azimuthal coordinates being x and θ. The corresponding
velocity components are v (wall-normal), u (spanwise) and w (streamwise). The amount
of curvature is expressed by the geometric parameter ζ = Ri/Ro. The Reynolds number
Re is defined based on the inner cylinder rotating speed Wi = ΩiRi, the gap width
Ro −Ri = 2h between the two cylinders and the kinematic viscosity ν of the fluid. For
a given value of ζ, when gravity and other external forces are neglected, Re becomes the
sole relevant fluid dynamic parameter. Unless otherwise stated, the results presented in
the following will be made non-dimensional by using Wi as reference velocity and h as
reference length. When useful, the wall distance y will also be used, conveniently defined
as y = r − Ri or y = Ro − r. Quantities made non-dimensional in wall units will be
indicated with a + superscript and will be computed with friction velocity uτ (see §5 for
details concerning its definition) and fluid viscosity ν.

2.1. The starting point

The Taylor–Couette system is of course most easily described in cylindrical coordinates.
For cartesian coordinates, an effective and widely used formulation of the Navier–Stokes
equations for the DNS of turbulent flows with two homogeneous directions was introduced
by Kim, Moin & Moser [14], and is based on rewriting the equations of motion in terms of
two scalar equations for the wall-normal components of the velocity and vorticity vector.
A few studies have described its extension to a cylindrical geometry, to enjoy the same
advantages: pressure is removed from the equations, and the resulting computational
strategy is optimally fast when employed together with Fourier discretization in the
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Fig. 1. Geometry of the Taylor–Couette flow system. The inner cylinder rotates at speed Wi and angolar
velocity Ωi, the outer cylinder is at rest.

homogeneous directions. We build for the present work upon the contribution by Quadrio
& Luchini [3], who wrote evolutive equations for the radial components of velocity and
vorticity in cylindrical coordinates, thus exporting to the cylindrical case the advantages
and the computational efficiency of the cartesian one. The method by itself does not call
for a particular discretization of the radial direction: in [3] finite difference were used,
but spectral methods [15] and B-splines [16] have been tried too.
For completeness, we summarize here the main steps of the method described in [3] and
used for the DNS of an annular pipe flow; then in §2.2 we describe the present extension
to make it capable of turbulent TCF simulations.
Since two directions are homogeneous, the governing equations are first transformed in
Fourier space. Fourier-transformed quantities will be denoted with a hat; α and m denote
the axial and azimuthal wavenumbers, and k2 = α2 + m2/r2. Note that k depends
on the radial coordinate. In [3], after manipulation of the Navier–Stokes equations in
primitive variables the following equation for the Fourier-transformed radial vorticity η̂
was determined:

∂η̂

∂t
=

1

Re

(
DD∗(η̂) − k2η̂ + 2

im

r2
D(û) + 2

mα

r2
v̂

)
+

im

r
ĤU − iαĤW (1)
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In Eq. (1) the so-called Chandrasekar notation is employed for radial derivatives:

D(f) =
∂f

∂r
; D∗(f) =

∂f

∂r
+

f

r
,

and ĤU , ĤW and (in the following Eq.(2)) ĤV denote the non-linear terms as written
in the original primitive-variables equations.
After further manipulation, and leveraging the continuity equation, the temporal evo-
lution of v̂ was shown in [3] to be described by the following fourth-order differential
equation:

∂

∂t

[
v̂ − D

(
1

k2
D∗(v̂)

)]
=

1

Re
D

{
1

k2

[
k2D∗(v̂)−

D∗DD∗(v̂) − 2
m2

r3
v̂ + 2

im

r2
D(ŵ) − 2

im

r3
ŵ

]}
+

1

Re

(
−k2v̂ + DD∗(v̂) − 2

im

r2
ŵ

)
+

D

[
1

k2

(
iα ĤU +

im

r
ĤW

)]
+ ĤV . (2)

The differential system as a whole thus requires 6 boundary conditions; imposing the
no-slip condition at both walls requires v̂ = 0, D(v̂) = 0 and η̂ = 0 at the two walls
r = Ri and r = Ro [17].
Even though evolution equations are written for v̂ and η̂ only, û and ŵ velocity com-
ponents are needed to advance the solution to the next time step, by computing the
non-linear terms which are integrated esplicitely in time. The missing components are
easily found by solving a 2×2 system made by the continuity equation and by the defini-
tion of η̂. This differential system becomes algebraic when the present Fourier expansion
is adopted.
Unlike the cartesian equations, viscous terms in Eqs. (1) and (2) contain terms in û and
ŵ too (which vanish in the planar limit r → ∞), because of the Laplacian operator in
cylindrical coordinates. Hence, when a partially-implicit procedure is used for temporal
integration, these curvature-related viscous terms cannot be solved for implicitely. The
solution adopted in [3] was to solve for them explicitely, since this was shown to imply
no stability limitations.
The numerical method was of course spectral in the homogeneous directions, where –
as usual in DNS spectral methods [18] – the non-linear terms are evaluated pseudo-
spectrally to achieve good computational efficiency, thanks to the availability of Fast
Fourier Transform algorithms. Radial derivatives were discretized in [3] with finite dif-
ferences of second-order formal accuracy. The time integration was carried out with an
explicit third-order Runge–Kutta method for the nonlinear terms and curvature-related
viscous terms, and a second-order Crank–Nicholson scheme for the remaining viscous
terms.

2.2. The extension

The numerical method described above needs to be improved further if a large-scale DNS
of a turbulent flows at relatively high value of Re has to be performed. In particular the
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second-order accuracy of the finite-difference schemes may not be considered satisfac-
tory, and – most importantly – distributed-memory parallel computing capabilities are
required.
The extension aims at replicating the strategy for efficient parallel computing that has
been successfully implemented in our cartesian Navier–Stokes solver, recently described
by Luchini and Quadrio in [4], and therefore only sketched here. In short, the key decision
of discretizing the wall-normal derivatives with finite differences (FD) allows us to achieve
high parallel performance and low communication requirements, thanks to the locality
of the finite-difference operators. Data are partitioned among computing machines in
wall-parallel slices, so that wall-parallel FFTs, needed to compute the non-linear terms
with the pseudo-spectral approach, do not need inter-node communication. With a 5-
point stencil for the FD discretization of radial derivatives, the implicit part of Eqns.
(1) and (2) gives rise to pentadiagonal linear systems, one for each Fourier coefficient
η̂ and v̂: their solution by a standard elimination algorithm proceeds via a first sweep
of eliminations of the unknowns from one wall to the other, and then with a second
sweep of backsubstitutions in the opposite direction. Since data are partitioned in wall-
parallel slices, the solution of each system does require inter-node communication, and
the computing machines can work one at a time only. However, the number of linear
systems to be solved at each time step is very large, of the order of at least 104 in a
typical turbulent channel flow DNS, and about 105 in the simulations described in the
following. The solution of the linear systems can thus be efficiently carried out in parallel
by using a pipelining strategy. In the Pipelined Linear Systems (PLS) method, a single
machine is kept busy at working on the partial solution of many linear systems at once,
while the companion machines are waited for transmitting back partial results of previous
systems. Except for a startup and final phase, where pipelines are only partially filled,
machines can thus work effectively in parallel most of the time. The global amount of
data to be trasmitted across network with PLS is limited, thanks to the locality of FD
operators in physical space: as an alternative, a fully spectral method would require the
global transpose of the entire dataset, and this is known to carry a large networking load
[19].
A FD discretization is more convenient than a spectral one in terms of parallel computing;
its lesser spatial accuracy can be made comparable to that of spectral methods by using
compact, high-accuracy FD schemes [20]. A further advantage is that the cost of dealing
with compact schemes, that are usually implicit, can be further reduced for the Navier–
Stokes equations: in the present context, they are made explicit by leveraging, as observed
as early as in 1953 by Thomas [21], the lack of third derivatives in the governing equations.
Reproducing the PLS approach of Ref. [4] in the cylindrical case, however, is not trivial.
Both Eqs. (1) and (2) require further manipulation in order to arrive at a form where
explicit compact schemes can be applied to the differential operators. If a(r) indicates
a generic r-dependent coefficient and f is the unknown function, terms in the form
a(r)D(f) do not lend themselves to a straightforward use of compact explicit schemes
as in [4]. Such terms are thus rewritten after repeated integrations by parts, i.e. with
substitutions of the type:

aD(f) = D(af) − D(a)f ; aD∗(f) = D∗(af) − D(a)f. (3)

Note that integrating by parts introduces additional known coefficients like D(a), which
depend on the radial coordinate (directly and/or via the wavenumbers): one of the sim-
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plest among them in the actual equations is D(1/k2). Computing these known functions
in the time-advancement loop takes a sizeable amount of computing time; alternatively
they can be computed once at the beginning of the simulation and then stored, thus
requiring a non-negligible amount of RAM. The choice between storing and computing
on-the-fly depends of course on the available computational resources.
We refer the interested reader to Appendix A for additional details concerning the pro-
cedure of integration by parts, which leads to the final layout of the evolution equations.
Though of complicated appeareance, they can be solved numerically by employing most
of the numerical tools available for the cartesian case. Accordingly, the FD coefficients
are determined following the procedure illustrated in Ref. [4]: a computational stencil
made by 5 arbitrarily spaced (and smoothly strecthed) grid points is used to obtain a
formal accuracy of order 4, and the coefficients are computed once and for all at the
beginning of the simulation.

3. Validation

The present computer code is carefully validated against both numerical and experimen-
tal data available for CTF through preliminary calculations at non-turbulent values of
Re.
The correctness and accuracy of finite-difference radial operators is preliminarly checked
by computing the exact laminar solution. In the laminar regime, the flow is described by
an exact solution of the Navier–Stokes equations [22]:

w(r) =
Wi

1 − ζ2

[
Ri

r
− ζ2 r

Ri

]
. (4)

Due to the term ∼ r−1, this solution cannot be represented exactly by the polinomial
interpolation implied by a FD method. A discretization error is thus present, which is
bound to decrease as the step size raised to the fourth power. The laminar velocity
profile computed for ζ = 0.5 is shown in Fig. 2 together with the analytical solution.
The difference between computed and analytical curves is indeed observed to decrease
as requested by the formal fourth-order accuracy of the numerical method.
The entire code is then tested both in large- and small-gap geometries for the first insur-
gence of Taylor vortices, to verify whether the evolution of small-amplitude disturbances
is well represented. The curvature-dependent critical value Rec of the Reynolds number,
above which instability amplifies flow perturbations to develop Taylor vortices, is com-
puted with the present code and compared to available data. For a given ζ, the code is
thus run at various values of Re, starting from an initial condition made by the laminar
solution with superimposed small-amplitude random disturbances. The discretization pa-
rameters are reported in table 1 (“straight-vortex” case). The temporal evolution of the
kinetic energy is monitored, to verify whether the initial energy decreases or gets ampli-
fied depending on Re. For ζ = 0.5 previous numerical simulations by Fasel & Booz [23],
based on an axisymmetrical finite-difference method, determined Rec = 68.2, whereas
experimental measurements [24] indicated Rec = 68.4. At the same curvature of ζ = 0.5,
we find Rec to be confined within the range 68.2 < Rec < 68.4. For the small-gap case,
at ζ = 0.95 we compute 184 < Rec < 186, which agrees with the value of 185 determined
by Moser et al. [25].

9



N r

||E
||

∞
50 100 150

10-11

10-10

10-9

r

w

2 2.5 3 3.5 4
0

0.25

0.5

0.75

1

Fig. 2. Left: computed laminar velocity profile (symbols) and laminar analytical solution (4) (continuous

line), for ζ = 0.5 and Nr = 32 points in the radial direction. Right: difference ||E||∞ between computed
and analytical solutions, as a function of Nr. The straight line shows the expected decrease proportional
to N−4
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In the same flow regime, the torque needed to maintain the rotation of the inner cylinder
is computed as an indicator of global spatial accuracy, and compared with previous works.
The torque is defined as:

T = µ2πR2
i L

(∣∣∣∣
∂w

∂r

∣∣∣∣
r=Ri

−
w

Ri

)
. (5)

where L is the axial length of the cylinders.
For the two cases at ζ = 0.5 and ζ = 0.95, table 2 show how values of T computed by the
present code compare well (within small fractions of a percent) to literature data. XXX
INCOMPLETE! XXX The difference between the torque evaluated at the inner and
outer walls has been used in Ref. [23] to evaluate the adequacy of the spatial resolution
employed in the simulations. In the present case, this difference is of 0.000109% only.
When the number of points/modes are halved, it increases to 0.00242%, i.e. more than
that required by the fourth-order accuracy of the radial derivative operators.
A further increase in Re brings us into the non-linear regime, where the straight Taylor
vortices undergo a wavy azimuthal deformation and are named ”wavy vortices” after the
paper [26] by Coles. The prediction of quantitative properties of the wavy Taylor vortices,
like their azimuthal wavenumber and their phase speed, allows a further confirmation of
the present code. A simulation with the discretization parameters reported in table 1
(“wavy-vortex” case) has been carried out at ζ = 0.5 and Re = 250. In this simulation
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only, for comparison purposes the outer cylinder possesses a small amount of counter-
rotation, such that Re based on the outer cylinder’s rotation speed is Re = −55. The
simulation, described in detail in [27], shows a pair of wavy vortices, with azimuthal
wavenumber m = 2, and a characteristic rotation period T = 117h/Wi. This translates
into a non-dimensional rotation speed s = 2π/mTΩi = 0.054, which compares very well
to the results presented by Snyder [28].

3.1. Parallel performance

The parallel performance of the code is documented for the problem size and on the
computing system used for the turbulent simulation described later in §4.
The size of the computational problem is rather large, since we employ a spatial reso-
lution of Nθ = 512 and Nz = 170 Fourier modes in the azimuthal and axial directions
respectively, while the number of points in the radial direction is set to Nr = 129. The
simulation is carried out on a dedicated computing system, called a Personal Supercom-
puter, which is based on commodity personal computers. The special architecture of this
system, that can be used with either the cartesian or the cylindrical code, is described
in [4]. The system is made by 10 SMP nodes, each equipped with 2 Intel Xeon 2.66 GHz
CPU, and at least 1GB of 266 MHz SDRAM. The nodes carry two Gigabit Ethnernet
adapters each, and are connected in a ring topology. The low acquisition cost of this
system allows us to use it in a dedicated mode for its entire lifespan.
On one Xeon CPU the code requires 680 MB of memory, and takes 182 seconds to
compute a full time step for a 3-substeps Runge-Kutta temporal scheme. The amount
of memory includes the storage space for the radial coefficients discussed in §2.2. Should
RAM size become an issue, these coefficients can can be computed on-the-fly, thus saving
13% of RAM at the expense of a comparable increase in computing time. The CPU
overhead of the cylindrical code compared to its cartesian counterpart is about 40%
overall.
Figure 3 illustrates how the computation is speed up by employing an increasing number
N of computing nodes. The ratio between the wall-clock time on one CPU and the wall
clock time with N distributed-memory CPUs, i.e. the parallel speedup S, is plotted. The
parallel speedup is not far from the linear one: the PLS parallel strategy in the present
context thus exploits fully our low-cost computing system. The maximum measured
speedup with N = 10 is about 9. The SMP capabilities of the nodes are then used on top
of the distributed-memory parallel strategy. This allows a further 1.6 speedup factor from
the use of 2 CPUs. The SMP speedup is additive to the distributed-memory speedup,
and shows essentially no decrease with increasing the number of computing nodes. The
entire wall clock time for the simulation described in §4 can thus be decreased from about
6 months to about 11 days when the entire system is used.
A further interesting observation that can be drawn from Fig.3 is the fact that the
measured parallel performance is basically insensitive to the network bandwidth. When
S is measured for parallel computations run between nodes for which the connecting
network cards are slowed down from their native 1Gb/s bandwith to a bandwidth of
100Mb/s, essentially no penalty is observed. This reinforces the statement that the PLS
parallel strategy effectively reduces the communication requirements.
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Fig. 3. Parallel speedup S of the code versus the number N of the computing nodes. Closed symbols are
the measured speedup, and the dashed line represents linear speedup. Open symbols are the measured

speedup when the network interface cards are slowed down from the usual 1Gb/s to 100Mb/s speed.

4. The turbulent Couette–Taylor flow simulations

The geometry considered in the present analysis is the small-gap geometry considered
by Andereck, Liu & Swinney [5] with ζ = 0.882, which gives Ri = 15h and Ro = 17h.
The value of the Reynolds number is set at Re = 10500, in order to obtain a value of the
friction Reynolds number similar to Reτ = 180, which is typically considered the lowest
value at which a turbulent channel flow presents a well-developed inner layer [14,29].
This represents a big computational challenge: for comparison, Bech et al. [30] computed
a fully turbulent plane Couette flow, which is the limit for ζ → 1 of the present CTF,
at Reτ ≈ 80 only. According to Hamilton, Kim & Waleffe [31], the plane Couette flow is
turbulent above Reτ = 30.
The size of the computational domain must be chosen by keeping in mind that periodic
boundary conditions are used in the homogeneous directions: a periodic box imposes
an artificial large-wavelength cutoff to the structures that can be represented in the
numerical simulation. We set the axial wavelength at Lz = 5h: experimental results [12]
indicate that 5h is indeed the wavelength of a pair of turbulent Taylor vortices, and
is rather insensitive to the value of Re. The azimuthal extension of the box is set at
ℓθ = 5/8π, which corresponds to a length Lθ = 10πh measured at the centerline of the
gap.
The adequacy of the present size for the computational domain can be evaluated in
terms of inner (viscous) units, i.e. by making lengths non-dimensional with the friction
velocity uτ (see later §5 for its definition) and the fluid viscosity. With the friction
velocity computed at the inner wall L+

z = 839, whereas at the outer wall L+
z = 946. The
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streamwise length is between L+

θ
= 5576 at the inner wall and L+

θ
= 5600 at the outer

wall. A comparison with the domain sizes usually employed for DNS in the turbulent
plane channel flow show that the domain size is adequate. The streamwise length L+

θ
is

2.5 times the streamwise length typically employed [14] in the DNS of a plane turbulent
channel flow at a comparable value of friction Reynolds number; the spanwise width,
chosen to contain a single pair of large-scale vortices, is large enough to represent well the
turbulent flow, being larger than that used in [29]. While the finite axial extent precludes
describing possible long-range interactions between pairs of large-scale structures (as
discussed in [23], such interactions can be neglected in a stability analysis of the CTF),
the implied indefinite mirroring of periodic boxes makes the present simulation totally
free from the end-effects that are unavoidable in laboratory experiments.
To obtain the resolution of all the significant spatial scales, Nθ = 512 and Nz = 170
Fourier modes are used in the azimuthal and axial directions respectively, while the
number of points in the radial direction is set to Nr = 129. The spatial resolution in wall
units thus matches or exceeds the typical resolution employed in channel-flow DNS [29].
The global number of degrees of freedom amounts to ≈ 2.2 · 107. The parameters related
to the spatial discretization are reported in table 3.
The resolution of the relevant temporal scales dictates the time step size. We use ∆t =
0.012δ/Wi, which is smaller than the stability limit of the employed Runge–Kutta scheme.
In viscous units, this corresponds to ∆t+ ≈ 0.08. A null mean pressure gradient is imposed
in both the homogeneous directions.

4.1. Computational procedures

The initial condition for the simulations is based on the laminar solution (4); divergence-
free velocity disturbances with amplitude O(10−4) and random phase are added to the
whole set of Fourier modes. Different initial conditions have been considered in (less
resolved) preliminary simulations, by either changing the amplitude of the disturbances,
or by applying disturbances to a partial set of modes, or by starting the run from a null
mean velocity profile instead of the profile (4). In terms of the long-time mean turbulent
friction and others higher-order statistics, no difference has been noticed among these
cases after the turbulent regime sets up, even though the time required to reach the
statistically steady-state, as well as the behaviour of the flow during the initial transient,
have been observed to depend on the details of the initial conditions.
The simulation is started from the above-described initial condition and let run for
1000δ/Wi. A flow field is stored on disk every 10 time units for later postprocessing.
The size of a single flow field is 185 MBytes.
The time required for the simulation to settle to a statistically steady-state requires an
initial time interval: we have estimated it based on the time history of various quantities,
including the derivative of the space-mean velocity logitudinal velocity profile friction
computed at the walls, which is related to Reτ . Figure 4 shows how the length of this
transient is about 150 time units. In computing statistical quantities, flow fields corre-
sponding to the initial 300 time units are rejected.
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of time after the startup of the simulation.

5. Results

The first global flow feature that we consider is the mean friction. The shear-stress τw

is computed for both the inner and the outer walls. Its mean value 〈τw〉, averaged over
time and over the homogeneous directions, allows us to compute a local friction velocity
uτ =

√
〈τw〉/ρ for each wall, from which a local Reynolds number Reτ = uτδ/ν can be

obtained. The present results yield Reτ = 189.3 for the inner wall and Reτ = 167.7 for
the outer wall. As a further confirmation of the adequacy of spatial resolution, we observe
that the ratio between the values of Reτ at the two walls equals ζ within 0.18%, which is
certainly below the error implied by the temporal average of the fluctuating shear stress.
The radial profile 〈w〉 of the mean azimuthal component of the velocity vector is shown in
figure 5 and compared to the laminar solution (4). While the laminar profile at this cur-
vature level is hardly distinguishable from a linear profile, the turbulent profile presents,
in analogy to the plane turbulent Couette flow, two distinct regions: near the walls a
shear-driven boundary layer, and in the central part of the gap a region where the ve-
locity slowly decreases with r. In particular, the large central region presents an almost
constant or very slowly-increasing angular momentum r〈w〉; its value of nearly 0.5RiWi

agrees with the measurements by Taylor [11] and Smith & Townsend [32]. This property
of the flow is seen here for the first time in a numerical simulation, and supports the
hypothesis of a core region of constant angular momentum flow already put forward by
Townsend [33].
In figure 6 the azimuthal velocity profile is plotted in semi-logarithmic scale and in local
wall units against the wall distance y+. Similarly to pressure-driven flows, a viscous
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Fig. 5. Radial distribution of the mean azimuthal velocity 〈w〉 (closed symbols, continuous line) and
of the angular momentum r〈w〉 (open symbols, dashed line). Lines without symbols correspond to the

analytical laminar solution. Angular momentum is made non-dimensional with WiRi.

sublayer can be observed over both walls for y+ . 5, where the profile follows the linear
law 〈w〉+ = y+. The profiles over both walls are fairly similar up to y+ ≈ 40, but in the
central part of the gap the outer profile becomes slightly higher than the inner one: this
suggests that the friction velocity (local to each wall) is not the correct scaling velocity
in this region of the flow.
The very existence of a logarithmic layer, where the mean velocity profile is described
by:

〈w〉+ =
1

κ
ln y+ + B,

as well as its characterization through the numerical values of the von Kármán constant
κ and the intercept B, are matters where scholars have not yet agreed upon [6]. Figure 7
shows the azimuthal mean velocity profile, plotted in law-of-the-wall form for the inner
wall only. The computed profile is compared to a few laws proposed in the literature. In
particular for a plane Couette flow at Reτ = 82.2 the values 1/κ = 2.55 and B = 4.7
have been proposed [30], whereas for the same flow at Reτ = 52 the values 1/κ = 2.5
and B = 4.6 have been used [34]. The values for the plane channel flow at Reτ = 180,
after Kim, Moin & Moser [14], are 1/κ = 2.5 and B = 5.5.
Figure 7 reveals a rather limited extent of the logarithmic region, the relatively high value
of Re notwithstanding. (A rough estimate is that the present profile has constant slope
for 20 . y+ . 40. The outer edge of the logarithmic layer can also be estimated from
figure 6 as the position where the curves relative to the two walls start to diverge. On
the contrary, the profile of the plane channel flow has constant slope in a range of nearly
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Fig. 6. Mean azimuthal velocity profile 〈w〉+, in local wall units, over the inner wall (closed symbols)
and the outer wall (open symbols). The continuous line is the linear profile 〈w〉+ = y+.

100 wall units.) The values of 1/κ and B from the plane channel case do not provide a
good fit, whereas the ones from the plane Couette flow appear more suited to the present
velocity profile. The best fitting line seems to be that by [30]. The main information that
can be drawn is thus to reinforce the statement by Smith & Townsend [32]: “no significant
region of logarithmic variation of velocity can exist” for “any flow of Reynolds number
less than 20000” in a Taylor–Couette flow with the outer cylinder at rest. According to
a semi-empirical law [35], which relates the outer-scale Reynolds number to Reτ , this
corresponds to Reτ ≈ 340. As long as such information is not available, the collected
evidence suggests that, at least for these relatively low values of Re, κ should take values
equal or slightly reduced compared to the plane channel flow. We recall however that
curvature for the considered geometry at ζ = 0.882 is rather weak.
The observed shape of the mean velocity profile is relevant to the ongoing discussion
about the derivation of a friction law for the turbulent Couette–Taylor flow. In recent
years, Lathrop et al [7] derived an approximate friction law based on the assumption of
a logarithmic velocity profile, whereas Panton [8] started from the assumption that the
core region has constant angular momentum. The present results, which show to a very
good approximation the presence of the constant angular momentum region, appear to
lend more support to the latter assumption, tough wider logarithmic layers could develop
at higher Re.
The variance of the velocity fluctuations are plotted in figure 8 across the whole gap. One
observes high levels of fluctuations for the streamwise component, which is also the one
with more marked asimmetry between the two walls and shows higher turbulence activity
over the outer wall. The radial component peaks at the centerline with a symmetric
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Fig. 7. Mean azimuthal velocity profile 〈w〉+ (symbols) over the inner wall, compared with logarithmic
laws proposed in literature. Dashed line: plane Couette flow at Reτ = 52 by [30]. Dotted line: plane

Couette flow at Reτ = 82.2 by [34]. Continuous line: profile for plane channel flow at Reτ = 180 by [29].

profile, whereas the spanwise component is nearly symmetric and remarkably intense.
A better look can be obtained by plotting the root-mean-square values for both walls in
local wall units against y+ in figure 9, thus implicitely accounting for the different values
of the friction Reynolds number. Convex and concave walls do still present discernible
differences: in particular the turbulence activity as deduced by the level of streamwise
velocity fluctuations is still larger over the outer wall. A similar but less pronounced
behaviour is observed for the spanwise component. Inner scaling seems to work for the
radial component, at least very near the wall: when the centerline is approached, the
two profiles over the inner and outer wall appear to diverge. We interpret the failure
of friction velocity in scaling the r.m.s. profiles as an effect of the turbulent Taylor
vortices. Near the wall they induce perturbations in the u and w components without
affecting v, because of the impermeability constraint. In a sense, these perturbations
behave similarly to the so-called inactive motions hypothesized by Townsend [33] to
populate the turbulent boundary layer, and known to be responsible for the so-called
anomalous scaling [36,37]. Figure 9 reports also the r.m.s. value of velocity fluctuations
for the plane channel flow, taken from [29]. The streamwise component is quite similar,
while the wall-normal component is similar in the near-wall region only. The spanwise
component in the channel flow presents a much lower level of activity, and is thus the
component where the contribution by the turbulent Taylor vortices is the most relevant.
Figure 10 gives a qualitative picture of the whole flow field. The turbulent Taylor vortices
can be clearly observed. In laboratory experiments, one often has to resort to passive
tracers to visualize these large-scale structures, whereas DNS makes the flow variables
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wall-normal component. Circles: spanwise component. For clarity only one every two points is shown.

easily available. In Fig.10 the large-scale structures are indeed cleary recognizable based
on actual flow variables. In the figure the entire computational domain is visualized,
represented in cartesian coordinates and made rectilinear along the azimuthal direction
for clarity sake. The two isosurfaces represent values of ±0.12Wi for the radial velocity
component, and emphasize the presence of two large-scale roll-like structures. It is evident
how the vortices are strongly modulated by the noisy turbulent background, so that their
boundary is somewhat blurried. They are however clearly identifiable, and extend their
influcence down to the wall.

6. Discussion and conclusions

A direct numerical simulations of a Taylor–Couette flow in the fully turbulent regime has
been presented. The value of the Reynolds number – up to Reτ ≈ 190 based on friction
velocity, viscosity of the fluid and half gap width – is high enough to compare turbulent
statistics to the ones of planar pressure-driven flows.
Such a demanding simulation has required developing a numerical method designed ad

hoc. It discretizes the governing equations with high accuracy and exploits the computing
power of a parallel computing system, which is assembled from commodity hardware.
The code, based on Fourier expansion in the homogeneous directions and on fourth-
order, compact finite differences in the radial direction, has been validated by computing
several physical quantities available from previous DNS or experiments in the laminar
and transitional regimes, and has then made possible the first DNS of the Couette–Taylor
flow in the fully turbulent regime.
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Fig. 9. Root-mean-square value of velocity fluctuations above both walls. Closed symbols: inner wall.
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Fig. 10. Snapshot of an instantaneous flow field. For clarity, the azimuthal axis is made rectilinear, so

that the computational domain is deformed into a rectangular box. The bottom wall moves from left to
right. Isosurfaces for the radial velocity component are shown, at levels of ±0.12Wi: negative levels are
in light gray, and positive in dark gray.
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A geometry with relatively small curvature has been considered. In comparing statistics to
other wall turbulent flows, analogies and differences have been discussed, the main source
for the latter being the presence of the curvature-induced turbulent Taylor vortices. The
mean velocity profile does not exhibit an equilibrium logarithmic region at the present
value of Re, contrasting the pressure-driven flows. A core region with almost constant
angular momentum has been revealed by our simulations, and the numerical value of
this constant compares very well to experimental observations taken at different Re.
The analysis of the root-mean-square values of velocity fluctuations, in comparison with
the ones from a plane channel flow, reveals the lack of inner scaling, and suggests the
existence of different contributing physical processes.
Two distinct sources of turbulence fluctuations can indeed be identified in the present
flow: (i) the large-scale vortices, generated by an instability mechanism, and (ii) the wall
turbulence cycle, related to the near-wall shear, which in the present context produces
small-scale fluctuations and provides a noisy background for the vortices. A visualization
of a snapshots of the flow field has shown how the large-scale structures retain their
basic shape while embedded in the flow, though blurried by the surrounding small-scale
turbulence. The interaction of the small-scale turbulence with the large-scale structures,
and the possibility of discerning and eventually separating their contributions to the flow
statistics is an interesting long-term objective on which we are currently working.
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Appendix

This Appendix presents additional details concerning the entire procedure of extending
the numerical method from what published in [3] to the one employed in the present
simulations. The complete derivation can be found in Refs. [38] and [27].
To arrive at the form of the governing equation which is discretized in the computer
code, we begin by eliminating third derivatives in Eq. (2) via the continuity equation.
The simple substituion:

D∗(v̂) = −iαû −
im

r
ŵ.

works around the difficulty of deriving explict compact schemes along the Thomas’ strat-
egy [21], which is designed for the Orr-Sommerfeld equation where third derivatives are
missing. Of course a few viscous terms have to be moved into the part of the evolution
equation (2) that is to be integrated explicitely in time, thus creating potential stability
problem. This price however has been paid already when transforming the equations (in
cylindrical coordinates) from the primitive variables to the velocity-vorticity formulation.
A posteriori we determined empirically that these terms do not imply temporal stability
limitations, and the choice of the time step size is still limited by temporal accuracy
considerations. Of course the problem could get worse as long as the degree of curvature
is increased.
The procedure of repeated integrations by parts needed to massage Eqns. (1) and (2) into
a form suitable for the application of the compact finite-difference operators is described
now with some detail.
In Eqn. (2), the first term which is integrated by parts following (3) is the time derivative,
which becomes:

∂

∂t

[
−D

(
1

k2
D∗(v̂)

)]
=

∂

∂t

[
−DD∗

(
1

k2
v̂

)
+ D

(
D(

1

k2
)

)
v̂

]
.

In the righ-hand-side of Eqn. (2), perhaps the most complicated term is:

D

[
1

k2
(−D∗DD∗v̂)

]
,

where first the continuity equation must be invoked to cancel the third derivative. Re-
peated integrations by parts then allow the r-dependent coefficients to remain only in
the innermost positions. After some algebra, the result is:

− D

[
1

k2
(D∗DD∗v̂)

]
= −DD∗DD∗
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1
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)
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[
1
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DD
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− 2DD∗

[
1

r
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(
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]
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DDD
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]
− D
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1

r2
D

(
1

k2

)
v̂

]
+

− 3DD∗

[
D

(
1

k2

)(
iαû +

im

r
ŵ

)]
.

As a result of the use of the continuity equation, the last term has appeared which cannot
be solved for implicitly, and must thus join the viscous curvature terms in the explicit
part.
The last term of Eqn. (2) which needs manipulation is:

22



D

[
1

k2

(
2
im

r2
D(ŵ)
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The same sequence of integration by parts must be carried out for Eqn. (1) for the radial
vorticity, arriving at the following substitution:

2
im

r
D(û) = 2im

[
D
( u

r2

)
+ 2

u

r3

]
.

Lastly, the nonlinear terms too contain radial derivatives, and some terms therein must
be integrated by parts.
This procedure leads to the final, rather long form of the equations for v̂ and η̂, which
lends itself to a discretization in the radial direction with explicit compact finite difference
schemes of fourth-order accuracy over a five point stencil. It is written here in full for
completness, without time discretization for notational simplicity:
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Lx Lθ Nx Nr Nθ Re

“straight-vortex” case 4h πh 64 64 32 60-190

“wavy-vortex” case 4h 2πh 64 64 32 255

Table 1

Size of the computational domain and grid resolution for the preliminary simulations in the “straight-
vortex” and “wavy-vortex” regimes (see text).

Re here ζ = 0.5 [23]

60.0 16.7551 16.7551

68.0 16.7551 16.7551

70.0 17.1542 17.1537

75.0 18.1634 18.1627

80.0 19.0536 19.0527

Table 2
Comparison between the value of the torque T computed by the present code and: (left) [23] for ζ = 0.5;
(right) [25] for ζ = 0.95.

Position Lz Lθ L+
z L+

θ
∆z+ y+ (r∆θ)+

inner wall 5h 9.37πh 946 5576 5.6 0.9 10.9

centreline 5h 10πh 889 5588 5.2 4.6 10.9

outer wall 5h 10.62πh 839 5600 4.9 0.8 10.9

Table 3
Size of the computational domain and grid resolution for the turbulent Couette–Taylor simulation. Wall
units are computed on the basis of the friction velocity relative to each wall, as defined in §5.
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