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Abstract

For the turbulent Taylor–Couette flow around concentric circular cylinders a closed-form solution

is derived for the skin-friction coefficient as a function of the Reynolds number, based on the

turbulent viscosity concept, in analogy to the well-known Prandtl-von Kármán law for pressure-

driven turbulent flows. The main improvement over existing formulas2–4,7 is the use of the exact

definition of the shear in cylindrical coordinates, thus extending the validity of the present results

even beyond the small-curvature limit. This newly proposed law again takes a logarithmic form,

but multiplicative coefficients, that are still determined through a fit to existing experimental data8,

now carry a closer relationship to physical quantities, in particular the von Kármán constant κ,

since curvature effects are now fully accounted for. We suggest that torque measurements in the

well-controlled Taylor-Couette flow setup could be used to deduce the dependence of κ on the

streamwise curvature of the wall.
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The flow in the gap between two coaxial rotating cylinders, i.e. the Taylor–Couette flow, is

among the most investigated problems in fluid mechanics. A wide variety of experimental,

analytical and numerical studies have shed light into the phenomena that govern this flow

of fundamental interest; however, in particular when the turbulent regime is concerned, our

understanding of the Taylor–Couette flow is not yet fully satisfactory.

An easy-to-handle relationship between the skin-friction coefficient λ and the Reynolds

number Re, i.e. the so-called skin-friction law, has been sought for since early in the past

century, as demonstrated by the empirical power-law formula derived by Wendt17 and the

experimental data collected by Taylor15 to the purpose. Years later, Donnelly & Simon3

proposed another formula based on a theoretical hypothesis14 previously put forward for

the narrow-gap case. As an extension of their derivation, Bilgen & Boulos2 collected several

experimental results and matched them with another power-law semi-empirical formula,

which tries to account for Reynolds number and geometry dependencies at the same time.

More recently, highly accurate experimental friction data have become available, though

limited to a geometry with a sole curvature. Lathrop, Fineberg & Swinney7 (LFS in the

following) carried out a measurement campaign in a well-controlled experimental

environment, and their setup has been further upgraded by Lewis and Swinney8 (LS in the

following), so that the accuracy in their torque measurements is reportedly up to 0.1%.

Thanks to such data, the Authors were able to rule out a power-law behavior for the

skin-friction law, and to propose an alternative, logarithmic formula that builds upon the

assumption that the mean velocity profile is logarithmic except in the very-near-wall

region. Even more recently, this view was challenged by Eckhardt, Grossmann & Lohse5,

who support another power law with empirical coefficients, based on an unified view of

turbulent transport in thermal convection and in shear flows6.

In this paper we aim at improving the logarithmic law introduced by LFS by properly

accounting for the curvature of the system. LFS model the mean velocity profile in

turbulent Taylor–Couette flow as two logarithmic boundary layers, plus two viscous

sublayers in the immediate proximity of the walls. With the use of the mixing-length

concept, a friction law is obtained that resembles the Prandtl–von Kármán law valid for a

turbulent pressure-driven flow over a plane wall, described, among others, in the book by
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Pope13:
1
√

λ
= A ln (Re

√
λ) + B. (1)

The empirical constant B is B ≈ 5.2 for a plane channel flow with smooth walls, whereas

A = κ−1 and κ is the so-called von Kármán universal constant, whose value is often

assumed κ = 0.41. The analogous law derived by LFS for the Taylor–Couette flow can also

be cast in the equivalent form:

Re
√

G
= M ln

√
G + N, (2)

where G is the (non-dimensional) torque needed to rotate the inner cylinder, and M and

N are empirical constants. LFS deduced equation (2) under the simplifying assumption of

writing the shear in cylindrical geometry as µw/r. This is valid only in the small-curvature

limit, since the full expression of the shear1 is µr[w/r]/r = µw/r − w/r. After obtaining a

formula of the type (2), LFS determined the constants M and N through a fit to

experimental data. A similar approach was developed by Panton11, who made a different

assumption for the velocity profile and assumed a core of constant angular momentum to

arrive again at a law of the form (1), where M and N now are different functions of the

geometry and κ.

In this paper we start from the general expression of the shear in cylindrical coordinates to

deduce a closed-form relationship between the friction coefficient and the Reynolds

number. Our new relationship is again in the Prandtl–von Kármán form (1) or (2), but A

and B carry a different dependency on the geometry and the von Kármán constant κ. In

the ongoing debate on the properties of κ, this new expression for the friction law could

help relating a plain fit to experimental measurements of torque data in Taylor–Couette

flow to a general dependency of the von Kármán constant on the streamwise curvature.

We consider the flow confined between a steady outer cylinder of radius b and a moving

inner cylinder of radius a, whose angular velocity is Ω. The Reynolds number is defined as

Re = Ωa(b − a)/ν, where ν is the fluid viscosity. The cylinder axial length is H, and the

radius ratio, expressing the degree of curvature of the system, is η = a/b. The planar case

is recovered when η → 1.

The total torque

T = 2Hπr2τ(r) = 2Hπr2 [τv(r) + τt(r)] (3)
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is given by the sum of a viscous contribution τv and a turbulent one τt, and it must be

constant within the whole gap16 because of global equilibrium. Apart from a small

boundary layer close to the walls (where the viscous shear stress dominates), the turbulent

contribution is the most relevant, so that the approximation τ = τv + τt ≈ τt is valid

throughout the gap, except for the very near-wall region. By virtue of equation (3) the

turbulent shear stress can be written as proportional to the non-dimensional torque

G = T/(ρν2H):

τt(r) ≈ τ(r) =
ρν2

2π

G(r)

r2
. (4)

Under the Boussinesq assumption the turbulent shear stress is expressed as:

τt(r) = ρνtr
d

dr

(w

r

)

,

with w the mean azimuthal velocity profile and νt a turbulent (or eddy) viscosity. In this

expression the exact definition of shear in cylindrical coordinates has been used, i.e.

r[w/r]/r, consistently with the cylindrical geometry. This differs from the expression w/r

valid for planar flows because of the term w/r, which vanishes as r → ∞. LFS derived

their friction law for the turbulent Taylor–Couette flow by using the planar expression for

the shear, and thus under the small-curvature approximation.

The Prandtl’s mixing-length theory now suggests νt to be proportional, through the

constant κ, to a length-scale y (distance from the wall) and to a turbulent velocity vt,

given by:

vt = κry
d

dr

(w

r

)

.

We thus obtain for the turbulent stress:

τt(r) = ρκ2r2y2

[

d

dr

(w

r

)

]2

. (5)

By comparing equations (4) and (5), a differential equation for the azimuthal velocity

profile w(r) in terms of the non-dimensional torque G is obtained:

d

dr

(w

r

)

= −
ν

κ

√

G

2π

1

yr2
, (6)

where the negative sign is because the velocity profile has a maximum at the inner, moving

wall. We notice that the full definition of the shear has led to an expression for the velocity

profile that differs from the one derived by LFS, i.e.:

dw

dr
= −

ν

κ

√

G

2π

1

yr
.
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What follows is basically the repetition of the LFS’s procedure7 to arrive at the friction

law starting from equation (6). The first step is to integrate (6), for both the inner and the

outer wall, from the centerline down to a position y+
0 where the logarithmic velocity profile

intersects the linear near-wall profile w+ = y+. Integrating (6) at the outer wall leads to:

wout(r)

r
=

√

G

2π

ν

κb2

(

b

r
+ ln

b − r

r
+ Co

)

, (7)

where the constant Co can be derived by matching wout(r) to w+ = y+ at the distance

y+ = y+
0 from the wall. This is obtained by imposing:

wout(b − y0) = y+
0 wτ,o =

y0w
2
τ,o

ν
,

where the friction velocity at the outer wall is

wτ,o =

√

G

2π

ν

b
.

Co is then substituted into Equation (7), and the velocity profile wout over the outer wall

becomes:

wout(r) =
wτ,or

κb

(

b

r
+ ln

(

b − r

r

b − y0

y0

)

+
(κy+

0 − 1)b

b − y0

)

.

An equivalent expression for win, the velocity profile in the inner part of the gap, can be

obtained by integrating equation (6) and then setting the value of the integration constant

through matching to the viscous sublayer profile. The friction velocity wτ,i is related to the

one at the other wall by wτ,i = wτ,o/η.

Now a matching condition between wout and win must be imposed at the centre of the gap,

i.e. at r = 0.5(a + b). This leads to:

wτ,o

κb

(

2b

a + b
+ ln

(

b − a

a + b

b − y0

y0

)

+
(κy+

0 − 1)b

b − y0

)

=

Ωa

a + y0

−
wτ,o

κa

(

2a

b + a
+ ln

(

b − a

a + b

a + y0

y0

)

+
(κy+

0 − 1)a

a + y0

)

. (8)

Equation (8) can then be rearranged to give:

wτ,o

κb

{

2

η
+

(

1 +
1

η2

)

ln
1 − η

1 + η
+ ln

(

wτ,ob

y+
0 ν

− 1

)

+
1

η2
ln

(

wτ,ia

y+
0 ν

+ 1

)

+
(

κy+
0 − 1

)

(

wτ,ob/y
+
0 ν

wτ,ob/y
+
0 ν − 1

+

1

η2

wτ,ia/y+
0 ν

wτ,ia/y+
0 ν + 1

)}

= Ω
wτ,ia/y+

0 ν

wτ,ia/y+
0 ν + 1

. (9)

7



The further hypothesis
√

G/2π = wτ,ob/ν = wτ,ia/ν ≫ 1 allows one to drop a few terms in

equation (9), which simplifies to:

wτ,o

κb

(

1 +
1

η2

) [

2η

1 + η2
+ ln

1 − η

1 + η
+

ln
wτ,ob

y+
0 ν

+
(

κy+
0 − 1

)

]

= Ω. (10)

Once recast to highlight
√

G and Re, eq. (10) assumes its final, logarithmic form:

Re
√

G
=

1 − η
√

2πκ

1 + η2

η

[

ln
√

G + ln
1 − η

1 + η

1
√

2πy+
0

+

κy+
0 −

(1 − η)2

1 + η2

]

. (11)

Comparing (11) to (2) leads to the following definition of the multiplying factors M and

N :

M =
1 − η
√

2πκ

1 + η2

η
, (12a)

N = M

[

ln
1 − η

1 + η

1
√

2πy+
0

+ κy+
0 −

(1 − η)2

1 + η2

]

. (12b)

M and N thus contain the von Kármán constant κ and the radii ratio η; the expression for

N contains y+
0 too. The friction law obtained by LFS is in the form (2), but the multiplying

factors are defined differently. Indicating their definitions with a prime we have:

M ′ = M
1 + η

1 + η2
, N ′ = N

1 + η

1 + η2
+ M

(1 + η)(1 − η)2

(1 + η2)2
. (13)

It can be observed that the two sets of definitions cohincide in the small-curvature limit

when η → 1.

The most accurate available experimental data by LS8 correspond to a geometry with

η = 0.7246 and, according to the Authors, they are best fitted to the formula (2) (with

base-10 logarithm) when M = 1.56 and N = −1.83. The fit is shown in fig.1 and is indeed

rather good. Of interest here is to observe that the values of κ and y0 implied by the

definitions (12) are κ = 0.3413 and y+
0 = 12.1 , while those implied by the primed

definitions (13) obtained by LFS are κ = 0.386 and y+
0 = 10.1. Different definitions were

obtained by Panton, which implied the value κ ≈ 0.44.

To arrive at a friction law in the form (1), the friction coefficient λ is introduced:

λ =
τ

ρΩ2a2/2
=

T

πHρw2
i a

2
. (14)
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FIG. 1: Non-dimensional torque G versus Reynolds number Re in turbulent Taylor-Couette flow.

Comparison between experimental data in the interpolated form log G = −0.00636(log Re)3 +

0.1349(log Re)2 + 0.885 log Re + 1.610 (symbols), and the logarithmic law (2) with M = 1.56 and

N = −1.83 (line).

The friction coefficient is related to the non-dimensional torque G through:

G = π

[

η

1 − η

]2

Re2λ,

so that an equation of the type (1) can be easily derived from (11), with:

A =

√
πη

1 − η
M, B =

√
πη

1 − η

(

N + M ln

√
πη

1 − η

)

.

When data are plotted in logarithmic scale, as done in fig. 2, an observation already put

forward by Eckhardt, Grossmann and Lohse5 can be made: the logarithmic friction law

appears to describe the experimental data only partially, since the fit is very good but

shows a small, remaining and sistematic drift. It is difficult to decide whether the drift is
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FIG. 2: Friction factor f versus Reynolds number Re for turbulent Taylor-Couette flow. Compar-

ison between experimental data (continuos line) and the logarithmic law (2) with M = 1.56 and

N = −1.83 (dashed line).

due to an actual trend of the data or it can be, at least partially, ascribed to a trend in

experimental errors of this sole data set.

As a consequence, solving the logarithmic law vs. power law debate requires in our opinion

further experimental effort. However, as far as the present paper is concerned, we would

like to stress that the difference between the two laws, important as it may be from a

fundamental viewpoint, is quantitatively very small. On the other hand, the logarithmic

form presents the important advantage that the value of the von Kármán constant κ can

be determined as a result of the fit. The value of κ is of high physical significance, and at

the same time is something that is very difficult to measure directly. The main point of

this paper is thus to suggest an indirect method for measuring the von Kármán constant κ,

and its change with the degree of streamwise curvature. Of course, central to this
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procedure is the improvement of the logarithmic friction law, as previously shown, to take

full account of curvature.

Measuring κ accurately would have a fundamental interest. The non-universality of the

value of κ is today well supported by the recognized differences existing among various

turbulent wall flows. For instance, in the plane channel flow Zanoun, Durst & Nagib19

reported a large scatter between various existing experimental studies, yielding values of κ

from as low as 0.33 to as high as 0.45, and through careful experimental measurements

they obtained a value of κ ≈ 0.37. Moreover, κ in turbulent boundary layers has been

observed10 to depend on the pressure gradient. The cylindrical pipe flow has been widely

investigated, and the overall picture is still somewhat blurried, with for example κ = 0.436

suggested by Zagarola and Smits18. The very logarithmic form of the mean velocity profile

has been questioned (see Ref.9 for a discussion). The situation is thus far from settled in

the planar case, and streamwise curvature poses additional challenges. The degree of

curvature is known12 to have a large influence on the behaviour of a turbulent flow. The

knowledge of the rate of change of κ with η would lead to significant practical and

modelling implications: for example, many commercial CFD software packages hard-code

the value of κ in their solution procedures, and laboratory measurements of turbulent

friction in flows over curved walls rely on Clauser-plot-type methods, that require a value

of κ to be predetermined. An experimental campaign, purposedly designed to measure

data in the confined and well-controlled Taylor–Couette apparatus, could explore several

values of η and shed light on this issue.
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