
ar
X

iv
:p

hy
si

cs
/0

50
61

55
 v

1
 1

8
Ju

n
20

05

A low-cost parallel implementation of direct

numerical simulation of wall turbulence

Paolo Luchini a,∗, Maurizio Quadrio b

aDipartimento di Ingegneria Meccanica Università di Salerno - Italy

bDipartimento di Ingegneria Aerospaziale Politecnico di Milano - Italy

Abstract

A numerical method for the direct numerical simulation of incompressible wall tur-
bulence in rectangular and cylindrical geometries is presented. The distinctive fea-
ture resides in its design being targeted towards an efficient distributed-memory
parallel computing on commodity hardware. The adopted discretization is spectral
in the two homogeneous directions; fourth-order accurate, compact finite-difference
schemes over a variable-spacing mesh in the wall-normal direction are key to our
parallel implementation. The parallel algorithm is designed in such a way as to
minimize data exchange among the computing machines, and in particular to avoid
taking a global transpose of the data during the pseudo-spectral evaluation of the
non-linear terms. The computing machines can then be connected to each other
through low-cost network devices. The code is optimized for memory requirements,
which can moreover be subdivided among the computing nodes. The layout of a
simple, dedicated and optimized computing system based on commodity hardware
is described. The performance of the numerical method on this computing system
is evaluated and compared with that of other codes described in the literature, as
well as with that of the same code implementing a commonly employed strategy for
the pseudo-spectral calculation.

Key words: Navier–Stokes equations, direct numerical simulation, parallel
computing, turbulence, compact finite differences.

∗ Corresponding author. Address: Dipartimento di Ingegneria Meccanica Università
di Salerno - via Ponte don Melillo - 84084 Fisciano (SA) - Italy

Email addresses: luchini@unisa.it (Paolo Luchini),
maurizio.quadrio@polimi.it (Maurizio Quadrio).

Preprint submitted to Journal of Computational Physics 18 June 2005

1 Introduction

The direct numerical simulation (DNS) of the Navier–Stokes equations written
for low-Reynolds-number, incompressible turbulent flows in simple geometries
is becoming an increasingly valuable tool for basic turbulence research [1].
Interesting wall-bounded flows span a number of simple geometries, either in
cartesian (plane channel flow, boundary layer over a flat plate) or in cylindrical
(pipe flow, annular pipe flow, flow in curved channels) coordinate systems.

For the cartesian case, an effective formulation of the equations of motion
was presented 15 years ago by Kim, Moin & Moser in their pioneering and
widely-referenced work on the DNS of turbulent plane-channel flow [2]. This
formulation can be regarded today as a de facto standard; it has since then
been employed in many of the DNS of turbulent wall flows in planar geome-
tries. It consists in the replacement of the continuity and momentum equations
written in primitive variables by two scalar equations, one (second-order) for
the normal component of vorticity and one (fourth-order) for the normal com-
ponent of velocity, much in the same way as the Orr–Sommerfeld and Squire
decomposition of linear stability problems. The main advantages of such an
approach are that pressure is eliminated from the equations, and the two
wall-parallel velocity components are recovered as the solution of a 2×2 alge-
braic system (a cheap procedure from a computational point of view), when a
Fourier expansion is adopted for the homogeneous directions. A high computa-
tional efficiency can thus be achieved. The same approach can be employed to
write the equation in cylindrical coordinates, but it appears to be much less
popular than the primitive-variable formulation of the Navier–Stokes equa-
tions. The formulation in terms of two scalar equations for radial velocity and
radial vorticity can be found for example in [3].

This optimally efficient formulation does not prescribe any particular dis-
cretization method for the differential operators in the wall-normal direction.
Many researchers, including Kim et al. [2], used spectral methods (typically
Chebyshev polynomials) in this direction too, but other possibilities exist,
finite differences and B-splines [4] being the most popular ones. The use
of finite differences has seen growing popularity [1], but mainly in the con-
text of the primitive-variable formulation, and for the discretization of the
derivatives in all three spatial directions (see for example [5]). The choice of
spectral methods for the discretization of the wall-normal, inhomogeneous di-
rection has a direct impact on the parallelization of a computer code, given
the non-locality of the spectral differential operators. As a matter of fact, to
our knowledge no fully spectral DNS code has been able to date to run in
parallel without a large amount of communication. As a consequence, high-
performance parallel DNS has been mostly restricted to large computing sys-
tems with a specially-designed communication infrastructure, a.k.a. supercom-

2

puters, even though the floating-point computing performance of the modern,
mass-marketed CPUs is comparable or better than those of supercomputers
[6]. In a recent paper [7] Jiménez draws an interesting picture of the future of
the DNS of turbulent flows in the next 30 years, and assumes that such simula-
tions will be run on supercomputers. The work by Karniadakis and coworkers
[8] makes no exception, in that it shows that DNS of turbulent flows can be
carried out with reasonably good performance on a cluster of PC, provided
they are interconnected by a high-performance Myrinet network. When a Be-
owulf cluster of PC connected with standard Fast Ethernet cards is employed
[9] on a isotropic turbulence problem, even after extensive optimization of the
code the parallel efficiency, i.e. the ratio between total time on one processor
and p times the computing time on p processors, is as low as 0.5 already when
two machines are used.

In this paper we present a numerical method for the DNS of turbulent wall
flows that has been designed to require a limited amount of communication,
and thereby is well suited for running on commodity hardware. The method
is based on the standard normal velocity - normal vorticity formulation and
hence uses Fourier discretization in the homogeneous directions, but high-
order, compact finite differences schemes are chosen for the discretization
of the wall-normal direction, instead of the classical expansion in terms of
Chebyshev polynomials. It can be used with either cartesian or cylindrical
coordinates.

The outline of the paper is as follows. In §2.1 the cartesian form of the Navier–
Stokes equations which is best suited for their numerical solution, and their
Fourier discretization with respect to the homogeneous directions are briefly
recalled. In §2.2 time discretization is discussed, with emphasis on our strat-
egy for data storage, which allows us to achieve an important memory opti-
mization. In §2.3 the finite-difference discretization of the wall-normal direc-
tion based on explicit compact schemes is introduced. §3 illustrates the par-
allel algorithm, which takes advantage of distributed-memory (§3.1) as well
as shared-memory (§3.2) machines; §3.3 describes how a specialized parallel
computing system can be set up to achieve the highest efficiency based on com-
modity hardware. §4 discusses the performance of the present parallel method,
compared to the information available in the literature for similar codes. A
comparison with a classical parallel strategy often employed in similar codes
is used in §4.3.2 to assess the usefulness of the present method when used with
low-bandwidth network connections. Lastly, §5 is devoted to conclusions.

3

Lz
Lx

flow

2δ

x, u

y, v

z, w

Fig. 1. Sketch of the computational domain for the cartesian coordinate system.

2 The numerical method

2.1 Governing equations and spectral discretization

Here we describe only the main aspects of the numerical method. Full details,
including the extension to the cylindrical case, can be found in [10].

Our cartesian coordinate system is illustrated in figure 1, where a sketch of a
plane channel flow is shown: x, y and z denote the streamwise, wall-normal
and spanwise coordinates, and u, v and w the respective components of the
velocity vector. The flow is assumed to be periodic in the streamwise and
spanwise directions. The reference length δ is taken to be one half of the
channel height.

The non-dimensional Navier–Stokes equations for an incompressible fluid in
cartesian coordinates are rewritten, following [2], in terms of two scalar differ-
ential equations, one (second order) for the wall-normal component of vorticity
η and one (fourth-order) for the wall-normal component of velocity v, and then
Fourier-transformed along the homogeneous directions (Fourier-transformed
variables will be indicated with an hat sign). If the nonlinear terms are con-
sidered to be known, as is the case when such terms are treated explicitly in
the time discretization, these equations (supplemented by no-slip boundary
conditions at the walls) become uncoupled and can be solved separately to
advance the solution in time by one step. Computing the nonlinear terms and
their spatial derivatives requires us first to compute û and ŵ from v̂ and η̂.
By using the definition of η̂ and the continuity equation written in Fourier
space, a 2× 2 algebraic system can be written and solved analytically for the
unknowns û and ŵ. Its solution is available in analytical form only when the
variables are Fourier-transformed in the homogeneous directions. The present

4

method therefore enjoys its computational efficiency only when a Fourier dis-
cretization is employed for these directions, which means that either periodic
boundary conditions are suitable for the physical problem under consideration
or a fringe-region technique [11] is adopted.

The unknowns are represented in terms of truncated Fourier series in the
homogeneous directions. For example the wall-normal velocity component v
is represented as:

v(x, z, y, t) =
+nx/2
∑

h=−nx/2

+nz/2
∑

ℓ=−nz/2

v̂hℓ(y, t)eihα0xeiℓβ0z (1)

where h and ℓ are integer indices corresponding to the streamwise and span-
wise direction respectively, and α0 and β0 are the corresponding fundamental
wavenumbers, defining the streamwise and spanwise periods Lx = 2π/α0 and
Lz = 2π/β0 of the computational domain.

The numerical evaluation of the velocity products would require computa-
tionally expensive convolutions in wavenumber space, but can be carried out
efficiently by transforming the three Fourier components of velocity back
into physical space, multiplying them in all six possible pair combinations,
and eventually re-transforming the six results into wavenumber space. Fast-
Fourier-Transform (FFT) algorithms are used in both directions. This tech-
nique is often considered “pseudo-spectral”, but it should be observed that,
when de-aliasing is performed by expanding the number of collocation points
by a factor of at least 3/2 before going from wavenumber space into physical
space, the velocity products become exactly identical to the “spectral” ones
that could have been obtained, at a much higher computational cost, through
the actual evaluation of the convolution products.

2.2 Time discretization

Time integration of the equations is performed by a partially-implicit method,
implemented in such a way as to reduce the memory requirements of the
code to a minimum, by exploiting the finite-difference discretization of the
wall-normal direction. The use of a partially-implicit scheme is a common ap-
proach in DNS [2]: the explicit part of the equations can benefit from a higher-
accuracy scheme, while the stability-limiting viscous part is subjected to an
implicit time advancement, thus relieving the stability constraint on the time-
step size ∆t. We employ an explicit third-order, low-storage Runge–Kutta
method, combined with an implicit second-order Crank-Nicolson scheme [12,13].

The procedure to solve the discrete equations for v̂n+1

h,ℓ and η̂n+1

h,ℓ at the time
level n+1 is made by two distinct steps. In the first step, the RHSs correspond-

5

ing to the explicit part have to be assembled. In the representation (1), at a
given time the Fourier coefficients of the variables are represented at different y
positions; hence the velocity products can be computed through inverse/direct
FFT in wall-parallel planes. Their spatial derivatives are then computed: spec-
tral accuracy can be achieved for wall-parallel derivatives, whereas the finite-
differences compact schemes described in §2.3 are used in the wall-normal
direction. These spatial derivatives are eventually combined with values of the
RHS at previous time levels. The whole y range from one wall to the other
must be considered.

The second step involves, for each α, β pair, the solution of a set of two ODEs,
derived from the implicitly integrated viscous terms, for which the RHS is now
known. A finite-differences discretization of the wall-normal differential oper-
ators produces two real banded matrices, in particular pentadiagonal matrices
when a 5-point stencil is used. The solution of the resulting two linear systems
gives η̂n+1

hℓ and v̂n+1

hℓ , and then the planar velocity components ûn+1

hℓ and ŵn+1

hℓ

can be computed. For each α, β pair, the solution of the two ODEs requires
the simultaneous knowledge of the RHS in all y positions. The whole α, β
space must be considered. In the α − β − y space the first step of this pro-
cedure proceeds per wall-parallel planes, while the second one proceeds per
wall-normal lines.

To understand our memory-efficient implementation of the time integration
procedure, let us consider the following differential equation for the one-
dimensional vector f = f(y):

df

dt
= N (f) + A · f , (2)

where N denotes non-linear operations on f , and A is the coefficient matrix
which describes the linear part. After time discretization of this generic equa-
tion, that has identical structure to both the η̂ and v̂ equations, the unknown
at time level n + 1 stems from the solution of the linear system:

(A + λI) · f = g (3)

where g is given by a linear combination (with suitable coefficients which
depend on the particular time integration scheme and, in the case of Runge-
Kutta methods, on the particular sub-step too) of f , N (f) and A · f evaluated
at time level n and at a number of previous time levels. The number of previous
time levels depends on the chosen explicit scheme. For the present, low-storage
Runge-Kutta scheme, only the additional level n − 1 is required.

The quantities f , N (f) and A · f can be stored in distinct arrays, thus resulting
in a memory requirement of 7 variables per point for a two-levels time integra-
tion scheme. An obvious, generally adopted optimization is the incremental
build into the same array of the linear combination of f , N (f) and A·f , as soon

6

j = 1..ny − 1

IFT/FFT

nl = N (f)

t = t + ∆t

rhs = αf + βnl + γA · f

f = θ rhs + ξ rhsold

rhsold = rhs

solve (A + λI)f = f

j = 1..ny − 1

IFT/FFT

t = t + ∆t

rhs = αf + βN (f) + γA · f

f = θ rhs + ξ rhsold

rhsold = rhs

solve (A + λI)f = f

Fig. 2. Comparison between the standard implementation of a two-level
time-advancement scheme (top), and the present, memory-efficient implementation
(bottom). Variables printed in bold require three-dimensional storage space, while
italics marks temporary variables which can use two-dimensional arrays. Greek
letters denote coefficients defining a particular time scheme. The present imple-
mentation reduces the required memory space for a single equation from 3 to 2
three-dimensional variables.

7

as the single addendum becomes available. The RHS can then be efficiently
stored in the array f directly, thus reducing the memory requirements down
to 3 variables per point.

The additional optimization we are able to enforce here relies on the finite-
difference discretization of the wall-normal derivatives. Referring to our simple
example, the incremental build of the linear combination is performed contem-
porary to the computation of N (f) and A · f , the result being stored into the
same array which already contained f . The finite-difference discretization en-
sures that, when dealing with a given y level, only a little slice of values of f ,
centered at the same y level, is needed to compute N (f). Hence just a small
additional memory space, of the same size of the finite-difference stencil, must
be provided, and the global storage space reduces to two variables per point
for the example equation (2).

The structure of the time integration procedure implemented in our DNS code
is symbolically shown in the bottom chart of figure 2, and compared with the
standard approach, illustrated in the top chart. Within the latter approach, in
a main loop over the wall-parallel planes (integer index j) the velocity products
are computed pseudo-spectrally with planar FFT, their spatial derivatives are
taken and the result is eventually stored in the three-dimensional array nl.
After the loop has completed, the linear combination of f , nl and A · f is
assembled in a temporary two-dimensional array rhs, then combined into the
three-dimensional array f with the contribution from the previous time step,
and eventually stored in the three-dimensional array rhsold for later use. The
RHS, which uses the storage space of the unknown itself, permits now to solve
the linear system which yields the unknown at the future time step, and the
procedure is over, requiring storage space for 3 three-dimensional arrays.

The flow chart on the bottom of figure 2 illustrates the present approach.
In the main loop over wall-parallel planes, not only the non-linear terms are
computed, but the RHS of the linear system is assembled plane-by-plane and
stored directly in the three-dimensional array f , provided the value of the
unknown in a small number of planes (5 when a 5-point finite-difference stencil
is employed) is conserved. As a whole, this procedure requires only 2 three-
dimensional arrays for each scalar equation.

2.3 High-accuracy compact finite difference schemes

The discretization of the first, second and fourth wall-normal derivatives D1,
D2 and D4, required for the numerical solution of the present problem is per-
formed through finite-differences (FD) compact schemes [14]. One important
difference with [14] is that our compact schemes are at the same time explicit

8

and at fourth-order accuracy. The computational molecule is composed of five
arbitrarily spaced (with smooth stretching) grid points on a mesh of ny + 1
points yj, with 0 ≤ j ≤ ny. We indicate here with dj

1(i), i = −2, . . . , 2 the five
coefficients discretizing the exact operator D1 over five adjacent grid points
centered at yj, i.e.:

D1(f(y))|yj
≃

2
∑

i=−2

dj
1(i)f(yj+i)

where yj is the y position on the computational mesh where the derivative has
to be evaluated. The coefficients dj change with the distance from the wall
(i.e. with the integer index j) when a non-uniform mesh is employed.

Compact schemes are also known as implicit finite-differences schemes, be-
cause they typically require the inversion of a linear system for the actual
calculation of a derivative [14,15]: this increases the complexity and the com-
putational cost of such an approach. For the present problem we are able how-
ever to determine explicitly the coefficients for compact, fourth-order accurate
schemes, thanks to the absence of the D3 operator from the present equa-
tions. This important simplification has been highlighted first in the original
Gauss-Jackson-Noumerov compact formulation exploited in his seminal work
by Thomas [16], concerning the numerical solution of the Orr-Sommerfeld
equation.

To illustrate Thomas’ method, let us consider a 4th-order ordinary differential
equation (linear for simplicity) for a function f(y) in the following conservation
form:

D4 (a4f) + D2 (a2f) + D1 (a1f) + a0f = g (4)

where the coefficients ai = ai(y) are arbitrary functions of the independent
variable y, and g = g(y) is the known RHS. Let us moreover suppose that
in frequency space a differential operator, for example D4, is approximated
as the ratio of two polynomials, say D4 and D0. Polynomials like D4 and D0

have their counterpart in physical space, and d4 and d0 are the corresponding
FD operators. The key point is to impose that all the differential operators
appearing in the example equation (4) admit a representation such as the
preceding one, in which the polynomial D0 at the denominator remains the

same. Eq. (4) can thus be recast in the new, equivalent discretized form:

d4 (a4f) + d2 (a2f) + d1 (a1f) + d0 (a0f) = d0 (g) (5)

and this allows us to use explicit FD schemes, provided the operator d0 is
applied to the RHS of the equation and to the terms not involving y deriva-
tives. The overhead related to the use of implicit finite difference schemes
disappears, while the advantage of using compact schemes is retained.

When compared to [16], the present approach is similar, but we decided to al-

9

low for variable coefficients ai(y) inside the differential operators Di. Thomas’
choice of considering differential operators of the form aiDi(f) is equivalent
in principle, but it would have required to solve for an auxiliary variable
f ′ = d0(f). The present choice moreover is better suited for a differential
equation written in conservative form, where only 6 convolutions have to be
evaluated.

In our implementation, to obtain a formal accuracy of order 4 we have used
a computational stencil of five grid points. To compute the finite-difference
coefficients, we have followed a standard procedure in the theory of Padé ap-
proximants [17]. For each distance yj from the wall, a 10×10 linear system can
be set up and solved for the unknown coefficients. A mesh with variable size
in the wall-normal direction is often desirable, in order to keep track of the
increasingly smaller turbulence length scales when the wall is approached. The
use of a non-uniform mesh together with compact schemes at high accuracy is
known [18] to require special care when the differential equation is used as an
additional relation which can be differentiated to eliminate higher-order trun-
cation errors. In the present approach the use of a non-uniform mesh in such
a way as to still keep a fourth-order accuracy simply requires the procedure
outlined above to be performed (numerically) again for each y station, but
only once at the beginning of the computations. The computer-based solution
of these systems requires a negligible computing time.

We end up with FD operators which are altogether fourth-order accurate;
the sole operator D4 is discretized at sixth-order accuracy. As suggested in
[14] and [15], the use of all the degrees of freedom for achieving the highest
formal accuracy might not always be the optimal choice. We have therefore
attempted to discretize D4 at fourth-order accuracy only, and to spend the
remaining degree of freedom to improve the spectral characteristics of all the
FD operators at the same time. Our search has shown however that no signif-
icant advantage can be achieved: the maximum of the errors can be reduced
only very slightly, and - more important - this reduction does not carry over
to the entire frequency range.

The boundaries obviously require non-standard schemes to be designed to
properly compute derivatives at the wall. For the boundary points we use
non-centered schemes, whose coefficients can be computed following the same
approach as the interior points, thus preserving by construction the formal
accuracy of the method. Nevertheless the numerical error contributed by the
boundary presumably carries a higher weight than interior points, albeit mit-
igated by the non-uniform discretization. A systematic study of this error
contribution and of alternative more refined treatments of the boundary are
ongoing work.

10

3 The parallel strategy

3.1 Distributed-memory computers

If the calculations are to be executed in parallel by p computing machines
(nodes), data necessarily reside on these nodes in a distributed manner, and
communication between nodes will take place. Our main design goal is to keep
the required amount of communication to a minimum.

When a fully spectral discretization is employed, a transposition of the whole
dataset across the computing nodes is needed every time the numerical so-
lution is advanced by one time (sub)step when non-linear terms are evalu-
ated. This is illustrated for example in the paper by Pelz [19], where par-
allel FFT algorithms are discussed in reference to the pseudo-spectral solu-
tion of the Navier–Stokes equations. Pelz shows that there are basically two
possibilities, i.e. using a distributed FFT algorithm or actually transposing
the data, and that they essentially require the same amount of communi-
cation. The two methods are found in [19] to perform, when suitably op-
timized, in a comparable manner, with the distributed strategy running in
slightly shorter times when a small number of processors is used, and the
transpose-based method yielding an asymptotically faster behavior for large
p. The large amount of communication implies that very fast networking hard-
ware is needed to achieve good parallel performance, and this restrict DNS to
be carried out on very expensive computers only.

Of course, when a FD discretization in the y direction is chosen instead of
a spectral one, it is conceivable to distribute the unknowns in wall-parallel
slices and to carry out the two-dimensional inverse/direct FFTs locally to
each machine. Moreover, thanks to the locality of the FD operators, the com-
munication required to compute wall-normal spatial derivatives of velocity
products is fairly small, since data transfer is needed only at the interface
between contiguous slices. The reason why this strategy has not been used so
far is simple: a transposition of the dataset seems just to have been delayed
to the second half of the time step advancement procedure. Indeed, the linear
systems which stem from the discretization of the viscous terms require the
inversion of banded matrices, whose principal dimension span the entire width
of the channel, while data are stored in wall-parallel slices.

A transpose of the whole flow field can be avoided however when data are
distributed in slices parallel to the walls, with FD schemes being used for
wall-normal derivatives. The arrangement of the data across the machines is
schematically shown in figure 3: each machine holds all the streamwise and
spanwise wavenumbers for ny/p contiguous y positions. As said, the planar

11

wall

slice 3

slice 4

wall

slice 1

slice 2

α
β

y

Fig. 3. Arrangement of data in wall-parallel slices across the channel, for a parallel
execution with p = 4 computing nodes.

FFTs do not require communication at all. Wall-normal derivatives needed for
the evaluation of the RHSs do require a small amount of communication at
the interface between contiguous slices. However, this communication can be
avoided at all if, when using a 5-point stencil, two boundary planes on each
internal slice side are duplicated on the neighboring slice. This duplication
is obviously a waste of computing time, and translates into an increase of
the actual size of the computational problem. However, since the duplicated
planes are 4(p − 1), as long as p ≪ ny this overhead is negligible. When p
becomes comparable to ny, an alternative procedure involving a small amount
of communication becomes convenient. We will further discuss this point in
§4.

The critical part of the procedure lies in the second half of the time-step ad-
vancement, i.e. the solution of the set of two linear systems, one for each h, ℓ
pair, and the recovery of the planar velocity components: the necessary data
just happen to be spread over all the p machines. It is relatively easy to avoid
a global transpose, by solving each system in a serial way across the machines:
adopting a LU decomposition of the pentadiagonal, distributed matrices, and
a subsequent sweep of back-substitutions, only a few coefficients at the inter-
face between two neighboring nodes must be transmitted. The global amount
of communication remains very low and, at the same time, local between near-
est neighbors only. The problem here is obtaining a reasonably high parallel
efficiency: if a single system had to be solved, the computing machines would
waste most of their time waiting for the others to complete their task. In other
words, with the optimistic assumption of infinite communication speed, the
total wall-clock time would be simply equal to the single-processor computing
time.

The key observation to obtain high parallel performance is that the num-
ber of linear systems to be solved at each time (sub)step is very large, i.e.

12

(nx + 1)(nz + 1), which is at least 104 and sometimes much larger in typical
DNS calculations [20]. This allows the solution of the linear systems to be effi-
ciently pipelined as follows. When the LU decomposition of the matrix of the
system for a given h, ℓ pair is performed (with a standard Thomas algorithm
adapted to pentadiagonal matrices), there is a first loop from the top row of
the matrix down to the bottom row (elimination of the unknowns), and then
a second loop in the opposite direction (back-substitution). The machine own-
ing the first slice performs the elimination in the local part of the matrix, and
then passes on the boundary coefficients to the neighboring machine, which
starts its elimination. Instead of waiting for the elimination in the h, ℓ sys-
tem matrices to be completed across the machines, the first machine can now
immediately start working on the elimination in the matrix of the following
system, say h, ℓ + 1, and so on. After the elimination in the first p systems is
started, all the computing machines work at full speed. A synchronization is
needed only at the end of the elimination phase, and then the whole procedure
can be repeated for the back-substitution phase.

Clearly this pipelined-linear-system (PLS) strategy involves an inter-node
communication made by frequent sends and receives of small data packets
(typically two lines of a pentadiagonal matrix, or two elements of the RHS ar-
ray). While the global amount of data is very low, this poses a serious challenge
to out-of-the-box communication libraries, which are known to have a signifi-
cant overhead for very small data packets. In fact, as we will mention in §4, we
have found unacceptably poor performance when using MPI-type libraries. On
the other hand we have succeeded in developing an effective implementation
of inter-node communication using only the standard i/o functions provided
by the C library. Details of this alternative implementation are illustrated in
§3.3.

3.2 Shared-memory machines

The single computing node may be single-CPU or multi-CPU. In the latter
case, it is possible to exploit an additional and complementary parallel strat-
egy, which does not rely on message-passing communication anymore, and
takes advantage of the fact that local CPUs have direct access to the same,
local memory space. We stress that this is different from using a message-
passing strategy on a shared-memory machine, where the shared memory
simply becomes a faster transmission medium. Using multiple CPUs on the
same memory space may yield an additional gain in computing time, at the
only cost of having the computing nodes equipped with more than one (typ-
ically two) CPUs. For example the FFT of a whole plane from physical to
Fourier-space and vice-versa can be easily parallelized this way, as well as the
computing-intensive part of building up the RHS terms. With SMP machines,

13

Eth 0 Eth 1

CPU 1

CPU 0

CPU 1

CPU 0

Eth 1

Eth 1 Eth 0

CPU 1

CPU 0

Eth 0

Eth 0 Eth 1

Eth 2

CPU 1

CPU 0

4

3

1

switch

net

2

Fig. 4. Conceptual scheme of the connection topology for a computing system made
by 4 nodes; one machine may be connected to the local net through a switch, if the
system has to be operated remotely.

high parallel efficiencies can be obtained quite easily by “forking” new pro-
cesses which read from and write to the same memory space; the operating
system itself then handles the assignment of tasks to different CPUs, and only
task synchronization is a concern at the programming level.

3.3 The Personal Supercomputer

While a computer program based on the numerical method described hereto-
forth can be easily used on a general-purpose cluster of machines, connected
through a network and a switch, for maximum efficiency a dedicated com-
puting system can be specifically designed and built on top of the parallel
algorithm described above.

At the CPU level, the mass-marketed CPUs which are commonly found today
in desktop systems are the perfect choice: their performance is comparable to
the computing power of the single computing element of any supercomputer
[6], at a fraction of the price. The single computing node can hence be a
standard desktop computer; SMP mainboards with two CPUs are very cheap
and easily available.

The present PLS parallel strategy allows an important simplification in the

14

connection topology of the machines. Since the transposition of the whole
dataset is avoided, communications are always of the point-to-point type; more-
over, each computing machine needs to exchange data with and only with two
neighboring machines only. This can be exploited with a simple ring-like con-
nection topology among the computing machines, sketched in figure 4, which
replicates the logical exchange of information and the data structure previ-
ously illustrated in figure 3: each machine is connected through two network
cards only to the previous machine and to the next. The necessity of a switch
(with the implied additional latency in the network path) is thus eliminated,
in favor of simplicity, performance and cost-effectiveness.

Concerning the transmission protocol, the simplest choice is the standard,
error-corrected TCP/IP protocol. We have estimated that on typical prob-
lem sizes the overall benefits from using a dedicated protocol (for example
the GAMMA protocol described in [21]) would be negligible: since the ratio
between communication time and computing time is very low (see §4.3 and
Fig.7), the improvements by using such a protocol are almost negligible, and
to be weighed against the increase in complexity and decrease in portability.

The simplest and fastest strategy we have devised for the communication type
is to rely directly on the standard networking services of the Unix operating
system, i.e. sockets (after all, message-passing libraries are socket-based). At
the programming level, this operation is very simple, since a socket is seen as a
plain file to write into and to read from. Using sockets allows us to take advan-
tage easily and efficiently of the advanced buffering techniques incorporated
in the management of the input/output streams by the operating system: af-
ter opening the socket once and for all, it is sufficient to write (read) data
to (from) the socket whenever they are available (needed), and the operating
system itself manages flushing the socket when its associated buffer is full. We
have found however that for best performances the buffer size had to be em-
pirically adjusted: for Fast Ethernet hardware, the optimum has been found
at the value of 800 bytes, significantly smaller than the usual value (the Linux
operating system defaults at 8192).

We have built a prototype of such a dedicated system, composed of 8 SMP
Personal Computers. Each node is equipped with 2 Pentium III 733MHz CPU
and 512MB of 133MHz SDRAM. The nodes are connected to each other by
two cheap 100MBits Fast Ethernet cards. We call such a machine a Personal
Supercomputer. The performance of our numerical method used on this sys-
tem will be shown in §4 to be comparable to that of a supercomputer. Such
machines enjoy the advantages of a simple desktop Personal Computer: low
cost and easy upgrades, unlimited availability even to a single user, low weight,
noise and heat production, small requirements of floor space, etc. Further de-
tails and instructions to build and configure such a machine can be found in
[10].

15

4 Performance

The performance of the present pipelined-linear-system (PLS) method is as-
sessed here in terms of memory requirements, single-processor CPU time and
parallel speedup, both in absolute terms and by comparison with similar DNS
codes. We compare it also with an alternative version of the code, that we
have written with a different distributed-memory parallel strategy. This al-
ternative code employs the more traditional transpose FFT method [19], so
that the streamwise wavenumbers are distributed across the system while the
wall-normal direction is local to each processor. Both parallel algorithms have
been preliminarly tested for correctness, and checked to give identical output
between a single-processor run and a truly parallel execution.

Our tests have been mainly conducted on the computing system described in
§3.3, either on a single Pentium III 733 MHz CPU for the single-processor
tests, or by using multiple processors for the parallel tests. A few measure-
ments are collected by using more recent dual-processor Opteron machines,
available at Salerno University. Each of the Opteron machines is equipped
with two 1.6 GHz AMD CPUs, and carries 1 GByte of RAM; the machines
are equipped with 3 Gigabit Ethernet cards each. They are thus connected
both in a switched network via one card and the interposed HP 2724 switch,
and in the ring topology by means of the other two cards.

The performance of our codes on these machines cannot easily be compared
with performance figures of similar codes, since the information available in
the literature is often partial and based on each time different computing
machines. Some data (for example, RAM requirements) of course can be com-
pared directly, given their independence of the particular computer architec-
ture. For other data (typically, CPU time) we report our own figures, and we
try in addition to compare qualitatively such data with CPU time on different
architectures, by using the Performance Database maintained and published
monthly by Dongarra [6].

The results presented in what follows are computed with the parallel algorithm
described in §3.1. As already pointed out, this algorithm is especially well
suited when a limited number of computing nodes is available. Indeed, the
duplication of four computing planes for each internal slice interface implies a
CPU penalty, while allowing the bare minimum of inter-node communication.
This penalty increases with the number of computing nodes and decreases
with the number of discretization points in the y direction.

We define the speedup factor as the ratio of the actual wall-clock computing
time tp obtained with p nodes and the wall-clock time t1 required by the same

16

computation on a single node:

S(p) =
tp
t1

.

The maximum or ideal speedup factor Si that we can expect with our PLS
algorithm, corresponding to the assumption of infinite communication speed,
is less than linear, and can be estimated with the formula:

Si(p) = p

(

1 −
4(p − 1)

ny

)

, (6)

where the factor 4 accounts for the two wall-parallel planes duplicated at each
side of interior slices. Eq. (6) reduces to a linear speedup when ny → ∞ for a
finite value of p. A quantitative evaluation of the function (6) for typical values
of ny = O(100) shows that the maximum achievable speedup is nearly linear
as long as the number of nodes remains moderate, i.e. p < 10. We are presently
considering a slightly different parallel implementation, still in development
at the present time, which is better suited for use when p = O(ny).

4.1 Memory requirements

One fundamental requirement for a DNS code is to save RAM: Jiménez in [7]
considers RAM occupation and CPU time as performance monitors of equiva-
lent importance. The amount of required RAM is dictated by the number and
the size of the three-dimensional arrays, and it is typically reported [2,22,7]
to be no less than 7 nx× ny × nz floating-point variables. Cases where RAM
requirements are significantly higher are not uncommon: for example in [23] a
channel flow simulation of 128× 65× 128 reportedly required 1.2GB of RAM,
suggesting a memory occupation approximately 18 times larger.

In our code all the traditional optimizations are employed: for example there
is no reserved storage space for η̂, which overwrites û in certain sections of the
time-integration procedure, and is overwritten by û in other sections. An addi-
tional saving specific to the present method comes from the implementation of
the time advancement procedure, discussed in §2.2, which takes advantage of
the finite-difference discretization of the wall-normal derivatives. Each of the
two scalar equations for η̂ and v̂ requires two variables per point. In addition,
solving the algebraic system for û and ŵ raises the global memory require-
ment to 5 variables per point. Thus our code requires a memory space of
5 nx × ny × nz floating-point variables, plus workspace and two-dimensional
arrays. For example a simulation with nx = ny = nz = 128 takes only 94
MBytes of RAM (using 64-bit floating-point variables).

17

In a parallel run the memory requirement can be subdivided among the com-
puting machines. With p = 2 the same 1283 case runs with 53 MBytes of RAM
(note that the amount of RAM is slightly larger than one half of the p = 1
case, due to the aforementioned duplication of boundary planes). The system
as a whole therefore allows the simulation of turbulence problems of very large
computational size even with a relatively small amount of RAM deployed in
each node. A problem with computational size of 4003 would easily fit into
our 8 nodes equipped with 512MB RAM each.

4.2 CPU requirements

As far as CPU efficiency is concerned, without special optimization the 1283

test case mentioned above requires 42.8 CPU seconds for the computation
of a full three-sub-steps Runge-Kutta temporal step on a single Pentium III
733MHz processor. Unfortunately, we are not aware of papers where a similar
code is clearly documented in terms of time required for running a problem
of a specified size on these CPU types. One can however deduce from [22]
that a computational case of slightly smaller size, i.e. 128 × 96 × 128 (which
takes 31 seconds on our machine) runs on a single processor of the 256 nodes
Cray T3E of the National Supercomputer Center of Linköping (Sweden) in
approximately 40 seconds, and on a single processor of the 152 nodes IBM SP2
machine, available at the Center for Parallel Computers of KTH University, in
8 seconds of CPU time. These timings are in a ratio which is not far from the
ratio among the computing power of the different CPUs, as deduced from the
tables reported in [6], and indicate that the SP2 machine is the one which is
able to achieve the higher percentage of its theoretical peak power. The present
code hence is roughly equivalent (in its serial version) to that described in [22]
in terms of CPU efficiency. Another paper which reports execution times for
a 1283 problem is in ref. [24]: their code for isotropic turbulence appears to
run on one CPU of an IBM SP3 Power3 Nighthawk taking approximately 10
minutes per time step.

The internal timings of our code show that the direct/inverse two-dimensional
FFT routines take the largest part of the CPU time, namely 56%. The calcu-
lation of the RHS of the two governing equations (where wall-normal deriva-
tives are evaluated) takes 25% of the total CPU time, the solution of the
linear systems arising from the implicit part around 12%, and the calculation
of the planar velocity components 3%. The time-stepping scheme takes 3%
and computing a few runtime statistics requires an additional 1% of the CPU
time.

18

p

S

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

128x128x128
192x128x192
128x256x128
128x96x128 ref. [22]
Si, ny=128
Si, ny=256

Fig. 5. Measured speedup on the Pentium III-based machine as a function of the
number p of computing nodes. Thick lines are the ideal speedup Si from Eq. (6) for
ny = 128 (continuous line) and ny = 256 (dashed line). Gray circles are speedups
inferred from [22] for a case with ny = 96 and measured on two different supercom-
puters.

4.3 Parallel efficiency

4.3.1 Distributed-memory speedup

The parallel (distributed-memory) performance of the code is illustrated in
figure 5, where speedup ratios are reported as a function of the number of
computing nodes. The maximum possible speedup Si is shown with thick
lines. Si approaches the linear speedup for large ny, being reasonably high
as long as p remains small compared to ny: with p = 8 it is 6.25 for ny =
128 and 7.125 for ny = 256. Notwithstanding the commodity networking
hardware and the overhead implied by the error-corrected TCP protocol, the
actual performance compared to Si is extremely good, and improves with
the size of the computational problem. The percentage of time tc spent for
communication is estimated as follows:

% tc = 100
tp − t1/Si(p)

tp
. (7)

The case 192 × 128 × 192 is hardly penalized by the time spent for commu-
nication, which is only 2% of the total computing time when p = 8. The
communication time becomes 7% of the total computing time for the larger

19

p

S

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Si, ny=256
2563 1000 MBit/s
2563 100 MBit/s
2563 10 MBit/s

Fig. 6. Measured speedup on the Opteron-based machine as a function of the number
p of computing nodes. Thick line is the ideal speedup from Eq. (6) for ny = 256.
Speedup measured when using Gigabit Ethernet cards (circles), and the same cards
run at the slower speed of 100MBit/s (empty squares) and 10 MBit/s (filled squares).

case of nx = 128, ny = 256 and nz = 128, and is 12% for the worst (i.e.
smallest) case of 1283, which requires 7.7 seconds for one time step on our ma-
chine, with a speedup of 5.55. In figure 5 we report also (with gray symbols)
speedup data from [22] for his case with size 128 × 96 × 128: this case runs
in approximately 2 seconds when 8 processors are used on the SP2 (speedup
3.9), while it requires 6 seconds with 8 processors of the T3E (speedup 6.8).

It is worth mentioning again that our communication procedure can easily be
implemented through a standard message-passing library, but shows in this
case a noticeably degraded performance. In fact we have tested the present
method on a 1283 case with p = 2 and using the MPI library. A speedup of
S = 0.87 has been measured (i.e. the wall clock is increased), to be compared
with Si = 1.94 and a measured speedup of S = 1.92 with the use of plain
sockets. This result is explained by the large overhead implied by the MPI
library, that is known to be inefficient in transmitting extremely small data
packets. We would like to stress again that, from a programming point of view,
plain sockets are definitely simple to use: once the socket is properly opened,
the procedure of communication with another machine boils down to simply
writing to or reading from a file.

Figure 6 illustrates the speedup achieved with the faster Opteron machines
connected via Gigabit Ethernet cards in the ring-topology layout, compared
with Si. The test case has a size of 2563. The CPUs of this system are signif-

20

icantly faster than the Pentium III, and the network cards, while having 10
times larger bandwidth, have latency characteristics typical of Fast Ethernet
cards. It is remarkable how well the measured speedup still approaches the
ideal speedup, even at the largest tested value of p. Furthermore, we report
also the measured speedup when the Opteron machines are used with the Gi-
gabit cards set up to work at the lower speeds of 100 MBit/s and 10MBit/s.
It is interesting to observe how slightly performance is degraded in the case
at 100MBit/s, whose curve is nearly indistinguishable form that at 1GBit/s.
Even with the slowest 10MBit/s bandwidth connecting such fast processors,
and with a problem of large computational size, it is noteworthy how the
present method is capable to achieve a reasonable speedup for low p and not
to ever degrade below S = 1. This relative insensitivity to the available band-
width can be ascribed to the limited amount of communication required by
the present method.

The amount of data which has to be exchanged by each machine for the ad-
vancement of the solution by one time step made by 3 Runge–Kutta substeps
can be quantified as follows. The number of bytes Dr transmitted and received
by each computing node for p > 2 and in one complete time step is:

Dr = 3 × 8 × nx × nz × 88 = 2112 nx × nz

where 3 is the number of temporal substeps, 8 accounts for 8-bytes variables,
and 88 is the total number of scalar variables that are exchanged at the slice
interfaces for each wavenumber pair (during solution of the linear systems and
of the algebraic system to compute û and ŵ). For the 1283 case, Dr ≈ 276
MBit of network traffic, evenly subdivided between the two network cards.

Interestingly, the quantity Dr is linear in the total number of Fourier modes
nx× nz, and does not depend upon ny. Moreover, the amount of traffic does
not increase when p increases. This has to be contrasted with the amount of
communication required by other parallel methods; this comparison will be
discussed in the next subsection.

As already mentioned, the parallel strategy described here targets only sys-
tems where the number p of computing nodes is small compared to the number
ny of points in the y direction. Increasing p at fixed ny leads to gradually worse
performance, since the actual size of the problem increases owing to the du-
plicated planes at the interface. Nevertheless, figure 7 shows that, even when
a larger number of computing nodes is employed on a problem of a large size,
the percentage of the computing time spent for communication, estimated
according to Eq. (7), remains very low. This figure reports the parallel per-
formance measured on a cluster of SMP machines equipped with 2 Itanium II
processors, and connected with Gigabit Ethernet cards and a switch, available
courtesy of the SHARCNET Computing Centre at the University of Western
Ontario. The test case has a size of nx = 512, ny = 256 and nz = 512.

21

p

%
t c

4 8 12 16 20 24 28 32
0

1

2

3

4

5

Fig. 7. Time %tc spent for communication as percentage of the total computing
time, defined in formula (7), for the Itanium II cluster with Gigabit Ethernet inter-
connects. Problem size: nx = 512, ny = 256 and nz = 512.

Figure 7 suggests that the communication time remains limited up to relatively
large values of p, even when the networking hardware (Gigabit Ethernet) al-
lows a bandwidth more than two orders of magnitude smaller than a typical
supercomputer.

4.3.2 Comparison with a different parallel strategy: the transpose method

In order to be able to compare the present PLS parallel strategy with a stan-
dard strategy which performs a block transpose before and after each FFT, we
have written a second version of our code, that adopts the same FD discretiza-
tion for the wall-normal direction, but distributes the streamwise wavenumbers
across the nodes, i.e. organizes data in slices parallel to the α-axis of figure 3.
The serial performance of the two computer codes is identical, since for p = 1
they perform the same operations. Even though we have obviously put less
optimization effort into the transpose code, written ad hoc for this test, com-
pared the the PLS code, we have to mention that the transpose code has been
written with the basic optimizations in mind. In particular, we have taken
care that communications are scheduled in such a way that the machines are
always busy communicating, which is an essential requirement to achieve high
performance with the transpose FFT.

The amount of data (in bytes) Dt which has to be exchanged by each ma-
chine for the complete advancement by one time step with the transpose-based

22

method is as follows:

Dt = 3 × 8 × (p − 1)
nx

p
×

3

2

nz

p
× ny × 18 = 648

p − 1

p2
nx × nz × ny

Again, the factors 3 and 8 account for the number of temporal substeps and
the 8-bytes variables respectively. In the whole process of computing non-
linear terms 9 scalars have to be sent and received (3 velocity components
before IFT and 6 velocity products after FFT); for each wall-parallel plane,
each machine must exchange with each of the others p − 1 nodes an amount
of nx × nz/p2 grid cells, and the factor 3/2 corresponds to dealiasing in one
horizontal direction (the 3/2 expansion, and the subsequent removal of higher-
wavenumber modes, in the other horizontal direction can be performed after
transmission).

The ratio between the communication required by the transpose-based method
and the PLS method can thus be written as:

Dt

Dr
= 0.307

p − 1

p2
ny

which corresponds to the intuitive idea that the transpose method exchanges
all the variables it stores locally, whereas the PLS method only exchanges a
(small) number of wall-parallel planes, independent on ny and p. Moreover the
ratio Dt/Dr, being proportional to ny for a given p, is expected to increase
with the Reynolds number of the simulation, since so does the number of points
needed to discretize the wall-normal direction, thus indicating an increase of
PLS efficiency relative to the transpose strategy. More important, when the
transpose-based method is employed, the global amount of communication
that has to be managed by the switch increases with the number of computing
machines and is all-to-all rather than between nearest neighbors only, so that
its performance is expected to degrade when a large p is used.

For a case sized 1283 and p = 2, Dt amounts to ≈ 2700 MBit. This gives a lower
bound for the communication time with the transpose-based method of 27
seconds with Fast Ethernet, to be compared with a single-processor execution
time of t1 = 42.8 seconds on a single Pentium III. Indeed, when tested on
the Fast Ethernet Pentiums, the transpose-based method has not been found
to yield any reduction of the wall-clock computing time: we have measured
t2 = 51.2 seconds. This is in line with the previous estimate: t2 stems from a
computing time t1/2 plus a communication time of 29.8 seconds, which is near
to the time estimate on the basis of Dt and assuming network cards running
at full speed. With a faster network the performance of the transpose-based
method improve. Figure 8 reports comparative measurements between the
PLS and the transpose-based methods, run on 8 Opteron boxes interconnected
with Gigabit Ethernet. The PLS method is run with the machines connected

23

p

S

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

transpose 2563

transpose 1283

present 2563

present 1283

Fig. 8. Measured speedup on the Opteron-based machine as a function of the number
p of computing nodes. Continuous line is the PLS method, and dashed line is the
transpose-based method.

in a ring, while the transpose-based method is tested with machines linked
through a switch. Measurements show that S > 1 can now be achieved with
the transpose-based method. However, the transpose method performs best
for the smallest problem size, while the PLS shows the opposite behavior. For
the 2563 case, which is a reasonable size for such machines, the speedup from
the transpose-based method is around one half of what can be obtained with
PLS.

4.3.3 Shared-memory speedup

In the present approach, we exploit the availability of two CPUs for each
computing node by assigning to each of them the computation of a different
FFT, and then the RHS setup for one half of the wavenumber pairs. Since this
part of the code is local to each machine, there is no communication overhead
associated with the use of the second CPU, therefore the gain is essentially
independent of the number p of computing machines.

We have tested machines equipped with 2 CPUs, and measured a 1.55 speedup
on a 2-CPU Pentium III box. On the dual Opteron system, which exploits a
faster memory at 400 MHz and a proprietary memory and inter-processor
bus, the speedup increases to 1.7. The implementation of the shared-memory
parallelism was not the main focus of the present work, so that for simplicity
we have parallelized only the non-linear part of the time-stepping procedure,

24

p

S

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

present 2563 2 CPU
transpose 2563 2 CPU
present 2563 1 CPU

Fig. 9. Measured speedup on the Opteron-based machine as a function of the number
p of computing nodes, when 2 CPUs per node are used. A continuous line denotes
the PLS method, and a dashed line the transpose-based method. Open symbols
refer to the single-CPU speedup.

a portion of the serial code estimated around 80%. The additional SMP gain
is thus an interesting result, since it comes at a low cost. Indeed, the cost
of a dual-CPU node is only a fraction greater than the cost of a single-CPU
computing node. Systems with more than 2 CPU are today significantly more
expensive and, although we have not tested any of them, may be suspected
to perform quite inefficiently when used with the present application, owing
to the increased memory-contention problems. Hence we regard the use of a
second CPU as an added bonus at a little extra cost.

The SMP speedup is where the PLS method shows another advantage com-
pared with the transpose-based method. The second CPU can be exploited in
the transpose-based method too, however in this case the global effectiveness
degrades, since the speed of each node increases while the communication time
remains the same. This can be appreciated in figure 9, where performance for
a case 2563 is observed to become unacceptable when p > 6 and two CPU for
each machine are used with the transpose method. With PLS, on the other
hand, the penalty associated with the larger amount of communication per
unit of computing time is clearly seen to remain limited, and no significant
decrease of the parallel efficiency is observed when the second CPU in each
node is activated.

25

5 Conclusions

In this paper we have described a numerical method suitable for the par-
allel direct numerical simulation of incompressible wall turbulence, capable
of achieving high efficiency by using commodity hardware. The method can
be used when the governing equations are written either in cartesian or in
cylindrical coordinates.

The key point in its design is the choice of compact finite differences of fourth-
order accuracy for the discretization of the wall-normal direction. The use of
finite differences schemes, while retaining a large part of the accuracy enjoyed
by spectral schemes, is crucial to the development of the parallel strategy,
which exploits the locality of the FD operators to largely reduce the amount
of inter-node communication. Finite differences are also key to the imple-
mentation of a memory-efficient time integration procedure, which permits a
minimal storage space of 5 variables per point, compared to the commonly
reported minimum of 7 variables per point. This significant saving is available
in the present case too, the use of compact schemes notwithstanding, since
they can be written in explicit form, leveraging the missing third derivative in
the governing equations.

The parallel method described in this paper, based on the pipelined solu-
tion of the linear systems arising from the discretization of the viscous terms,
achieves its best performance on systems where the number of computing
nodes is significantly smaller than the number of points in the wall-normal
direction. The global transpose of the data, which typically constrains DNS
codes to run on machines with very large networking bandwidth, is completely
avoided. We have verified that a code based on transpose algorithms can-
not yield acceptable parallel speedups when Fast Ethernet network cards are
employed. When the 10-times-faster Gigabit Ethernet is used, the transpose-
based method yields positive speedups but cannot compete, in absolute terms,
with the present PLS method, that is capable to guarantee high parallel effi-
ciency also on state-of-the-art processors connected with relatively slow Fast
Ethernet cards.

As a result, the computing effort, as well as the required memory space, can be
efficiently subdivided among a number of low-cost computing nodes. Moreover,
the distribution of data in wall-parallel slices allows us to exploit a particular,
efficient and at the same time cost-effective connection topology, where the
computing machines are connected to each other in a ring. Getting rid of the
switch is something that should not be underestimated. When the transpose-
based code is run for a 1283 case on two Opteron machines connected each
other point-to-point without the HP switch, the parallel speedup increases
significantly, from 1.13 to 1.53. When a third machine is inserted between

26

the two computing machines, the parallel speedup becomes 1.40. While we
are not in the position to extrapolate the relevance of this result to higher-
quality switches, removing the need for a switch altogether is certainly an
improvement performance-wise.

A dedicated system can be easily built, using commodity hardware and hence
at low cost, to run a computer code based on the PLS method. Such a
system grants high availability and throughput, as well as ease in expand-
ing/upgrading. It is our opinion that this concept of Personal Supercomputer
can be successful, since it is a specialized system, yet built with mass-market
components, and can be fully dedicated to a single research group or even to
a single researcher, rather than being shared among multiple users through a
queueing system. Moreover, the additional investment required to specialize
towards the PLS code a general-purpose cluster of PC is simply that required
to acquire two additional network cards for each node, plus a few meters of
network cable. This means that a cluster can be easily built in such a way that
it works optimally both as a parallel computing server for the general public
and a DNS computer for a research group employing a PLS-based code.

Concerning the (theoretical) peak computing power, we have estimated in [25]
that the investment (early 2003) required to obtain 200 GFlop/s of peak power
with a state-of-the-art supercomputer would be 50-100 times higher than that
needed to build a Personal Supercomputer of the same power. The smaller
investment, together with additional advantages like reduced power consump-
tion and heat production, minimal floor space occupation, etc, allows the user
to have dedicated access to the machine for unlimited time, thus achieving the
highest throughput. As an example, in [26] we have performed with the Pen-
tium III-based machine a large number of turbulent channel flow simulations,
whose global computational demand is estimated to be 300-400 times larger
than the DNS described in [2]. Even though our performance measurements
have been partly carried out on relatively old computing hardware, we have
demonstrated that very good parallel speedups can be obtained for problems
whose computational size fits that of typical DNS problems affordable with
the given hardware.

The sole significant difference performance-wise between such a system and a
real supercomputer lies in the networking hardware, which offers significantly
larger bandwidth and better latency characteristics in the latter case. However
the negative effects of this difference are not felt when the present parallel
algorithm is employed, since the need for a large amount of communication is
removed a priori, thanks to the algorithm itself.

27

Acknowledgments

The test of the PLS method on the Itanium II cluster has been carried out
at the SHARCNET Computing Centre at the University of Western Ontario,
Canada. Preliminary versions of this work have been presented by M.Q. at
the XV AIMETA Conference on Theoretical Mechanics [27] and at the XI
Conference of the CFD Society of Canada [25].

References

[1] P. Moin, K. Mahesh, Direct numerical simulation: A tool in turbulence research,
Ann. Rev. Fluid Mech. 30 (1998) 539–578.

[2] J. Kim, P. Moin, R. Moser, Turbulence statistics in fully developed channel flow
at low Reynolds number, J. Fluid Mech. 177 (1987) 133–166.

[3] M. Quadrio, P. Luchini, Direct numerical simulation of the turbulent flow in a
pipe with annular cross-section, Eur. J. Mech. B / Fluids 21 (2002) 413–427.

[4] W. Kwok, R. Moser, J. Jiménez, A critical evaluation of the resolution
properties of B-spline and compact finite difference methods, J. Comp. Phys.
174 (2001) 510–551.

[5] Y. Na, P. Moin, Direct numerical simulation of a separated turbulent boundary
layer, J. Fluid Mech. 374 (1998) 379–405.

[6] J. J. Dongarra, Performance of Various Computers Using Standard Linear
Equations Software, (Linpack Benchmark Report) (CS-89-85).
URL http:///www.netlib.org/benchmark/performance.ps

[7] J. Jiménez, Computing high-Reynolds-number turbulence: will simulations ever
replace experiments?, J. Turbulence 4 (2003) 22.

[8] G.-S. Karamanos, C. Evangelinos, R. Boes, R. Kirby, G. Karniadakis, Direct
Numerical Simulation of Turbulence with a PC/Linux Cluster: Fact or Fiction?,
in: Proc. Supercomputing, 1999.

[9] P. Dmitruk, L.-P. Wang, W. Matthaeus, R. Zhang, D. Seckel, Scalable parallel
FFT for spectral simulations on a Beowulf cluster, Parallel Computing 27 (2001)
1921–1936.

[10] M. Quadrio, P. Luchini, The numerical solution of the incompressible Navier–
Stokes equations in cartesian and cylindrical geometries on a low-cost, dedicated
parallel computer., Dip. Ing. Aerospaziale, Politecnico di Milano DIA-SR 04-16.
URL http://pc-quadrio.aero.polimi.it/papers/2004-DIA0416.pdf

[11] F. P. Bertolotti, T. Herbert, P. R. Spalart, Linear and nonlinear stability of the
Blasius boundary layer, J. Fluid Mech. 242 (2002) 441–474.

28

http:///www.netlib.org/benchmark/performance.ps
http://pc-quadrio.aero.polimi.it/papers/2004-DIA0416.pdf

[12] R. Moser, J. Kim, N. Mansour, Direct numerical simulation of turbulent channel
flow up to Reθ = 590, Phys. Fluids 11 (4) (1999) 943–945.

[13] J. Kim, Control of turbulent boundary layers, Phys. Fluids 15 (5) (2003) 1093–
1105.

[14] S. Lele, Compact Finite Difference Schemes with Spectral-like Resolution, J.
Comp. Phys. 103 (1992) 16–42.

[15] K. Mahesh, A Family of High Order Finite Difference Schemes with Good
Spectral Resolution, J. Comp. Phys. 145 (1) (1998) 332–358.

[16] L. Thomas, The stability of plane Poiseuille flow, Phys. Rev. 91 (4) (1953)
780–783.

[17] A. Pozzi, Application of Padé’s Approximation Theory in Fluid Dynamics,
Advances in Mathematics for Applied Sciences, World Scientific, 1994.

[18] W. Spotz, G. Carey, Formulation and Experiments with High-Order Compact
Schemes for Nonuniform Grids, Int. J. Num. Meth. Heat & Fluid Flow 8 (3)
(1998) 288–303.

[19] R. B. Pelz, The Parallel Fourier Pseudospectral Method, J. Comp. Phys. 92
(1991) 296–312.

[20] J. del Álamo, J. Jiménez, Spectra of the very large anisotropic scales in turbulent
channels, Phys. Fluids 15 (6) (2003) L41–L44.

[21] G. Ciaccio, G. Chiola, Porting MPICH ADI on GAMMA with Flow Control,
in: Midwest Workshop on Parallel Processing, Kent, Ohio, 1999.

[22] M. Skote, Studies of turbulent boundary layer flow through direct numerical
simulation, Ph.D. thesis, Royal Institute of Technology Department of
Mechanics (2001).

[23] A. Günther, D. Papavassilou, M. Warholic, T. Hanratty, Turbulent flow in a
channel at a low Reynolds number, Exp. Fluids 25 (1998) 503–511.

[24] M. Iovieno, D. Cavazzoni, D. Tordella, A new technique for a parallel deliased
pseudospectral Navier–Stokes code, Computer Physics Comm. 141 (2001) 365–
374.

[25] M. Quadrio, P. Luchini, J. Floryan, A Parallel Algorithm for the Direct
Numerical Simulation of Turbulent Channel Flow, in: Proc. of the XI Conf.
of the CFD Society of Canada, Vancouver (CAN), May 28-30, 2003.

[26] M. Quadrio, P. Ricco, Critical assessment of turbulent drag reduction through
spanwise wall oscillation, J. Fluid Mech. 521 (2004) 251–271.

[27] M. Quadrio, P. Luchini, A 4th order accurate, parallel numerical method for
the direct simulation of turbulence in cartesian and cylindrical geometries., in:
Proc. of the XV AIMETA Conf. on Theor. Appl. Mech, 2001.

29

	Introduction
	The numerical method
	Governing equations and spectral discretization
	Time discretization
	High-accuracy compact finite difference schemes

	The parallel strategy
	Distributed-memory computers
	Shared-memory machines
	The Personal Supercomputer

	Performance
	Memory requirements
	CPU requirements
	Parallel efficiency

	Conclusions
	References

