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A numerical method for the direct numerical simulation of the incompressible

Navier–Stokes equations in rectangular and cylindrical geometries is presented. The

method is designed for efficient shared-memory and distributed-memory parallel

computing by using commodity hardware. A novel parallel strategy is implemented

to minimize the amount of inter-node communication and by avoiding a global

transpose of the data. The method is based on Fourier expansions in the homoge-

neous directions and fourth-order accurate, compact finite-difference schemes over

a variable-spacing mesh in the wall-normal direction. Thanks to the small commu-

nication requirements, the computing machines can be connected each other with

standard, low-cost network devices. The amount of physical memory deployed to

each computing node can be minimal, since the global memory requirements are

subdivided amongst the computing machines. The layout of a simple, dedicated and

optimized computing system is described, and detailed instructions on how to as-

semble, install and configure such computing system are given. The basic structure

of a numerical code implementing the method is briefly discussed.
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1. INTRODUCTION

The direct numerical simulation (DNS) of the Navier–Stokesequations for incompress-
ible fluids in geometrically simple, low-Reynolds number turbulent wall flows has become
in the last years a valuable tool for basic turbulence research [16]. Among the most im-
portant such flows, one can mention turbulent plane channel flows and boundary layers,
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turbulent pipe flows, and flows in ducts with annular cross-sections. The former naturally
call for the use of a cartesian coordinate system, while the Navier–Stokes equations written
in cylindrical coordinates are well suited for the numerical simulation of the latter.

The relevance of such flows is enormous, from the point of viewof practical interest
and basic turbulence research, and a number of studies exists, based on the DNS of
the Navier–Stokes equations, concerning simple flows in cartesian coordinates. Flows
which can be easily described in cylindrical coordinates are by no means less interesting;
the cylindrical pipe flow, for example, is one of the of the cornerstones in the study of
transition to turbulence and fully developed wall turbulent flows, since the pionieristic
experimental work by O.Reynolds [27]. Annular duct flows play a role in important
engineering applications like axial, coaxial and annular jets with and without swirl, and
bear speculative interest, since the effects of the transverse curvature can significantly affect
the mean flow and the low-order turbulence statistics, as numerically demonstrated first by
Neveset al.[21]. The effects of streamwise curvature on the flow, described for example
in [7] and [18], are even more important; flows with high streamwise curvature have been
only recently addressedd through DNS [20].

Despite their practical relevance, turbulent flows in pipesand circular ducts have not
been studied so deeply through DNS as their planar counterparts. This can be at least
partially ascribed to the numerical difficulties associated with the cylindrical coordinate
system. The first DNS of turbulent pipe flow by Eggelset al.[5] dates 7 years later than its
planar counterpart [10], and in the following years a limited number of papers has followed.
The turbulent flow in an annular duct has been only recently simulated for the first time
with a DNS by Quadrio and Luchini [25], by using a preliminaryversion of the cylindrical
numerical method described in this paper.

For the cartesian coordinate system, a very effective formulation of the equations of
motion was presented almost 15 years ago by Kim, Moin & Moser in [10], their widely-
referenced work on the DNS of turbulent plane channel flow. This formulation has since
then been employed in many of the DNSs of turbulent wall flows in planar geometries. It
consists in the replacement of the continuity and momentum equations written in primi-
tive variables with two scalar equations, one (second-order) for the normal component of
vorticity and one (fourth-order) for the normal component of velocity, much as the Orr–
Sommerfeld and Squire decomposition of linear stability problems. In this way pressure
disappears from the equations, and the two wall-parallel velocity components are easily
computed through the solution of a2 × 2 algebraic system (a cheap procedure from a
computational point of view), when a Fourier expansion is adopted for the homogeneous
directions. A high computational efficiency can thus be achieved. This particular for-
mulation of the Navier–Stokes equation does not call for anyparticular choice for the
discretization of the differential operators in the wall-normal direction. Many researchers
have used spectral methods (mainly Chebyshev polynomials)in this direction too, even if
in more recent years the use of finite difference schemes has seen growing popularity [16].

The extension of the efficient cartesian formulation to the cylindrical case is not obvious.
Most of the existing numerical studies of turbulent flow in cylindrical coordinates write
the governing equations in primitive variables, and use each a different numerical method:
they range from second-order finite-difference schemes [22] to finite volumes [28] to
complex spectral multi-domain techniques (as in [13] and [15]), but most often remain
within the pressure-correction approach. The work [21] by Neveset al.is based on a
spectral discretization, but calculation of pressure is still needed for the numerical solution
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of the equations. Moser, Moin & Leonard in [19] presented a method based on a spectral
expansion of the flow variables which inherently satisfies the boundary conditions and the
continuity equations; this method has been subsequently used in [18] for the simulation
of the turbulent flow over a wall with mild streamwise curvature. They indicate that the
computational cost of the cylindrical solver is significantly higher than that for the cartesian
case, for a given number of degrees of freedom.

The use of cylindrical coordinates is particularly hampered by the unwanted increase of
the azimuthal resolution of the computational domain with decreasing radial coordinate.
This is the main reason why DNS of the turbulent flow in an annular pipe has proven to be
so difficult. The transversal resolution of DNS calculations is known to be crucial for the
reliability of the computed turbulence statistics, especially in the near-wall region. If the
azimuthal resolution is set according to the needs of the outer region of the computational
domain, a waste of computational resources and potential stability problems are determined
when the inner region is approached. If, on the other hand, the spatial discretization is
adapted to the inner region, the turbulent scales are gradually less and less resolved in the
azimuthal direction when the inner region is approached.

XXX CHECK In this paper we describe a numerical method designed for the DNS of
turbulent wall flows both in cartesian and cylindrical coordinates. It can take advantage of
parallel computing and works well on commodity hardware. The numerical method for the
cartesian coordinate system solves the equations in the form described in [10] and recalled
in §2. We will illustrate in§3 the main properties of the scheme concerning spatial and
temporal discretization, as well as the use of compact, high-order finite differences for the
wall-normal direction. The parallel strategy will be discussed in§4. A dedicated, low-cost
computing machine, specialized to run efficiently a computer code based on this method,
will be described in§5. We call this machine a Personal Supercomputer, since it gives
the user perhaps less peak computing power when compared to areal supercomputer, but
allows him to achieve a larger throughput, on a time scale typical of a research work.

The closely related method for the cylindrical coordinate system is then presented. First
in §6 the governing equations for radial velocity and radial vorticity are worked out in a
form suitable to keep the very same structure of the cartesian code. Numerical issues will
be addressed in§7, by emphasizing the differences with the cartesian case. Moreover,
in §7.5 a strategy for avoiding the unnecessary clustering of azimuthal resolution near
the inner wall is introduces. While no particular difficulty is foreseen, we have not yet
managed to consider the axis singularity, so that the cylindrical code can presently run only
for geometries with an inner wall.

Further details are given in the Appendices. In Appendix A the main steps to design,
install and configure a Personal Supercomputer are given. Further information can be
requested from the Authors. In Appendix B the basic strucureof a computer code which
implements the numerical method described herein is discussed, limited to the serial version
of the cartesian code.

2. CARTESIAN COORDINATES: THE GOVERNING EQUATIONS

In this Section we recall the derivation of the equations of motion for the wall-normal
velocity and wall-normal vorticity, as illustrated in [10]. In §6 the same formulation will
be extended to cylindrical coordinates.

2.1. Problem definition
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FIG. 1. Sketch of the computational domain for the cartesian coordinate system.

The cartesian coordinate system is illustrated in figure 1, where a sketch of an indefinite
plane channel is shown:x, y and z denote the streamwise, wall-normal and spanwise
coordinates, andu, v andw the respective components of the velocity vector. The flow
is assumed to be periodic in the streamwise and spanwise directions. The lower wall is at
positionyℓ and the upper wall at positionyu. The reference lengthδ is taken to be one half
of the channel height:

δ =
yu − yℓ

2
.

Once an appropriate reference velocityU is chosen, a Reynolds number can be defined
as:

Re =
Uδ

ν
,

whereν is the kinematic viscosity of the fluid.
The non-dimensional Navier–Stokes equations for an incompressible fluid in cartesian

coordinates can then be written as:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0; (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −

∂p

∂x
+

1

Re
∇2u; (2a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −

∂p

∂y
+

1

Re
∇2v; (2b)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −

∂p

∂z
+

1

Re
∇2w. (2c)

The differential problem is closed when an initial condition for all the fluid variables is
specified, and suitable boundary conditions are chosen. At the wall the no-slip condition
is physically meaningful. Periodic boundary conditions are usually employed in thex and
z directions, where either the problem is homogeneous in wall-parallel planes, or a fringe-
region technique [1] is adopted to address a non-homogeneous problem. See however
[26] for a critical discussion of the subject. Once the periodicity assumption is made for
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both the streamwise and spanwise directions, the equationsof motion can be conveniently
Fourier-transformed along thex andz coordinates.

2.2. Equation for the wall-normal vorticity component
The wall-normal component of the vorticity vector, which weshall indicate withη, is

defined as

η =
∂u

∂z
−

∂w

∂x
,

and after transforming in Fourier space it is given by:

η̂ = iβû − iαŵ, (3)

where the hat indicates Fourier-transformed quantities,i is the imaginary unit, and the
symbolsα andβ respectively denote the streamwise and spanwise wave numbers. A one-
dimensional second-order evolutive equation forη̂ which does not involve pressure can be
easily written, following for example [10], by taking they component of the curl of the
momentum equation, obtaining:

∂η̂

∂t
=

1

Re

(
D2(η̂) − k2η̂

)
+ iβĤU − iαĤW. (4)

In this equation,D2 denotes the second derivative in the wall-normal direction, k2 =

α2 + β2, and the nonlinear terms are grouped in the following definitions:

ĤU = iαûu + D1(ûv) + iβûw; (5a)

ĤV = iαûv + D1(v̂v) + iβv̂w; (5b)

ĤW = iαûw + D1(v̂w) + iβŵw. (5c)

The numerical solution of equation (4) requires an initial condition for η̂, which can be
computed from the initial condition for the velocity field. The periodic boundary conditions
in the homogeneous directions are automatically satisfied thanks to the Fourier expansions,
whereas the no-slip condition for the velocity vector translates inη̂ = 0 to be imposed at
the two walls aty = yℓ andy = yu.

2.3. Equation for the wall-normal velocity component
An equation for the wall-normal velocity componentv̂, which does not involve pressure,

is derived in [10] by summing (2a) derived two times w.r.t.x andy, and (2c) derived two
times w.r.t. y andz, then subtracting (2b) derived w.r.t.x andx and substracting once
again after derivation w.r.t.z andz. Further simplifications are obtained by invoking the
continuity equation to cancel some terms, eventually obtaining the following fourth-order
evolutive equation for̂v:

∂

∂t

(
D2(v̂) − k2v̂

)
=

1

Re

(
D4(v̂) − 2k2D2(v̂) + k4v̂

)
+

− k2ĤV − D1

(
iαĤU + iβĤW

)
. (6)

This scalar equation can be solved numerically once an initial condition forv̂ is known.
The periodic boundary conditions in the homogeneous directions are automatically satisfied
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thanks to the Fourier expansions, whereas the no-slip condition for the velocity vector
immediately translates in̂v = 0 to be imposed at the two walls aty = yℓ andy = yu. The
continuity equation written at the two walls makes evident that the additional two boundary
conditions required for the solution of the fourth-order equation (6) areD1(v̂) = 0 at
y = yℓ andy = yu.

2.4. Velocity components in the homogeneous directions
If the nonlinear terms are considered to be known, as is the case when such terms are

treated explicitly in the time discretization, the two equations (4) and (6) become uncoupled
and, after proper time discretization, can be solved for advancing the solution by one time
step, provided the nonlinear terms (5a)-(5c) and their spatial derivatives can be calculated.
To this aim, one needs to know how to computeû andŵ at a given time starting with the
knowledge ofv̂ and η̂. By using the definition (4) of̂η and the continuity equation (1)
written in Fourier space, a2 × 2 algebraic system can be written for the unknownsû and
ŵ; its analytical solution reads:





û =
1

k2
(iαD1(v̂) − iβη̂)

ŵ =
1

k2
(iαη̂ + iβD1(v̂))

(7)

The present method therefore enjoys its highest computational efficiency only when
Fourier discretization is used in the homogeneous directions.

2.4.1. Mean flow in the homogeneous directions

The preceding system (7) is singular whenk2 = 0. This is a consequence of having
obtained Eqns. (4) and (6) from the initial differential system through a procedure involving
spatial derivatives.

Let us introduce a plane-average operator:

f̃ =
1

Lx

1

Lz

∫ Lx

0

∫ Lz

0

f dxdz

The space-averaged streamwise velocityũ = ũ(y, t) is a function of wall-normal coor-
dinate and time only, and in Fourier space it corresponds to the Fourier mode fork = 0.
The same applites to the spanwise componentw̃. With the present choice of the reference
system, with thex axis aligned with the mean flow, the temporal average ofũ is the stream-
wise mean velocity profile, whereas the temporal average ofw̃ will be zero throughout the
channel (within the limits of the temporal discretization). This nevertheless allows̃w at a
given time and at a given distance from the wall to be different from zero.

Two additional equations must be written to calculateũ andw̃; they can be worked out
by applying the linear plane-average operator to the relevant components of the momentum
equation:

∂ũ

∂t
=

1

Re
D2 (ũ) − D1 (ũv) + fx

∂w̃

∂t
=

1

Re
D2 (w̃) − D1 (ṽw) + fz
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In these expressions,fx andfz are the forcing terms needed to force the flow through the
channel against the viscous resistence of the fluid. For the streamwise direction,fx can be
an imposed mean pressure gradient, and in the simulation theflow rate through the channel
will oscillate in time around its mean value.fx can also be a time-dependent spatially
uniform pressure gradient, that has to be chosen in such a waythat the flow rate remains
constant in time at an imposed. The same distinction appliesto the spanwise forcing term
fz: in this case however the imposed mean pressure gradient or the imposed mean flow
rate is zero, while the other quantity will be zero only aftertime average.

3. CARTESIAN COORDINATES: THE NUMERICAL METHOD

In this Section the discretization of the continuous differential problem is illustrated.
The spectral expansion in the homogeneous directions is a standard approach, whereas the
finite-difference discretization of the wall-normal direction with explicit compact scheme
will be reported with some detail, as well as the temporal discretization that permits the
achievement of a substantial memory saving.

3.1. Spatial discretization in the homogeneous directions
The equations written in Fourier space readily call for an expansion of the unknown

functions in terms of truncated Fourier series in the homogeneous directions. For example
the wall-normal componentv of the velocity vector is represented as:

v(x, z, y, t) =

+nx/2∑

h=−nx/2

+nz/2∑

ℓ=−nz/2

v̂hℓ(y, t)eiαxeiβz (8)

where:

α =
2πh

Lx
= α0h; β =

2πℓ

Lz
= β0ℓ.

Hereh andℓ are integer indexes corresponding to the streamwise and spanwise direction
respectively, andα0 andβ0 are the fundamental wavenumbers in these directions, defined
in terms of the streamwise and spanwise lengthsLx = 2π/α0 and Lz = 2π/β0 of
the computational domain. The computational parameters given by the streamwise and
spanwise lenght of the computational domain,Lx andLz, and the truncation of the series,
nx andnz, must be chosen so as to miminize computational errors. See again [26] for
details regarding the proper choice of a value ofLx.

The numerical evaluation of the non linear terms in Eqns. (4)and (6) would require
computationally expensive convolutions in Fourier space.The same evaluation can be
performed efficiently by first transofrming the three Fourier components of velocity back
in physical space, multiplyng them in all six possible pair combinations and eventually
retransforming the results into the Fourier space. Fast Fourier Transform algorithms are
used to move from Fourier- to physical space and viceversa. The aliasing error is removed
by expanding the number of modes by a factor of at least 3/2 before the inverse Fourier
transforms, to avoid the introduction of spurious energy from the high-frequency into the
low-frequency modes during the calculation.

3.2. Time discretization
Time integration of the equations is performed by a partially-implicit method, imple-

mented in such a way as to reduce the memory requirements of the code to a minimum,
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by exploiting the finite-difference discretization of the wall-normal direction. The use of a
partially-implicit scheme is a common approach in DNS [10]:the explicit part of the equa-
tions can benefit from a higher-accuracy scheme, while the stability-limiting viscous part
is subjected to an implicit time advancement, thus relieving the stability constraint on the
time-step size∆t. Our preferred choice, following [17, 9], is to use an explicit third-order,
low-storage Runge-Kutta method for the integration of the explicit part of the equations,
and an implicit second-order Crank-Nicolson scheme is usedfor the implicit part. This
scheme has been anyway embedded in a modular coding implementation that allows us to
change the time-advancement scheme very easily without otherwise affecting the structure
of the code. In fact, we have a few other time-advancement schemes built into the code for
testing purposes. Here we present the time-discretized version of Eqns. (4) and (6) for a
generic wavenumber pair and a generic two-levels scheme forthe explicitly-integrated part
coupled with the implicit Crank-Nicolson scheme:

λ

∆t
η̂n+1

hℓ −
1

Re

[
D2(η̂

n+1
hℓ ) − k2η̂n+1

hℓ

]
=

λ

∆t
η̂n

hℓ +
1

Re

[
D2(η̂

n
hℓ) − k2η̂n

hℓ

]
+

θ
(
iβ0ℓĤUhℓ − iα0hĤWhℓ

)n

+ ξ
(
iβ0ℓĤUhℓ − iα0hĤWhℓ

)n−1

(9)

λ

∆t

(
D2(v̂

n+1
hℓ ) − k2v̂n+1

hℓ

)
−

1

Re

[
D4(v̂

n+1
hℓ ) − 2k2D2(v̂

n+1
hℓ ) + k4v̂n+1

hℓ

]
=

λ

∆t

(
D2(v̂

n
hℓ) − k2v̂n

hℓ

)
+

1

Re

[
D4(v̂

n
hℓ) − 2k2D2(v̂

n
hℓ) + k4v̂n

hℓ

]
+

θ
(
−k2ĤV hℓ − D1

(
iα0hĤUhℓ + iβ0ℓĤWhℓ

))n

+

ξ
(
−k2ĤV hℓ − D1

(
iα0hĤUhℓiβ0ℓĤWhℓ

))n−1

(10)

The three coefficientsλ, θ andξ define a particular time-advancement scheme. For the
simplest case of a 2nd-order Adams-Bashfort, for example, we haveλ = 2, θ = 3 and
ξ = −1.

The procedure to solve these discrete equations is made by two distinct steps. In the first
step, the RHSs corresponding to the explicitly-integratedparts part have to be assembled. In
the representation (8), at a given time the Fourier coefficients of the variables are represented
at differenty positions; hence the velocity products can be computed through inverse/direct
FFT in wall-parallel planes. Their spatial derivatives arethen computed: spectral accu-
racy can be achieved for wall-parallel derivatives, whereas the finite-differences compact
schemes described in§3.3 are used in the wall-normal direction. These spatial derivatives
are eventually combined with values of the RHS at previous time levels. The wholey range
from one wall to the other must be considered.

The second step involves, for eachα, β pair, the solution of a set of two ODEs, derived
from the implicitly integrated viscous terms, for which theRHS is now known. A finite-
differences discretization of the wall-normal differential operators produces two real banded
matrices, in particular pentadiagonal matrices when a 5-point stencil is used. The solution
of the resulting two linear systems givesη̂n+1

hℓ and v̂n+1
hℓ , and then the planar velocity

componentŝun+1
hℓ andŵn+1

hℓ can be computed by solving system (7) for each wavenumber
pair. For eachα, β pair, the solution of the two ODEs requires the simultaneousknowledge
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of their RHS in ally positions. The wholeα, β space must be considered. In theα−β − y

space the first step of this procedure proceeds per wall-parallel planes, while the second
one proceeds per wall-normal lines.

3.2.1. A memory-saving implementation

A memory-efficient implementation of the time integration procedure is possible, by
leveraging the finite-difference discretization of the wall normal derivative. As an example,
let us consider the following differential equation for theone-dimensional vectorf = f(y):

df

dt
= N (f) + A · f , (11)

whereN denotes non-linear operations onf , andA is the coefficient matrix which describes
the linear part. After time discretization of this generic equation, that has identical structure
to both theη̂ andv̂ equations, the unknown at time leveln + 1 stems from the solution of
the linear system:

(A + λI) · f = g (12)

whereg is given by a linear combination (with suitable coefficientswhich depend on
the particular time integration scheme and, in the case of Runge-Kutta methods, on the
particular sub-step too) off , N (f) andA · f evaluated at time leveln and at a number of
previous time levels. The number of previous time levels depends on the chosen explicit
scheme. For the present, low-storage Runge-Kutta scheme, only the additional leveln− 1

is required.
The quantitiesf , N (f) andA · f can be stored in distinct arrays, thus resulting in a

memory requirement of 7 variables per point for a two-levelstime integration scheme. An
obvious, generally adopted optimization is the incremental build into the same array of the
linear combination off ,N (f) andA · f , as soon as the single addendum becomes available.
The RHS can then be efficiently stored in the arrayf directly, thus easily reducing the
memory requirements down to 3 variables per point.

The additional optimization we are able to enforce here relies on the finite-difference
discretization of the wall-normal derivatives. Referringto our simple example, the incre-
mental build of the linear combination is performed contemporary to the computation of
N (f) andA · f , the result being stored into the same array which already containedf . The
finite-difference discretization ensures that, when dealing with a giveny level, only a little
slice of values off , centered at the samey level, is needed to computeN (f). Hence just
a small additional memory space, of the same size of the finite-difference stencil, must be
provided, and the global storage space reduces to two variables per point for the example
equation (11).

The structure of the time integration procedure implemented in our DNS code is sym-
bolically shown in the bottom chart of figure 2, and compared with the standard approach,
illustrated in the top chart. Within the latter approach, ina main loop over the wall-parallel
planes (integer indexj) the velocity products are computed pseudo-spectrally with planar
FFT, their spatial derivatives are taken and the result is eventually stored in the three-
dimensional arraynl. After the loop has completed, the linear combination off , nl and
A · f is assembled in a temporary two-dimensional arrayrhs, then combined into the
three-dimensional arrayf with the contribution from the previous time step, and eventually
stored in the three-dimensional arrayrhsold for later use. The RHS, which uses the
storage space of the unknown itself, permits now to solve thelinear system which yields
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j = 1..ny − 1

IFT/FFT

nl = N (f)

t = t + ∆t

rhs = αf + βnl + γA · f

f = θ rhs + ξ rhsold

rhsold = rhs

solve(A + λI)f = f

j = 1..ny − 1

IFT/FFT

t = t + ∆t

rhs = αf + βN (f) + γA · f

f = θ rhs + ξ rhsold

rhsold = rhs

solve(A + λI)f = f

FIG. 2. Comparison between the standard implementation of a two-leveltime-advancement scheme (top),
and the present, memory-efficient implementation (bottom). Variables printed in bold require three-dimensional
storage space, while italics marks temporary variables whichcan use two-dimensional arrays. Greek letters denote
coefficients defining a particular time scheme. The present implementation reduces the required memory space
for a single equation from 3 to 2 three-dimensional variables.
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the unknown at the future time step, and the procedure is over, requiring storage space for
3 three-dimensional arrays.

The flow chart on the bottom of figure 2 illustrates the presentapproach. In the main
loop over wall-parallel planes, not only the non-linear terms are computed, but the RHS of
the linear system is assembled plane-by-plane and stored directly in the three-dimensional
arrayf , provided the value of the unknown in a small number of planes(5 when a 5-point
finite-difference stencil is employed) is conserved. As a whole, this procedure requires
only 2 three-dimensional arrays for each scalar equation.

3.3. High-accuracy compact, explicit finite-difference schemes
The discretization of the wall-normal derivativesD1, D2 and D4, required for the

numerical solution of the present problem, is performed through finite difference (FD)
compact schemes [11] with fourth-order accuracy over a computational molecule composed
by five arbitrarily spaced (with smooth stretching) grid points. We indicate here with
dj
1(i), i = −2, . . . , 2 the five coefficients discretizing the exact operatorD1 over five

adjacent grid points centered atyj :

D1(f(y))|y=yj
=

2∑

i=−2

dj
1(i)f(yj+i).

The basic idea of compact schemes can be most easily understood by thinking of a stan-
dard FD formula in Fourier space as a polynomial interpolation of a trascendent function,
with the degree of the polynomial corresponding to the formal order of accuracy of the FD
formula. Compact schemes improve the interpolation by replacing the polynomial with
a ratio of two polynomials, i.e. with a rational function. This obviously increases the
number of available coefficients, and moreover gives control over the behavior at infinity
(in frequency space) of the interpolant, whereas a polynomial necessarily diverges. This
allows a compact FD formula to approximate a differential operator in a wider frequency
range, thus achieving resolution properties similar to those of spectral schemes [11].

Compact schemes are also known as implicit finite-differences schemes, because they
typically require the inversion of a linear system for the actual calculation of a derivative
[11, 14]. Here we are able to use compact, fourth-order accurate schemes at the cost of
explicit schemes, owing to the absence of the third-derivative operator from the equations
of motion. Thanks to this property, it is possible to find rational function approximations
for the required three FD operators, where the denominator of the function is always the
same, as highlighted first in the original Gauss-Jackson-Noumerov compact formulation
exploited in his seminal work by Thomas [30], concerning thenumerical solution of the
Orr-Sommerfeld equations.

To illustrate Thomas’ method, let us consider an 4th-order one-dimensional ordinary
differential equation, linear for simplicity, in the form:

D4 (a4f) + D2 (a2f) + D1 (a1f) + a0f = g, (13)

where the coefficientsai = ai(y) are arbitrary functions of the independent variabley, and
g = g(y) is a known RHS. Let us moreover suppose that a differential operator, for example
D4, is approximated in frequency space as the ratio of two polynomials, sayD4 andD0.
Polynomials likeD4 andD0 have their counterpart in physical space, andd4 andd0 are the
corresponding FD operators. The key point is to impose thatall the differential operators
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appearing in the example equation (13) admit a representation such as the preceding one,
in which the polynomialD0 at the denominator remainsthe same.

Eq. (13) can thus be recast in the new, discretized form:

d4 (a4f) + d2 (a2f) + . . . + d1 (a1f) + d0 (a0f) = d0 (g) ,

and this allows us to use explicit FD formulas, provided the operatord0 is applied to
the right-hand-side of our equations. The overhead relatedto the use of implicit finite
difference schemes disppears, while the advantage of usinghigh-accuracy compact schemes
is retained.

3.3.1. Calculation of the finite-difference coefficients

The actual computation of the coefficientsd0, d1, d2 andd4 to obtain a formal accuracy
of order 4 descends from the requirement that the error of thediscrete operatord4d

−1
0

decreases with the step size according to a power law with thedesired exponent−4. In
practice, following a standard procedure in the theory of Padé approximants [24], this can
be enforced by choosing a settm of polynomials ofy of increasing degree:

tm(y) = 1, y, y2, ..., ym, (14)

by analytically calculating their derivativesD4(tm), and by imposing that the discrete
equation:

d4 (tm) − d0 (D4(tm)) = 0 (15)

is verified for the nine polynomials fromm = 0 up tom = 8.
Our computational stencil contains 5 grid points, so that the unknown coefficientsd0 and

d4 are 10. There is however a normalization condition, and we can write the equations in
a form where for example:

2∑

i=−2

d0(i) = 1. (16)

The other 9 conditions are given by Eqn. (15) evaluated form = 0, 1, . . . 8. We thus
can set up, for each distance from the wall, a10 × 10 linear system which can be easily
solved for the unknown coefficients. The coefficients of the derivatives of lesser degree
are derived from analogous relations, leading to two5× 5 linear systems once thed0’s are
known. An additional further simplification is possible. Since the polynomials (14) have
vanishingD4 for m < 4, thanks to the normalization condition (16) the10 × 10 system
can be split into two5 × 5 subsystems, separately yielding the coefficientsd0 andd4.

Due to the turbulence anisotropy, the use of a mesh with variable size in the wall-
normal direction is advantageous. The procedure outlined above must then be performed
numerically at eachyj station, but only at the very beginning of the computations.The
computer-based solution of the systems requires a negligible computing time.

We end up with FD operators which are altogether fourth-order accurate; the sole operator
D4 is discretized at sixth-order accuracy. As suggested in [11] and [14], the use of all the
degrees of freedom for achieving the highest formal accuracy might not always be the
optimal choice. We have therefore attempted to discretizeD4 at fourth-order accuracy
only, and to spend the remaining degree of freedom to improvethe spectral characteristics
of all the FD operators at the same time. Our search has shown however that no significant
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advantage can be achieved: the maximum of the errors can be reduced only very slightly,
and - more important - this reduction does not carry over to the entire frequency range.

The boundaries obviously require non-standard schemes to be designed to properly com-
pute derivatives at the wall. For the boundary points we use non-centered schemes, whose
coefficients are computed following the same approach as theinterior points, thus preserv-
ing by construction the formal accuracy of the method. Nevertheless the numerical error
contributed by the boundary presumably carries a higher weight than interior points, albeit
mitigated by the non-uniform discretization. A systematicstudy of this error contribution
and of alternative more refined treatments of the boundary are ongoing work.

4. THE PARALLEL STRATEGY

In this Section the parallel strategy, hinge of our numerical method, is described. It is
designed with the aim to minimizing the amount of communication, so that commodity
network hardware can be used. The same strategy can be used inthe cylindrical case.

4.1. Distributed-memory computers
If the calculations are to be executed in parallel byp computing machines (nodes),

data necessarily reside on these nodes in a distributed manner, and communication be-
tween nodes will take place. Our main design goal is to keep the required amount of
communication to a minimum.

When a fully spectral discretization is employed, a transposition of the whole dataset
across the computing nodes is needed every time the numerical solution is advanced by
one time (sub)step when non-linear terms are evaluated. This is illustrated for example
in the paper by Pelz [23], where parallel FFT algorithms are discussed in reference to the
pseudo-spectral solution of the Navier–Stokes equations.Pelz shows that there are basically
two possibilities, i.e. using a distributed FFT algorithm or actually transposing the data,
and that they essentially require the same amount of communication. The two methods
are found in [23] to perform, when suitably optimized, in a comparable manner, with the
distributed strategy running in slightly shorter times when a small number of processors
is used, and the transpose-based method yielding an asymptotically faster behavior for
largep. The large amount of communication implies that very fast networking hardware
is needed to achieve good parallel performance, and this restrict DNS to be carried out on
very expensive computers only.

Of course, when a FD discretization in they direction is chosen instead of a spectral
one, it is conceivable to distribute the unknowns in wall-parallel slices and to carry out
the two-dimensional inverse/direct FFTs locally to each machine. Moreover, thanks to the
locality of the FD operators, the communication required tocompute wall-normal spatial
derivatives of velocity products is fairly small, since data transfer is needed only at the
interface between contiguous slices. The reason why this strategy has not been used so far
is simple: a transposition of the dataset seems just to have been delayed to the second half
of the time step advancement procedure. Indeed, the linear systems which stem from the
discretization of the viscous terms require the inversion of banded matrices, whose principal
dimension span the entire width of the channel, while data are stored in wall-parallel slices.

A transpose of the whole flow field can be avoided however when data are distributed in
slices parallel to the walls, with FD schemes being used for wall-normal derivatives. The ar-
rangement of the data across the machines is schematically shown in figure 3: each machine
holds all the streamwise and spanwise wavenumbers forny/p contiguousy positions. As
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FIG. 3. Arrangement of data in wall-parallel slices across the channel, for a parallel execution withp = 4
computing nodes.

said, the planar FFTs do not require communication at all. Wall-normal derivatives needed
for the evaluation of the RHSs do require a small amount of communication at the interface
between contiguous slices. However, this communication can be avoided at all if, when
using a 5-point stencil, two boundary planes on each internal slice side are duplicated on the
neighboring slice. This duplication is obviously a waste ofcomputing time, and translates
into an increase of the actual size of the computational problem. However, since the dupli-
cated planes are4(p− 1), as long asp ≪ ny this overhead is negligible. Whenp becomes
comparable tony, an alternative, slightly different procedure becomes convenient. This
alternative strategy is still in development at the presenttime.

The critical part of the procedure lies in the second half of the time-step advancement,
i.e. the solution of the set of two linear systems, one for each h, ℓ pair, and the recovery
of the planar velocity components: the necessary data just happen to be spread over all
thep machines. It is relatively easy to avoid a global transpose,by solving each system
in a serial way across the machines: adopting a LU decomposition of the pentadiagonal,
distributed matrices, and a subsequent sweep of back-substitutions, only a few coefficients
at the interface between two neighboring nodes must be transmitted. The global amount of
communication remains very low and, at the same time, local between nearest neighbors
only. The problem here is obtaining a reasonably high parallel efficiency: if a single
system had to be solved, the computing machines would waste most of their time waiting
for the others to complete their task. In other words, with the optimistic assumption
of infinite communication speed, the total wall-clock time would be simply equal to the
single-processor computing time.

The key observation to obtain high parallel performance is that the number of linear
systems to be solved at each time (sub)step is very large, i.e. (nx + 1)(nz + 1), which
is at least104 and sometimes much larger in typical DNS calculations [3]. This allows
the solution of the linear systems to be efficiently pipelined as follows. When the LU
decomposition of the matrix of the system for a givenh, ℓ pair is performed (with a
standard Thomas algorithm adapted to pentadiagonal matrices), there is a first loop from
the top row of the matrix down to the bottom row (elimination of the unknowns), and
then a second loop in the opposite direction (back-substitution). The machine owning the
first slice performs the elimination in the local part of the matrix, and then passes on the
boundary coefficients to the neighboring machine, which starts its elimination. Instead of
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waiting for the elimination in theh, ℓ system matrices to be completed across the machines,
the first machine can now immediately start working on the elimination in the matrix of
the following system, sayh, ℓ + 1, and so on. After the elimination in the firstp systems is
started, all the computing machines work at full speed. A synchronization is needed only
at the end of the elimination phase, and then the whole procedure can be repeated for the
back-substitution phase.

Clearly this pipelined-linear-system (PLS) strategy involves an inter-node communica-
tion made by frequent sends and receives of small data packets (typically two lines of a
pentadiagonal matrix, or two elements of the RHS array). While the global amount of
transmitted data is very small, this poses a serious challenge to out-of-the-box communica-
tion libraries, like MPI, which are known to incur in a significant overhead for very small
data packets. In fact, we have found unacceptably poor performance when using MPI-type
libraries. On the other hand we have succeeded in developingan effective implementa-
tion of inter-node communication using only the standard i/o functions provided by the C
library. Details of this alternative implementation are illustrated in§5 and Appendix A.

4.2. Estimate of communication requirements
The amount of data which has to be exchanged by each machine for the advancement of

the solution by one time step made by 3 Runge–Kutta substeps by the PLS method can be
quantified as follows. The number of bytesDp transmitted and received by each computing
node forp > 2 and in one complete time step is:

Dp = 3 × 8 × nx × nz × 88 = 2112 nx × nz

where 3 is the number of temporal substeps, 8 accounts for 8-bytes variables, and 88 is
the total number of scalar variables that are exchanged at the slice interfaces for each
wavenumber pair (during solution of the linear systems and of the algebraic system to
computêu andŵ). To quantify, in a simulation withnx = ny = nz = 128 Dp amounts to
≈ 276 MBit of network traffic. It is interesting to note thatDp is linear in the total number
of Fourier modesnx × nz, but is independent uponny. Moreover, the amount of traffic
does not change whenp increases.

To appreaciate this estimate, we can also carry out the same estimate when a standard
parallel FFT, i.e. the transpose method, is used. In this case the amount of data (in bytes)
Dt exchanged by each machine for the complete advancement by one time step method is
as follows:

Dt = 3 × 8 × (p − 1)
nx

p
×

3

2

nz

p
× ny × 18 = 648

p − 1

p2
nx × nz × ny

Again, the factors 3 and 8 account for the number of temporal substeps and the 8-bytes
variables respectively. In the whole process of computing non-linear terms 9 scalars have to
be sent and received (3 velocity components before IFT and 6 velocity products after FFT);
for each wall-parallel plane, each machine must exchange with each of the othersp−1 nodes
an amount ofnx × nz/p2 grid cells, and the factor3/2 corresponds to dealiasing in one
horizontal direction (the3/2 expansion, and the subsequent removal of higher-wavenumber
modes, in the other horizontal direction can be performed after transmission).
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The ratio between the communication required by the transpose-based method and the
PLS method can thus be written as:

Dt

Dp
= 0.307

p − 1

p2
ny

which corresponds to the intuitive idea that the transpose method exchanges all the variables
it stores locally, whereas the PLS method only exchanges a (small) number of wall-parallel
planes, independent onny andp. Moreover the ratioDt/Dp, being proportional tony for
a givenp, is expected to increase with the Reynolds number of the simulation, since so
does the number of points needed to discretize the wall-normal direction. More important,
when the transpose-based method is employed, the global amount of communication that
has to be managed by the switch increases with the number of computing machines and is
all-to-all rather than between nearest neighbors only, so that its performance is expected
to degrade when a largep is used. This is perhaps the main advantage of the PLS parallel
strategy.

4.3. Shared-memory machines
The single computing node may be single-CPU or multi-CPU. Inthe latter case, it is

possible to exploit an additional and complementary parallel strategy, which does not rely
on message-passing communication anymore, and takes advantage of the fact that local
CPUs have direct access to the same, local memory space. We stress that this is different
from using a message-passing strategy on a shared-memory machine, where the shared
memory simply becomes a faster transmission medium. Using multiple CPUs on the same
memory space may yield an additional gain in computing time,at the only cost of having
the computing nodes equipped with more than one (typically two) CPUs. For example
the FFT of a whole plane from physical to Fourier-space and vice-versa can be easily
parallelized this way, as well as the computing-intensive part of building up the RHS terms.
With SMP machines, high parallel efficiencies can be obtained quite easily by “forking”
new processes which read from and write to the same memory space; the operating system
itself then handles the assignment of tasks to different CPUs, and only task synchronization
is a concern at the programming level.

5. THE PERSONAL SUPERCOMPUTER

While a computer program based on the numerical method described heretoforth can
be easily run on a general-purpose cluster of machines, connected through a network in a
star topology with a switch, for maximum efficiency a dedicated computing system can be
specifically designed and built on top of the parallel algorithm described above.

At the CPU level, the mass-marketed CPUs which are commonly found today in desktop
systems are the perfect choice: their performance is comparable to the computing power
of the single computing element of any supercomputer [4], ata fraction of the price. The
single computing node can hence be a standard desktop computer; SMP mainboards with
two CPUs are very cheap and easily available.

The present PLS parallel strategy allows an important simplification in the connection
topology of the machines. Since the transposition of the whole dataset is avoided, commu-
nications are always of thepoint-to-pointtype; moreover, each computing machine needs
to exchange data with and only with two neighboring machinesonly. This can be exploited
with a simple ring-like connection topology among the computing machines, sketched in
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FIG. 4. Conceptual scheme of the connection topology for a computing system made by 4 nodes; one
machine may be connected to the local net through a switch, if the system has to be operated remotely.

figure 4, which replicates the logical exchange of information and the data structure previ-
ously illustrated in figure 3: each machine is connected through two network cards only to
the previous machine and to the next. The necessity of a switch (with the implied additional
latencies in the network path) is thus eliminated, in favor of simplicity, performance and
cost-effectiveness.

Concerning the transmission protocol, the simplest choiceis the standard, error-corrected
TCP/IP protocol. We have estimated that on typical problem sizes the overall benefits from
using a dedicated protocol (for example the GAMMA protocol described in [2]) would
be negligible: since the ratio between communication time and computing time is very
low, the improvements by using such a protocol are almost negligible, and to be weighted
against the increase in complexity and decrease in portability.

The simplest and fastest strategy we have devised for the communication type is to rely
directly on the standard networking services of the Unix operating system, i.e. sockets
(after all, message-passing libraries are socket-based).At the programming level, this
operation is very simple, since a socket is seen as a plain fileto write into and to read from.
Using sockets allows us to take advantage easily and efficiently of the advanced buffering
techniques incorporated in the management of the input/output streams by the operating
system: after opening the socket once and for all, it is sufficient to write (read) data to
(from) the socket whenever they are available (needed), andthe operating system itself
manages flushing the socket when its associated buffer is full. We have found however
that for best performances the buffer size had to be empirically adjusted: for Fast Ethernet
hardware, the optimum has been found at the value of 800 bytes, significantly smaller than
the usual value (the Linux operating system defaults at 8192).

In the year 2001 we have built at Dipartimento di Ingegneria Aerospaziale del Politecnico
di Milano the first prototype of such a dedicated system, composed of 8 SMP Personal
Computers. Each node is equipped with 2 Pentium III 733MHz CPU and 512MB of
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133MHz SDRAM. The nodes are connected to each other by two cheap 100MBits Fast
Ethernet cards. This machine is still heavily used today. Inthe meanwhile, we have installed
in 2003 a second-generation machine, made by 10 SMP nodes. Each node carries 2 Intel
Xeon 2.66 GHz CPU, and 512MB of 266 MHz SDRAM; the interconnects are two onboard
Gigabit Ethernet cards. In late 2004 the third, largest machine entered production stage, at
Dipartimento di Ingegneria Meccanica dell’Università di Salerno. This machine is made
by 64 SMP nodes connected each other in a ring with two onboardGigabit ethernet. Eight
of the nodes carry a third PCI Gigabit Ethernet card, throughwhich they are interconnected
with a switch, so that the number of hops between any two nodesis limited below 5. Each
node is made by two AMD Opteron 1.6 GHz CPU, with 1GB of SDRAM installed.

We call such machines Personal Supercomputers. The performance of our numerical
method used on these system is indeed comparable to that of a supercomputer. In addition,
such machines enjoy the advantages of a simple desktop Personal Computer: low cost
and easy upgrades, unlimited availability even to a single user, low weight, noise and heat
production, small requirements of floor space, etc. Furtherdetails and instructions to build
and configure such a machine can be found in Appendix B.

5.1. Summary of performance measurements
A thourough evaluation of the performance of the present numerical method (referred

to as the PLS method in the following), as well as the performance of our Personal
Supercomputers when used with the present method, is contained in the paper [12]. Here
we report only the main results from that paper.

The amount of required RAM is dictated by the number and the size of the three-
dimensional arrays, and it is typically reported [10, 29, 8]to be no less than7 nx×ny×nz

floating-point variables. Cases where RAM requirements aresignificantly higher are not
uncommon: for example in [6] a channel flow simulation of128 × 65 × 128 reportedly
required 1.2GB of RAM, suggesting a memory occupation approximately 18 times larger.

In our code all the traditional optimizations are employed,and an additional saving
specific to the present method comes from the implementationof the time advancement
procedure, discussed in§3.2.1, which takes advantage of the finite-difference discretization
of the wall-normal derivatives. Thus our code requires a memory space of5 nx × ny ×

nz floating-point variables, plus workspace and two-dimensional arrays. For example a
simulation withnx = ny = nz = 128 takes only 94 MBytes of RAM (using 64-bit
floating-point variables).

In a parallel run the memory requirement can be subdivided among the computing
machines. Withp = 2 the same1283 case runs with 53 MBytes of RAM (note that the
amount of RAM is slightly larger than one half of thep = 1 case, due to the aforementioned
duplication of boundary planes). The system as a whole therefore allows the simulation of
turbulence problems of very large computational size even with a relatively small amount
of RAM deployed in each node. A problem with computational size of4003 would easily
fit into our 8 nodes equipped with 512MB RAM each.

As far as CPU efficiency is concerned, without special optimization the1283 test case
mentioned above requires 42.8 CPU seconds for the computation of a full three-sub-steps
Runge-Kutta temporal step on a single Pentium III 733MHz processor. Internal timings
show that the direct/inverse two-dimensional FFT routinestake the largest part of the CPU
time, namely 56%. The calculation of the RHS of the two governing equations (where
wall-normal derivatives are evaluated) takes 25% of the total CPU time, the solution of
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FIG. 5. Measured speedup on the Pentium III-based machine as a function of the numberp of computing
nodes. Thick lines are the ideal speedupSi from Eq. (17) forny = 128 (continuous line) andny = 256 (dashed
line).

the linear systems arising from the implicit part around 12%, and the calculation of the
planar velocity components 3%. The time-stepping scheme takes 3% and computing a few
runtime statistics requires an additional 1% of the CPU time.

The parallel (distributed-memory) performance of the codeis illustrated in figure 5,
where speedup ratios are reported as a function of the numberof computing nodes. We
define the speedup factor as the ratio of the actual wall-clock computing timetp obtained
with p nodes and the wall-clock timet1 required by the same computation on a single node:

S(p) =
tp
t1

.

The maximum or ideal speedup factorSi that we can expect with our PLS algorithm,
corresponding to the assumption of infinite communication speed, is less than linear, and
can be estimated with the formula:

Si(p) = p

(
1 −

4(p − 1)

ny

)
, (17)

where the factor4 accounts for the two wall-parallel planes duplicated at each side of
interior slices. Eq. (17) reduces to a linear speedup whenny → ∞ for a finite value ofp.
A quantitative evaluation of the function (17) for typical values ofny = O(100) shows that
the maximum achievable speedup is nearly linear as long as the number of nodes remains
moderate, i.e.p < 10.

The maximum possible speedupSi is shown with thick lines.Si approaches the linear
speedup for largeny, being reasonably high as long asp remains small compared tony:
with p = 8 it is 6.25 for ny = 128 and 7.125 forny = 256. Notwithstanding the
commodity networking hardware and the overhead implied by the error-corrected TCP
protocol, the actual performance compared toSi is extremely good, and improves with the
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FIG. 6. Measured speedup on the Opteron-based machine as a function of the numberp of computing nodes.
Thick line is the ideal speedup from Eq. (17) forny = 256. Speedup measured when using Gigabit Ethernet
cards (circles), and the same cards run at the slower speed of 100MBit/s (empty squares) and 10 MBit/s (filled
squares).

size of the computational problem. The case192 × 128 × 192 is hardly penalized by the
time spent for communication, which is only 2% of the total computing time whenp = 8.
The communication time becomes 7% of the total computing time for the larger case of
nx = 128, ny = 256 andnz = 128, and is12% for the worst (i.e. smallest) case of1283,
which requires 7.7 seconds for one time step on our machine, with a speedup of 5.55.

Figure 6 illustrates the speedup achieved with the faster Opteron machines connected
via Gigabit Ethernet cards in the ring-topology layout, compared withSi. The test case has
a size of2563. The CPUs of this system are significantly faster than the Pentium III, and
the network cards, while having 10 times larger bandwidth, have latency characteristics
typical of Fast Ethernet cards. It is remarkable how well themeasured speedup still
approaches the ideal speedup, even at the largest tested value of p. Furthermore, we
report also the measured speedup when the Opteron machines are used with the Gigabit
cards set up to work at the lower speeds of 100 MBit/s and 10MBit/s. It is interesting to
observe how slightly performance is degraded in the case at 100MBit/s, whose curve is
nearly indistinguishable form that at 1GBit/s. Even with the slowest 10MBit/s bandwidth
connecting such fast processors, and with a problem of largecomputational size, it is
noteworthy how the present method is capable to achieve a reasonable speedup for lowp
and not to ever degrade belowS = 1. This relative insensitivity to the available bandwidth
can be ascribed to the limited amount of communication required by the present method.

Lastly, the PLS method is compared on the Opteron machine with the transpose-based
method of performing parallel FFT. By taking advantage of the connection topology of the
Opteron machines, which are connected both in the ring topology with the onboard network
cards and in the star topology with the switch, the same code can be used where only the
parallel strategy is modified. Figure 7 reports comparativemeasurements between the PLS
and the transpose-based method. The PLS method is run with the machines connected
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FIG. 7. Measured speedup on the Opteron-based machine as a function of the numberp of computing nodes.
Continuous line is the PLS method, and dashed line is the transpose-based method.

in a ring, while the transpose-based method is tested with machines linked through the
switch. Measurements show thatS > 1 can now be achieved with the transpose-based
method. However, the transpose method performs best for thesmallest problem size, while
the PLS shows the opposite behavior. For the2563 case, which is a reasonable size for
such machines, the speedup from the transpose-based methodis around one half of what
can be obtained with PLS.

6. CYLINDRICAL COORDINATES: THE GOVERNING EQUATIONS

In this Section we present the extension of the numerical method previously described
the cylindrical coordinate system. First the procedure to write a two-equations formulation
of the differential problem for the radial velocity and radial vorticity is described. This has
been already published in [25]. The material in§7.3 illustrates how fourth-order accruacy
can still be achieved, and it has never been published elsewhere.

6.1. Problem definition
The cylindrical coordinate system is illustrated in figure 8, where a sketch of an annular

duct is shown:x, r andθ denote the axial, wall-normal (radial) and azimuthal coordinates,
andu, v andw the respective components of the velocity vector. The flow isassumed to
be periodic in the axial and azimuthal directions. The innercylinder has radiusRi and
the outer cylinder has radiusRo. The reference lengthδ is taken to be one half of the gap
width:

δ =
Ro −Ri

2

Once an appropriate reference velocityU is chosen, a Reynolds number can be defined
as:

Re =
Ubδ

ν
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FIG. 8. Sketch of the computational domain for the cylindrical coordinate system

whereν is the kinematic viscosity of the fluid.
The non-dimensional Navier–Stokes equations for an incompressible fluid in cylindrical

coordinates can then be written as:

∂u

∂x
+

1

r

∂ (rv)

∂r
+

1

r

∂w

∂θ
= 0; (18)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂r
+

w

r

∂u

∂θ
= −

∂p

∂x
+

1

Re
∇2u; (19a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂r
+

w

r

∂v

∂θ
−

w2

r
= −

∂p

∂r
+

1

Re

(
∇2v −

v

r2
−

2

r2

∂w

∂θ

)
; (19b)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂r
+

w

r

∂w

∂θ
+

vw

r
= −

1

r

∂p

∂θ
+

1

Re

(
∇2w −

w

r2
+

2

r2

∂v

∂θ

)
, (19c)

where the Laplacian operator in cylindrical coordinates takes the form:
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The differential problem is closed when an initial condition for all the fluid variables is
specified, and suitable buondary conditions are chosen. At the walls the no-slip condition
is physically meaningful, whereas periodic boundary conditions are used for the azimuthal
direction, as well as for the axial direction, under the sameassumptions discussed in§2.1
for the cartesian case.

Once the periodicity assumption is made both in the axial andazimuthal directions, the
equations of motion can be conveniently Fourier-transformed along thex andθ coordinates.
The symbolsα andm denote the axial and azimuthal wave numbers, respectively.By
definingk2 = (m/r)

2
+ α2, and by introducing the Chandrasekar notation:

D1(f) =
∂f

∂r
; D∗(f) =

∂f

∂r
+

f

r
, (21)
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the Fourier-transformed Laplacian operator (20) can be written in the more compact form:

∇2 = D∗D1 − k2

The transformed equations, where the hat indicates the Fourier components of the trans-
formed variable, are:

iαû + D∗(v̂) +
im

r
ŵ = 0; (22)

∂û

∂t
= −iαp̂ +

1

Re

(
D∗D1(û) − k2û

)
+ ĤU ; (23a)

∂v̂

∂t
= −D1(p̂) +

1

Re

(
D1D∗(v̂) − k2v̂ −

2im

r2
ŵ

)
+ ĤV ; (23b)

∂ŵ

∂t
= −

im

r
p̂ +

1

Re

(
D1D∗(ŵ) − k2ŵ +

2im

r2
v̂

)
+ ĤW. (23c)

In these expressions, the nonlinear convective terms have been grouped under the fol-
lowing definitions:

ĤU = −iαûu − D∗(ûv) −
im

r
ûw; (24a)

ĤV = −iαûv − D∗(v̂v) −
im

r
v̂w +

1

r
ŵw; (24b)

ĤW = −iαûw − D1(ûw) −
im

r
ŵ2 −

2

r
v̂w. (24c)

It can be noticed that the main difference between (22), (23a-c) and the analogous
equations in cartesian coordinates is the dependence ofk2 upon r. As a consequence
thereof,k2 does not commute with the operators for radial derivatives.In addition, the
components of the momentum equations are coupled through the viscous and convective
terms; therefore it can be anticipated that in the time advancement procedure a fully implicit
treatment of the viscous terms, as usually done in the cartesian case, will not be possible.

6.2. Equation for the radial vorticity component
The wall-normal (radial) component of the vorticity vector, which we shall indicate with

η, is defined as

η =
1

r

∂u

∂θ
−

∂w

∂x
,

and after transforming in Fourier space it is given by:

η̂ =
im

r
û − iαŵ (25)

Following a procedure which resembles that of the cartesiancase, an equation for̂η,
which does not involve pressure, can be written by taking theradial component of the curl



24 M. QUADRIO & P. LUCHINI

of the momentum equation. By multiplying equation (23a) times im/r and subtracting
equation (23c) timesiα, one gets:

im

r

∂û

∂t
− iα

∂ŵ

∂t
=

1

Re

[
im

r
D∗D1(û) − iαD1D∗(ŵ) −

k2

(
im

r
û − iαŵ

)
+ 2

mα

r2
v̂

]
+

im

r
ĤU − iαĤW (26)

By writing down the expression for∇2η̂:

∇2η̂ = −k2

(
im

r
û − iαŵ

)
+ D∗D1

(
im

r
û − iαŵ

)
,

and remembering the definitions (21) of the operatorsD1 andD∗ and the fact that:

D1D∗ = D∗D1 −
1

r2

one can substitute in the preceding equation, and write the following second-order equation
for η̂:

∂η̂

∂t
=

1

Re

(
D1D∗(η̂) − k2η̂ + 2

im

r2
D1(û) + 2

mα

r2
v̂

)
+

im

r
ĤU − iαĤW (27)

The numerical solution of Eqn. (27) requires an initial condition for η̂, which can be
computed form the initial condition for the velocity field. The periodic boundary conditions
in the homogeneous directions are automatically satisfied thanks to the Fourier transform,
whereas the no-slip condition for the velocity vector translates inη̂ = 0 to be imposed at
the two walls atr = Ri andr = Ro.

This equation has an overall structure which is analogous tothat of the corresponding
cartesian equation (4), except that it is not independent upon v̂. Moreover, a curvature term
proportional to the first radial derivative ofû appears.

6.3. Equation for the radial velocity component
The derivation of an equation for the radial componentv̂ of the velocity vector, again

without pressure terms, is less straightforward, and requires the use of the continuity
equation in order to obtain an expression forp̂ as a function of the velocity components.

The first step consists in taking the time derivative of the Fourier-transformed continuity
equation (22):

∂D∗(v̂)

∂t
= −iα

∂û

∂t
−

im

r

∂ŵ

∂t
.

The time derivatives of̂u andŵ can be replaced by the corresponding expression from
equations (23a) and (23c), thus giving:

∂D∗(v̂)

∂t
= −k2p̂ − iα

[
1

Re

(
D∗D1(û) − k2û

)
+ ĤU

]
+

−
im

r

[
1

Re

(
D1D∗(ŵ) − k2ŵ + 2

im

r2
v̂

)
+ ĤW

]
.
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The continuity equation can be invoked again to simplify some terms, together with the
relations obtained by applying the operatorsD1/r andD2 to it, namely:

−D2D∗(v̂) = iαD2(û) +
im

r
D2(ŵ) + 2

im

r3
ŵ − 2

im

r2
D1(ŵ);

−
1

r
D1D∗(v̂) =

iα

r
D1(û) +

im

r2
D1(ŵ) −

im

r3
ŵ.

By also applying the identity:

D∗D1D∗(v̂) = D2D∗(v̂) +
1

r
D1D∗(v̂),

after some algebra, the following expression forp̂ is obtained:

p̂ = −
1

Re

1

k2

[
k2D∗(v̂) − D∗D1D∗(v̂) − 2

m2

r3
v̂ + 2

im

r2
D1(ŵ) − 2

im

r3
ŵ

]
+

−
1

k2

[
∂D∗(v̂)

∂t
+ iαĤU +

im

r
ĤW

]
.

This expression for̂p can now be differentiated with respect to the radial coordinate, and
then substituted into equation (23b) to get rid ofp̂ altogether. Eventually the fourth-order
equation for̂v emerges in the final form:

∂

∂t

[
v̂ − D1

(
1

k2
D∗(v̂)

)]
=

1

Re
D1

{
1

k2

[
k2D∗(v̂) − D∗D1D∗(v̂) − 2

m2

r3
v̂+

2
im

r2
D1(ŵ) − 2

im

r3
ŵ

]}
+

1

Re

(
−k2v̂ + D1D∗(v̂) − 2

im

r2
ŵ

)
+

D1

[
1

k2

(
iα ĤU +

im

r
ĤW

)]
+ ĤV . (28)

This scalar equation can be solved numerically provied an initial condition forv̂ is known.
The periodic boundary conditions in the homogeneous directions are automatically satisfied
thanks to the Fourier transform, whereas the no-slip condition for the velocity vector
immediately translates in̂v = 0 to be imposed at the two walls. The continuity equation
written at the two walls makes evident that the additional two boundary conditions required
for the solution of (28) areD1(v̂) = 0 at r = Ri andr = Ro. Equation (28) shares with
its cartesian counterpart (6) the general structure, in particular the fact that it is independent
of η̂. Curvature terms proportional tôw and to its first radial derivative are present.

6.4. Velocity components in the homogeneous directions
The two equations (27) and (28) are not uncoupled anymore, since (27) containŝv. With

explicitely-integrated non-linear terms, they can however be solved separately at each time
step, provided one solves first (28) forv̂ and then (27) for̂η.

For computing the nonlinear terms and their spatial derivatives, one needs to know the
velocity componentŝu andŵ in the homogeneous directions at a given time by knowingv̂

andη̂. By using the definition defintion (25) of̂η and the continuity equation (22) written
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in Fourier space, a2 × 2 algebraic system can be written for the unknownsû andŵ; its
analytical solution reads:





û =
1

k2

(
iαD∗(v̂) −

im

r
η̂

)

ŵ =
1

k2

(
iαη̂ +

im

r
D∗(v̂)

) (29)

Like in the cartesian case, this system lends itself to an analytical solution only when the
variables are expanded in Fourier series.

6.4.1. Mean (shell-averaged) flow in the homogeneous directions

The preceding system (29) is singular whenk2 = 0. This is a consequence of having
obtained Eqns. (27) and (28) through a procedure involving spatial derivatives.

Let us introduce an averaging operator over the homogeneousdirections:

f̃ =
1

Lx

1

Lθ

∫ Lx

0

∫ Lθ

0

f dxrdθ

The space-averaged streamwise velocityũ = ũ(r, t) is a function of radial coordinate
and time only, and in Fourier space it corresponds to the Fourier mode fork = 0. The same
applites to the azimuthal componentw̃. With the present choice of the reference system,
where thex axis is aligned with the mean flow, the temporal average ofũ is the streamwise
mean velocity profile, whereas the temporal average ofw̃ will be zero (within the limits
of the temporal discretization). This nevertheless allowsw̃ at a given time and at a given
distance from the wall to be different from zero.

Two additional equations must then be written for calculating ũ and w̃; they can be
worked out by applying the linear, shell-average operator to the relevant components of the
momentum equation:

∂ũ

∂t
=

1

Re
D∗D1 (ũ) − D∗ (ũv) + fx

∂w̃

∂t
=

1

Re
D1D∗ (w̃) − D1 (ũw) −

2

r
ṽw + fθ

In these expressions,fx andfθ are the forcing terms needed to force the flow through the
channel against the viscous resistence of the fluid. For the streamwise direction,fx can be
a given mean pressure gradient, and in the simulation the flowrate through the channel will
oscillate in time around its mean value.fx can also be a time-dependent spatially uniform
the pressure gradient, to be chosen in such a way that the flow rate remains constant in
time. The same distinction applies to the forcing termfθ in the azimuthal direction.

7. CYLINDRICAL COORDINATES: THE NUMERICAL METHOD

The numerical techniques and the PLS parallel strategy employed in the cartesian case
and described in§3 and§4 must be transferred to the present formulation in cylindrical
coordinates without significant penalty, so that the Personal Supercomputer described in
§5 can be used efficiently in the cylindrical case too. In what follows, emphasis will then
be given to the differences with the cartesian case.
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7.1. Spatial discretization in the homogeneous directions
In full analogy with the cartesian case, the unknown functions are expanded in truncated

Fourier series in the homogeneous directions. For example the radial componentv of the
velocity vector is represented as:

v(x, θ, r, t) =

+nx/2∑

h=−nx/2

+nθ/2∑

ℓ=−nθ/2

v̂hℓ(r, t)e
iαxeimθ (30)

where:

α =
2πh

Lx
= α0h; m =

2πℓ

Lθ
= m0ℓ

Here h and ℓ are integer indexes corresponding to the axial and azimuthal direction
respectively, andα0 andm0 are the fundamental wavenumbers in these directions, defined
in terms of the axial lengthLx of the computational domain and its azimuthal extension
Lθ, expressed in radians.

The numerical evaluation of the nonlinear terms in (27) and (28) is done following the
same pseudo-spectral approach involving FFTs and the use ofproper dealiasing.

7.2. Time discretization
Once the equations for̂η and v̂ are discretized in time, as said before they are not

independent anymore; they can however still be solved in a sequentialy way. In fact the
evolution equation (27) for̂ηn+1

hℓ containsv̂n+1
hℓ , but luckily Eqn. (28) for̂vn+1

hℓ does not
containη̂n+1

hℓ . The only difference with the cartesian case is that the order of solution of
the two equations here matters, and Eqn. (28) must be solved then before Eqn. (27).

The two equations can be advanced in time using the same partially implicit time schemes
described for the cartesian case. Now the explicit part contains the nonlinear terms plus
some additional viscous curvature terms. No stability limitations have been encountered
in our numerical experiments, since curvature terms contain low-order derivatives and
do not reduce the time step size allowed by the time integration method. The same
memory-efficient implementation of the cartesian case can be used, provided the compact
finite-difference schemes can still be written in explicit form, as will be shown below.

7.3. High-accuracy compact finite difference schemes
The extension of the cartesian method described in§3.3 to obtain fourth-order accuracy

over a five unevenly spaced points stencil, is not immediate:there are three main points
which make the extension difficult. First, third-derivative terms are present in Eq.(28), thus
preventing the possibility of finding explicit compact schemes. Second, both Eqns. (27)
and (28) do containr-dependent coefficients which are not in the innermost position. Last,
Eqn. (28) forv̂ is a fourth-order equation, but the highest differential operator is notD4,
butDD∗DD∗.

7.3.1. The third derivative

The third derivatives in Eq. (28) can be removed by using the continuity equation (22),
which allows the first radial derivative of̂v be substituted with terms not containing radial
derivatives:

D∗(v̂) = −iαû −
im

r
ŵ.
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As a consequence, some new terms will enter the part of the equation that will be
integrated with the explicit time scheme (see below Eqns. (31) and (32) for their final form).
Again, no problems of numerical stability have been encountered with this formulation of
the explicit part.

7.3.2. Ther-dependent coefficients

All the r-dependent coefficients in the middle of radial derivativesmust be moved at the
innermost position of the radial operators, as required by the example equation (13). This
is done by applying repeated integrations by parts, i.e. repeatedly performing the following
substitutions, wherea indicates the genericr-dependent coefficient:

aD1(f) = D1(af) − D1(a)f ; aD∗(f) = D∗(af) − D1(a)f.

In Eqn. (28), the first term which needs to be rewritten with anintegration by part is:

∂

∂t

[
−D1

(
1

k2
D∗(v̂)

)]
=

∂

∂t

[
−D1D∗

(
1

k2
v̂

)
+ D1

(
v̂D1(

1

k2
)

)]
.

In the righ-hand-side of Eqn. (28), perhaps the most complicated term is:

D1

[
1

k2
(−D∗D1D∗v̂)

]
,

where the continuity equation must be invoked to cancel the third derivative, and repeated
integrations by parts allow ther-dependent coefficients to remain only in the innermost
positions. After some algebra, the result is:

− D1

[
1

k2
(D∗D1D∗v̂)

]
= −D1D∗D1D∗

(
1

k2
v̂

)
+ D1

[
1

r
D2

(
1

k2
v̂

)]
+

− 2D1D∗

[
1

r
D1

(
1

k2

)
v̂

]
+ D1

[
D3

(
1

k2

)
v̂

]
− D1

[
1

r2
D1

(
1

k2

)
v̂

]
+

− 3D1D∗

[
D1

(
1

k2

)(
iαû +

im

r
ŵ

)]
,

where, as a result of the use of the continuity equation, the last term cannot enter the impicit
part of the equations, and must be treated explicitely, similarly to what is done for the
curvature terms.

The last term of eq. (28) which needs further manipulation is:

D1

[
1

k2

(
2
im

r2
D1(ŵ)

)]
= 2im

{
D2

(
ŵ

k2r2

)
− D1

[
1

r2
D1

(
1

k2

)
ŵ

]
+ D1

(
2

k2r3
ŵ

)}
.

The same sequnce of integration by parts must be carried out for Eqn. (27) for the radial
vorticity, arriving at the following substitution:

2
im

r
D1(û) = 2im

[
D1

( u

r2

)
+ 2

u

r3

]
.

The nonlinear terms (24a-c) contain radial derivatives too, and some terms therein must
be integrated by parts in order to have all the coefficient in the innermost position.
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This procedure leads to the final, rather long form of the equations for v̂ and η̂, which
lends itself to a discretization in the radial direction with explicit compact finite differrence
schemes of fourth-order accuracy over a five point stencil. It is written here for completness,
without time discretization for notational simplicity:

∂

∂t

[
v̂ − D1D∗

(
1

k2
v̂

)
+ D1

(
v̂D1(

1

k2
)

)]
=

1

Re

{
2D1D∗(v̂) − D1D∗D1D∗

(
1

k2
v̂

)
+ D1

[
1

r
D2

(
1

k2

)
v̂

]
− 2D1D∗

[
1

r
D1

(
1

k2

)
v̂

]
+

+D1

[
D3

(
1

k2

)
v̂

]
− D1

[
1

r2
D1

(
1

k2

)
v̂

]
− 3D1D∗

[
D1

(
1

k2

)(
iαû +

im

r
ŵ

)]
+

−2m2D1

(
1

k2r2
v̂

)
+ imD1

[
1

k2r2
ŵ

]
+ 2im

[
D2

(
1

k2r2
ŵ

)
− D1

[
1

r2
D1

(
1

k2

)
ŵ

]]
+

−k2v̂ − 2
im

r2
ŵ

}
−iα

[
D1D∗

(
1

k2
ûv

)
− D1

(
D1

(
1

k2
ûv

))]
−im

[
D2

(
1

rk2
v̂w

)
+

+3D1

(
1

r2k2
v̂w

)
− D1

(
1

r
D1

(
1

k2

)
v̂w

)]
+D1

[
1

k2

(
α2û2 + 2

αm

r
ûw +

m2

r2
ŵ2

)]
+

− iαûv − D1(v̂
2) −

im

r
v̂w −

1

r
v̂2 +

1

r
ŵ2; (31)

∂η̂

∂t
=

1

Re

{
D1D∗(η̂) − k2η̂ + 2im

[
D1

(
1

r2
û

)
+ 2

û

r3
−

iα

r2
v̂

]}
− im

[
iα

r
û2+

D1

(
ûv

r

)
+

2

r2
ûv +

im

r2
ûw

]
+ iα

[
iαûw + D1 (v̂w) +

im

r
ŵ2 +

2

r
v̂w

]
; (32)

Though of complicated appeareance, these equations can be solved by employing again
most f the numerical tools developed for the cartesian case.As a consequence, only a few
lines of the cylindrical source code are different from its cartesian counterpart.

It is important to note that this procedure introduce additional coefficients, which are
function both of the radial coordinate directly and/or via the wavenumbers: one of the
simplest among them isD1(1/k(r)2). With some overhead in CPU time these coefficients
can be computed on the fly during the execution of the program;alternatively, they can be
precomputed once at the beginning at the expense of some memory space, if the available
storage allows.

7.4. Calculation of the finite-difference coefficients

Six finite-differences groups of coefficients must be computed. Besidesdj
0, dj

1 anddj
2

we introduce the following three sets of coefficients:

D∗ (f(y))|y=yj
=

2∑

i=−2

dj
∗
(i)f(yj+i)

D1D∗ (f(y))|y=yj
=

2∑

i=−2

dj
1∗(i)f(yj+i)
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D1D∗D1D∗ (f(y))|y=yj
=

2∑

i=−2

dj
1∗1∗(i)f(yj+i)

The actual calculation of the FD operators at fourth order accuracy on a five point stencil
centered atrj can still be perfomed in the way described in§3.3, since the only form
in which the fourth derivative enters the equations is through the operatorD1D∗D1D∗.
Thus, given a set of polynomialstm(r) of increasing degree in the independent variabler,
the corresponding derivativeDD∗DD∗(t) can be computed analitically and evaluated at
r = rj . A 10× 10 linear system yielding the coefficients of the FD operatorsdj

1∗1∗ anddj
0

follows from the condition that:

dj
1∗1∗ (tm) − d0 (D1D∗D1D∗ (tm)) = 0.

The normalization condition (16) still gives a relation among the five coefficientsd0, so
that nine additional conditions are needed, and polynomials fromm = 0 up tom = 8 have
to be considered. The10 × 10 system cannot be decoupled into two smaller systems, and
must now be solved at once. The remaining coefficients are then computed in analogy to
the cartesian case.

7.5. The spatial resolution in the azimuthal direction
The cylindrical coordinate system presents the general problem that the azimuthal exten-

sionLθ of the computational domain decreases with the radial coordinate; if the necessary
spatial resolution (for example the number of Fourier modes, or the collocation points in
a finite-difference calculation) is set up based on the most demanding region of the flow
field, i.e. the outer wall, then the spatial resolution becomes unnecessarily high when the
inner wall is approached. This not only implies a waste of computational resources, but
might also induce numerical stability problems.

To overcome this difficulty, we have made the truncation of the azimuthal Fourier series
a function of the radial position. Whereas in a collocation approach changing the resolution
with the radial coordinate would involve multiple interpolations and numerical diffusion,
in a spectral representation dropping a few Fourier modes atthe high end of the spectrum
is a smooth operation, which does not induce any spatially localized error.

Instead of the expansion (30), we use the following representation for the variable, e.g.
v:

v(x, θ, r, t) =

+nx/2∑

h=−nx/2

+Nθ(r)/2∑

ℓ=−Nθ(r)/2

v̂hℓ(r, t)e
iαxeimθ

where, thanks to the intrinsic smoothness of the Fourier series, the number of modes in
the azimuthal direction can be an arbitrary functionNθ(r) of the radial coordinate. The
simplest and most natural choice for the functionNθ(r) is a linear function from a maximum
Nθ,max atr = Ro down to a minimumNθ,min atr = Ri, with Nθ,max andNθ,min being
proportional to the outer and inner radii themselves so as tokeep the same spatial resolution
throughout the domain.

This is equivalent to assuming that the Fourier modesv̂hℓ with |ℓ| ≤ Nθ,min are defined
through the whole annular gap, i.e. forRi ≤ r ≤ Ro, while any modêvhℓ with Nθ,min <

|ℓ| ≤ Nθ,max only exists forr(ℓ) < r < Ro, wherer(ℓ) is a suitable radial position,
function of the indexℓ, intermediate between the two walls. These modes are assumed to
become zero at the lower end of this interval, just as all modes beyondNθ,max implicitly are
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FIG. 9. XXX WRONG FIGURE!! Distribution Radial positionrj(ℓ)below which the azimuthal wavenumber
m = 2π/Lθ is assumed to be zero, as a function of the integer indexℓ. Ri = 2, Ro = 4, Nθ,min = 160 and
Nθ,max = 320. This example corresponds to a radial discretization withNr = 128, and a non uniform mesh
with a hyperbolic tangent law.

everywhere, and the necessary boundary conditions for their governing radial differential
equation are thus provided.

From the point of view of computer programming, a comb array of Fourier coefficients
whose number varies withℓ (and possiblyh too, even if this feature is not presently used)
has been implemented through a suitable memory management,where a two-dimensional
array of pointers is used to reference variable-sized one-dimensional arrays, each of which
stores all and only the nonzero coefficients in a radial line,from r = Ro down tor(ℓ). This
procedure reduces the computational cost of DNS in cylindrical geometry with significant
curvature, thanks to the reduction in the number of active Fourier modes, and at the same
time to avoid the numerical stability problems which could otherwise derive from an
overfine resolution of the innermost region. Fig. 9 providesan example of the change of
the lower dimension of the arrays as a function of the integerindexℓ corresponding to the
azimuthal wavenumber. It can be seen that the lower wavenumbers, namely|ℓ| < 80, are
defined throughout the whole channel, i.e. forj ≥ 0. Conversely the highest spanwise
wavenumberℓ = ±160 is defined only very near to the outer wall atr = Ro.

7.6. Performance
The cylindrical version of the computer code shares with itscartesian counterpart the

basic structure, as well as the high computational efficiency when executed in serial or
parallel mode. The differences in source code are actually very limited, allowing us to
re-use most of the numerical routines. The performance evaluation made in§5.1 for the
cartesian code thus applies here too, in particular concerning the properties of the PLS
parallel method. For a problem of the same computational size, the CPU overhead of the
cylindrical version compared to the cartesian case is approximately 40%. Pre-computing
ther-dependent coefficients increases memory requirements by about 13%.

8. CONCLUSIONS
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In this paper we have given a detailed description of a numerical method suitable for
the parallel direct numerical simulation of incompressible wall turbulence, and capable of
achieving high efficiency by using commodity hardware. The method can be used when
the governing equations are written either in cartesian or in cylindrical coordinates.

The key point in its design is the choice of compact finite differences of fourth-order
accuracy for the discretization of the wall-normal direction. The use of finite differences
schemes, while retaining a large part of the accuracy enjoyed by spectral schemes, is crucial
to the development of the parallel strategy, which exploitsthe locality of the FD operators
to largely reduce the amount of inter-node communication. Finite differences are also key
to the implementation of a memory-efficient time integration procedure, which permits
a minimal storage space of 5 variables per point, compared tothe commonly reported
minimum of 7 variables per point. This significant saving is available in the present case
too, the use of compact schemes notwithstanding, since theycan be written in explicit form,
leveraging the missing third derivative in the governing equations.

The formulation of the cylindrical Navier–Stokes equations in terms of radial velocity
and radial vorticity has allowed us to solve them numerically with high computational
efficiency, employing numerical techniques already developed for the cartesian geometry
and writing a computer code which shares the basic structurewith the cartesian version.
The problem of the radial resolution, which varies withr in cylindrical coordinates, has
been circumvented by adopting a representation of the flow variables with finite Fourier
series whose number of modes depends on the radial coordinate itself. This procedure is
promising for future works employing the cylindrical coordinate system.

The parallel method described in this paper, based on the pipelined solution of the
linear systems (PLS) arising from the discretization of theviscous terms, achieves its best
performance on systems where the number of computing nodes is significantly smaller than
the number of points in the wall-normal direction. This limitation is not essential however,
and it can be removed at the expense of an additional, small amount of communication in
the calculation of the non-linear terms of the Navier-Stokes equations. The global transpose
of the data, which constrains DNS codes to run on machines with very large networking
bandwidth, is avoided anyway.

The computing effort, as well as the required memory space, can be efficiently subdivided
among a number of low-cost computing nodes. Moreover, the distribution of data in wall-
parallel slices allows us to exploit a particular, efficientand at the same time cost-effective
connection topology, where the computing machines are connected to each other in a ring.

A dedicated system can be easily built, using commodity hardware and hence at low cost,
to run a computer code based on the PLS method. Such a system grants high availability
and throughput, as well as ease in expanding/upgrading. It is our opinion that the concept of
Personal Supercomputer can be successful: such a specialized system, yet built with mass-
market components, can be fully dedicated to a single research group or even to a single
researcher, rather than being shared among multiple users through a queueing system. The
smaller investment, together with additional advantages like reduced power consumption
and heat production, minimal floor space occupation, etc, allows the user to have dedicated
access to the machine for unlimited time, thus achieving thehighest throughput.

The sole significant difference performance-wise between such a system and a real
supercomputer lies in the networking hardware, which offers significantly larger bandwidth
and better latency characteristics in the latter case. However the negative effects of this
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difference are not felt when the present parallel algorithmis employed, since the need for
a large amount of communication is removeda priori, thanks to the algorithm itself.
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APPENDIX A

Design, installation and configuration of a Personal Supercomputer
The focus of the numerical method presented in this paper hasbeen towards its use

on a low-cost computing machine. Here we describe how to install and configure such a
machine, schematically illustrated in figure 4, and made by acertain number of desktop
Personal Computers.

The main ingredient to the machine is thecomputing node. This is a general-purpose
PC, where the Unix operating system is installed. We have always used the Debian/Gnu
Linux distribution, but any Unix flavour will do the job. To decide the most cost-effective
configuration of a node, two main options have to be evaluated. The first one is the size of the
case: 1U cases require much more expensive hardware components, but allow a significant
saving in floor space compared to the standard desktop cases (tower or minitower). The
second one is to decide whether one or more CPU are installed.With the present market
situation, and given the SMP parallel speedup achievable, the use of a second CPU is
advantageous in terms of ratio cost/benefit. This may changein the future, but presently
the cost increase due to the second CPU (and the more expensive SMP motherboard) is
smaller than the SMP speedup achievable (which is in the range 1.7–1.8, independent upon
the number of nodes). This leaves us with the added advantagethat the number of nodes
for a given budget is smaller, thus allowing a larger fraction of the peak computing power
to be reached (see for example fig. 5).

The choice of theCPU typeis, by and large, a matter of taste, since commodity processors
are very near each other when evaluated with the ratio between floating-point performance
and unit price. The choice of theCPU speedcan be conveniently made by looking for the
kink in the price-performance curve at the time of buying: the most recent, faster processors
are far more expensive, since peak power is a premium in general. In the present context,
however, we can buy a certain amount of computing power by deciding the speed of the
computing nodes and the number of nodes. More precise indications cannot be given, given
the etreme volatily of the market situation.

Particular attention must be paid to the mainboard specifications, (like bus speed, band-
width, etc), since memory access is the real limiting factorof the simulation.

The amount ofdiskspace to be installed on each machine is not relevant, one could also
go with diskless nodes, or with nodes where the system is run from a live CD, and certainly
there is no need of SCSI or high-performance disks. In general, cheap and relatively small
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EIDE disks installed on every machine has been for us a perfect choice, as long as a single
disk is able to store the whole dataset pertaining to the sameproject. The machines need
one disk mounted in such a way as to be shared among the other nodes with a networked
file system, like NFS or the like. Performance of the network-mounted disk too is typically
not critical, since during the computations the disk is accessed only to read the initial file,
to write flow fields periodically and to (over)write the restart file. Our strategy has been
most often to store datasets on the network-mounted disk, and to move them to the local
(empty) disk of another node as soon as the free space reaches30% or so of the capacity.

For special cases where a large database has to be built, or when the number of nodes
becomes very large, poor NFS performance may become a bottleneck. To increase perfor-
mance, as well as to avoid cache problems, we mount the NFS volumes with the following
options in the/etc/fstab file: soft,rsize=8192,wsize=8192,noac. In extreme
cases, another viable option is to use a distributed i/o, i.e. each node writes to its local
disk. This is very easy and gives maximum performance, but itrequires a distributed post-
processing of the databases, or the availability of a very large storage space for centralized
post-processing.

The amount ofmemoryto install on each node must not be very large, since the global
memory requirements of the simulations are subdivided among the nodes. In all of our
machines we have installed less than 1GB of memory. The optimal amount can be estimated
from the size of the largest simulation affordable, which inturn depends mainly on the CPU
speed. As a rule of thumb, today (late 2004) the memory in MBytes can be comparable or
smaller than the CPU speed in GHz. In case of doubt, it is advisable to install a smaller
amount of memory, and subsequently add one stick of RAM to each node when needed. It
may be rewarding to fine-tune the memory configuration (accestime, latency, etc) in the
BIOS, since such large simulations are limited by memory bandwidth and in our experience
the computing time has been found to depend linearly upon memory performance.

Each node must have twonetwork cards. They are used to link the nodes each other in
a ring-like topology, without switch, as illustrated in Fig.4 for the case of 4 nodes. Getting
rid of the switch is something that should not be underestimated, since the switch can
result in a serious degradation in performance. Any Linux-supported network card will
do the job, but a preliminary check for full support even under heavy load in SMP mode
will potentially save troubles. Today Gigabit-Ethernet cards with a speed of 1000Mbit/s
are commonplace, and they can be efficently used at their fullbandwidth even when the
LAN (for example the departmental network) is cabled at lower speed, since the machines
communicate directly.

One of the nodes may have a slightly different configuration.This machine is typically
used with remote access from the network, so that a third NIC is needed on this special
machine. It may also be useful that it is assigned a public IP number with a registered
hostname. The other nodes can be set up to live on a private network, with IP numbers for
example in the 192.168.0.xx range.

The main node (see Fig.4) is configured as a standard, standalone machine, with one
of its 3 interfaces, say eth2, managing the connection to thelocal public network. It has
a registered hostname, saypublichost, corresponding to its public IP number assigned
from the relevant authority. Any machine, includingpublichost, is assigned a private IP
number, and a non-registered hostname which is made available to the others by copying
on any node the same, complete/etc/hosts file. It may be handy to assign the private
IPs serially, and to use a consistent host name: for example one machine may have IP
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192.168.0.02 and hostnamehost02. The same IP can be assigned to each of the two
network interfaces.

# Example /etc/hosts file

192.168.0.0 host00

192.168.0.1 host01

192.168.0.2 host02

192.168.0.3 host03

On each machine a routing table has to be set up. The minimal requirement is that
each machine is connectedpoint-to-pointwith the two neighbours. It is useful moreover
that each machine can reach any other machine, though with a series of hops through the
intermediate hosts. This is used when the program is started, and when results are written
to disk. The routing table for machinehost02 of Fig.4 is set up at boot by a script that (for
the Debian/Gnu Linux operating system) looks as follows:

# /etc/network/interfaces -- configuration file for ifup(8), ifdown(8)

auto eth0

iface eth0 inet static

address 192.168.0.102

netmask 255.255.255.255

pointopoint 192.168.0.101

up route add -host 192.168.0.100 gw 192.168.0.101

iface eth1 inet static

address 192.168.0.102

netmask 255.255.255.255

pointopoint 192.168.0.103

Of course the special machine with three interfaces will haveeth0 andeth1 configured
with the private IP 192.168.0.0, and the third interface configured with the registered IP,
with a default gateway on the local network.

Several variants of this simple example are possible, the larger complexity being balanced
by a possibly large number of computing nodes to be configured. It is also possible to
automate the process of creating the setup scripts by writing a short shell script.

With perhaps the exception ofpublichost, the other nodes are identical each other,
if exception is made for the two files/etc/hostname and/etc/network/interfaces.
This means that also automated processes of installing the system on the nodes can be
used when the number of nodes is large. We use the software suite systemimager. The
packages that have to be installed on the nodes are minimal. Bejond those needed for the
machine to boot and mount the NFS volume, we essentially add only the capability of
issuing and receiving SSH (or RSH) commands. For a small numer of nodes, each machine
can first have a standard installation, then the two files can be modified by hand and the
machine properly connected and rebooted.

Once the machine is up and running, it may be useful to have available a simple script
that takes a generic command as an argument, and executes it machine-wide, i.e. on each
node. The script can be run frompublichost or, depending on the installation policy,
from an external machine, and should look as follows:

#!/bin/bash

COMMAND="$@"
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for N in 0 1 2 3

do

echo "host0$N::"

ssh host0$N $COMMAND

done

Jobs can be run either from the externally-accessible nodepublichost, or from any other
host, possibly being not too far from the machine and with a decent network connection to
it. Of course the internal nodes too may work as submitting machines. We prefer however
not to access these nodes directly, since the implicit load-balancing of our SMP parallel
strategy, which is completely left to the kernel, assumes that machines are idle.

We run our code through another simple script, so that the only requirement is that the
nodes can be accessed throughssh. Our example script takes two arguments,$1 is the
working directory and$2 is the name of the executable to be launched. The commands
contained between “” are what is needed to run the DNS code. The script in its simplest
form is as follows:
ssh host03 "cd ~/$1; nohup ./$2 1 4 >& /dev/null &"

ssh host02 "cd ~/$1; nohup ./$2 2 4 host03 >& /dev/null &"

ssh host01 "cd ~/$1; nohup ./$2 3 4 host02 >& /dev/null &"

ssh host00 "cd ~/$1; nohup ./$2 4 4 host01 >& /dev/null &"

To have this script run a simple command, it is useful that thenodes can execute a com-
mand received via ssh from the submitting machines without requewst for password au-
thentication. This requires the public signature of the submitting machine, contained in the
file $HOME/.ssh/id dsa.pub, to be copied into the file$HOME/.ssh/authorized keys

of each node. This operation is very simple, inasmuch the home directory of the user(s) is
network-mounted. Thus, once a user is created in any node andits home directory resides
on a network-mounted volume, the public key has to be copied only once.

APPENDIX B

Structure of the computer code (cartesian version)
In the following the source code listing of the cartesian program is reported, to the

aim of giving a general idea of its structure. Only the serialversion is discussed: the
listing of the parallel version, as well as the source for thecylindrical program, can be
obtained by contacting the Authors. The differences between the serial and the parallel
codes are however minimal, and at the program-source level they concern only the strategy
for reading/writing results on disk. The inter-node communication is hidden behind the
routine which solves the linear systems, then there is no need to expose such details to the
user.

The program is written in CPL, a programming language (with related compiler) written
by Paolo Luchini. In a simple procedure, which is made transparent to the user by the
invokation of amake-like command, the CPL source is subjected first to a preprocessing
pass to generate an ANSI-C source, which is then compiled by any ANSI-compliant C
compiler. The meaning of CPL statements, keywords and programming structures can be
easily understood, since they are modeled after the most common programming languages.
The name of the variables in the source closely follow the symbolic names used in this
paper: for exapleoldrhs.eta stores the value of the right-hand-side of eq. (4) for the
wall-normal vorticity component at the previous time level.
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1 USE rtchecks
2 USE fft
3 USE rbmat
4

5 FILE dati= OPEN("dns.in")
6 ARRAY(0..21) OF CHAR input_file
7 INTEGER CONSTANT nx,ny,nz
8 REAL CONSTANT alfa0,beta0,htcoeff,ymax=2,ymin=0,t_max,dt_field,dt_save
9 REAL ni, meanpx=0, meanpz=0, meanflowx=0, meanflowz=0, deltat, time

10 READ BY NAME FROM dati input_file
11 READ BY NAME FROM dati nx,ny,nz,alfa0,beta0,htcoeff,ni
12 DO WHILE READ BY NAME FROM dati meanpx OR meanflowx OR meanpz OR meanflowz
13 READ BY NAME FROM dati deltat, t_max, dt_field, dt_save
14 WRITE BY NAME nx,ny,nz,2*PI/alfa0,2*PI/beta0,ni; ni=1/ni
15 WRITE BY NAME deltat,t_max,dt_field,dt_save
16 REAL y(−1..ny+1) !; DO y(i)=ymax*i/ny FOR ALL i
17 DO y(i)=ymin+tanh(htcoeff*(2*i/ny−1))/tanh(htcoeff) + 1 FOR ALL i 
18

19 STRUCTURE[ ARRAY(−2..2) OF REAL d0,d1,d2,d4] derivatives(1..ny−1)
20 ARRAY(−2..2) OF REAL d040,d140,d14m1, d04n,d14n,d24n,d14np1
21 MODULE setup_derivatives
22 REAL M(0..4,0..4),t(0..4)
23 LOOP FOR iy=1 TO ny−1 WITH derivatives(iy)
24   DO M(i,j)=(y(iy−2+j)−y(iy))**(4−i) FOR ALL i,j; LUdecomp M
25   t=0; t(0)=24
26   d4(−2+(*))=M\t
27   DO M(i,j)=(5−i)*(6−i)*(7−i)*(8−i)*(y(iy−2+j)−y(iy))**(4−i) FOR ALL i,j; L

Udecomp M
28   DO t(i)=SUM {d4(j)*(y(iy+j)−y(iy))**(8−i)} FOR ALL j FOR ALL i
29   d0(−2+(*))=M\t
30   DO M(i,j)=(y(iy−2+j)−y(iy))**(4−i) FOR ALL i,j; LUdecomp M
31   t=0; DO t(i)=SUM d0(j)*(4−i)*(3−i)*(y(iy+j)−y(iy))**(2−i) FOR ALL j FOR i

=0 TO 2
32   d2(−2+(*))=M\t
33   t=0; DO t(i)=SUM d0(j)*(4−i)*(y(iy+j)−y(iy))**(3−i) FOR ALL j FOR i=0 TO 

3
34   d1(−2+(*))=M\t
35 REPEAT
36 DO M(i,j)=(y(−1+j)−y(0))**(4−i) FOR ALL i,j; LUdecomp M
37 t=0; t(3)=1; d140(−2+(*))=M\t
38 DO M(i,j)=(y(−1+j)−y(−1))**(4−i) FOR ALL i,j; LUdecomp M
39 t=0; t(3)=1; d14m1(−2+(*))=M\t
40 d04n=0; d04n(1)=1; d040=0; d040(−1)=1
41 DO M(i,j)=(y(ny−3+j)−y(ny))**(4−i) FOR ALL i,j; LUdecomp M
42 t=0; t(3)=1; d14n(−2+(*))=M\t
43 t=0; t(2)=2; d24n(−2+(*))=M\t
44 DO M(i,j)=(y(ny−3+j)−y(ny+1))**(4−i) FOR ALL i,j; LUdecomp M
45 t=0; t(3)=1; d14np1(−2+(*))=M\t
46 END setup_derivatives
47   
48 INLINE REAL FUNCTION D0( REAL f(*)) = d0(−2)*f(−2)+d0(−1)*f(−1)+d0(0)*f(0)+d

0(1)*f(1)+d0(2)*f(2)
49 INLINE REAL FUNCTION D1( REAL f(*)) = d1(−2)*f(−2)+d1(−1)*f(−1)+d1(0)*f(0)+d

1(1)*f(1)+d1(2)*f(2)
50 INLINE REAL FUNCTION D2( REAL f(*)) = d2(−2)*f(−2)+d2(−1)*f(−1)+d2(0)*f(0)+d

2(1)*f(1)+d2(2)*f(2)
51 INLINE REAL FUNCTION D4( REAL f(*)) = d4(−2)*f(−2)+d4(−1)*f(−1)+d4(0)*f(0)+d

4(1)*f(1)+d4(2)*f(2)
52 INLINE COMPLEX FUNCTION D0( COMPLEX f(*))=D0(f. REAL)+I*D0(f. IMAG)
53 INLINE COMPLEX FUNCTION D1( COMPLEX f(*))=D1(f. REAL)+I*D1(f. IMAG)
54 INLINE COMPLEX FUNCTION D2( COMPLEX f(*))=D2(f. REAL)+I*D2(f. IMAG)
55 INLINE COMPLEX FUNCTION D4( COMPLEX f(*))=D4(f. REAL)+I*D4(f. IMAG)
56

57 REAL FUNCTION yintegr( REAL f(*))
58   RESULT=0
59   LOOP FOR iy=1 TO ny−1 BY 2 
60    yp1=y(iy+1)−y(iy); ym1=y(iy−1)−y(iy) 
61    a1=−1/3*ym1+1/6*yp1+1/6*yp1*yp1/ym1
62    a3=+1/3*yp1−1/6*ym1−1/6*ym1*ym1/yp1
63    a2=yp1−ym1−a1−a3
64    RESULT=~+a1*f(iy−1) + a2*f(iy) + a3*f(iy+1)    
65   REPEAT
66 END yintegr
67

68 VELOCITY=STRUCTURE( COMPLEX u,v,w)

69 MOMFLUX=STRUCTURE( COMPLEX uu,uv,vv,vw,ww,uw)
70 INTEGER nxd=3*nx DIV 2 − 1; DO INC nxd UNTIL FFTfit(nxd)
71 INTEGER nzd=3*nz − 1; DO INC nzd UNTIL FFTfit(nzd)
72 ARRAY(0..nxd−1,0..nzd−1) OF VELOCITY Vd
73 ARRAY(0..nxd−1,0..nzd−1) OF MOMFLUX VVd
74

75 SUBROUTINE convolutions( ARRAY(*,*) OF VELOCITY V; POINTER TO ARRAY(*,*) OF 
MOMFLUX VV)

76   Vd=0
77   LOOP FOR ix=0 TO nx
78     DO Vd(ix,iz)=V(ix,iz) FOR iz=0 TO nz
79     DO Vd(ix,nzd+iz)=V(ix,iz) FOR iz=−nz TO −1
80     WITH Vd(ix,*): IFT(u); IFT(v); IFT(w)
81   REPEAT LOOP  
82   DO WITH Vd(*,iz): RFT(u); RFT(v); RFT(w); FOR ALL iz
83   DO WITH Vd(ix,iz), VVd(ix,iz)
84     uu. REAL=u. REAL*u. REAL; uu. IMAG=u. IMAG*u. IMAG 
85     uv. REAL=u. REAL*v. REAL; uv. IMAG=u. IMAG*v. IMAG 
86     vv. REAL=v. REAL*v. REAL; vv. IMAG=v. IMAG*v. IMAG 
87     vw. REAL=v. REAL*w. REAL; vw. IMAG=v. IMAG*w. IMAG 
88     ww. REAL=w. REAL*w. REAL; ww. IMAG=w. IMAG*w. IMAG 
89     uw. REAL=u. REAL*w. REAL; uw. IMAG=u. IMAG*w. IMAG 
90   FOR ALL ix,iz
91   DO WITH VVd(*,iz): HFT(uu); HFT(uv); HFT(vv); HFT(vw); HFT(ww); HFT(uw) F

OR ALL iz
92   LOOP FOR ix=0 TO nx
93     WITH VVd(ix,*): FFT(uu); FFT(uv); FFT(vv); FFT(vw); FFT(ww); FFT(uw)
94     DO VV(ix,iz)=VVd(ix,iz) FOR iz=0 TO nz
95     DO VV(ix,iz)=VVd(ix,nzd+iz) FOR iz=−nz TO −1
96   REPEAT LOOP
97 END convolutions
98

99 maxtimelevels=1
100 rhstype= ARRAY(0..nx,−nz..nz) OF STRUCTURE( COMPLEX eta,D2v)
101 ARRAY(0..nx,−nz..nz,−1..ny+1) OF VELOCITY V=0
102 ARRAY(1..maxtimelevels,1..ny−1) OF rhstype oldrhs=0
103 ARRAY(−2..0) OF POINTER TO rhstype newrhs
104 DO newrhs(i) = NEW rhstype FOR ALL i
105 MOMFLUX VV(0..nx,−nz..nz,−2..2)
106

107 !READ BINARY FROM input_file V, oldrhs
108 DO WITH V(0,0,iy): u. REAL=1−[1−y(iy)]^2 FOR ALL iy
109

110 INLINE FUNCTION OS( INTEGER iy,i)=ni*[d4(i)−2*k2*d2(i)+k2*k2*d0(i)]
111 INLINE FUNCTION SQ( INTEGER iy,i)=ni*[d2(i)−k2*d0(i)]
112 SUBROUTINE buildrhs[ SUBROUTINE( COMPLEX rhs^,old^(*),unknown,implicit_part,e

xplicit_part) timescheme]
113 DO convolutions(V(*,*,iy),VV(*,*,iy)) FOR iy=−1 TO 2
114 LOOP FOR iy=1 TO ny−1
115   DO VV(ix,iz,i)=VV(ix,iz,i+1) FOR ALL ix,iz AND i=−2 TO 1
116   convolutions(V(*,*,iy+2),VV(*,*,2))
117   WITH derivatives(iy) LOOP FOR ALL ix AND ALL iz
118     ialfa=I*alfa0*ix; ibeta=I*beta0*iz
119     k2=(alfa0*ix)**2+(beta0*iz)**2
120     WITH VV(ix,iz,*), V(ix,iz,iy+(*)):
121     rhsu=−ialfa*D0(uu)−D1(uv)−ibeta*D0(uw)
122     rhsv=−ialfa*D0(uv)−D1(vv)−ibeta*D0(vw)
123     rhsw=−ialfa*D0(uw)−D1(vw)−ibeta*D0(ww)
124     D2vimpl = SUM OS(iy,i)*v(i) FOR i=−2 TO 2
125     timescheme{newrhs(0,ix,iz).D2v,oldrhs(*,iy,ix,iz).D2v,D2(v)−k2*D0(v),
126                D2vimpl,
127                ialfa*[ialfa*D1(uu)+D2(uv)+ibeta*D1(uw)]+
128                ibeta*[ialfa*D1(uw)+D2(vw)+ibeta*D1(ww)]−k2*rhsv}
129     IF ix=0 AND iz=0 THEN
130       ! u media conservata in eta.REAL e w media in eta.IMAG
131       timescheme{newrhs(0,0,0).eta,oldrhs(*,iy,0,0).eta,D0(u. REAL)+D0(w. REA

L)*I,
132                  ni*D2(u. REAL)+ni*D2(w. REAL)*I,
133                  rhsu. REAL+meanpx+[rhsw. REAL+meanpz]*I}
134     ELSE
135       etaimpl=SUM SQ(iy,i)*[ibeta*u(i)−ialfa*w(i)] FOR i=−2 TO 2
136       timescheme{newrhs(0,ix,iz).eta,oldrhs(*,iy,ix,iz).eta,ibeta*D0(u)−ial

fa*D0(w),
137                  etaimpl,
138                  ibeta*rhsu−ialfa*rhsw}
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139     END IF
140     V(ix,iz,iy−2).u=newrhs(−2,ix,iz).eta; V(ix,iz,iy−2).v=newrhs(−2,ix,iz).

D2v
141   REPEAT LOOP
142   temp=newrhs(−2); newrhs(−2)=newrhs(−1); newrhs(−1)=newrhs(0) ;newrhs(0)=t

emp
143 REPEAT LOOP
144 DO V(ix,iz,ny+i).u=newrhs(i,ix,iz).eta; V(ix,iz,ny+i).v=newrhs(i,ix,iz).D2v

 FOR ALL ix,iz AND i=−2 TO −1
145 END buildrhs
146

147 ARRAY(1..ny−1,−2..2) OF REAL D0mat, etamat, D2vmat
148 D0mat=derivatives.d0; LUdecomp D0mat
149 SUBROUTINE deriv( ARRAY(*) OF REAL f0,f1^)
150   f1(0)=SUM d140(i)*f0(1+i) FOR i=−2 TO 2
151   f1(−1)=SUM d14m1(i)*f0(1+i) FOR i=−2 TO 2
152   f1(ny)=SUM d14n(i)*f0(ny−1+i) FOR i=−2 TO 2
153   f1(ny+1)=SUM d14np1(i)*f0(ny−1+i) FOR i=−2 TO 2
154   DO WITH derivatives(i) f1(i)=D1(f0(i+(*))) FOR i=1 TO ny−1
155   WITH derivatives(1): f1(1)=~−(d0(−1)*f1(0)+d0(−2)*f1(−1))
156   WITH derivatives(2): f1(2)=~−d0(−2)*f1(0)
157   WITH derivatives(ny−1): f1(ny−1)=~−(d0(1)*f1(ny)+d0(2)*f1(ny+1))
158   WITH derivatives(ny−2): f1(ny−2)=~−d0(2)*f1(ny)
159   f1(1..ny−1)=D0mat\f1(1..ny−1)
160 END deriv
161  
162 ARRAY(−2..2) OF REAL v0bc,v0m1bc,vnbc,vnp1bc,eta0bc,eta0m1bc,etanbc,etanp1b

c
163 v0bc=d040; v0m1bc=d140; eta0bc=d040
164 vnbc=d04n; vnp1bc=d14n; etanbc=d04n
165 etanp1bc=derivatives(ny−1).d4
166 eta0m1bc=derivatives(1).d4
167 DO v0bc(i)=~−v0bc(−2)*v0m1bc(i)/v0m1bc(−2) FOR i= −1 TO 2
168 DO vnbc(i)=~−vnbc(2)*vnp1bc(i)/vnp1bc(2) FOR i= −2 TO 1
169 DO eta0bc(i)=~−eta0bc(−2)*eta0m1bc(i)/eta0m1bc(−2) FOR i= −1 TO 2
170 DO etanbc(i)=~−etanbc(2)*etanp1bc(i)/etanp1bc(2) FOR i= −2 TO 1
171 SUBROUTINE applybc_0( ARRAY(*) OF REAL eq^(*); ARRAY(*) OF REAL bc0,bc0m1; 
172                      COMPLEX rhs^(*), rhs0, rhs0m1)
173   DO eq(1,i)=~−eq(1,−2)*bc0m1(i)/bc0m1(−2) FOR i=−1 TO 2
174   DO eq(1,i)=~−eq(1,−1)*bc0(i)/bc0(−1) FOR i=0 TO 2
175   DO eq(2,i−1)=~−eq(2,−2)*bc0(i)/bc0(−1) FOR i=0 TO 2
176   rhs(1)=~−eq(1,−2)*rhs0m1/bc0m1(−2)
177   rhs(1)=~−eq(1,−1)*rhs0/bc0(−1)
178   rhs(2)=~−eq(2,−2)*rhs0/bc0(−1)
179 END applybc_0
180 SUBROUTINE applybc_n( ARRAY(*) OF REAL eq^(*); ARRAY(*) OF REAL bcn,bcnp1; 
181                      COMPLEX rhs^(*), rhsn, rhsnp1)
182   DO eq(ny−1,i)=~−eq(ny−1,2)*bcnp1(i)/bcnp1(2) FOR i=−2 TO 1
183   DO eq(ny−1,i)=~−eq(ny−1,1)*bcn(i)/bcn(1) FOR i=−2 TO 0
184   DO eq(ny−2,i+1)=~−eq(ny−2,2)*bcn(i)/bcn(1) FOR i=−2 TO 0
185   rhs(ny−1)=~−eq(ny−1,2)*rhsnp1/bcnp1(2)
186   rhs(ny−1)=~−eq(ny−1,1)*rhsn/bcn(1)
187   rhs(ny−2)=~−eq(ny−2,2)*rhsn/bcn(1)
188 END applybc_n
189

190 SUBROUTINE linsolve( REAL lambda)
191 COMPLEX A0, B0, An, Bn
192 LOOP FOR ALL ix,iz
193   A0=0;An=A0; B0=0; Bn=0
194   A0=~−v0bc(−2)*B0/v0m1bc(−2); An=~−vnbc(2)*Bn/vnp1bc(2)
195

196   ialfa=I*alfa0*ix; ibeta=I*beta0*iz
197   k2=(alfa0*ix)**2+(beta0*iz)**2
198   LOOP FOR ALL iy,i WITH derivatives(iy)
199     D2vmat(iy,i)=lambda*[d2(i)−k2*d0(i)]−OS(iy,i)
200     etamat(iy,i)=lambda*d0(i)−SQ(iy,i) 
201   REPEAT
202   ! condizioni al contorno
203   applybc_0(D2vmat,v0bc,v0m1bc,V(ix,iz,*).v,A0,B0)
204   applybc_n(D2vmat,vnbc,vnp1bc,V(ix,iz,*).v,An,Bn)
205   applybc_0(etamat,eta0bc,eta0m1bc,V(ix,iz,*).u,0,0)
206   applybc_n(etamat,etanbc,etanp1bc,V(ix,iz,*).u,0,0)
207   LUdecomp D2vmat; LUdecomp etamat
208   WITH V(ix,iz,*):
209   v. REAL=D2vmat\v. REAL; v. IMAG=D2vmat\v. IMAG

210   v(0)=(A0−SUM v(1+i)*v0bc(i) FOR i=0 TO 2)/v0bc(−1)
211   v(−1)=(B0−SUM v(1+i)*v0m1bc(i) FOR i=−1 TO 2)/v0m1bc(−2)
212   v(ny)=(An−SUM v(ny−1+i)*vnbc(i) FOR i=−2 TO 0)/vnbc(1)
213   v(ny+1)=(Bn−SUM v(ny−1+i)*vnp1bc(i) FOR i=−2 TO 1)/vnp1bc(2)
214   u. REAL=etamat\u. REAL; u. IMAG=etamat\u. IMAG
215   u(0) =−(SUM u(1+i)*eta0bc(i) FOR i=0 TO 2)/eta0bc(−1)
216   u(−1)=−(SUM u(1+i)*eta0m1bc(i) FOR i=−1 TO 2)/eta0m1bc(−2)
217   u(ny)=−(SUM u(ny−1+i)*etanbc(i) FOR i=−2 TO 0)/etanbc(1)
218   u(ny+1)=−(SUM u(ny−1+i)*etanp1bc(i) FOR i=−2 TO 1)/etanp1bc(2)
219   IF ix=0 AND iz=0 THEN
220     IF ABS(meanflowx)>1E−10 THEN
221       REAL ucor(−1..ny+1); DO ucor(iy)=1 FOR ALL iy
222       ucor=etamat\ucor
223       ucor(0) =−(SUM ucor(1+i)*eta0bc(i) FOR i=0 TO 2)/eta0bc(−1)
224       ucor(−1)=−(SUM ucor(1+i)*eta0m1bc(i) FOR i=−1 TO 2)/eta0m1bc(−2)
225       ucor(ny)=−(SUM ucor(ny−1+i)*etanbc(i) FOR i=−2 TO 0)/etanbc(1)
226       ucor(ny+1)=−(SUM ucor(ny−1+i)*etanp1bc(i) FOR i=−2 TO 1)/etanp1bc(2)
227       V(0,0,*).u. REAL=~+(meanflowx−yintegr(V(0,0,*).u. REAL))/yintegr(ucor)*

ucor
228       V(0,0,*).w. REAL=~+(meanflowz−yintegr(V(0,0,*).w. REAL))/yintegr(ucor)*

ucor
229     END IF
230   ELSE
231     deriv(v. REAL,w. REAL)
232     deriv(v. IMAG,w. IMAG)
233     DO temp=(ialfa*w(iy)−ibeta*u(iy))/k2
234       w(iy)=(ibeta*w(iy)+ialfa*u(iy))/k2 
235       u(iy)=temp
236     FOR iy=−1 TO ny+1
237   END IF
238 REPEAT
239 END linsolve
240

241 SUBROUTINE simple( COMPLEX rhs^,old^(*),unkn,impl,expl)
242   rhs=unkn/deltat+expl
243 END simple
244 REAL CONSTANT simple_coeff=1
245 SUBROUTINE CN_AB( COMPLEX rhs^,old^(*),unkn,impl,expl)
246   rhs=2/deltat*unkn+impl+3*expl−old(1)
247   old(1)=expl
248 END CN_AB
249 CONSTANT INTEGER CN_AB_coeff=2
250

251 INTEGER cont=0
252 LOOP timeloop WHILE time < t_max−deltat/2
253 !  buildrhs(simple);  linsolve(simple_coeff/deltat)
254   buildrhs(CN_AB);   linsolve(CN_AB_coeff/deltat)
255   time=~+deltat
256

257   WRITE              time,SUM d140(i)*V(0,0,1+i).u. REAL FOR i=−2 TO 2, 
258                          −SUM d14n(i)*V(0,0,ny−1+i).u. REAL FOR i=−2 TO 2
259   IF FLOOR(time / dt_field) > FLOOR((time−deltat) / dt_field) THEN
260     cont=~+1; ARRAY(0..20) OF CHAR field_name
261     field_name = WRITE("field"cont".dat"); FILE field_file = CREATE(field_n

ame)
262     LOOP FOR iy=LO TO HI 
263       LOOP FOR ix=LO TO HI AND iz=LO TO HI WITH V(ix,iy,iz)
264         ialfa=I*alfa0*ix; ibeta=I*beta0*iz 
265         WRITE BINARY TO field_file v, ibeta*u−ialfa*w
266       REPEAT LOOP
267       WRITE BINARY TO field_file V(0,0,iy).u. REAL, V(0,0,iy).w
268     REPEAT LOOP
269   END IF
270

271   IF FLOOR(time / dt_save) > FLOOR((time−deltat) / dt_save) THEN
272     WRITE BINARY TO "dati.out" V, oldrhs
273   END IF
274 REPEAT timeloop
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The main parts of the code are as follows. There is first an introductory section, where
input data are read from the filedns.in to describe the simulation: parameters to define
the spatial discretization, and parameters specific to the simulation strategy (time step size
deltat, total integration timet max, etc). This section is for lines 5–17. Note that
the variablesnx andnz used in the program correspond to half the number of Fourier
modes, since the expansions go from-nx to nx and from-nz to nz. Note moreover (see
for example theARRAY dimensions in line 101) that the simmetry property of a complex
function which is the Fourier transform of a real function isexploited. Thus one half of
the Fourier coefficients (namely, the negative streamwise wavenumbers) does not need to
be explicitely computed and stored.

In the MODULE setup derivatives the finite-difference coefficients are computed
for the interior points, whereas in lines 36-46 specific coefficients at the two walls are
computed, based on non-centered stencils. For example the coefficientsd140 evaluate the
first derivative at IV order accuracy at the inner wall foriy=0, whereas thed14n do the same
job for the opposite wall atiy=ny. The wall-normal discretization is defined in lines 16 and
17, the easiest possibility of uniform mesh is commented out, while a hyperbolic-tangent
law is applied in line 17.

These coefficients are then used compactly in the remaining parts of the code thanks
to the functions defined in lines 48–55 and inlined for runtime efficiency. TheCOMPLEX
FUNCTIONs are defined viaREAL FUNCTIONs to help the compiler optimize the code better,
since in the C language the typeCOMPLEX does not exist.

The variables reside in the Fourier space, so that the unknowns are the Fourier coefficients
of expansions similar to (8). A typeVELOCITYmade by aSTRUCTURE of 3 complex numers
is introduced in line 68, and anARRAY(0..nx,-nz..nz,-1..ny+1) OF VELOCITY is
allocated in line 101.

TheSUBROUTINE convolutions performs the task of transforming the velocity com-
ponents in physical space, computing their products and transforming the results, of type
MOMFLUX, back in Fourier space. The aliasing error is removed by the 3/2 rule.

Perhaps the most important routine is theSUBROUTINE buildrhs, which assembles the
right-hand-side of Eqns. (9) and (10). One important observation is that the particular
explicit scheme for temporal integration to be used for the convective terms is not predeter-
mined, and can be easily changed. In fact the variabletimescheme appears in the calling
list of buildrhs (line 112). The actual invocation ofbuildrhs is shown at line 254 in side
the main temporal looptimeloop. In this example the used time scheme is Crank-Nicolson
and Adams-Bashfort, as defined in lines 245–249 bySUBROUTINE CN AB. The structure
of buildrhs is basically a main loop over they positions, to compute velocity products
with the pseudo-spectral method withinconvolutions, then build the spatial derivatives
of MOMFLUXes, and lastly assemble these quantities into the r.h.s. of the two equations.
Note the definition of theINLINE FUNCTIONs OS andSQ, standing for Orr-Sommerfeld
and SQuire, to define only once the parts of the equations (forv̂ and η̂ respectively) that
will be used again in the following implicit part.IF ix=0 AND iz=0 THEN, i.e. when
k2 = 0, the mean velocity profile in both the homogeneous directions is computed. Note
that the streamwise mean profile is stored inV(0,0,*).u.REAL and the spanwise profile
into V(0,0,*).u.IMAG: at this stage of thetimeloop, in fact,V.u stores the values of the
r.h.s. for theη equation.

So far, only points in the interior of the channel, i.e. for the index1 <= iy <= ny-1,
have been involved. In the second part of the time step, in theSUBROUTINE linsolve,
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the boundary points and the boundary conditions come into play. The linear systems
arising from the implicit time discretization of the viscous terms are solved, in a sequence
for each wavenumber pair. So, for each pair ofix and iz, the two system matrices
D2vmat andetamat are computed, also by taking advantage of the previously defined
INLINE FUNCTIONs OS and SQ. Then the boundary lines of the matrices (and of the
r.h.s.) are modified to account for the boundary conditions.This task is accomplished
by the routinesapplybc 0 andapplybc n, which allow for the most general form of the
boundary conditions. Then the system is solved, in line 209 for v̂ and in line 214 for̂η.
In the case the simulations are carried out at a constant flow rate, the actual flow rate and
the velocity profile for the required correction are computed in lines 221-226, and then the
correction is applied in lines 227 and 228 for both homogeneous components to achieve the
desired flowratemeanflowx and/ormeanflowz. Finally, thetimeloop is completed once
the Fourier components of the homogeneous velocity components are computed. This is
the only point in the whole code where actual derivatives have to be computed. This task
is left to theFUNCTION deriv (defined in lines 149–160 and then used in line 231–232),
which again acts on theREAL andIMAGinary parts of̂v separately, to the aim of improving
the optimizing efficiency of the compiler. It is only at this stage of thetimeloop that the
three fieldsu, v andw of theCOMPLEX ARRAY V actually contain the Fourier coefficients
of the velocity components.


