The numerical solution of the incompressible
Navier—Stokes equations on a low-cost, dedicated
parallel computer

Maurizio Quadrio

Dipartimento di Ingegneria Aerospaziale Politecnico dil&tio
Via La Masa 34, 20156 Milano, ltaly
maurizio.quadrio@polimi.it

and

Paolo Luchini

Dipartimento di Ingegneria Meccanica Unive&iti Salerno
via Ponte don Melillo, 84084 Fisciano (SA), Italy
luchini@unisa.it

A numerical method for the direct numerical simulation of the incomjinkesss
Navier—Stokes equations in rectangular and cylindrical geometriessemqiesl. The
method is designed for efficient shared-memory and distributed-myepaoallel
computing by using commodity hardware. A novel parallel strategy is imefeed
to minimize the amount of inter-node communication and by avoiding a global
transpose of the data. The method is based on Fourier expansions iontogédr
neous directions and fourth-order accurate, compact finite-differeschemes over
a variable-spacing mesh in the wall-normal direction. Thanks to the soralinu-
nication requirements, the computing machines can be connected eachvith
standard, low-cost network devices. The amount of physical medeployed to
each computing node can be minimal, since the global memory requiteren
subdivided amongst the computing machines. The layout of a simpleaded and
optimized computing system is described, and detailed instructions on hasv to a
semble, install and configure such computing system are given. Biedteucture
of a numerical code implementing the method is briefly discussed.

Key Words: Navier—Stokes equations, direct numerical simulation, parallel congputempact
finite differences

1. INTRODUCTION
The direct numerical simulation (DNS) of the Navier—Stokgsations for incompress-
ible fluids in geometrically simple, low-Reynolds numbeibient wall flows has become
in the last years a valuable tool for basic turbulence rebeldi6]. Among the most im-

portant such flows, one can mention turbulent plane chanmesfand boundary layers,
1

2 M. QUADRIO & P. LUCHINI

turbulent pipe flows, and flows in ducts with annular crossieas. The former naturally
call for the use of a cartesian coordinate system, while gndéd—Stokes equations written
in cylindrical coordinates are well suited for the numergiaulation of the latter.

The relevance of such flows is enormous, from the point of déwractical interest
and basic turbulence research, and a number of studies,ekised on the DNS of
the Navier—Stokes equations, concerning simple flows ites@n coordinates. Flows
which can be easily described in cylindrical coordinateskar no means less interesting;
the cylindrical pipe flow, for example, is one of the of the enstones in the study of
transition to turbulence and fully developed wall turbalfiows, since the pionieristic
experimental work by O.Reynolds [27]. Annular duct flowsypka role in important
engineering applications like axial, coaxial and annuts with and without swirl, and
bear speculative interest, since the effects of the trasewirvature can significantly affect
the mean flow and the low-order turbulence statistics, asenigally demonstrated first by
Neveset al[21]. The effects of streamwise curvature on the flow, désctifor example
in [7] and [18], are even more important; flows with high stneése curvature have been
only recently addressedd through DNS [20].

Despite their practical relevance, turbulent flows in pipad circular ducts have not
been studied so deeply through DNS as their planar coumtsrpahis can be at least
partially ascribed to the numerical difficulties assodatéth the cylindrical coordinate
system. The first DNS of turbulent pipe flow by Eggetsl[5] dates 7 years later than its
planar counterpart [10], and in the following years a liditeimber of papers has followed.
The turbulent flow in an annular duct has been only recenthukited for the first time
with a DNS by Quadrio and Luchini [25], by using a preliminasrsion of the cylindrical
numerical method described in this paper.

For the cartesian coordinate system, a very effective fatimn of the equations of
motion was presented almost 15 years ago by Kim, Moin & Mas¢t0], their widely-
referenced work on the DNS of turbulent plane channel flowis Térmulation has since
then been employed in many of the DNSs of turbulent wall flawglanar geometries. It
consists in the replacement of the continuity and momentguatons written in primi-
tive variables with two scalar equations, one (second+difde the normal component of
vorticity and one (fourth-order) for the normal componehtvelocity, much as the Orr—
Sommerfeld and Squire decomposition of linear stabilighpems. In this way pressure
disappears from the equations, and the two wall-parallielcity components are easily
computed through the solution of2ax 2 algebraic system (a cheap procedure from a
computational point of view), when a Fourier expansion ispdd for the homogeneous
directions. A high computational efficiency can thus be eebil. This particular for-
mulation of the Navier—Stokes equation does not call for pasticular choice for the
discretization of the differential operators in the wadlrmal direction. Many researchers
have used spectral methods (mainly Chebyshev polynoniieth)s direction too, even if
in more recent years the use of finite difference schemesgeaisggowing popularity [16].

The extension of the efficient cartesian formulation to tyladrical case is not obvious.
Most of the existing numerical studies of turbulent flow idimgirical coordinates write
the governing equations in primitive variables, and usé eadifferent numerical method:
they range from second-order finite-difference schemes t@2inite volumes [28] to
complex spectral multi-domain techniques (as in [13] arfa])[1but most often remain
within the pressure-correction approach. The work [21] véset alis based on a
spectral discretization, but calculation of pressureilisrgteded for the numerical solution

LOW-COST PARALLEL DNS OF TURBULENCE 3

of the equations. Moser, Moin & Leonard in [19] presented &hoe based on a spectral
expansion of the flow variables which inherently satisfiesttbundary conditions and the
continuity equations; this method has been subsequergly ins[18] for the simulation
of the turbulent flow over a wall with mild streamwise curvau They indicate that the
computational cost of the cylindrical solver is signifidgutitigher than that for the cartesian
case, for a given number of degrees of freedom.

The use of cylindrical coordinates is particularly hampdrg the unwanted increase of
the azimuthal resolution of the computational domain widlcréasing radial coordinate.
This is the main reason why DNS of the turbulent flow in an aanpipe has proven to be
so difficult. The transversal resolution of DNS calculatios known to be crucial for the
reliability of the computed turbulence statistics, esplygin the near-wall region. If the
azimuthal resolution is set according to the needs of theraagion of the computational
domain, a waste of computational resources and potersdiailisy problems are determined
when the inner region is approached. If, on the other harelsgiatial discretization is
adapted to the inner region, the turbulent scales are gitadess and less resolved in the
azimuthal direction when the inner region is approached.

XXX CHECK In this paper we describe a numerical method desigior the DNS of
turbulent wall flows both in cartesian and cylindrical cdoates. It can take advantage of
parallel computing and works well on commodity hardwaree fibmerical method for the
cartesian coordinate system solves the equations in thedescribed in [10] and recalled
in §2. We will illustrate in§3 the main properties of the scheme concerning spatial and
temporal discretization, as well as the use of compact,-bigler finite differences for the
wall-normal direction. The parallel strategy will be dissed ing4. A dedicated, low-cost
computing machine, specialized to run efficiently a compatele based on this method,
will be described ig5. We call this machine a Personal Supercomputer, sinceasgi
the user perhaps less peak computing power when compareeab supercomputer, but
allows him to achieve a larger throughput, on a time scale&pf a research work.

The closely related method for the cylindrical coordingtgtem is then presented. First
in §6 the governing equations for radial velocity and radialtietty are worked out in a
form suitable to keep the very same structure of the canteside. Numerical issues will
be addressed if7, by emphasizing the differences with the cartesian caseretwer,
in §7.5 a strategy for avoiding the unnecessary clustering whthal resolution near
the inner wall is introduces. While no particular difficulty foreseen, we have not yet
managed to consider the axis singularity, so that the cyiiaticode can presently run only
for geometries with an inner wall.

Further details are given in the Appendices. In Appendix é tiain steps to design,
install and configure a Personal Supercomputer are givemthdtuinformation can be
requested from the Authors. In Appendix B the basic struofi@computer code which
implements the numerical method described herein is digcljséimited to the serial version
of the cartesian code.

2. CARTESIAN COORDINATES: THE GOVERNING EQUATIONS

In this Section we recall the derivation of the equations otion for the wall-normal
velocity and wall-normal vorticity, as illustrated in [10ln §6 the same formulation will
be extended to cylindrical coordinates.

2.1. Problem definition

4 M. QUADRIO & P. LUCHINI

5
flow
| 2%
Yy,v
La /
T, U
Z,w

FIG. 1. Sketch of the computational domain for the cartesian cootelisigstem.

The cartesian coordinate system is illustrated in figureHgre a sketch of an indefinite
plane channel is shownz, y and z denote the streamwise, wall-normal and spanwise
coordinates, and, v andw the respective components of the velocity vector. The flow
is assumed to be periodic in the streamwise and spanwisgtidits. The lower wall is at

positiony, and the upper wall at positiapn,. The reference lengthis taken to be one half
of the channel height:

Yu — Ye
(5:
2

Once an appropriate reference veloditys chosen, a Reynolds number can be defined
as:

_Uo
=
wherev is the kinematic viscosity of the fluid.
The non-dimensional Navier—Stokes equations for an incesgible fluid in cartesian
coordinates can then be written as:

Re

ou Ov Ow
R _ _— = M l
Ox * Oy * 0z 0 @)

U + Vo F W = — o + — V3 (2a)
x e

ov ov ov v Op 1y
ot T Ty T8, T oy TReY Y (2b)

8—w+ua—w+va—w+wa—w——%+i
ot Ox Jy dz 0z Re

The differential problem is closed when an initial conditifor all the fluid variables is
specified, and suitable boundary conditions are chosenheAwvall the no-slip condition
is physically meaningful. Periodic boundary conditions asually employed in the and
z directions, where either the problem is homogeneous inpatllel planes, or a fringe-
region technique [1] is adopted to address a non-homogengmblem. See however
[26] for a critical discussion of the subject. Once the paigiy assumption is made for

V2uw. (2¢)

LOW-COST PARALLEL DNS OF TURBULENCE 5

both the streamwise and spanwise directions, the equaifanstion can be conveniently
Fourier-transformed along theandz coordinates.

2.2. Equation for the wall-normal vorticity component
The wall-normal component of the vorticity vector, which sleall indicate withn, is
defined as
ou Ow
9z oz’
and after transforming in Fourier space it is given by:

i = i — i, 3)

where the hat indicates Fourier-transformed quantitigs,the imaginary unit, and the
symbolsa andg respectively denote the streamwise and spanwise wave msndene-
dimensional second-order evolutive equationffavhich does not involve pressure can be
easily written, following for example [10], by taking thecomponent of the curl of the
momentum equation, obtaining:

on 1

At Re

In this equation,D, denotes the second derivative in the wall-normal diregtién=
a? + (42, and the nonlinear terms are grouped in the following déding:

(D2() — k*7) + iBHU — ia HW. 4)

HU = iawi + Dy (ud) + iBuw; (5a)
HV = iauv + D (00) + iBow; (5b)
HW = icio + Ds (0) + ifww. (5¢)

The numerical solution of equation (4) requires an init@hdition for7, which can be
computed from the initial condition for the velocity fieldh& periodic boundary conditions
in the homogeneous directions are automatically satidfigaks to the Fourier expansions,
whereas the no-slip condition for the velocity vector ttates in7; = 0 to be imposed at
the two walls aty = y, andy = y,,.

2.3. Equation for the wall-normal velocity component
An equation for the wall-normal velocity componéntvhich does not involve pressure,
is derived in [10] by summing (2a) derived two times w.t:tandy, and (2c) derived two
times w.r.t. y and z, then subtracting (2b) derived w.r.k: andz and substracting once
again after derivation w.r.tz andz. Further simplifications are obtained by invoking the
continuity equation to cancel some terms, eventually abtgithe following fourth-order
evolutive equation fof:

0 N 2 1 . 9 .
g (D2 (0) — k*0) = Re (D4 (d) — 2k*Do(9) + k*0) +

_K2HV - D, (mﬁﬁ' n zﬂﬁﬁ/) . (6)

This scalar equation can be solved numerically once amlmitindition fors is known.
The periodic boundary conditions in the homogeneous dinesaire automatically satisfied

6 M. QUADRIO & P. LUCHINI

thanks to the Fourier expansions, whereas the no-slip tondor the velocity vector
immediately translates it = 0 to be imposed at the two walls at= y, andy = y,,. The
continuity equation written at the two walls makes evidéat the additional two boundary
conditions required for the solution of the fourth-ordeuation (6) areD,(¢) = 0 at

y = ye andy = y,,.

2.4. Velocity components in the homogeneous directions

If the nonlinear terms are considered to be known, as is the wéden such terms are
treated explicitly in the time discretization, the two etjos (4) and (6) become uncoupled
and, after proper time discretization, can be solved foaading the solution by one time
step, provided the nonlinear terms (5a)-(5c¢) and theiialpderivatives can be calculated.
To this aim, one needs to know how to compfitandw at a given time starting with the
knowledge oft and#. By using the definition (4) of; and the continuity equation (1)
written in Fourier space, 2 x 2 algebraic system can be written for the unknovirrend
w; its analytical solution reads:

-5 (iaD1(0) — i)
. (7
i = b i + 8D, (8)

The present method therefore enjoys its highest computdtiefficiency only when
Fourier discretization is used in the homogeneous dinastio

2.4.1. Mean flow in the homogeneous directions

The preceding system (7) is singular wheh= 0. This is a consequence of having
obtained Eqgns. (4) and (6) from the initial differential & through a procedure involving
spatial derivatives.

Let us introduce a plane-average operator:

— 1 1 L, L,
f= . L. /0 /0 fdxdz
The space-averaged streamwise velogity u(y, t) is a function of wall-normal coor-
dinate and time only, and in Fourier space it correspondsed-burier mode fok = 0.
The same applites to the spanwise comporentVith the present choice of the reference
system, with the: axis aligned with the mean flow, the temporal averageisfthe stream-
wise mean velocity profile, whereas the temporal averagewill be zero throughout the
channel (within the limits of the temporal discretizatioifhis nevertheless allows at a
given time and at a given distance from the wall to be diffefeom zero.
Two additional equations must be written to calculatendw; they can be worked out
by applying the linear plane-average operator to the ratlm@mponents of the momentum
equation:

ou 1 - _
En = @Dz (@) — Dy (uv) + fa
ow 1

S = D2 (@ — D1 () + 1.

LOW-COST PARALLEL DNS OF TURBULENCE 7

In these expressiong, andf, are the forcing terms needed to force the flow through the
channel against the viscous resistence of the fluid. Forttearawise directionf, can be
an imposed mean pressure gradient, and in the simulatidiotheate through the channel
will oscillate in time around its mean valuef, can also be a time-dependent spatially
uniform pressure gradient, that has to be chosen in such ahaayhe flow rate remains
constant in time at an imposed. The same distinction apfaigse spanwise forcing term
f»: in this case however the imposed mean pressure gradiehe domposed mean flow
rate is zero, while the other quantity will be zero only afiere average.

3. CARTESIAN COORDINATES: THE NUMERICAL METHOD
In this Section the discretization of the continuous défaral problem is illustrated.
The spectral expansion in the homogeneous directions @datd approach, whereas the
finite-difference discretization of the wall-normal diten with explicit compact scheme
will be reported with some detail, as well as the temporatrdiszation that permits the
achievement of a substantial memory saving.

3.1. Spatial discretization in the homogeneous directions
The equations written in Fourier space readily call for apagsion of the unknown
functions in terms of truncated Fourier series in the homeges directions. For example
the wall-normal component of the velocity vector is represented as:

+nx/2 +nz/2

v(x, z,y,t) = Z Z 17hg(y,t)eiazewz (8)

h=—nz/2l=—nz/2

where:
= s 5=t
Hereh and/ are integer indexes corresponding to the streamwise amsvigdirection
respectively, andy andg, are the fundamental wavenumbers in these directions, define
in terms of the streamwise and spanwise lengths= 27/a¢ and L, = 2x /3, of
the computational domain. The computational parameteendby the streamwise and
spanwise lenght of the computational domdin,and L., and the truncation of the series,
nx andnz, must be chosen so as to miminize computational errors. §aia 6] for
details regarding the proper choice of a valud.gf
The numerical evaluation of the non linear terms in Eqns. a@) (6) would require
computationally expensive convolutions in Fourier spadéie same evaluation can be
performed efficiently by first transofrming the three Foudemponents of velocity back
in physical space, multiplyng them in all six possible paimbinations and eventually
retransforming the results into the Fourier space. Fasti€otlransform algorithms are
used to move from Fourier- to physical space and viceverga.aliasing error is removed
by expanding the number of modes by a factor of at least 3/@rbehe inverse Fourier
transforms, to avoid the introduction of spurious energyrithe high-frequency into the
low-frequency modes during the calculation.

(07

3.2. Time discretization
Time integration of the equations is performed by a paytiatiplicit method, imple-
mented in such a way as to reduce the memory requirementg abtie to a minimum,

8 M. QUADRIO & P. LUCHINI

by exploiting the finite-difference discretization of thalvnormal direction. The use of a
partially-implicit scheme is a common approach in DNS [18F explicit part of the equa-
tions can benefit from a higher-accuracy scheme, while tiglgy-limiting viscous part
is subjected to an implicit time advancement, thus religihre stability constraint on the
time-step size\t. Our preferred choice, following [17, 9], is to use an explicird-order,
low-storage Runge-Kutta method for the integration of tkglieit part of the equations,
and an implicit second-order Crank-Nicolson scheme is digethe implicit part. This
scheme has been anyway embedded in a modular coding impiinarthat allows us to
change the time-advancement scheme very easily withoetwite affecting the structure
of the code. In fact, we have a few other time-advancemerrseh built into the code for
testing purposes. Here we present the time-discretizesioreof Eqns. (4) and (6) for a
generic wavenumber pair and a generic two-levels schenbdaxplicitly-integrated part
coupled with the implicit Crank-Nicolson scheme:

A AN AN AN

A Re - (Dt - 82 Jl] =

>\ n
Atmﬁ R [Da(fihe) — k Uh/]

n—1

0 (iﬁQEHUM — iOéohHW}Lg) + f <iﬁofﬁ?]h[— iOéohﬁV}m) (9)

A)\ (Da(03) — K20y — Rl [D4(A}71L;r1) — 22Dy (i) + Ko =
A y N
At (D2 (0h) = K*07) + [(Bhe) — 2k D2 (0hy) + ko7] +

0 (—k2HVhe - D (iaohHUM + w‘)gﬁ[/hz»n N

§ (—k’2fn\/he - Dy (iaoh@heiﬁofﬁﬁ/he»n (10)

The three coefficients, and¢ define a particular time-advancement scheme. For the
simplest case of a 2nd-order Adams-Bashfort, for exampéehavel = 2, § = 3 and
E=—1.

The procedure to solve these discrete equations is madedagistinct steps. In the first
step, the RHSs corresponding to the explicitly-integratetis part have to be assembled. In
the representation (8), at a given time the Fourier coeffisief the variables are represented
at differenty positions; hence the velocity products can be computedtfiriverse/direct
FFT in wall-parallel planes. Their spatial derivatives #ren computed: spectral accu-
racy can be achieved for wall-parallel derivatives, wherts finite-differences compact
schemes described #3.3 are used in the wall-normal direction. These spatiavatves
are eventually combined with values of the RHS at previaus tevels. The wholg range
from one wall to the other must be considered.

The second step involves, for eaghi pair, the solution of a set of two ODEs, derived
from the implicitly integrated viscous terms, for which tRéIS is now known. A finite-
differences discretization of the wall-normal differexitbperators produces two real banded
matrices, in particular pentadiagonal matrices when aibtgtencil is used. The solution

of the resulting two linear systems givég,”" and o}/, and then the planar velocity

componentﬁﬂH andwzjl can be computed by solving system (7) for each wavenumber

pair. For eacha, 3 pair, the solution of the two ODESs requires the simultandmasvledge

LOW-COST PARALLEL DNS OF TURBULENCE 9

of their RHS in ally positions. The whole, 5 space must be considered. Inthe 3 —y
space the first step of this procedure proceeds per walllgiaptanes, while the second
one proceeds per wall-normal lines.

3.2.1. A memory-saving implementation

A memory-efficient implementation of the time integratiorogedure is possible, by
leveraging the finite-difference discretization of the maairmal derivative. As an example,
let us consider the following differential equation for thee-dimensional vectdr= f(y):

df

—=N({f)+A-f, (11)
dt

whereN denotes non-linear operationsfyrandA is the coefficient matrix which describes
the linear part. After time discretization of this genergiation, that has identical structure
to both ther) andv equations, the unknown at time level- 1 stems from the solution of

the linear system:
(A+ M) -f=g (12)

whereg is given by a linear combination (with suitable coefficiemtBich depend on

the particular time integration scheme and, in the case ofgB«utta methods, on the
particular sub-step too) df N (f) and A - f evaluated at time level and at a number of
previous time levels. The number of previous time levelsedels on the chosen explicit
scheme. For the present, low-storage Runge-Kutta schertyethe additional leveh — 1

is required.

The quantitiesf, N'(f) and A - f can be stored in distinct arrays, thus resulting in a
memory requirement of 7 variables per point for a two-leti@h® integration scheme. An
obvious, generally adopted optimization is the incremldnidd into the same array of the
linear combination of, NV (f) and A - f, as soon as the single addendum becomes available.
The RHS can then be efficiently stored in the arfaglirectly, thus easily reducing the
memory requirements down to 3 variables per point.

The additional optimization we are able to enforce hereesetin the finite-difference
discretization of the wall-normal derivatives. Referriimgour simple example, the incre-
mental build of the linear combination is performed conterapy to the computation of
N(f)andA - £, the result being stored into the same array which alreadiagwedf. The
finite-difference discretization ensures that, when dgalvith a giveny level, only a little
slice of values of, centered at the samelevel, is needed to compuf€(f). Hence just
a small additional memory space, of the same size of theilifierence stencil, must be
provided, and the global storage space reduces to two lesigbr point for the example
equation (11).

The structure of the time integration procedure implemeéimeour DNS code is sym-
bolically shown in the bottom chart of figure 2, and comparéth the standard approach,
illustrated in the top chart. Within the latter approachaimain loop over the wall-parallel
planes (integer indey) the velocity products are computed pseudo-spectrallly planar
FFT, their spatial derivatives are taken and the result entally stored in the three-
dimensional arrayl. After the loop has completed, the linear combinatiorf,afl and
A - f is assembled in a temporary two-dimensional anrdy, then combined into the
three-dimensional arrafywith the contribution from the previous time step, and evaly
stored in the three-dimensional arrakisold for later use. The RHS, which uses the
storage space of the unknown itself, permits now to solvditiear system which yields

10 M. QUADRIO & P. LUCHINI

j=1lny—1 ¢

v
| IFT/FFT |
!
nl = N(f)

rhs =af + nl +~vyA - f

'

f =60 rhs+ £ rhsold

'

rhsold = rhs

'

solve(A+ X[)f =f
‘ t=t+ At

'

1
IFT/FFT
1
rhs = of + BN (f) + vA - f
1
f =0rhs+ ¢ rhsold
1
rhsold = rhs
1

%

solve(A+ X)f =f
|

j=lny—1

t=t+ At

FIG. 2. Comparison between the standard implementation of a two-liewetadvancement scheme (top),
and the present, memory-efficient implementation (bottom).a¥es printed in bold require three-dimensional
storage space, while italics marks temporary variables wddohuse two-dimensional arrays. Greek letters denote
coefficients defining a particular time scheme. The preseneimehtation reduces the required memory space
for a single equation from 3 to 2 three-dimensional variables

LOW-COST PARALLEL DNS OF TURBULENCE 11

the unknown at the future time step, and the procedure is m@uiring storage space for
3 three-dimensional arrays.

The flow chart on the bottom of figure 2 illustrates the presgmroach. In the main
loop over wall-parallel planes, not only the non-lineanterare computed, but the RHS of
the linear system is assembled plane-by-plane and starectigliin the three-dimensional
arrayf, provided the value of the unknown in a small number of plgbeshen a 5-point
finite-difference stencil is employed) is conserved. As aMhthis procedure requires
only 2 three-dimensional arrays for each scalar equation.

3.3. High-accuracy compact, explicit finite-difference deemes
The discretization of the wall-normal derivativéd®,, D> and Dy, required for the
numerical solution of the present problem, is performeaubh finite difference (FD)
compact schemes [11] with fourth-order accuracy over a etatipnal molecule composed
by five arbitrarily spaced (with smooth stretching) gridmgei We indicate here with
d{(z‘),z’ = —2,...,2 the five coefficients discretizing the exact operafor over five
adjacent grid points centeredyt

2
Di(F@Dly=y, = D A6 (W4i)-

1=—2

The basic idea of compact schemes can be most easily unoltstahinking of a stan-
dard FD formula in Fourier space as a polynomial interpotatf a trascendent function,
with the degree of the polynomial corresponding to the fdmnder of accuracy of the FD
formula. Compact schemes improve the interpolation byaapy the polynomial with
a ratio of two polynomials, i.e. with a rational function. i$hobviously increases the
number of available coefficients, and moreover gives cootrer the behavior at infinity
(in frequency space) of the interpolant, whereas a polyabrécessarily diverges. This
allows a compact FD formula to approximate a differentiadmypor in a wider frequency
range, thus achieving resolution properties similar te¢hof spectral schemes [11].

Compact schemes are also known as implicit finite-diffeesrechemes, because they
typically require the inversion of a linear system for théuat calculation of a derivative
[11, 14]. Here we are able to use compact, fourth-order atelschemes at the cost of
explicit schemes, owing to the absence of the third-devieatperator from the equations
of motion. Thanks to this property, it is possible to find satl function approximations
for the required three FD operators, where the denomindttirecfunction is always the
same, as highlighted first in the original Gauss-JacksounrNmov compact formulation
exploited in his seminal work by Thomas [30], concerning tiienerical solution of the
Orr-Sommerfeld equations.

To illustrate Thomas’ method, let us consider an 4th-ordex-dimensional ordinary
differential equation, linear for simplicity, in the form:

Dy (asf) + D2 (azf) + D1 (a1 f) +aof =g, (13)

where the coefficients; = a;(y) are arbitrary functions of the independent variapland
g = g(y) isaknown RHS. Let us moreover suppose that a differentidaipr, for example
Dy, is approximated in frequency space as the ratio of two potyals, sayD, andDy.
Polynomials likeD, andD, have their counterpart in physical space, dpdndd, are the
corresponding FD operators. The key point is to imposedhdhe differential operators

12 M. QUADRIO & P. LUCHINI

appearing in the example equation (13) admit a representatich as the preceding one,
in which the polynomialD, at the denominator remaitise same
Eqg. (13) can thus be recast in the new, discretized form:

dy(asf) +da(aof)+ ... +di(arf) +do(aof) =do(g),

and this allows us to use explicit FD formulas, provided tiperatord, is applied to
the right-hand-side of our equations. The overhead relatdtie use of implicit finite
difference schemes disppears, while the advantage of higihgaccuracy compact schemes
is retained.

3.3.1. Calculation of the finite-difference coefficients

The actual computation of the coefficiemts d;, d2 andd, to obtain a formal accuracy
of order 4 descends from the requirement that the error ofltberete operatod4dgl
decreases with the step size according to a power law witdésged exponent4. In
practice, following a standard procedure in the theory afeR#pproximants [24], this can
be enforced by choosing a ggt of polynomials ofy of increasing degree:

tm(y) = Ly, y?, .y, (14)

by analytically calculating their derivativeB,(t,,), and by imposing that the discrete
equation:

d4 (tm) - dO (D4(tm)) =0 (15)

is verified for the nine polynomials from = 0 up tom = 8.

Our computational stencil contains 5 grid points, so thatthknown coefficients, and
d4 are 10. There is however a normalization condition, and wewrée the equations in
a form where for example:

2
> doli) =1. (16)
i=—2

The other 9 conditions are given by Egn. (15) evaluatedhio= 0,1,...8. We thus
can set up, for each distance from the wall,0ex 10 linear system which can be easily
solved for the unknown coefficients. The coefficients of teewdtives of lesser degree
are derived from analogous relations, leading to 5wo5 linear systems once thi's are
known. An additional further simplification is possible.n8é the polynomials (14) have
vanishingD, for m < 4, thanks to the normalization condition (16) th&@ x 10 system
can be split into twd x 5 subsystems, separately yielding the coefficielgtanddy.

Due to the turbulence anisotropy, the use of a mesh with blarisize in the wall-
normal direction is advantageous. The procedure outlibedeamust then be performed
numerically at eacly; station, but only at the very beginning of the computatiofbe
computer-based solution of the systems requires a nelgligdmputing time.

We end up with FD operators which are altogether fourth-ceideurate; the sole operator
Dy is discretized at sixth-order accuracy. As suggested ihdad [14], the use of all the
degrees of freedom for achieving the highest formal acgunaight not always be the
optimal choice. We have therefore attempted to discreffizeat fourth-order accuracy
only, and to spend the remaining degree of freedom to impiterspectral characteristics
of all the FD operators at the same time. Our search has shown hotvetao significant

LOW-COST PARALLEL DNS OF TURBULENCE 13

advantage can be achieved: the maximum of the errors cardbeaw only very slightly,
and - more important - this reduction does not carry over ¢écethtire frequency range.

The boundaries obviously require non-standard schemesdedigned to properly com-
pute derivatives at the wall. For the boundary points we wseaentered schemes, whose
coefficients are computed following the same approach astior points, thus preserv-
ing by construction the formal accuracy of the method. Nenedess the numerical error
contributed by the boundary presumably carries a higheghtéhan interior points, albeit
mitigated by the non-uniform discretization. A systematiedy of this error contribution
and of alternative more refined treatments of the bound@&pagoing work.

4. THE PARALLEL STRATEGY
In this Section the parallel strategy, hinge of our numémeathod, is described. It is
designed with the aim to minimizing the amount of commund@rgtso that commodity
network hardware can be used. The same strategy can be ubedcylindrical case.

4.1. Distributed-memory computers

If the calculations are to be executed in parallel jpbgomputing machines (nodes),
data necessarily reside on these nodes in a distributedenaaimd communication be-
tween nodes will take place. Our main design goal is to keeprélgquired amount of
communication to a minimum.

When a fully spectral discretization is employed, a trangjposof the whole dataset
across the computing nodes is needed every time the numngoicgion is advanced by
one time (sub)step when non-linear terms are evaluateds i$hilustrated for example
in the paper by Pelz [23], where parallel FFT algorithms aseubsed in reference to the
pseudo-spectral solution of the Navier—Stokes equati®ak shows that there are basically
two possibilities, i.e. using a distributed FFT algorithmaztually transposing the data,
and that they essentially require the same amount of conuatioin. The two methods
are found in [23] to perform, when suitably optimized, in amgarable manner, with the
distributed strategy running in slightly shorter times whesmall number of processors
is used, and the transpose-based method yielding an asyeafiyofaster behavior for
largep. The large amount of communication implies that very fastweking hardware
is needed to achieve good parallel performance, and tHisctd3NS to be carried out on
very expensive computers only.

Of course, when a FD discretization in thedirection is chosen instead of a spectral
one, it is conceivable to distribute the unknowns in wallgtlel slices and to carry out
the two-dimensional inverse/direct FFTs locally to eacltinm@e. Moreover, thanks to the
locality of the FD operators, the communication requireddmpute wall-normal spatial
derivatives of velocity products is fairly small, since aatansfer is needed only at the
interface between contiguous slices. The reason why tlategly has not been used so far
is simple: a transposition of the dataset seems just to hase thelayed to the second half
of the time step advancement procedure. Indeed, the liystgras which stem from the
discretization of the viscous terms require the inversidranded matrices, whose principal
dimension span the entire width of the channel, while daatored in wall-parallel slices.

A transpose of the whole flow field can be avoided however wiata are distributed in
slices parallel to the walls, with FD schemes being used &Fmormal derivatives. The ar-
rangement of the data across the machines is schematica¥iynsn figure 3: each machine
holds all the streamwise and spanwise wavenumbersyfpp contiguousy positions. As

14 M. QUADRIO & P. LUCHINI

wall

slice 4

slice 1

4 o wall

FIG. 3. Arrangement of data in wall-parallel slices across the cbhrior a parallel execution with = 4
computing nodes.

said, the planar FFTs do not require communication at alll-iiéamal derivatives needed
for the evaluation of the RHSs do require a small amount ofroanication at the interface
between contiguous slices. However, this communicationbsaavoided at all if, when
using a 5-point stencil, two boundary planes on each intstica side are duplicated on the
neighboring slice. This duplication is obviously a waste@fhputing time, and translates
into an increase of the actual size of the computationallpmbHowever, since the dupli-
cated planes a{p — 1), as long ap < ny this overhead is negligible. Wherbecomes
comparable towy, an alternative, slightly different procedure becomesveaient. This
alternative strategy is still in development at the presiemd.

The critical part of the procedure lies in the second halheftime-step advancement,
i.e. the solution of the set of two linear systems, one fohéad pair, and the recovery
of the planar velocity components: the necessary data ampdn to be spread over all
the p machines. It is relatively easy to avoid a global transpbgesolving each system
in a serial way across the machines: adopting a LU decomposition of ¢ém¢apliagonal,
distributed matrices, and a subsequent sweep of backistiiosts, only a few coefficients
at the interface between two neighboring nodes must benit¢tesl. The global amount of
communication remains very low and, at the same time, loealéen nearest neighbors
only. The problem here is obtaining a reasonably high parelffficiency: if a single
system had to be solved, the computing machines would wassé ahtheir time waiting
for the others to complete their task. In other words, with tptimistic assumption
of infinite communication speed, the total wall-clock timewld be simply equal to the
single-processor computing time.

The key observation to obtain high parallel performancéhé& the number of linear
systems to be solved at each time (sub)step is very large(ne+ 1)(nz + 1), which
is at leastl0* and sometimes much larger in typical DNS calculations [3hisTallows
the solution of the linear systems to be efficiently pipddires follows. When the LU
decomposition of the matrix of the system for a giviey¥ pair is performed (with a
standard Thomas algorithm adapted to pentadiagonal resyrithere is a first loop from
the top row of the matrix down to the bottom row (eliminatiohtbbe unknowns), and
then a second loop in the opposite direction (back-sultistity The machine owning the
first slice performs the elimination in the local part of thatnx, and then passes on the
boundary coefficients to the neighboring machine, whichtstts elimination. Instead of

LOW-COST PARALLEL DNS OF TURBULENCE 15

waiting for the elimination in thé, ¢ system matrices to be completed across the machines,
the first machine can now immediately start working on thelation in the matrix of

the following system, sak, ¢ + 1, and so on. After the elimination in the firssystems is
started, all the computing machines work at full speed. Achyonization is needed only

at the end of the elimination phase, and then the whole prwesthn be repeated for the
back-substitution phase.

Clearly this pipelined-linear-system (PLS) strategy Iwes an inter-node communica-
tion made by frequent sends and receives of small data Eakeically two lines of a
pentadiagonal matrix, or two elements of the RHS array). ®vtiie global amount of
transmitted data is very small, this poses a serious chg@lanout-of-the-box communica-
tion libraries, like MPI, which are known to incur in a sige#int overhead for very small
data packets. In fact, we have found unacceptably poor egioce when using MPI-type
libraries. On the other hand we have succeeded in devel@pirgffective implementa-
tion of inter-node communication using only the standasduwhctions provided by the C
library. Details of this alternative implementation atestrated ins5 and Appendix A.

4.2. Estimate of communication requirements
The amount of data which has to be exchanged by each machitiefadvancement of
the solution by one time step made by 3 Runge—Kutta substetted°’LS method can be
guantified as follows. The number of bytBg transmitted and received by each computing
node forp > 2 and in one complete time step is:

D, =3x8xnxxnzx38 =2112nx x nz

where 3 is the number of temporal substeps, 8 accounts fgte&-lvariables, and 88 is
the total number of scalar variables that are exchangedeaslibe interfaces for each
wavenumber pair (during solution of the linear systems anth® algebraic system to
computei andw). To quantify, in a simulation withz = ny = nz = 128 D,, amounts to
~ 276 MBIt of network traffic. Itis interesting to note th#, is linear in the total number
of Fourier modesiz x nz, but is independent upomy. Moreover, the amount of traffic
does not change whenincreases.

To appreaciate this estimate, we can also carry out the satinea¢e when a standard
parallel FFT, i.e. the transpose method, is used. In this tesamount of data (in bytes)
D; exchanged by each machine for the complete advancemenelynos step method is
as follows:

1
Di=3x8x(p—1)"C 3™y w18 = 648 2 _
p 2p p

nr X nz X ny

Again, the factors 3 and 8 account for the number of tempartadteps and the 8-bytes
variables respectively. Inthe whole process of computongtimear terms 9 scalars have to
be sent and received (3 velocity components before IFT amdiogity products after FFT);
for each wall-parallel plane, each machine must exchantpeaach of the othegs— 1 nodes
an amount ofiz x nz/p? grid cells, and the factds/2 corresponds to dealiasing in one
horizontal direction (th8,/2 expansion, and the subsequent removal of higher-wavenumbe
modes, in the other horizontal direction can be performést &#fansmission).

16 M. QUADRIO & P. LUCHINI

The ratio between the communication required by the trasesfpased method and the
PLS method can thus be written as:
Dt pP— 1
D= 0.307 o ny

p

which corresponds to the intuitive idea that the transpcasthad exchanges all the variables

it stores locally, whereas the PLS method only exchangesalllsnumber of wall-parallel
planes, independent ary andp. Moreover the ratid; /D,,, being proportional tay for

a givenp, is expected to increase with the Reynolds number of thelation, since so
does the number of points needed to discretize the wall-aldirection. More important,
when the transpose-based method is employed, the globairarabcommunication that
has to be managed by the switch increases with the numbengiwing machines and is
all-to-all rather than between nearest neighbors onlyhabits performance is expected
to degrade when a largeis used. This is perhaps the main advantage of the PLS garalle
strategy.

4.3. Shared-memory machines

The single computing node may be single-CPU or multi-CPUhmlatter case, it is
possible to exploit an additional and complementary palrattategy, which does not rely
on message-passing communication anymore, and takestageaof the fact that local
CPUs have direct access to the same, local memory space ré§s 8iat this is different
from using a message-passing strategy on a shared-memahineawhere the shared
memory simply becomes a faster transmission medium. Usuitipie CPUs on the same
memory space may yield an additional gain in computing tiatéhe only cost of having
the computing nodes equipped with more than one (typicalty) tCPUs. For example
the FFT of a whole plane from physical to Fourier-space ame-versa can be easily
parallelized this way, as well as the computing-intensi pf building up the RHS terms.
With SMP machines, high parallel efficiencies can be obthipdte easily by “forking”
new processes which read from and write to the same memocg sibee operating system
itself then handles the assignment of tasks to different€Rbd only task synchronization
is a concern at the programming level.

5. THE PERSONAL SUPERCOMPUTER

While a computer program based on the numerical method tescheretoforth can
be easily run on a general-purpose cluster of machines ecteh through a network in a
star topology with a switch, for maximum efficiency a dedéchtomputing system can be
specifically designed and built on top of the parallel altjon described above.

Atthe CPU level, the mass-marketed CPUs which are commounlyd today in desktop
systems are the perfect choice: their performance is cabjmto the computing power
of the single computing element of any supercomputer [43 faaction of the price. The
single computing node can hence be a standard desktop cemBMP mainboards with
two CPUs are very cheap and easily available.

The present PLS parallel strategy allows an important sfiog@tion in the connection
topology of the machines. Since the transposition of theletataset is avoided, commu-
nications are always of th@oint-to-pointtype; moreover, each computing machine needs
to exchange data with and only with two neighboring machomdg. This can be exploited
with a simple ring-like connection topology among the cotim@machines, sketched in

LOW-COST PARALLEL DNS OF TURBULENCE 17

Eth 0 CPUO Eth 1

CPU1

Eth 1 Eth O

cPuo
CPU1 CPU1

Eth 0 Eth 1

Eth 1 CPU1 Eth O

FIG. 4. Conceptual scheme of the connection topology for a computistes1 made by 4 nodes; one
machine may be connected to the local net through a switche gyktem has to be operated remotely.

figure 4, which replicates the logical exchange of inforimatnd the data structure previ-
ously illustrated in figure 3: each machine is connectedutiindwo network cards only to
the previous machine and to the next. The necessity of alsyifith the implied additional
latencies in the network path) is thus eliminated, in faviosimplicity, performance and
cost-effectiveness.

Concerning the transmission protocol, the simplest chieitte standard, error-corrected
TCP/IP protocol. We have estimated that on typical probleessthe overall benefits from
using a dedicated protocol (for example the GAMMA protocesctibed in [2]) would
be negligible: since the ratio between communication time& eomputing time is very
low, the improvements by using such a protocol are almodigiblg, and to be weighted
against the increase in complexity and decrease in pattabil

The simplest and fastest strategy we have devised for thencmigation type is to rely
directly on the standard networking services of the Unixrapeg system, i.e. sockets
(after all, message-passing libraries are socket-basatthe programming level, this
operation is very simple, since a socket is seen as a plato fileite into and to read from.
Using sockets allows us to take advantage easily and effigieithe advanced buffering
techniques incorporated in the management of the inpyudwtreams by the operating
system: after opening the socket once and for all, it is safficto write (read) data to
(from) the socket whenever they are available (needed) tlamaperating system itself
manages flushing the socket when its associated bufferlis\\g have found however
that for best performances the buffer size had to be empiriadjusted: for Fast Ethernet
hardware, the optimum has been found at the value of 800 sitgsficantly smaller than
the usual value (the Linux operating system defaults at 192

Inthe year 2001 we have built at Dipartimento di Ingegneeaospaziale del Politecnico
di Milano the first prototype of such a dedicated system, amsed of 8 SMP Personal
Computers. Each node is equipped with 2 Pentium 1ll 733MHUGRd 512MB of

18 M. QUADRIO & P. LUCHINI

133MHz SDRAM. The nodes are connected to each other by twapch®0OMBIts Fast
Ethernet cards. This machine is still heavily used todaghérmeanwhile, we have installed
in 2003 a second-generation machine, made by 10 SMP nodehk.nBde carries 2 Intel
Xeon 2.66 GHz CPU, and 512MB of 266 MHz SDRAM,; the interconaate two onboard
Gigabit Ethernet cards. In late 2004 the third, largest rimecntered production stage, at
Dipartimento di Ingegneria Meccanica dell’'Univegsdi Salerno. This machine is made
by 64 SMP nodes connected each other in a ring with two onb®ayabit ethernet. Eight
of the nodes carry a third PCI Gigabit Ethernet card, throulgich they are interconnected
with a switch, so that the number of hops between any two nisdesited below 5. Each
node is made by two AMD Opteron 1.6 GHz CPU, with 1GB of SDRAgtalled.

We call such machines Personal Supercomputers. The penfieerof our numerical
method used on these system is indeed comparable to thatipéecemputer. In addition,
such machines enjoy the advantages of a simple desktopréiSomputer: low cost
and easy upgrades, unlimited availability even to a singé,uow weight, noise and heat
production, small requirements of floor space, etc. Furdlegails and instructions to build
and configure such a machine can be found in Appendix B.

5.1. Summary of performance measurements

A thourough evaluation of the performance of the presenterigal method (referred
to as the PLS method in the following), as well as the perforweaof our Personal
Supercomputers when used with the present method, is oedtai the paper [12]. Here
we report only the main results from that paper.

The amount of required RAM is dictated by the number and tke sf the three-
dimensional arrays, and it is typically reported [10, 2%08)e no less thahnz x ny x nz
floating-point variables. Cases where RAM requirementssayeificantly higher are not
uncommon: for example in [6] a channel flow simulation1@8 x 65 x 128 reportedly
required 1.2GB of RAM, suggesting a memory occupation ayprately 18 times larger.

In our code all the traditional optimizations are employadd an additional saving
specific to the present method comes from the implementafidhe time advancement
procedure, discussed§B.2.1, which takes advantage of the finite-difference étszation
of the wall-normal derivatives. Thus our code requires a mgmspace ob nx x ny X
nz floating-point variables, plus workspace and two-dimemasi@rrays. For example a
simulation withnz = ny = nz = 128 takes only 94 MBytes of RAM (using 64-bit
floating-point variables).

In a parallel run the memory requirement can be subdividedngnthe computing
machines. Witlp = 2 the samel28® case runs with 53 MBytes of RAM (note that the
amount of RAM is slightly larger than one half of the= 1 case, due to the aforementioned
duplication of boundary planes). The system as a whole finerallows the simulation of
turbulence problems of very large computational size evigin avrelatively small amount
of RAM deployed in each node. A problem with computationaésif4003 would easily
fit into our 8 nodes equipped with 512MB RAM each.

As far as CPU efficiency is concerned, without special ogtittion thel28? test case
mentioned above requires 42.8 CPU seconds for the compuitattia full three-sub-steps
Runge-Kutta temporal step on a single Pentium Il 733MHzpssor. Internal timings
show that the direct/inverse two-dimensional FFT routiae the largest part of the CPU
time, namely 56%. The calculation of the RHS of the two gowegrequations (where
wall-normal derivatives are evaluated) takes 25% of thal t6PU time, the solution of

LOW-COST PARALLEL DNS OF TURBULENCE 19

8
Il —e— 128x128x128 -

| —=—— 192x128x192 -7
oLl — O — 128x256x128 - ‘-

— S, ny=128 T =
| - - - - S, ny=256 PR~
7
5F . . =
(7)) - < -

4 -, 2

| 7

7
7z,

3k 5~

| Z Z

Z
2 -
| | | | | |
1[1' 2 3 4 5 6 7 8
p

FIG.5. Measured speedup on the Pentium lll-based machine as adnmétthe numbep of computing
nodes. Thick lines are the ideal speedijgrom Eq. (17) forny = 128 (continuous line) andy = 256 (dashed
line).

the linear systems arising from the implicit part around 12td the calculation of the
planar velocity components 3%. The time-stepping schekestd% and computing a few
runtime statistics requires an additional 1% of the CPU time

The parallel (distributed-memory) performance of the cadélustrated in figure 5,
where speedup ratios are reported as a function of the nuoflmermputing nodes. We
define the speedup factor as the ratio of the actual walkatomputing timet,, obtained
with p nodes and the wall-clock timtg required by the same computation on a single node:

S(p) = =+.
(p) »
The maximum or ideal speedup fact®y that we can expect with our PLS algorithm,

corresponding to the assumption of infinite communicatjpeesl, is less than linear, and

can be estimated with the formula:

S:() :p(l— 4%—;”) (17)

where the factorl accounts for the two wall-parallel planes duplicated atheside of
interior slices. Eq. (17) reduces to a linear speedup when- oo for a finite value ofp.

A quantitative evaluation of the function (17) for typicalues ofny = (O(100) shows that
the maximum achievable speedup is nearly linear as longeasumber of nodes remains
moderate, i.ep < 10.

The maximum possible speeddpis shown with thick lines.S; approaches the linear
speedup for largey, being reasonably high as long @semains small compared tay:
with p = 8 it is 6.25 forny = 128 and 7.125 forny = 256. Notwithstanding the
commodity networking hardware and the overhead impliedhgydrror-corrected TCP
protocol, the actual performance compared@s extremely good, and improves with the

20 M. QUADRIO & P. LUCHINI

— S, ny=256
sl | —@— 256°1000 MBit/s
— —r — 256°100 MBit/s
——m-— 256°10 MBit/s

FIG.6. Measured speedup on the Opteron-based machine as a furfdtiemambep of computing nodes.
Thick line is the ideal speedup from Eq. (17) fey = 256. Speedup measured when using Gigabit Ethernet
cards (circles), and the same cards run at the slower spediDbfRit/s (empty squares) and 10 MBit/s (filled
squares).

size of the computational problem. The ca9e x 128 x 192 is hardly penalized by the
time spent for communication, which is only 2% of the totaingputing time whermp = 8.
The communication time becomes 7% of the total computing tion the larger case of
nx = 128, ny = 256 andnz = 128, and is12% for the worst (i.e. smallest) case 1383,
which requires 7.7 seconds for one time step on our machiitle avépeedup of 5.55.
Figure 6 illustrates the speedup achieved with the fastéer®@p machines connected
via Gigabit Ethernet cards in the ring-topology layout, pamed withS;. The test case has
a size of2562. The CPUs of this system are significantly faster than thei@arill, and
the network cards, while having 10 times larger bandwidtvyehlatency characteristics
typical of Fast Ethernet cards. It is remarkable how well theasured speedup still
approaches the ideal speedup, even at the largest testgsl ofgh. Furthermore, we
report also the measured speedup when the Opteron machéase with the Gigabit
cards set up to work at the lower speeds of 100 MBit/s and 1@lBIt is interesting to
observe how slightly performance is degraded in the cas@@¥Bit/s, whose curve is
nearly indistinguishable form that at 1GBit/s. Even witk glowest 10MBit/s bandwidth
connecting such fast processors, and with a problem of leogeputational size, it is
noteworthy how the present method is capable to achievesamahle speedup for low
and not to ever degrade belgv= 1. This relative insensitivity to the available bandwidth
can be ascribed to the limited amount of communication reguby the present method.
Lastly, the PLS method is compared on the Opteron machirtetivit transpose-based
method of performing parallel FFT. By taking advantage ef¢bnnection topology of the
Opteron machines, which are connected both in the ring tggyokith the onboard network
cards and in the star topology with the switch, the same cadeébe used where only the
parallel strategy is modified. Figure 7 reports comparatieasurements between the PLS
and the transpose-based method. The PLS method is run witinéichines connected

LOW-COST PARALLEL DNS OF TURBULENCE 21

— —m — transpose 256°
— — — transpose 128°
——m—— present 256°
———— present 128°

|
3 4 5 6 7 8

FIG. 7. Measured speedup on the Opteron-based machine as a furfdtiemambep of computing nodes.
Continuous line is the PLS method, and dashed line is thepgosesbased method.

in a ring, while the transpose-based method is tested witthinas linked through the
switch. Measurements show thét> 1 can now be achieved with the transpose-based
method. However, the transpose method performs best fentiadlest problem size, while
the PLS shows the opposite behavior. For 266 case, which is a reasonable size for
such machines, the speedup from the transpose-based nie@radind one half of what
can be obtained with PLS.

6. CYLINDRICAL COORDINATES: THE GOVERNING EQUATIONS
In this Section we present the extension of the numericahatepreviously described
the cylindrical coordinate system. First the procedureriteva two-equations formulation
of the differential problem for the radial velocity and raddiorticity is described. This has
been already published in [25]. The materiafih3 illustrates how fourth-order accruacy
can still be achieved, and it has never been published etsewh

6.1. Problem definition
The cylindrical coordinate system is illustrated in figurevBere a sketch of an annular
duct is shown:z, » andf denote the axial, wall-normal (radial) and azimuthal cauates,
andu, v andw the respective components of the velocity vector. The flomssumed to
be periodic in the axial and azimuthal directions. The innydinder has radiugk; and
the outer cylinder has radid8,. The reference lengthis taken to be one half of the gap
width:

Once an appropriate reference veloditys chosen, a Reynolds number can be defined
as:

_ U
_I/

Re

22 M. QUADRIO & P. LUCHINI

flow

FIG. 8. Sketch of the computational domain for the cylindrical cooaté system

wherev is the kinematic viscosity of the fluid.
The non-dimensional Navier—Stokes equations for an incesgible fluid in cylindrical
coordinates can then be written as:

Ou 10(rv) 10w
o v or Troe " (18)

ou ou Oou wou 9Ip 1 _,
E‘FU% +’Ua+?%f*%+ﬁev u; (198)

= U U+ —— - — =

ov ov v wdv w? 7@+ 1
ot ox or r 00 r or Re

ow ow o wow e 10p 1 (G w2 00N g0
ot " "ox " "or Tr o0 v T ro0 Re\ o 12 r200)
where the Laplacian operator in cylindrical coordinaté®sahe form:
0? 10 0 1 02
2 e — —_— JR— R
V= Ox? + ror <T8r> + r2 002" (20)

The differential problem is closed when an initial conditir all the fluid variables is
specified, and suitable buondary conditions are choserhefivalls the no-slip condition
is physically meaningful, whereas periodic boundary ctons are used for the azimuthal
direction, as well as for the axial direction, under the sassumptions discussed{a.1l
for the cartesian case.

Once the periodicity assumption is made both in the axialeaichuthal directions, the
equations of motion can be conveniently Fourier-transéatialong the: andf coordinates.
The symbolsa and m denote the axial and azimuthal wave numbers, respectivigyy.
definingk? = (m/r)> 4+ o2, and by introducing the Chandrasekar notation:
= g; — g + f (21)

or

T or

Dy(f) D.(f)

LOW-COST PARALLEL DNS OF TURBULENCE 23

the Fourier-transformed Laplacian operator (20) can bttewrin the more compact form:
V?=D.D, —k*

The transformed equations, where the hat indicates thedfmamponents of the trans-
formed variable, are:

iaii+ D, () + i = 0 (22)
'
ou _ —iap + L (D.Ds(a) — k*a) + HU; (23a)
ot Re \ 71 ’
o0 L1 e 2im L\ |

ow im 1 2im —

— = h DiD, () — k*b + ——-0 | + HW. 23c

ot T Re < 1D () W r2 v) + (23c)
In these expressions, the nonlinear convective terms haee grouped under the fol-

lowing definitions:

HU = —iatu — Du(@) — (24a)
r
e . o oim 1
HV = —icuv — D, (v0) — T+ —Ww; (24b)
r r
FITE .~ —~ m ~2 2/\
HW = —iauw — Dy (aw) — W = W (24c)

It can be noticed that the main difference between (22), -Q3and the analogous
equations in cartesian coordinates is the dependené@ aponr. As a consequence
thereof, k2 does not commute with the operators for radial derivativesaddition, the
components of the momentum equations are coupled throegbighous and convective
terms; therefore it can be anticipated that in the time ackarent procedure a fully implicit
treatment of the viscous terms, as usually done in the ¢antease, will not be possible.

6.2. Equation for the radial vorticity component
The wall-normal (radial) component of the vorticity vectehich we shall indicate with
7, is defined as

and after transforming in Fourier space it is given by:

i= "4 io (25)
r
Following a procedure which resembles that of the carteséae, an equation faf,

which does not involve pressure, can be written by takingdkiéal component of the curl

24 M. QUADRIO & P. LUCHINI

of the momentum equation. By multiplying equation (23a)esim /r and subtracting
equation (23c) timesx, one gets:

o 5 T Re —D.D1(@) —iaD1 D (w) —

imou . Ow 1 [im
,

K2 (@u _ z'auv> + 2m—2av] + “HU — iaHW (26)
T T

r

By writing down the expression fov27:
V25 = —k? (@u - mw) + D.D; (@u _ iazb) ,
r T

and remembering the definitions (21) of the operafersand D, and the fact that:

1
DD, =D.D; — —

T2
one can substitute in the preceding equation, and writeofl@nfing second-order equation
for 7:
on 1 R 9. m . mao m—-—— . -

The numerical solution of Egn. (27) requires an initial citind for 7, which can be
computed form the initial condition for the velocity fieldh& periodic boundary conditions
in the homogeneous directions are automatically satidfiadks to the Fourier transform,
whereas the no-slip condition for the velocity vector ttates in7; = 0 to be imposed at
the two walls atr = R; andr = R,,.

This equation has an overall structure which is analogoubkabof the corresponding
cartesian equation (4), except that it is not independenh ipMoreover, a curvature term
proportional to the first radial derivative afappears.

6.3. Equation for the radial velocity component
The derivation of an equation for the radial componemtf the velocity vector, again
without pressure terms, is less straightforward, and requihe use of the continuity
equation in order to obtain an expressiongas a function of the velocity components.
The first step consists in taking the time derivative of tharf@r-transformed continuity
equation (22):

OD.(0) . 0u im O
o Yot v ot
The time derivatives of: and«w can be replaced by the corresponding expression from
equations (23a) and (23c), thus giving:

1 —
= k% — i [@ (D.Dy(a) — k*a) + HU] +

im {1

AN 72 A @A e
Re <D1D*(w) k w+2r2 v) —I—HW} .

LOW-COST PARALLEL DNS OF TURBULENCE 25

The continuity equation can be invoked again to simplify edarms, together with the
relations obtained by applying the operatdrs/r and D- to it, namely:

. . . m . m m R
—D3y D, (0) = iaDy (1) + TDg(w) + 2T—3w - 2T—2D1(w);
1 . o . m R im .

By also applying the identity:
1
D.D1D,(0) = Dy D, (0) + —D1D.(0),
T

after some algebra, the following expressiongas obtained:

R 11 9 R . m2 m . m
p= —R—eﬁ k D*(U) — D*DlD*(’U) — 2r—3v + 2r—2D1(w) — QT—3w:| -+
1 [0D.(0) . —= im —
- — H —H .
2 ot +iaHU + ; W}

This expression fgb can now be differentiated with respect to the radial coatdipand
then substituted into equation (23b) to get ridoadltogether. Eventually the fourth-order
equation foro emerges in the final form:

2

9 {U D, (iD*(@)ﬂ - %Dl {% {kQD*(f)) — D.D\D.(v) — 2%@+

m . m 1 9n . m
2T—D1(w) -2 . w] } + Re (—k 0+ D1D.(0) — QFw> +

Dy L:Q (m HU + Tﬁﬁ/)] +HV. (28)

This scalar equation can be solved numerically proviediéialinondition fors is known.
The periodic boundary conditions in the homogeneous diesare automatically satisfied
thanks to the Fourier transform, whereas the no-slip camditor the velocity vector
immediately translates ifi = 0 to be imposed at the two walls. The continuity equation
written at the two walls makes evident that the additiona boundary conditions required
for the solution of (28) ard, (v) = 0 atr = R; andr = R,. Equation (28) shares with
its cartesian counterpart (6) the general structure, itiquéar the fact that it is independent
of 7. Curvature terms proportional o and to its first radial derivative are present.

6.4. Velocity components in the homogeneous directions
The two equations (27) and (28) are not uncoupled anymareg ¢27) containg. With
explicitely-integrated non-linear terms, they can howdesolved separately at each time
step, provided one solves first (28) foand then (27) for;.
For computing the nonlinear terms and their spatial devigat one needs to know the
velocity componentg andw in the homogeneous directions at a given time by knowing
and7. By using the definition defintion (25) @f and the continuity equation (22) written

26 M. QUADRIO & P. LUCHINI

in Fourier space, & x 2 algebraic system can be written for the unknovitnasnd w; its
analytical solution reads:

(29)

Like in the cartesian case, this system lends itself to alyica solution only when the
variables are expanded in Fourier series.

6.4.1. Mean (shell-averaged) flow in the homogeneous direst

The preceding system (29) is singular whien= 0. This is a consequence of having
obtained Eqns. (27) and (28) through a procedure involvragial derivatives.

Let us introduce an averaging operator over the homogerdimetions:

~ 1 1 [ke ple
= —— dxrdf

The space-averaged streamwise velo@ity: u(r,t) is a function of radial coordinate
and time only, and in Fourier space it corresponds to thei€oomode fork = 0. The same
applites to the azimuthal component With the present choice of the reference system,
where ther axis is aligned with the mean flow, the temporal averageisfthe streamwise
mean velocity profile, whereas the temporal average @fill be zero (within the limits
of the temporal discretization). This nevertheless allanat a given time and at a given
distance from the wall to be different from zero.

Two additional equations must then be written for calcalati and w; they can be
worked out by applying the linear, shell-average operatting relevant components of the
momentum equation:

ou 1 ~ N
ow 1 _ _ 2 __
i %DlD* (w) — Dy (uw) — oW + fo

In these expressiong, and f, are the forcing terms needed to force the flow through the
channel against the viscous resistence of the fluid. Forttearawise directionf, can be
a given mean pressure gradient, and in the simulation thefitaxthrough the channel will
oscillate in time around its mean valug, can also be a time-dependent spatially uniform
the pressure gradient, to be chosen in such a way that the dl@wemains constant in
time. The same distinction applies to the forcing tefyrin the azimuthal direction.

7. CYLINDRICAL COORDINATES: THE NUMERICAL METHOD

The numerical techniques and the PLS parallel strategy@raglin the cartesian case
and described i§3 and§4 must be transferred to the present formulation in cylivadri
coordinates without significant penalty, so that the Peak8upercomputer described in
85 can be used efficiently in the cylindrical case too. In wiodlbfvs, emphasis will then
be given to the differences with the cartesian case.

LOW-COST PARALLEL DNS OF TURBULENCE 27

7.1. Spatial discretization in the homogeneous directions
In full analogy with the cartesian case, the unknown fungiare expanded in truncated
Fourier series in the homogeneous directions. For exarhpleaidial component of the
velocity vector is represented as:

+nx/2 4nb/2

v(x,0,r,t) = Z Z Ope(r, t)e'*e™m? (30)

h=—nz/2{=—nb/2

where:

:22::a0h; m:2L—7Tj:m0€

Here h and ¢ are integer indexes corresponding to the axial and azirhdihection
respectively, and,, andm, are the fundamental wavenumbers in these directions, define
in terms of the axial lengtli, of the computational domain and its azimuthal extension
Ly, expressed in radians.

The numerical evaluation of the nonlinear terms in (27) &8) (s done following the
same pseudo-spectral approach involving FFTs and the ysepér dealiasing.

«

7.2. Time discretization

Once the equations faj and v are discretized in time, as said before they are not
independent anymore; they can however still be solved imjaesgialy way. In fact the
evolution equation (27) fof;’, ' containsi;’, ", but luckily Eqn. (28) fors;’, ! does not
contains;’,; . The only difference with the cartesian case is that theravflsolution of
the two equations here matters, and Eqn. (28) must be sdieaddefore Egn. (27).

The two equations can be advanced in time using the samalpairtiplicit time schemes
described for the cartesian case. Now the explicit partainstthe nonlinear terms plus
some additional viscous curvature terms. No stability itidns have been encountered
in our numerical experiments, since curvature terms corltaiv-order derivatives and
do not reduce the time step size allowed by the time integrathethod. The same
memory-efficient implementation of the cartesian case eanded, provided the compact
finite-difference schemes can still be written in explicitrh, as will be shown below.

7.3. High-accuracy compact finite difference schemes

The extension of the cartesian method describé@if to obtain fourth-order accuracy
over a five unevenly spaced points stencil, is not immedititere are three main points
which make the extension difficult. First, third-derivatiterms are present in Eq.(28), thus
preventing the possibility of finding explicit compact sofes. Second, both Egns. (27)
and (28) do contain-dependent coefficients which are not in the innermost jposit ast,
Eqn. (28) ford is a fourth-order equation, but the highest differentia¢mgpor is notD,,
butDD.DD.,.

7.3.1. The third derivative

The third derivatives in Eg. (28) can be removed by using tiouity equation (22),
which allows the first radial derivative éfbe substituted with terms not containing radial
derivatives:

28 M. QUADRIO & P. LUCHINI

As a consequence, some new terms will enter the part of thatiequthat will be
integrated with the explicit time scheme (see below Eqns) 48d (32) for their final form).
Again, no problems of numerical stability have been enoenaat with this formulation of
the explicit part.

7.3.2. Ther-dependent coefficients

All the r-dependent coefficients in the middle of radial derivativest be moved at the
innermost position of the radial operators, as requirechbyetkample equation (13). This
is done by applying repeated integrations by parts, i.eeatgully performing the following
substitutions, where indicates the generic-dependent coefficient:

aDi(f) = Di(af) — Di(a)f; aD.(f) = Di(af) — Di(a)f.

In Egn. (28), the first term which needs to be rewritten withrdegration by part is:

% {Dl <]32D*(@)>} _ % [DlD* <k12v> 4D (@Dl(;)ﬂ .

In the righ-hand-side of Egn. (28), perhaps the most comatterm is:

1 .
D, {kQ (—D*DlD*U)])
where the continuity equation must be invoked to canceltiid terivative, and repeated
integrations by parts allow the-dependent coefficients to remain only in the innermost
positions. After some algebra, the result is:

1 . 1 1 1,
— D1 [ﬁ (D*DlD*U)] = 7D1D*D1D* (ﬁl)) +D1 |:;D2 (ﬁv)] +

1 1\ . 1\ . 1 1.
-2 (101 (gz) o] 401 |22 (32) o] - 2 [o0 () o] +
1)
—3D,D. [Dl (—2> (ioml + ﬁw)} :
k r
where, as a result of the use of the continuity equation aiegérm cannot enter the impicit
part of the equations, and must be treated explicitely, laitgito what is done for the

curvature terms.
The last term of eq. (28) which needs further manipulation is

[s1000)] -) ()] ()}

The same sequnce of integration by parts must be carriedobth. (27) for the radial
vorticity, arriving at the following substitution:

m U u
2™ D (a) = 2i [D (—) 2—}.
" 1(@) im | Dy 2 + 3

The nonlinear terms (24a-c) contain radial derivatives &mal some terms therein must
be integrated by parts in order to have all the coefficienthénibnermost position.

LOW-COST PARALLEL DNS OF TURBULENCE 29

This procedure leads to the final, rather long form of the &qna for v and7), which
lends itself to a discretization in the radial directiontwétxplicit compact finite differrence
schemes of fourth-order accuracy over afive point stertég.written here for completness,
without time discretization for notational simplicity:

% {v — DD, <k12v> + Dy <@D1(k12)>:| =
% {2D1D*(17) —D1D,.D:1D, (%{)) + Dy |:%D2 <%> f)} —2D1D, {%Dl (%) f/} +
[(2) - 30 ()] 0o (1) (o)

r
1 1 1 1 1
2 ~ . N . ~
—2m* Dy (Wv) + imD; [Ww} + 2im [Dg (k2r2 w) - D, [T—2D1 (ﬁ)
1

1 1 1\ 1 9.9 am __ m? .9
+3D, (T2—k2vw> — D, (;Dl (ﬁ) vw)}—l—Dl [ﬁ <a U —|—2Tuw—|— r_2w +
(

1 1.
—iauv — Dy (9?) — T w — ~% + —?; (31)
T r
a’f) 1 ~ 2 A . 1 ~ i 1o} N 3 16 ~2
5 = Re {DlD*(n) — k) + 2im [Dl (T—zu) + 2r_3 - 7"_2U] } —im |:7U +
wy 2 dm_ _ . im o, 2
Dy (@> + Zuv + @uw] + i [iauw + Dy (vw) + T 2 + —Uw} i (32)
T r r r r

Though of complicated appeareance, these equations caivied by employing again
most f the numerical tools developed for the cartesian case consequence, only a few
lines of the cylindrical source code are different from @stesian counterpart.

It is important to note that this procedure introduce addai coefficients, which are
function both of the radial coordinate directly and/or Ve twavenumbers: one of the
simplest among them B, (1/k(r)?). With some overhead in CPU time these coefficients
can be computed on the fly during the execution of the progedternatively, they can be
precomputed once at the beginning at the expense of somenmnspaxe, if the available
storage allows.

7.4. Calculation of the finite-difference coefficients

Six finite-differences groups of coefficients must be coragutBesidest’, ¢ andd
we introduce the following three sets of coefficients:

2
D (FW))lyey, = D 0 (w2)

i=—2

DD (FW))yey, = S . (0)F (yy4)

i=—2

30 M. QUADRIO & P. LUCHINI

2
DyD.DiDu (fW))lyey, = >, dhuru(0)f (yj14)
1=—2

The actual calculation of the FD operators at fourth ordeuescy on a five point stencil
centered at-; can still be perfomed in the way described§8.3, since the only form
in which the fourth derivative enters the equations is tgtothe operatoD, D, D1 D,.
Thus, given a set of polynomiats, (r) of increasing degree in the independent variable
the corresponding derivativ® D, D D, (t) can be computed analitically and evaluated at
r =r;. A 10 x 10 linear system yielding the coefficients of the FD operattﬁ@,ﬁ anddé
follows from the condition that:

d{*l* (tm) - dO (DlD*DlD* (tm)) =0.

The normalization condition (16) still gives a relation argdhe five coefficients, so
that nine additional conditions are needed, and polynanfieimm = 0 up tom = 8 have
to be considered. ThE) x 10 system cannot be decoupled into two smaller systems, and
must now be solved at once. The remaining coefficients aredbmputed in analogy to
the cartesian case.

7.5. The spatial resolution in the azimuthal direction

The cylindrical coordinate system presents the general@nothat the azimuthal exten-
sion Ly of the computational domain decreases with the radial ¢oate, if the necessary
spatial resolution (for example the number of Fourier mpdeshe collocation points in
a finite-difference calculation) is set up based on the mestahding region of the flow
field, i.e. the outer wall, then the spatial resolution beesmnnecessarily high when the
inner wall is approached. This not only implies a waste of potational resources, but
might also induce numerical stability problems.

To overcome this difficulty, we have made the truncation efahimuthal Fourier series
a function of the radial position. Whereas in a collocatioprapch changing the resolution
with the radial coordinate would involve multiple interptibns and numerical diffusion,
in a spectral representation dropping a few Fourier mod#ésedtigh end of the spectrum
is a smooth operation, which does not induce any spatiatiglived error.

Instead of the expansion (30), we use the following reprasiemn for the variable, e.g.

+nz/2 +No(r)/2
v(z,0,r,t) = Y > el t)er*re™?
h=—nax/2 t=—Ng(r)/2

where, thanks to the intrinsic smoothness of the Fourigesethe number of modes in
the azimuthal direction can be an arbitrary functidp(r) of the radial coordinate. The
simplest and most natural choice for the functiés(r) is a linear function from a maximum
Ny maz atr = R, down to a minimumiNy i, atr = R;, With Ny .4, and Ny ..., being
proportional to the outer and inner radii themselves so kedp the same spatial resolution
throughout the domain.

This is equivalent to assuming that the Fourier motlgswith |¢| < Np ..., are defined
through the whole annular gap, i.e. 8 < r < R,, while any mode;,, with Ny ,in, <
[¢] < Npmae ONly exists forr(¢) < r < R,, where7(¢) is a suitable radial position,
function of the index, intermediate between the two walls. These modes are assiome
become zero at the lower end of this interval, just as all rmtgondVy ., implicitly are

LOW-COST PARALLEL DNS OF TURBULENCE 31

i\ /
80 %“ Jif

o\ /
NN /

% /
kY /

-200 -150 -100 -50 0 50 100 150 200

l
FIG.9. XXXWRONG FIGURE! Distribution Radial position; (¢) below which the azimuthal wavenumber
m = 2w /Lg is assumed to be zero, as a function of the integer ifdék; = 2, Ro = 4, Ng,min = 160 and
N, max = 320. This example corresponds to a radial discretization With= 128, and a non uniform mesh
with a hyperbolic tangent law.

everywhere, and the necessary boundary conditions fargbgerning radial differential
equation are thus provided.

From the point of view of computer programming, a comb arralyaurier coefficients
whose number varies with(and possibly: too, even if this feature is not presently used)
has been implemented through a suitable memory managewtere a two-dimensional
array of pointers is used to reference variable-sized ameitsional arrays, each of which
stores all and only the nonzero coefficients in a radial freen » = R, down to7(¢). This
procedure reduces the computational cost of DNS in cyliadigeometry with significant
curvature, thanks to the reduction in the number of activerieo modes, and at the same
time to avoid the numerical stability problems which coultheywise derive from an
overfine resolution of the innermost region. Fig. 9 providasexample of the change of
the lower dimension of the arrays as a function of the intaugex ¢ corresponding to the
azimuthal wavenumber. It can be seen that the lower wavearsnbamely/| < 80, are
defined throughout the whole channel, i.e. jor 0. Conversely the highest spanwise
wavenumbe¥ = +160 is defined only very near to the outer walhat R,.

7.6. Performance

The cylindrical version of the computer code shares wittcitgesian counterpart the
basic structure, as well as the high computational effigiameen executed in serial or
parallel mode. The differences in source code are actually kmited, allowing us to
re-use most of the numerical routines. The performanceiatiah made ir§5.1 for the
cartesian code thus applies here too, in particular coimgpthe properties of the PLS
parallel method. For a problem of the same computationel sie CPU overhead of the
cylindrical version compared to the cartesian case is aqupadely 40%. Pre-computing
ther-dependent coefficients increases memory requirementisdayt 43%.

8. CONCLUSIONS

32 M. QUADRIO & P. LUCHINI

In this paper we have given a detailed description of a nurabmethod suitable for
the parallel direct numerical simulation of incompressibhll turbulence, and capable of
achieving high efficiency by using commodity hardware. Thethnd can be used when
the governing equations are written either in cartesian oyiindrical coordinates.

The key point in its design is the choice of compact finiteed#ces of fourth-order
accuracy for the discretization of the wall-normal direnti The use of finite differences
schemes, while retaining a large part of the accuracy edjbyspectral schemes, is crucial
to the development of the parallel strategy, which expliieslocality of the FD operators
to largely reduce the amount of inter-node communicationité-differences are also key
to the implementation of a memory-efficient time integratjgrocedure, which permits
a minimal storage space of 5 variables per point, comparddea@ommonly reported
minimum of 7 variables per point. This significant savingvaitable in the present case
too, the use of compact schemes notwithstanding, sincetrelye written in explicit form,
leveraging the missing third derivative in the governingatipns.

The formulation of the cylindrical Navier—Stokes equation terms of radial velocity
and radial vorticity has allowed us to solve them numencalith high computational
efficiency, employing numerical techniques already dgwetbfor the cartesian geometry
and writing a computer code which shares the basic strugtithethe cartesian version.
The problem of the radial resolution, which varies witln cylindrical coordinates, has
been circumvented by adopting a representation of the flovablas with finite Fourier
series whose number of modes depends on the radial co@diself. This procedure is
promising for future works employing the cylindrical coordte system.

The parallel method described in this paper, based on thdipga solution of the
linear systems (PLS) arising from the discretization ofilsgous terms, achieves its best
performance on systems where the number of computing nedegiificantly smaller than
the number of points in the wall-normal direction. This liation is not essential however,
and it can be removed at the expense of an additional, smallianof communication in
the calculation of the non-linear terms of the Navier-Ssoguations. The global transpose
of the data, which constrains DNS codes to run on machindsweity large networking
bandwidth, is avoided anyway.

The computing effort, as well as the required memory spaaebe efficiently subdivided
among a number of low-cost computing nodes. Moreover, thtgilblition of data in wall-
parallel slices allows us to exploit a particular, efficiand at the same time cost-effective
connection topology, where the computing machines areexiad to each other in a ring.

A dedicated system can be easily built, using commodityward and hence at low cost,
to run a computer code based on the PLS method. Such a systeis figh availability
and throughput, as well as ease in expanding/upgradingoliriopinion that the concept of
Personal Supercomputer can be successful: such a spedisjigtem, yet built with mass-
market components, can be fully dedicated to a single relsegoup or even to a single
researcher, rather than being shared among multiple usersgh a queueing system. The
smaller investment, together with additional advantagesrkeduced power consumption
and heat production, minimal floor space occupation, eltmyalthe user to have dedicated
access to the machine for unlimited time, thus achievindnigleest throughput.

The sole significant difference performance-wise betwaerh 8 system and a real
supercomputer lies in the networking hardware, which eféégnificantly larger bandwidth
and better latency characteristics in the latter case. Memthe negative effects of this

LOW-COST PARALLEL DNS OF TURBULENCE 33

difference are not felt when the present parallel algorithiemployed, since the need for
a large amount of communication is remoxaegriori, thanks to the algorithm itself.

ACKNOWLEDGMENT

Financial support from ASI and MURST for the years 1999 an@28 acknowledged. The Authors whish
to thank ing. Patrick Morandi, ing. Fabio Brenna for theitphan part of the work concerning cylindrical
coordinates.

REFERENCES

1. F. P. Bertolotti, T. Herbert, and P. R. Spalart. Linear aadlinear stability of the Blasius boundary layér.
Fluid Mech, 242:441-474, 2002.

2. G. Ciaccio and G. Chiola. Porting MPICH ADI on GAMMA with&k Control. InMidwest Workshop on
Parallel Processing, Kent, Ohjd999.

3. J.C. deAlamo and J. Jiranez. Spectra of the very large anisotropic scales in teribghannelsPhys. Fluids
15(6):L41-L44, 2003.

4. J. J. Dongarra. Performance of Various Computers UsingdStdrLinear Equations Software, (Linpack
Benchmark Report). (CS-89-85), 2004.

5. J.G.M. Eggels, F. Unger, M.H. Weiss, J. Westerweel, Rdiiah, R. Fiedrich, and F.T.M. Nieuwstadt. Fully
developed turbulent pipe flow: a comparison between directanical simulation and experimeniournal
of Fluid Mechanics268:175-209, 1994.

6. A. Gunther, D.V. Papavassilou, M.D. Warholic, and T.J. Hagraffurbulent flow in a channel at a low
Reynolds numbelExp. Fluids 25:503-511, 1998.

7. P.H. Hoffmann, K.C. Muck, and P. Bradshaw. The effect ofceme surface curvature on turbulent boundary
layers.Journal of Fluid mechanigsl61:371-403, 1985.

8. J. Jinénez. Computing high-Reynolds-number turbulence: will satiohs ever replace experiments?.
Turbulence4:22, 2003.

9. J. Kim. Control of turbulent boundary layeRhys. Fluids 15(5):1093-1105, 2003.

10. J. Kim, P. Moin, and R. Moser. Turbulence statistics ityfdeveloped channel flow at low Reynolds number.
J. Fluid Mech, 177:133-166, 1987.

11. S.K. Lele. Compact Finite Difference Schemes with Spktike Resolution. J. Comp. Phys.103:16-42,
1992.

12. P. Luchini and M. Quadrio. A low-cost parallel implemeiuatof direct numerical simulation of wall
turbulence.Submitted to J. Comp. Phy2004.

13. B. Ma, Z. Zhang, F.T.M. Nieuwstadt, and C.W.H. van Doorfm the spatial evolution of a wall-imposed
periodic disturbance in pipe Poiseuille flow at Re=3000t RarSubcritical disturbanceJ. Fluid Mech,
398:181-224, 1999.

14. K. Mahesh. A Family of High Order Finite Difference Scheméth Good Spectral Resolutionl. Comp.
Phys, 145(1):332-358, 1998.

15. M. Manna and A. Vacca. An efficient method for the solutibthe incompressible Navier-Stokes equations
in cylindrical geometriesJ. Comp. Phys151:563-584, 1999.

16. P. Moin and K. Mahesh. Direct numerical simulation: A taotirbulence researcnn. Rev. Fluid Mech.
30:539-578, 1998.

17. R.Moser, J. Kim, and N.N. Mansour. Direct numerical simataodf turbulent channel flow up tRey = 590.
Phys. Fluids 11(4):943-945, 1999.

18. R. D. Moser and P. Moin. The effects of curvature in wallt#bded turbulent flowsl. Fluid Mech, 175:479—
510, 1987.

19. R.D. Moser, P. Moin, and A. Leonard. A spectral numericathoe for the Navier—Stokes equations with
application to Taylor-Couette flomlournal of Computational Physic§2:524-544, 1983.

20. M. Nagata and N. Kasagi. Spatio-temporal evolution ofceht vortices in wall turbulence with streamwise
curvature.J. Turbulence2004.

21. J. C. Neves, P. Moin, and R. D. Moser. Effects of convenstvarse curvature on wall-bounded turbulence.
Part 1. The velocity and vorticityJournal of Fluid Mechanics272:349-381, 1994.

22. P. Orlandi and M. Fatica. Direct simulations of turbuldmw in a pipe rotating about its axid. Fluid Mech,
343:43-72, 1997.

34 M. QUADRIO & P. LUCHINI

23. R. B. Pelz. The Parallel Fourier Pseudospectral MetBa296-312, 1991.

24. A. Pozzi. Application of Paé’'s Approximation Theory in Fluid Dynamic#dvances in Mathematics for
Applied Sciences. World Scientific, 1994.

25. M. Quadrio and P. Luchini. Direct numerical simulation leé turbulent flow in a pipe with annular cross-
section.Eur. J. Mech. B / Fluids21:413-427, 2002.

26. M. Quadrio and P. Luchini. Integral time-space scalegrioulent wall flows Phys. Fluids15(8):2219-2227,
2003.

27. O. Reynolds. An experimental investigation on the cirdamses which determine whether the motion of
water shall be direct or sinuous, and the law of resistanpaiiallel channelsProc. R. Soc. London,85:84,
1883.

28. . Shapiro, L. Shtilman, and A. Tumin. On stability of flowan annular channePhys. Fluids11(10):2984—
2992, 1999.

29. M. Skote.Studies of turbulent boundary layer flow through direct ntioa simulation PhD thesis, Royal
Institute of Technology Department of Mechanics, 2001.

30. L.H. Thomas. The stability of plane Poiseuille flddhys. Rey.91(4):780-783, 1953.

APPENDIX A

Design, installation and configuration of a Personal Supe@mputer

The focus of the numerical method presented in this papetbbas towards its use
on a low-cost computing machine. Here we describe how talireshd configure such a
machine, schematically illustrated in figure 4, and made bgréain number of desktop
Personal Computers.

The main ingredient to the machine is tbemputing node This is a general-purpose
PC, where the Unix operating system is installed. We havaydwsed the Debian/Gnu
Linux distribution, but any Unix flavour will do the job. To diele the most cost-effective
configuration of a node, two main options have to be evaludikd first one is the size of the
case: 1U cases require much more expensive hardware conmppiigt allow a significant
saving in floor space compared to the standard desktop dases (Or minitower). The
second one is to decide whether one or more CPU are instAN@d.the present market
situation, and given the SMP parallel speedup achievab&euse of a second CPU is
advantageous in terms of ratio cost/benefit. This may chante future, but presently
the cost increase due to the second CPU (and the more expe&idi® motherboard) is
smaller than the SMP speedup achievable (which is in theer&ary-1.8, independent upon
the number of nodes). This leaves us with the added advatitagthe number of nodes
for a given budget is smaller, thus allowing a larger fratid the peak computing power
to be reached (see for example fig. 5).

The choice of th€PU typeis, by and large, a matter of taste, since commaodity procgsso
are very near each other when evaluated with the ratio betfl@sting-point performance
and unit price. The choice of tHéPU speedtan be conveniently made by looking for the
kink in the price-performance curve at the time of buying thost recent, faster processors
are far more expensive, since peak power is a premium in gerarthe present context,
however, we can buy a certain amount of computing power biditerthe speed of the
computing nodes and the number of nodes. More precise timhsaannot be given, given
the etreme volatily of the market situation.

Particular attention must be paid to the mainboard spetidits, (like bus speed, band-
width, etc), since memory access is the real limiting faofdhe simulation.

The amount ofliskspace to be installed on each machine is not relevant, orié atso
go with diskless nodes, or with nodes where the system isaim & live CD, and certainly
there is no need of SCSI or high-performance disks. In géreraap and relatively small

LOW-COST PARALLEL DNS OF TURBULENCE 35

EIDE disks installed on every machine has been for us a gesfigice, as long as a single
disk is able to store the whole dataset pertaining to the saoject. The machines need
one disk mounted in such a way as to be shared among the ofthes mith a networked
file system, like NFS or the like. Performance of the netwartunted disk too is typically
not critical, since during the computations the disk is ased only to read the initial file,
to write flow fields periodically and to (over)write the restle. Our strategy has been
most often to store datasets on the network-mounted digkiamove them to the local
(empty) disk of another node as soon as the free space rez@¥esr so of the capacity.

For special cases where a large database has to be built,eor tva number of nodes
becomes very large, poor NFS performance may become arimtke To increase perfor-
mance, as well as to avoid cache problems, we mount the Nk@&res with the following
options in the/etc/fstab file: soft,rsize=8192,wsize=8192,no0ac. In extreme
cases, another viable option is to use a distributed i/o,éa&ch node writes to its local
disk. This is very easy and gives maximum performance, batjires a distributed post-
processing of the databases, or the availability of a vegelatorage space for centralized
post-processing.

The amount ofnemoryto install on each node must not be very large, since the globa
memory requirements of the simulations are subdivided antbe nodes. In all of our
machines we have installed less than 1GB of memory. The apéimount can be estimated
from the size of the largest simulation affordable, whictuim depends mainly on the CPU
speed. As a rule of thumb, today (late 2004) the memory in MBgan be comparable or
smaller than the CPU speed in GHz. In case of doubt, it is ablésto install a smaller
amount of memory, and subsequently add one stick of RAM tb eaade when needed. It
may be rewarding to fine-tune the memory configuration (atioss, latency, etc) in the
BIOS, since such large simulations are limited by memongdadth and in our experience
the computing time has been found to depend linearly uponaneperformance.

Each node must have twaetwork cards They are used to link the nodes each other in
a ring-like topology, without switch, as illustrated in Fgor the case of 4 nodes. Getting
rid of the switch is something that should not be underegéthasince the switch can
result in a serious degradation in performance. Any Linupp®rted network card will
do the job, but a preliminary check for full support even unldieavy load in SMP mode
will potentially save troubles. Today Gigabit-Ethernetdsawith a speed of 1000Mbit/s
are commonplace, and they can be efficently used at theib&utwidth even when the
LAN (for example the departmental network) is cabled at loggeed, since the machines
communicate directly.

One of the nodes may have a slightly different configuratibinis machine is typically
used with remote access from the network, so that a third NI@=eded on this special
machine. It may also be useful that it is assigned a publicuRber with a registered
hostname. The other nodes can be set up to live on a privaterkewith IP numbers for
example in the 192.168.0.xx range.

The main node (see Fig.4) is configured as a standard, staredaiachine, with one
of its 3 interfaces, say eth2, managing the connection tdoited public network. It has
a registered hostname, spyblichost, corresponding to its public IP number assigned
from the relevant authority. Any machine, includipgblichost, is assigned a private IP
number, and a non-registered hostname which is made aesitathe others by copying
on any node the same, compl¢tetc/hosts file. It may be handy to assign the private
IPs serially, and to use a consistent host name: for exammenmachine may have IP

36 M. QUADRIO & P. LUCHINI

192.168.0.02 and hostnarmhest02. The same IP can be assigned to each of the two
network interfaces.

Example /etc/hosts file

192.168.0.0 host00

192.168.0.1 host01

192.168.0.2 host02

192.168.0.3 host03

On each machine a routing table has to be set up. The minirgalreanent is that
each machine is connectedint-to-pointwith the two neighbours. It is useful moreover
that each machine can reach any other machine, though wéties ©f hops through the
intermediate hosts. This is used when the program is statebwhen results are written
to disk. The routing table for machimest02 of Fig.4 is set up at boot by a script that (for
the Debian/Gnu Linux operating system) looks as follows:

/etc/network/interfaces -- configuration file for ifup(8), ifdown(8)
auto ethO

iface ethO inet static

address 192.168.0.102

netmask 255.255.255.255

pointopoint 192.168.0.101

up route add -host 192.168.0.100 gw 192.168.0.101
iface ethl inet static

address 192.168.0.102

netmask 255.255.255.255

pointopoint 192.168.0.103

Of course the special machine with three interfaces wilkleah0 andeth1 configured
with the private IP 192.168.0.0, and the third interfacefinumed with the registered IP,
with a default gateway on the local network.

Several variants of this simple example are possible, theta@omplexity being balanced
by a possibly large number of computing nodes to be configuiets also possible to
automate the process of creating the setup scripts by wutishort shell script.

With perhaps the exception giblichost, the other nodes are identical each other,
if exception is made for the two file&tc/hostname and/etc/network/interfaces.
This means that also automated processes of installingyiters on the nodes can be
used when the number of nodes is large. We use the softwdessgsitemimager. The
packages that have to be installed on the nodes are mininegdn& those needed for the
machine to boot and mount the NFS volume, we essentially atidthe capability of
issuing and receiving SSH (or RSH) commands. For a small nafmades, each machine
can first have a standard installation, then the two files eamabdified by hand and the
machine properly connected and rebooted.

Once the machine is up and running, it may be useful to havilebi@a simple script
that takes a generic command as an argument, and executashinawide, i.e. on each
node. The script can be run fropublichost or, depending on the installation policy,
from an external machine, and should look as follows:

#!/bin/bash
COMMAND="$@"

LOW-COST PARALLEL DNS OF TURBULENCE 37

for Nin 012 3

do

echo "hostO$N::"

ssh hostO$N $COMMAND
done

Jobs can be run either from the externally-accessible pwisiei chost, or from any other
host, possibly being not too far from the machine and with@denetwork connection to
it. Of course the internal nodes too may work as submittinghimees. We prefer however
not to access these nodes directly, since the implicit lmeldncing of our SMP parallel
strategy, which is completely left to the kernel, assumasitiachines are idle.

We run our code through another simple script, so that thg mgjuirement is that the
nodes can be accessed through. Our example script takes two argumeris,is the
working directory ands2 is the name of the executable to be launched. The commands
contained between “” are what is needed to run the DNS code.s€hpt in its simplest
form is as follows:

ssh host03 "cd /$1; nohup ./$2 1 4 >& /dev/null &"

ssh host02 "cd /$1; nohup ./$2 2 4 host03 >& /dev/null &"
ssh hostO1 "cd /$1; nohup ./$2 3 4 host02 >& /dev/null &"
ssh host00 "cd /$1; nohup ./$2 4 4 hostO1 >& /dev/null &"

To have this script run a simple command, it is useful thatites can execute a com-
mand received via ssh from the submitting machines withegtiewst for password au-
thentication. This requires the public signature of thensiting machine, contained in the
file $HOME/ . ssh/id_dsa.pub, to be copied into the fil§HOME/ . ssh/authorized keys
of each node. This operation is very simple, inasmuch theshdinectory of the user(s) is
network-mounted. Thus, once a user is created in any nodisanome directory resides
on a network-mounted volume, the public key has to be copidgdance.

APPENDIX B

Structure of the computer code (cartesian version)

In the following the source code listing of the cartesiangpamn is reported, to the
aim of giving a general idea of its structure. Only the seviaision is discussed: the
listing of the parallel version, as well as the source for ¢hiindrical program, can be
obtained by contacting the Authors. The differences betvibe serial and the parallel
codes are however minimal, and at the program-source lesgldoncern only the strategy
for reading/writing results on disk. The inter-node comiation is hidden behind the
routine which solves the linear systems, then there is nd teexpose such details to the
user.

The program is written in CPL, a programming language (watated compiler) written
by Paolo Luchini. In a simple procedure, which is made transmt to the user by the
invokation of amake-like command, the CPL source is subjected first to a pregsicg
pass to generate an ANSI-C source, which is then compiledhpyAdNSI-compliant C
compiler. The meaning of CPL statements, keywords and progring structures can be
easily understood, since they are modeled after the moshoconprogramming languages.
The name of the variables in the source closely follow thelsyio names used in this
paper: for exapleldrhs.eta stores the value of the right-hand-side of eq. (4) for the
wall-normal vorticity component at the previous time level

USE rtchecks

USE fft

USE rbmat

FI LE dati= OPEN("dns.in")
ARRAY(0.21) OF CHARinput_file

| NTEGER CONSTANT nx,ny,nz

REAL CONSTANT alfa0, helaO htcoeff,ymax=2,ymin=0,t_max,dt_field,dt_save
REAL ni, meanpx=0, meanpz=0, meanflowx=0, meanflowz=0, deltat, time
READ BY NAME FROM dati input_file

READ BY NAME FROM dati nx,ny,nz,alfa0,beta0,htcoeff,ni

DO WH LE READ BY NAME FROM dati meanpx ~ ORmeanflowx ~ORmeanpz ORmeanflowz
save

READ BY NAVE FROM dati deltat, t_max, dt_field, d
WRI TE BY NAME nx,ny,nz,2*Pl/alfa0,2*Pl/beta0,ni;
WARI TE BY NAME deltat,t_| max dt_field,dt_save

REAL y(-1..ny+1) v (i)—ymaxw/ny FOR ALL i
DOYy(i)=! ym|n+lanh(hlcoeﬂ'(2*|/ny—1))/lanh(hlcoeff) +1

STRUCTURE[ARRAY(-2..2) OF REAL d0,d1,d2,d4] derivatives(1..ny-1)
ARRAY(-2..2) OF REAL d040,d140,d14m1, d04n,d14n,d24n,d14npl
MODULE setup_derivatives

REAL M(O 4,0 4) 1(0..4)

OOP FORiy=1 TOny-1 W THderivatives(iy)
Y(iy—2+)-y(iy))*(4-i)

i=1/ni

DO M(i.j) FOR ALL i,j; LUdecomp M
t=0; 1(0)=24

d4(=2+(*))=M

DOM(i,})= (5 l)*(efl)*(7’|)*(B’I)*(Y(IY’Zﬂ)’V(IY))**(4’0
Udecomp M o i

DOL([)=SUM {d4(j)*(y(iy+j)-y(iy))™(8-i)}

dO(=2+(*))=M\t
DOM(l 1)=(y(iy=2+))-y(iy))**(4-i) FOR ALL i,j; LUdecomp M
DOL(1)=SUM dO)*(4=i)*(3=i)*(yy+)-y(iy))**(2-)

d2(72+(*))=M\t
t=0; DO([)=SUM dOG)*(4-i)*(y(iy+j)-y(iy))**(3-i)

3
d1(=2+(*))=Mit
REPEAT

FOR ALL ij; LUdecomp M

(
y(ny-3+j)- y(ny+1>)”(4-l)
; 1(3)=1; d14np1(-2+(*))=M!
ENDsetup derivatives

FOR ALL i,j; LUdecomp M

FOR ALL i

FOR ALL ij; L

FOR ALLj FOR ALLi

FOR

FOR ALL j

I NLI NE REAL FUNCTI ONDO(REAL f(*)) = dO(~2)*/(~2)+d0(-1)*(~1)+d0(0)*(0)+d

0(1)*(1)+d0(2)f(2)
I'NLI NE REAL FU
1(1)(1)+d1(2)*(2)
I NLI NE REAL FU
2(1)(1)+d2(2)*(2)
I'NLI NE REAL FU
A(1)(1)+d4(2)(2)
I'NLI NE COVPL

EX FUNCTI ONDO(COMPLEX f(*))=DO(f. ~ REAL)+*DO(f.
I NLI NE COVPLEX FUNCTI OND1(COVPLEX f())=D1(f. ~ REAL)+I*Di(f.
I'NLI NE COVPLEX FUNCTI OND2(COVPLEX f(*))=D2(f. ~ REAL)+ID2(f.
INLI NE COVPLEX FUNCTI OND4(COVPLEX f(*))=D4(f. ~ REAL)+IDA(f.

REAL FUNCTI ONyintegr(REAL f(*))
RESULT=0

LOP FORiy=1 TOny-1 BY2
ypl y(ly+1) y(ly) ym1=y(iy-1)-y(iy)
m1+1/6%ypl+1/6*yplrypllyml
a 1/3*yp1 1/6*ym1 1/6*ym1*ym1/ypl
a2=ypl-yml-al-a3
RESULT*%al’f(ly 1) + a2*f(iy) + a3*f(iy+1)
REPEA
ENDylntegr

VELOCITY=STRUCTURE(COWPLEX u,v,w)

INCTI ON D1(REAL f(*)) = d1(~2)*(~2)+d1(-1)*(~1)+d1(0)*f(0)+d
NCTI ON D2(REAL f(*)) = d2(~2)*f(~2)+d2(~1)*(~1)+d2(0)*(0)+d
INCTI ON D4(REAL (*)) = d4(~2)*(~2)+d4(-1)*(-1)+d4(0)*f(0)+d

ALLj FORi

FORi=0 TO

MOMPFLUXSTRUCTURE(COVPLEX uu,uv,vv,vw,ww,uw)
I NTEGERnxd=3*nx DIV2-1; DOINC nxd UNTI L FFTfit(nxd)
| NTEGER nzd=3*nz - 1. DOINC nzd UNTI L FFTfit(nzd)

ARRAY(O..nxdfl,U..nzdil) COF VELOCITY vd
ARRAY(0..nxd-1,0..nzd-1) OF MOMFLUX vvd
SUBROUTI NE convolutions(ARRAY(**)

MOMFLUX VV)
Vd=
LOOP FORix=0 TOnx

DO Vd(ix,iz)=V(ix,iz) FORI: |z 0 TOnz

DO Vd(ix,nzd+iz)=V(ix,iz) ORiz=-nz TO-1
WTHVd(Ix #): IFT(u); IFT(v); IFT(w)

REPEAT LOOP

DO W TH Vd(*,iz): RFT(u) RFT(v) RFT(W); FOR ALL iz

DO W TH Vd(ix,iz), VVd(ix,iz)

uu. REAL: *u. REAL uu. | MAG=u. | MAG'u. | MAG

uv. REAL: . REAL; uv. | MAG=u. | MAG'V. | MAG

w. REAL . REAL; w. | MAG=v. | MAG'V. | MAG

W, REAL. . REAL; vw. | MAG=v. | MAG'w. | MAG

ww REAL. . REAL; ww. | MAG=w. | MAG'w. | MAG

REAL:U.‘ REAL’W REAL; uw. | MAG=u. | MAG'W. | MAG
FCR ALL ix

OF VELOCITY V; PO NTER TO ARRAY(**) CF

DO WTHWd(* iz): HFT(uu); HFT(uv); HFT(w); HFT(vw); HFT(ww); HFT(uw) F

OR AL
LGP FQ?lx 0 TOn;

W THWV(x): FET(uw); FRT(u); EETOA); EETOW) FRT(w); FFT(w)

DO VV(ix,iz)=VVd(ix,iz)
DO VV(ix,iz)=VVd(ix,nzd+iz)
REPEAT LOOP
END convolutions

FCR |zf—nz TO-1

maxtimelevels=1

rhstype= ARRAY(0..nx,—nz..nz)
ARRAY(0..nX,~NZ..nz,~1..ny+1) OF VELOCITY V=0
ARRAY(1. maxllmelevels 1.ny-1) OF rhstype oldrhs=0
ARRAY(-2..0) PO NTER TOrhstype newrhs
DOnewrhs(i) = NEthstype FOR ALL i

MOMFLUX VV(0..nx,~-nz..nz,-2..2)

! READ BI NARY FROM i nput _file V, ol drhs
DO W THV(0,0,iy): u. REAL=1-[1-y(iy)]"2

1 1d4()-242+d2() +ke"ke do()]
i*[d2(i)-k2*do(i)]

FOR ALL iy

I NLI NE FUNCTI ONOS(| NTEGERy,i
I NLI NE FUNCTI ON SQ(| NTEGERy,|
SUBRQUTI NE buildrhs[
xplicit_part) timescheme]
DOconvqullons(V(* * |y) VV(* *iy))
LOOP FORiy=1

DOVV(ix,iz,i)= VV(lx |z |+1)

convolutions(V(*,*,iy+2),VV(**,2))

W TH derivatives(iy) LOOP FOR ALL ix AND ALL iz

ialfa=I*alfa0*ix; ibeta=I*beta0*iz

k2=| (alfaO*lx)**2+(heta0*|z)**2

W THVV(ix,iz,*), V(ix,iz,iy+(*)):

rhsu=-ialfa*DO(uu)-D1(uv)-ibeta*DO(uw)

ialfa*DO(uv)-D1(w)-ibeta*DO(vw)

FORiy=-1 TO2
FOR ALL ix,iz

rhsw=-ialfa*D0(uw)-D1(vw)-ibeta*DO(ww)

D2vimpl = SUM OS(iy,i)*v(i) FORi=-2

timescheme{newrhs(0,ix,iz).D2v,oldrhs(*,iy,ix,iz).D2v, DZ(v) k2*DO(v),
D2vimpl,

ialfa*[ialfa*D1(uu)+D2(uv)+ibeta*D1(uw)]+
|beba*[|a|fa‘Dl(uw)+DZ(vw)+|beLa*Dl(ww)] k2*rhsv}
IFix=0 ANDiz=0
! u nedia conservata in et
umescheme(newrhs(o 0,0).eta,oldrhs(*,i |y 0,0).eta,DO(u.

ni*D2(u. REAL)+ni*D2(w. REAL)*I,
rhsu. REAL+meanpx+[rhsw REAL+meanpz]*I)

E
etaimpl=SUM SQ(iy,i)*{ibeta*u(i)-ialfa*w(i)]
timescheme{newrhs(0,ix,iz).eta,oldrhs(* iy,ix,iz).eta,ibeta*DO(u)-ial
fa*DO(W),
etaimpl,
ibeta*rhsu-ialfa*rhsw}

OF STRUCTURE(COVPLEX eta,D2v)

SUBROUTI NE(COMPLEX rhs”,old™(*),unknown,implicit_part,e

ANDi=-2 TO1

a.REAL e w nedia in eta.| MG

REAL)+DO(W. REA

FORi=-2 TO2

8¢

INIHONT 'd ® O1davno '

END I F
V(ix,iz,iy-2).u=newrhs(-2,ix,iz).eta; V(ix,iz,ly-2).v=newrhs(-2,ix,iz).
D2v

REPEAT LOOP
temp=newrhs(-2); newrhs(-2)=newrhs(-1); newrhs(-1)=newrhs(0) ;newrhs(0)=t
em|
REIEEAT LooP
DO V(ix,iz,ny+i).u= newrhs(l iX,iz). ela V(|>< iz,ny+i).v=newrhs(i,ix,iz).D2v
FOR ALL ix,iz -2
END buildrhs

ARRAY(1..ny-1,-2..2) OF REAL DOmat, etamat, D2vmat
DOmat=derivatives.d0; LUdecomp DOmat
SUBROUTI NE deriv(ARRAY(*) OF REAL fo 1)

fl(O) SUM d140(|)*10(1+|) R i=-
f1(- d14m1(|)*10(1+|) FCR
f1(ny, UM d14n(i)*f0(ny-1+i)
f1(ny+1) SUM d14np1(iy*f0(ny-1+i) TO2
DO W TH derivatives(i) f1 1(f (FORi=1 TOny-1

W TH derivatives(1): f1(1
W TH derivatives(2): f1(.

W TH derivatives(ny- (d0(1)"f1(ny)+d0(2)’f1(ny+1))
W TH derivatives(ny— ny —d0(2)*f1(ny)
f1(1..ny-1)=DOmat\f1(1..ny-1)

END deriv
ARRAY(-2..2) OF REAL v0Obc,vOm1bc,vnbe,vnplbc,etaObc,etaOmilbc,etanbc,etanplb
c

vObc=d040; vOm1bc=d140; etaObc=d040
vnbc=d04n; vnplbc=d14n; etanbc=d04n
etanplbc= denvanves(ny 1).d4
etaOmlbc=derivatives(1).d4

i vObc(-2)*vOm1bc(i)/vOm1bc(-2)

plbc(2) FOR
etaObc(-2)*etaOm1bc(i)/etaOmibc(-2)

TO2
DO etanbc((i) ~—e!anbc(Z)*e(anplbc(l)/elanplbc(z) FORi=-2 TO1
SUBROUTI NE applybc_0(ARRA OF Ri eq(*); ARRAY(*) OF REAL bc0,bcOm1;

LEthsA(*) rhsO rhsOm1)
eq(1,~2)*bcOm1(i)/bcOm1(-2) FORi=-1 TO2
q(l 1)*bcO(i)/bcO(-1) FORi=0 TO2

eq(2,-2)*bc0(i)/bcO(-1) FORi=0 TO2
=~—eq(1,-2)*rhsOm1/bcOm1(-2)
—eq(1,-1)*rhs0/bcO(-1)
—eq(2,-2)*rhs0/bcO(-1)
END applybc_0
SUBROUTI NE applybc_n(ARRAY(¥) OF REAL eq’(*); ARRAY(Y) OF REAL bcnbenpl;
COVPLEX rhs”(*), rhsn, rhsnpl)
eq(ny-1,2)*bcnp(i)/bcnpl(2) FORi=-2 TO1
eq(ny 1,1)*ben(i)/ben(1) FORi=-2 TOO

DOeq(ny-1,)
DOeq(ny-1,i)

DOeq(nny i+1)=~—eq(ny-2,2)*ben(i)/bcn(1) FORi=—2 TOO
rhs(ny-1 eq(ny-1,2)*rhsnpl/bcnpl(2)
rhs(ny-1)=~—eq(ny—1,1)*rhsn/bcn(1)
rhs(ny-2)=~-eq(ny-2,2)*rhsn/bcn(1)

END applybc_n

SUBROUTI NE linsolve(REAL lambda)

COWPLEX AQ, BO, An, Bn

LOOP FOR ALL ix,iz

An=A0; B0=0; Bn=0

vObc(-2)*B0/vOm1bc(-2); An=~-vnbc(2)*Bn/vnplbc(2)

ialfa=I*alfa0*ix; ibeta=I*beta0*iz
k2=(alfa0*ix)**2+(beta0*iz)**2
Liy,i W TH derivatives(iy)

D2vmat(iy,i)=lambda*[d2(i)-k2*d0(i)]-OS(ly,i)

etamat(iy,i)=lambda*d0(i)-SQ(iy.i)

REPEAT

! condi zioni al contorno
applybc_0(D2vmat,vObc,vOm1bc,V(ix,iz,*).v,A0,B0)
applybc_n(D2vmat,vnbc,vnplbc,V(ix,iz,*).v,An,Bn)
applybc_O(etamat,etaObc,etaOm1bc,V(ix,iz,*).u,0,0)
applybc_n(etamat,etanbc,etanplbc,V(ix,iz,*).u,0,0)
LUdecomp D2vmat; LUdecomp etamat

W TH V(ix,iz,*):
v. REAL=D2vmatlv. REAL;v. |MAG=D2vmatlv. | MAG

V(0)=(A0-SUM v(1+i)*vObc(i)
V(-1)=(BO-SUM v(1+i)*vOm1bc(i)
v(ny)=(An-SUM v(ny-1+i)*vnbc(i)
v(ny+1)=
u. REAL=etamatwu. REAL;u. |MAG=etamat\u. | MA

==(SUM u(1+i)*etaObc(i) FORi=0 TOZ)/eIaObc 1

FORI=0 TO2)NObc(-1,
F
FORi=-2 ~ TOO0)/vnbc|

u(ny)=—(SUM u(ny-1+i)*etanbc(i)
u(ny+1)=-(SUM u(ny—1+|)’etanp1bc(|)
I Fix=0 ANDiz=0
IF ABS(meaanOWx)>1E 10 THEN
REAL ucor(-1..ny+1); DOucor(iy)=1 FOR ALL iy
ucor=etamat\ucor
ucor(0; (SUM ucor(1+i)*etaObc(i)

ORi=-1 TO2)/vOm1lbc(-2)
) (1)
n—-SUM v(ny-1+i)*vnplbc(i) FOR == 2 TO1)/vnplbc(2)

(1)
—(SUM u(1+i)*etaOm1bc(i) FORi=-1 TO2)/etaOmlbc(-2)
FORi=-2 TOO)/etanbc(1)
FORi=-2 TO1)/etanplbc(2)

FCRl 0 TO2)/etaObc(-1)
OR i

ucor(-1)=-(SUM ucor(1+i)*etaOm1bc(i) 1 TO2)/etaOmlbc(-2)

ucor(ny)=—(SUM ucor(ny-1+i)*etanbc(i) FCRl-—Z TOO)/etanbc(1)

ucor(ny+1)=—(SUM ucor(ny-1+i)*etanp1bc(i) FORi=-2 TO1)/etanplbc(2)

V(0,0,‘).u REAL=~+(meanflowx-yintegr(V(0,0,*).u. REAL))/yintegr(ucor)*
ucol

V(0.0,*).w. REAL=~+(meanflowz-yintegr(V(0,0,*).w. REAL))/yintegr(ucor)*
ucor

END I F

ELSE

deriv(v. REAL,w. REAL)

deriv(v. | MAGw.

. 1MAG
DOtemp=(ialfa*w(iy)-ibeta*u(iy))/k2
w(iy)=(ibeta*w(iy)+ialfa*u(iy))/k2
u(iy)=temp
FORiy=-1 TOny+1
F

REPEAT
END linsolve

SUBRQUTI NE simple(COMPLEX rhs”,0ld”(*),unkn,impl,expl)
rhs=unkn/deltat+expl

END simple

REAL CONSTANT simple_coeff=1

SUBROUTI NE CN_AB(COVPLEX rhs,0ld(*),unkn,impl,expl)
rhs=2/deltat*unkn+impl+3*expl-old(1)

old(1)=expl

ENDCN_AB

CONSTANT | NTEGER CN_AB_coeff=2

| NTEGER cont=0

LOOP timeloop WH LE time < t_max-deltat/2

! buildrhs(sinple); |insolve(sinple_coeff/deltat)
buildrhs(CN_AB); linsolve(CN_AB_coeff/deltat)

time=~+deltat

VRI TE time,SUM d140(i))*V(0,0,1+i).u.
-SUM d14n(i)*V(0,0,ny=1+i).u.
| F FLOOR(time / dt_field) > FLOOR((Ilme deltat) / dt_field)
cont=~+1; ARRAY(0..20) OF CHARfield_name
fle\d_name = WRI TE("field"cont".dat"); FI LE field
ame)
L(JP FORiy=LO TOHI

REAL FORi=-2 TO2,

|_file = CREATE(field_n

FORix=LO TOHI ANDiz=LO TOHI W THV(ix,iy,iz)

|a|fa—|*a\fa0*|x ibeta=I*beta0*iz
WRI BI NARY TOfield_file v, ibeta*u-ialfa*w
REPEAT LOCP
VR TE BI NARY TOfield_file V/(0,0,iy).u.
REPEAT LOOP
END | F

| F FLOOR(time / dt_save) > FLOOR((time—-deltat) / dt_save)
WRI TE Bl NARY TO"dati.out" V, oldrhs
END | F
REPEAT timeloop

REAL, V(0,0,iy).w

THEN

3ON3TNGdNL 40 SNA 13T71vVdvd LSOO-MOT

6¢

40 M. QUADRIO & P. LUCHINI

The main parts of the code are as follows. There is first anditctory section, where
input data are read from the films . in to describe the simulation: parameters to define
the spatial discretization, and parameters specific toithelation strategy (time step size
deltat, total integration timet_max, etc). This section is for lines 5-17. Note that
the variablesnx andnz used in the program correspond to half the number of Fourier
modes, since the expansions go frenx to nx and from-nz to nz. Note moreover (see
for example theARRAY dimensions in line 101) that the simmetry property of a carpl
function which is the Fourier transform of a real functioreigloited. Thus one half of
the Fourier coefficients (namely, the negative streamwimeewumbers) does not need to
be explicitely computed and stored.

In the MODULE setup_derivatives the finite-difference coefficients are computed
for the interior points, whereas in lines 36-46 specific fioieits at the two walls are
computed, based on non-centered stencils. For exampledfieceentsd140 evaluate the
first derivative at IV order accuracy at the inner wall g0, whereas the14n do the same
job for the opposite wall aty=ny. The wall-normal discretization is defined in lines 16 and
17, the easiest possibility of uniform mesh is commentedwhbile a hyperbolic-tangent
law is applied in line 17.

These coefficients are then used compactly in the remairang pf the code thanks
to the functions defined in lines 48-55 and inlined for rumtiefficiency. TheCOMPLEX
FUNCTIONSs are defined viREAL FUNCTIONS to help the compiler optimize the code better,
since in the C language the typBMPLEX does not exist.

The variables reside in the Fourier space, so that the unksave the Fourier coefficients
of expansions similar to (8). A typeELOCITY made by &8TRUCTURE of 3 complex numers
is introduced in line 68, and akRRAY (0. .nx,-nz..nz,-1..ny+1) OF VELOCITY is
allocated in line 101.

The SUBROUTINE convolutions performs the task of transforming the velocity com-
ponents in physical space, computing their products amdfivraming the results, of type
MOMFLUZX, back in Fourier space. The aliasing error is removed by thewe.

Perhaps the most important routine is #S8ROUTINE buildrhs, which assembles the
right-hand-side of Egns. (9) and (10). One important oletéym is that the particular
explicit scheme for temporal integration to be used for threvective terms is not predeter-
mined, and can be easily changed. In fact the variabt®scheme appears in the calling
list of buildrhs (line 112). The actual invocation dfiildrhs is shown at line 254 in side
the main temporal loopimeloop. Inthis example the used time scheme is Crank-Nicolson
and Adams-Bashfort, as defined in lines 245-24%WyROUTINE CN_AB. The structure
of buildrhs is basically a main loop over thgpositions, to compute velocity products
with the pseudo-spectral method withibnvolutions, then build the spatial derivatives
of MOMFLUXes, and lastly assemble these quantities into the r.h.sheofwo equations.
Note the definition of th&NLINE FUNCTIONS 0S andsQ, standing for Orr-Sommerfeld
and SQuire, to define only once the parts of the equationsi(fards; respectively) that
will be used again in the following implicit partIF ix=0 AND iz=0 THEN, i.e. when
k? = 0, the mean velocity profile in both the homogeneous direstisrcomputed. Note
that the streamwise mean profile is stored {i9,0,*) .u.REAL and the spanwise profile
intov(0,0,*) .u.IMAG: at this stage of theimeloop, in fact,vV.u stores the values of the
r.h.s. for then equation.

So far, only points in the interior of the channel, i.e. foefhdex1t <= iy <= ny-1,
have been involved. In the second part of the time step, irSTBROUTINE linsolve,

LOW-COST PARALLEL DNS OF TURBULENCE 41

the boundary points and the boundary conditions come irdg. plThe linear systems
arising from the implicit time discretization of the viscoterms are solved, in a sequence
for each wavenumber pair. So, for each pairiafand iz, the two system matrices
D2vmat andetamat are computed, also by taking advantage of the previouslyeifi
INLINE FUNCTIONs 0S and SQ. Then the boundary lines of the matrices (and of the
r.h.s.) are modified to account for the boundary conditiofikis task is accomplished
by the routinespplybc_0 andapplybc_n, which allow for the most general form of the
boundary conditions. Then the system is solved, in line 209 fand in line 214 forj.

In the case the simulations are carried out at a constant 8ty the actual flow rate and
the velocity profile for the required correction are complitelines 221-226, and then the
correction is applied in lines 227 and 228 for both homogas@mponents to achieve the
desired flowrateeanflowx and/ommeanflowz. Finally, thetimeloop is completed once
the Fourier components of the homogeneous velocity compsrage computed. This is
the only point in the whole code where actual derivativesshawe computed. This task
is left to theFUNCTION deriv (defined in lines 149-160 and then used in line 231-232),
which again acts on thgEAL andIMAGinary parts oft separately, to the aim of improving
the optimizing efficiency of the compiler. It is only at thigwge of thetimeloop that the
three fieldsu, v andw of the COMPLEX ARRAY V actually contain the Fourier coefficients
of the velocity components.

