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Integral space–time scales in turbulent wall flows
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A direct numerical simulation of the Navier–Stokes equations is used to compute the space–time
correlations of velocity fluctuations in a turbulent channel flow. By examining the autocorrelation
R(j,t) of the longitudinal wall shear-stress as a function of the streamwise and temporal
separations, the effects of the limited extent of the computational domain when~artificial! periodic
boundary conditions are used can be described and quantified. A time scale similar to the
conventional integral scale but statistically related to the life time of the turbulent structures is
computed from spatio-temporal data. The convection velocity, defined as the direction in thej,t
plane where the autocorrelations have their maximum at vanishingly small time delay, is computed
as a function of the distance from the wall, and compared with the data available in the literature.
Based on autocorrelations, the accuracy within which Taylor’s hypothesis is verified is
quantitatively assessed. Last, the effect of the spatial discretization on the statistical characterization
of wall turbulence is discussed. ©2003 American Institute of Physics.@DOI: 10.1063/1.1586273#
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I. INTRODUCTION

Many research papers of the last decades have desc
the complex scenario of a turbulent flow over a wall as
distribution of coherent turbulent structures superimposed
to a random background. The intrinsic stochastic characte
such a scenario has not prevented us from understanding
some structures are of greater temporal coherence than
ers, and travel for a relatively long time interval in the dire
tion of the mean flow during their lifetime. In certain case
only the observation of the flow in a Lagrangian referen
frame brought out that some structures, while appea
highly fluctuating when observed in a Eulerian referen
frame, remain however coherent for a relatively long tim
when followed during their evolution. For example, Joha
son et al.1 discovered that, although the spatial structure
high-u8v8 regions is spotty, each spot can be traced alon
its motion for more than 100 viscous time units.~Here and in
the following a prime denotes fluctuating values arou
space–time averages;u, v, andw are the velocity compo-
nents in the streamwisex, wall-normal y and spanwisez
directions, respectively.! A similar conclusion was arrived a
by Kim and Hussain2 for the relatively short, quasi
streamwise near-wall vortices, which are temporally per
tent structures and lead the low-speed streaks, typical of
near-wall region of turbulent flows.

It becomes then natural to distinguish between a spa
length scale typical of a structure at fixed time~its ‘‘length,’’
as deduced, for example, from a snapshot of the flow fie!
and another, unrelated, spatial scale corresponding to the
tance traveled in the mean flow direction by the struct

a!Electronic address: maurizio.quadrio@polimi.it
b!Electronic address: luchini@unisa.it
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during its entire lifetime. A similar distinction can be mad
for time scales: They can indeed be related to space scale
the notion of convection velocity and by Taylor’s froze
turbulence hypothesis,3 so often invoked by experimentalist
when converting time-dependent data into measurements
pending on the streamwise coordinate. A number of ea
experiments~see for example Favreet al.4,5! were aimed at
the evaluation of the convection velocityC in turbulent wall
flows, showing that in the outer region of a boundary layer
channel flowC is very near to~slightly less than! the local
mean velocity. This otherwise reasonable result was imp
itly extended to the near-wall region, and the convection
locity has been since then often thought of as strictly rela
to the local mean velocity of the flow. In an experimen
work based on the analysis of frequency-wavenumber ve
ity spectra,6 Morrison, Bullock, and Kronauer obtained a fir
estimate of the value ofC in the near-wall region. Kreplin
and Eckelmann7 were able to measure the two compone
of wall friction and two velocity components at several d
tances from the wall in an oil channel at low Reynolds nu
ber; the correlation functions computed from these meas
ments highlighted the convective nature of the flow in t
viscous sublayer, and space–time features of the statistic
dominant near-wall turbulent structures were proposed.

In more recent years, mainly thanks to the analysis o
database produced by Kimet al.8 through direct numerica
simulation ~DNS! of a plane channel flow governed by th
incompressible Navier–Stokes equations, a more deta
comprehension of the advection process of flow structure
the near-wall region has become possible. Piomelliet al.9

supported the validity of Taylor’s hypothesis in the buff
layer and above. Johanssonet al.1 traced in time the stream
wise evolution of turbulent structures educed via
conditional-sampling technique, and visually estimated
9 © 2003 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2220 Phys. Fluids, Vol. 15, No. 8, August 2003 M. Quadrio and P. Luchini
convection velocity for such structures of 10.661 ut (ut be-
ing the friction velocity!. Choi and Moin10 and Jeonet al.11

computed convection velocities of pressure and shear fl
tuations at the wall, and Kim and Hussain2 first discovered
and emphasized the important difference between the l
mean velocity and the convection velocity in the near-w
region. The effect of the turbulent structures present in
buffer layer and beyond is such that their ‘‘footprints’’ a
felt all the way down to the wall: a convection velocity o
flow perturbations is well defined even at the wall, where
local velocity is zero, and remains approximately constan
the viscous sublayer, with a value of the order of the me
velocity at y1515 ~quantities shown with a1 superscript
are made dimensionless with the friction velocity and
kinematic viscosity of the fluid!. On the experimental side,
renewed interest is evident in the recent papers by Krog
et al.12 and by Khooet al.,13 who were able to accuratel
measure the streamwise component of velocity, in low- a
medium-Reynolds-number turbulent flows, down to 2 w
units from a solid wall, and to obtain estimates ofC based on
two-point correlations. It must be said, however, that sub
quent experimental measurements ofC by Khoo et al.14 dis-
agree with DNS data, which on their side have been co
puted in several papers but always using the same data
as explicitly noted by Khooet al.14 An independent confir-
mation of these results can, therefore, be useful. Moreo
the effect of the main computational parameters on the D
computed values ofC has not been addressed yet; in partic
lar the effect of the periodic-box size and of the time step
C is unknown.

Coming back to space- and length-scales, the ave
lifetime of the near-wall turbulent structures often rema
inaccessible to experimental measurement, even when
lor’s hypothesis is employed, owing to the difficulty of s
multaneously acquiring time-andspace-dependent measur
ments, whereas it can be evaluated numerically throug
DNS with relative ease. In such computations, however,
unbounded space in the homogeneous directions is repl
by a periodic computational domain of finite length a
width. The consequence is that a third, artificial space~and
hence time! scale enters the picture. Only if the instantaneo
dimensions of the structures and their lifetime can be veri
to be independent of this artificial periodicity will they po
sess physical meaning.

In the current DNS literature, the adequacy of the lon
tudinal period of the computational box is usually asc
tained, following Kimet al.,8 by verifying that the two-point
correlation function for some fluid variable~notably theu
component of velocity, which is known to possess the wid
space scales! at some distance from the wall becomes su
ciently small at a streamwise separationj equal to half the
box length, while zero time and spanwise separation is
plicitly assumed. This amounts to considering a snapsho
turbulent structures at any given time, ensuring that the
is long enough to contain the longest of them. On the ot
hand, the question of whether the full lifespan of the str
ture can be followed reliably in the computations still has
be rigorously addressed. Just a few papers have comp
some space–time correlations for turbulent wall flows fro
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DNS. For example, Choi and Moin10 computed information
on the space–time characteristics of wall-pressure fluc
tions in a channel flow, and Jeonet al.11 extended the same
analysis to wall shear-stress fluctuations, but they did not
their results to assess the adequacy of the space–time
cated computational domain. The recent paper by Phillip15

investigates in some theoretical detail the behavior of spa
time correlation functions, and uses the DNS data by K
and Hussain2 as a test case.

In this paper we use space–time velocity, wall-press
and wall-shear spectra, computed through a purposely
ecuted DNS of turbulent plane channel flow, to investigate
what extent the longest temporal scales of wall turbule
are affected by the size of the computational box. We mo
over compute a time scale related to the average life of
bulent structures. We then introduce a correlation-based d
nition of convection velocityC, through which the validity of
Taylor’s hypothesis and the sensitivity ofC to the main com-
putational parameters are examined. In particular the e
associated with the use of Taylor’s hypothesis can be p
cisely quantified.

II. NUMERICAL PROCEDURES

For this work we used a computer code, recently dev
oped by Quadrio and Luchini,16 which is a pseudo-spectra
solver of the incompressible Navier–Stokes equations w
ten, similarly to Kimet al.,8 in terms of a scalar equation fo
the wall-normal component of vorticity and a scalar equat
for the normal component of velocity, in a way that imitat
the Squire decomposition of stability problems. Fourier e
pansions are applied in the homogeneous directions, whe
compact fourth-order finite differences are used in the w
normal direction, acting on a five-point computational sten
in a variable-spacing mesh. The code is parallel, can t
advantage of both SMP shared-memory architectures
distributed-memory networked computers; it presently ru
on a low-cost fully dedicated system composed of 8 SM
commodity personal computers with two Pentium III 73
MHz CPUs each. The simulations are performed at a R
nolds number Ret'180, based on the friction velocity andh,
half the channel height. The size of the periodic compu
tional box ~except where explicitly changed to verify its e
fects! is Lx54ph ~2253 viscous lengths! andLz5

4
3 ph: this

corresponds to the typical box dimensions that are usu
considered acceptable at this value of Re in the curr
literature.17 The spatial discretization also takes on curren
accepted sizes:17 The wall-normal direction is discretize
with 129 mesh points, 193 streamwise and 129 spanw
Fourier modes are used in the homogeneous directions.
equivalent spatial resolution isDx1511.7, Dz155.9, and
Dy150.8– 4.7 from the wall to the channel centerline. D
aliasing is performed by expanding the number of collo
tion points by a factor~at least! 3/2 before going from Fou-
rier space into physical space and contracting on the w
back. The equations are integrated in time following t
commonly used partially implicit approach, with a third
order Runge–Kutta scheme for the convective terms an
second-order Crank–Nicholson scheme for the impl
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2221Phys. Fluids, Vol. 15, No. 8, August 2003 Integral space–time scales in turbulent wall flows
terms. The time step is 0.075 viscous time units, and all
simulations have been run for a time interval of 4500 visco
time units.

Space–time correlations are computed after writing
disk, every 1.5 viscous time units for the full duration of t
simulation, the Fourier coefficients of the flow variables
the wall ~namely pressure and the two components of
shear stress!, and the coefficients of the three velocity com
ponents at the distance from the wall ofy1'10. The auto-
correlation functionR(j,t) for each flow variable is com
puted directly in the physical domain as far as its tim
dependence is concerned, whereas the dependence o
spatial separationj is obtained from the inverse Fourie
transform of the spectral density functionS(a,t), wherea is
the streamwise wavenumber. All correlation data shown
low refer to a null separation in the spanwise direction.

FIG. 1. Autocorrelation functionR(j1,t1) for the longitudinal shear-stres
at the wall. Isolines are from 0.1 to 0.9 by 0.1. The thick line conne
fixed-time spatial maxima ofR; the dotted straight line is drawn along th
direction of maximum correlation at the origin.
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III. SPACE–TIME CORRELATIONS

Reported in Fig. 1 is the autocorrelation functionR(j,t)
for the x component of the wall shear-stress. The tempo
and spatial separations are expressed in viscous units
spatial separation spans three times the channel len
which amounts to 2253 wall units. The maximum tempo
separation considered is fromt152380 tot15380, even
if a shorter time scale is shown on the plot, namely fro
t15260 to t15200.

The periodicity of the flow in the longitudinal directio
is reflected in the appearance of repeated images, whose
gitudinal separation is exactly one channel length. The m
velocity at the wall is zero, but nonetheless the convect
nature of the flow at the wall is clearly indicated by th
elongated shape of the autocorrelation contours: a prefe
direction in thej,t plane is indeed associated to a charact
istic velocity. This direction, evaluated at the origin, is ind
cated with a dotted line. In Fig. 1 a thick line is drawn con-
necting fixed-time spatial maxima of the autocorrelati
function; its significance will be illustrated in the next Se
tion.

This plot is qualitatively similar to the analogous figu
by Jeonet al.11 The most significant quantitative differenc
is the extent of the low-correlation region: the present res
indicate that the correlation remains above 0.1 for values
t1 up to 160, contrary to their indication oft1590– 100.
As a possible explanation of this discrepancy we might s
mise that their window function, employed when converti
temporal data into frequency data and back in the proces
obtaining correlations, could have affected the correlation
large time separation. It must also be observed that they
eraged over relatively few time histories, and were someh
limited by the adopted discretization: The total averag
time was 907.2 viscous time units, further subdivided in
overlapping subintervals~with 50% overlap!, so that the
maximum considered time delay was onlyt15129.6.

The autocorrelation functions for the other flow va
ables at the wall, namely the spanwise component of the w

s

n-

n

FIG. 2. Autocorrelation functionR(j1,t1) for the
spanwise shear-stress~left! and pressure~right! at the
wall. Isolines are from 0.1 to 0.9 by 0.1; dashed co
tours are for the level20.05. The dotted straight lines
are drawn along the direction of maximum correlatio
at the origin.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2222 Phys. Fluids, Vol. 15, No. 8, August 2003 M. Quadrio and P. Luchini
shear-stress and the pressure, are shown in Fig. 2. These
quantities show significantly shorter characteristic length
time scales, which might also explain why they are in mu
better quantitative agreement with Jeonet al. results. A small
region of negative correlation forp can be noted at sma
time delays ~or small streamwise separations!. A similar
slope of the line of autocorrelation maxima is observed
spanwise as for streamwise shear, but for pressure this s
is significantly higher, suggesting a larger propagation vel
ity of pressure fluctuations near the wall.

IV. INTEGRAL TIME SCALE

A common quantitative characterization of the tim
needed for a signal to decorrelate is the so called inte
scale; in the real, nonperiodic, flow the integral scale can
computed from the space–time correlation function eva
ated atj50, as

T5E
0

`

R~0,t! dt . ~1!

In Fig. 3 the quantityR(0,t1) is reported with a dashe
line for thex component of the wall shear-stress. It exhib
a first minimum at a temporal separation oft1'85, fol-
lowed by a secondary peak att1'170; a third peak att1

'320 is also discernible. This sequence of peaks is an
fact due to repeated passage of the same structures, adv
through the computational box of finite length: Owing to t
periodic boundary conditions, the structures that leave
computational domain from the downstream side re-en
from the upstream side, thus producing a peak in the t
correlations.

The integral scaleT ~expressed in viscous units! would
be the area under the dashed line of Fig. 3, if it were not
the aliased images of the correlation peak. A simple but
curate way to account for the aliasing effect is to truncate
integral at the first minimum of the curve. In fact, th
amounts to an exponential fitting of the tail of the autocor

FIG. 3. Time correlation of the longitudinal shear-stress at the wall for z
streamwise separation~dashed line! and along the line of correlation
maxima~continuous line!.
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nential, the missing part of the integral from the truncati
point up to infinity would be exactly made up for by the ta
of the second peak protruding into the first.

The integral scale of turbulence in homogeneous iso
pic flows has received much experimental and numer
attention,18,19 but values ofT for wall-bounded turbulent
flows computed from a DNS are not to date known. Kh
et al.14 experimentally measured for theu velocity compo-
nent in the very near-wall region of a turbulent channel flo
a value ofTu

1'15; for comparison, not having found an
suitable previous experimental measurements, they indire
estimatedTu

1'20 from numerical data: Namely as the rat
between the integral longitudinal space scale, computed f
the spatial autocorrelation functionR(j,0) at y155.4 ob-
tained in the DNS of Kimet al.,8 and the near-wall convec
tion velocity Cu , as determined by Kim and Hussain.2 Our
own result obtained from integratingR(0,t1) down to its
first minimum, probably the first computation ofT at the
wall from DNS data, is an integral time scaleT1519.1 for
the streamwise shear-stress at the wall. Furthermore, th
tegral time scale is 6.1 viscous time units for the spanw
shear, and 2.3 for the pressure; aty1'10 the time scales for
the u, v andw velocity components become 19.2, 6.5, a
7.0, respectively. These results are summarized in Tab
together with the alternative time scale discussed in the
lowing.

Integral life scale

Another interesting integral time scale, with a com
pletely different physical meaning, can be introduced
quantify the life time of the turbulent structures. This integ
life scale, which will be denoted asT, in the following, can
be computed through the integration ofR(j1,t1) along the
path of maximum correlation, i.e., along the thick solid lin
drawn in Fig. 1 and connecting fixed-time spatial maxima
the autocorrelations. The integrand function, for the strea
wise shear, is shown as a solid line in Fig. 3 compared w
the integrand in the definition of the conventional integ
scale. While the integral scaleT defined by Eq.~1!, from a
physical viewpoint, is related to the local visibility of th
turbulent structures at a given location in space, the scaleT,

relates to the complete life cycle of turbulent structures, si
it quantifies how long the signal takes to decorrelate wh
followed in its motion. The present data giveT, equal to 61

o

TABLE I. Integral time scaleT and life-time scaleT, for the components of
velocity at the wall and aty1'10. All values are in viscous time units.

y1→0 y1'10

Tu 19.1 19.2

Tu
, 61 68

Tv ¯ 6.5

Tv
, 20 23

Tw 6.1 7.0

Tw
, 30 46

Tp 2.3 ¯

Tp
, 22 ¯
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2223Phys. Fluids, Vol. 15, No. 8, August 2003 Integral space–time scales in turbulent wall flows
viscous time units for the longitudinal shear, 30 for the sp
wise shear and 22 for the pressure fluctuations at the wal
y1510 the lifescales becomeTu

,568, Tv
,523, andTw

, 546
viscous time units. One can note the interesting fact t
pressure structures are characterized by the smallest tem
scales when observed in a Eulerian frame (Tp52.3), but
their size becomes comparable to the others when consid
in a Lagrangian frame (Tp

,522). Time scales tend moreove
to increase slightly with increasing distance from the wal

V. CONVECTION VELOCITY

A convection velocityC, with which perturbations are on
average convected, can be preliminary estimated from
repeated peaks of the correlation function reported in Fig
as the ratio of the box length and the time delay at which
first peak is observed. It is immediately evident than
typical convective time taken by the structures to turn arou
a computational box of this size is shorter than their typi
life cycle.

More precisely identified definitions for the convectio
velocity are based on local slopes of either autocorrela
functions or spectral density functions.2,10,11Spectrum-based
definitions, however, suffer from the inherent statistical er
associated with the estimation of the spectrum from a fin
sample, which does not decrease with increasing sample
unless an artificial windowing is introduced. A correlatio
based definition, on the other hand, has an estimation e
that decreases with the square root of the number
samples.20 Hence in the present work we define a convect
velocity based on the analysis of autocorrelation functio
as the ratioj/t whereR(j,t) is a maximum, for a given time
delay. The thus obtained velocity only slightly changes wh
different temporal separations are considered, in the ra
where the correlation function remains significantly differe
from zero, as evident from our Fig. 1 and from Kim an
Hussain.2 The mild increase with increasing separation c
be related to a tendency of large structures to be adve
faster than small structures.

In their own work on the convection velocity, Kim an
Hussain2 searched for the maximum of the correlation fun
tion at a fixed time delay using a pre-computed spatial g
They reasoned that when the time delay is too large ther
a significant statistical error in estimating the correlati
function, whereas whent is too small an error is produced b
the interpolation between adjacentj-grid points. A balance
between these two error sources led them to choose
compromise the particular value oft1518. Here we do not
have the second type of error because we directly com
the correlation function from its spectral components with
any grid interpolation, and thus can work with infinitesimat
without any difficulty.

Hence we defineC at vanishingly small time delay, i.e
as the slope of the dotted straight line through the ori
shown in Figs. 1 and 2, namely

C52
]2R/]j]t

]2R/]j2 U
j,t50

.
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Computationally the easiest way to obtain this value is
use the time delay corresponding to one time stepDt of the
calculation, by looking for the value ofj where

]

]j
R~j,Dt !50.

The correspondingC is computed in Fourier space by
Newton iteration, which leads to the formula

C n115C n1
(aS~a,Dt !ia exp~ iaC nDt !

Dt(aS~a,Dt !~ ia!2 exp~ iaC nDt !
,

wheren is the iteration level, andS(a,Dt) is obtained, in-
dependently ofn, by time-averaging products of correspon
ing velocity Fourier components at a given distance from
wall and a time separation oft5Dt. Convergence is
achieved in just two or three iterations.

Figure 4 reports the variation ofC with distance from the
wall ~in viscous units! for the three velocity components, an
Table II shows the numerical values at the wall and aty1

'10. There is a general agreement with previously repor
propagation velocities computed from older numerical da
bases, which are thus now independently confirmed. So
small differences can, however, be noticed in comparison
Kim and Hussain:2 In particular ourC u

1 profile for the u
velocity component exhibits a nonmonotonic behavior, w
a minimum of 9.5 aty153.2. On the other hand, the wa
values ofC u

159.93, C v
159.79 andC w

1510.01 are in very
good agreement with those by Kim and Hussain, and do
appreciably change when theC’s are computed, like their
own, at t1518 ~e.g., C u

159.91). Experimental measure

FIG. 4. Propagation velocity for the three velocity components across
channel, compared to the mean velocity profile.

TABLE II. Convection velocity for the components of velocity fluctuation
at the wall and aty1'10.

y1→0 y1'10

C u
1 9.93 10.38

C v
1 9.79 10.85

C w
1 10.01 11.32
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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ments by Krogstadet al.12 in a turbulent boundary layer with
a Reynolds number approximately 3 times larger than
present one are also very close to our results, particul
those obtained with their smallest probe separation. Th
are, instead, significant quantitative differences with the
perimental measurements by Khooet al.,14 which yield C u

1

'13 in the whole viscous sublayer of a channel flow
Ret5390, andC u

1'15 for boundary layers with values o
the Reynolds number approximately three times higher t
Krogstadet al.12 It would be interesting to verify whether th
difference between these two experiments can indeed be
cribed, as Khooet al. suggest, to Reynolds number effec
but, although the calculation ofC in a DNS at a Reynolds
numberO~1000! is presently difficult to be achieved, from
the comparison of Krogstadet al.12 with our results
Reynolds-number effects seem very mild.

VI. TAYLOR HYPOTHESIS

As already noticed by others,10,11,14the very concept of
convection velocity is necessary for a correct application
the commonly used Taylor’s hypothesis. It is clear that it
this velocity, and not the local mean velocity, that must
used to convert temporal data into spatial data andvice versa
within the limits in which this is possible. The assessmen
such limits by means of comparison of frequency a
wavenumber-transformed spectral data, as already perfor
in previously published papers,10,11does suffer however from
the difficulties mentioned before, namely from the unc
tainty related to the estimation of spectral density functio
from a statistical sample of finite size.

A quantitative check of Taylor’s hypothesis without su
statistical uncertainties can be obtained by means of corr
tion functions. Figure 5 reports the autocorrelation funct
for the longitudinal shear at the wall: The continuous line
the plainR(j1,0) correlation drawn up to half the chann
length, whereas the dashed line is theR(0,t1) function plot-
ted versus the abscissaC u

1t1, with C u
1 evaluated at the wall

FIG. 5. Verification of Taylor’s hypothesis: Spatial correlation at zero ti
delay for the longitudinal wall-shear~continuous line! and temporal corre-
lation plotted against the abscissaC u

1t1 with C u
1 evaluated at the wall

~dashed line!. Periodicity effects have been compensated for through
exponential fitting.
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The agreement is generally good, and in particular is v
good for values of the correlation larger than 0.5. It is, ho
ever, evident that a range of separations does exist, wher
simple space–time conversion through the convection ve
ity is not enough for the space and time correlation functio
to coincide. In order to enhance our ability to discern t
quantitative differences between these two curves, they h
been drawn in Fig. 5 compensating for the effects of
spurious, periodicity-induced secondary peak through an
ponential fitting, and truncating at its first local minimum.

The curves start being appreciably different at a spa
separation ofj15150, and an error of'15% is made for a
still statistically significant value of the correlation functio
of 0.1.

VII. DISCRETIZATION EFFECTS

Since the autocorrelation of the longitudinal compone
of friction is the most extended over both time and space
seen from Figs. 1 and 2, this is the appropriate quantity to
looked at in order to verify the suitability of the longitudina
size of the computational box. The minimum correlati
along the section att50, which is usually considered fo
this purpose, occurs at a separation equal to half the cha
length for symmetry reasons~see Fig. 1 again!, and is 0.042
for our box size. It becomes 0.049 if theu-velocity correla-
tion is evaluated aty1510 rather than at the wall. But othe
potential candidates must be examined, for example,
minimum correlation along a section atj50. More gener-
ally, since the correlation function is made artificially pe
odic along thej axis by the periodic boundary condition
and can be seen as the superposition of repeated imag
the true correlation function, a good measure of the sep
tion between such images is given by the maximum alo
the line of minima that separates two successive correla
peaks. The temporal autocorrelation of the longitudinal sh
stress at zero spatial separation has been already show
Fig. 3 ~dashed line!: Its first minimum is 0.028~0.04 for the
u component aty1510).

The comparison between the two autocorrelation mini
along the section att150 and along the section atj150
indicates that the former provides a slightly more string
constraint on the size of the computational box. In fact,
analysis of the fullj, t plane shows that, at least for th
present box length (Lx54ph), the largest of all autocorre
lation minima in the gap between two repeated images of
correlation surface occurs atj5Lx/2 and t50, i.e., at the
classically assumed point for such tests. This remains, th
fore, the most reliable choice even when the fullj, t-plane is
taken into consideration.

On the other hand, the all-encompassing question of h
small is small enough remains difficult to answer. Can
consider an autocorrelation of 0.049 negligible at all? Or,
the contrary, is it perhaps unnecessarily small~as the
minimal-channel concept21 is sometimes implied to sug
gest!?

A further simulation has been performed for a long
channel withLx58ph and the number of longitudinal Fou
rier modes increased to 385 in order to keep the spatial r

n
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lution unchanged. The results of this demanding computa
are shown in Fig. 6 in terms of the autocorrelation functi
R(j1,0) of the longitudinal wall friction at zero time delay
compared with the same quantity from the case withLx

54ph. It can be seen that the channel length used in mos
the DNS research papers published to date actually de
mines a spurious behavior of the autocorrelation function
large separations, whereas the use of twice that length g
antees thatR(2ph,0) can decrease to zero without unphy
cal constraints due to the finiteness of the computational b
The autocorrelation at the maximum streamwise separa
for the longer channel reaches20.016, i.e., decreases dow
to the level where only the error implied by the finite int
gration interval becomes significant.

The convection velocity of flow perturbations, insofar
representing the advection of turbulent structures, is likely
be sensitive to numerically induced alterations in the k
physical quantities of turbulent wall flow, and might well b
taken as an indicator of box-length suitability. For this reas
we investigated the effect of the main computational para
eters on the calculation ofC.

Since our definition of convection velocity is based
the direction of maximum correlation at the smallest tim
delay represented in the calculation, we first checked
effect of the choice of the time–stepDt. Repeating a simu-
lation with Dt150.15, i.e., twice the normal value, has n
given any discernible difference.

We then moved on to the effect of the finite periodic bo
To test its importance, besides the simulation with the lon
channel we performed an additional simulation on a box w
Lx5 4

3 ph andLz5
2
3 ph, leaving the spatial resolution iden

tical to the previous case and hence using 65 Fourier mo
in either direction. Results from the standard and the lon
channel length simulation are very similar, with small diffe
ences being probably attributable to the finiteness of the s
pling interval. On the other hand results in terms of the co
puted convection velocity are shown in Fig. 7 for the sma

FIG. 6. Comparison between the autocorrelation functionR(j1,0) of the
longitudinal component of wall friction, for two simulations with differen
channel lengths. The dashed line is obtained with a computational bo
standard lengthLx54ph, and the continuous line corresponds to a box
twice that length, i.e.,Lx58ph.
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and standard-size channels, and indicate for the three ve
ity components a clear dependence ofC on box size.

The size of the latter channel is such that the wall a
considered is still several times bigger than the minimal fl
unit described by Jime´nez and Moin,21 and in particular the
length of the computational box is more than twice as mu
Minimal channel simulations reportedly allow a reasona
computation of low-order turbulence statistics, especially
the near-wall region, and only exhibit some differences w
full-channel simulations in the outer region of the chann
Our definition of convection velocity focuses on the small
spatio-temporal scales resolved by the simulation, so tha
effect of the box size might not on this basis be expect
especially in the near-wall region. Such an effect is nevert
less clearly appreciable and significant: It turns out that i
medium-sized channel the propagation velocity of the fl
tuations in the near-wall region is overestimated by 5%–7
with the error slowly decreasing farther away from the w
but still appreciable aty1;80. This means that results from
narrow-channel simulations must be considered with ca
since they might be comparable with results from a simu
tion with adequate box size insofar assomelow-order turbu-
lence statistics are concerned, but other important phys
properties of the flow are misrepresented.

VIII. CONCLUSIONS

Space-time autocorrelation data naturally allow a d
tinction between the concept of time of transit of a flo
structure at a given spatial position~directly related to its
length!, and the temporal extension over which the struct
can be followed in its motion~i.e., its life time!. We propose
an integral time scaleT, to be adopted for the characteriz
tion of structure life time in turbulent wall flows. Unlike th
standard integral time scale, computed from time corre
tions at zero space separation~or from space correlations a
zero time separation, the approximate conversion betw

of

FIG. 7. Effect of the box size on convection velocity: Comparison betwe

profiles for the large channel withLx54ph, Lz5
4
3ph ~lines! and for the

small channel withLx5
4
3ph, Lz5

2
3ph ~symbols!.
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the two being possible according to Taylor’s hypothesis!, this
life scale is the integral of the space–time correlation fu
tion along the line of its spatial maxima in thej, t plane.
Instead of adopting a fixed-in-space view~typical of fixed-
point experimental measurements! or a fixed-in-time view
~very natural to numerical analysts, who can take snaps
of the full computed flow field!, this time scale relies on th
statistical observation of the flow in a pseudo-Lagrang
frame that moves so as to maximize the space–time cor
tion. ~A similar approach has also been recently pursu
from an experimental standpoint,22 at least for homogeneou
isotropic flows, by following flow particles along their tra
jectories.! This new time scale quantifies the different li
span of the fluctuations of different near-wall flow variable
It brings out, for example, that pressure fluctuations, cha
terized by much shorter space and time scales than thu
velocity, are just half as long-lived.

The convection velocity of turbulent fluctuations is
concept which naturally arises from the previous analy
The convective nature of the flow is evident from the elo
gated shape of the autocorrelation contours, even at the
where the local mean velocity is zero. The correlation at
wall propagates downstream at a speed dictated by the o
structures running past; this speed is higher for pressure
tuations, and lower for the velocity components. We prop
to define and compute the convection velocity from corre
tion data instead of spectral data, since the statistical erro
the former case is confined to the largest separatio
whereas in the latter it is uniformly distributed over the e
tire wavenumber and frequency range, and does not decr
with an increase in sample size.~This error might be dimin-
ished by averaging over the whole spectrum, which even
ally amounts to the same operation as Fourier-transform
back to the correlation function.! For definiteness we evalu
ate C from the direction in thej, t plane where the space
time correlation attains its maximum at the origin, or in pra
tice at one numerical time step of the simulation. Our res
reconfirm previous numerical evaluations ofC but only some
of the available experimental data, in which a non-negligi
scatter is present. A doubt remains whether this scatter
indeed be attributed to Reynolds-number effects, or perh
is due to limitations in the experimental techniques.

A quantitative verification of Taylor’s frozen-turbulenc
hypothesis has been made in terms of correlation functio
Of course Taylor’s hypothesis is only an approximation, a
if the convection velocity is computed based on informat
for the smallest scales, then some discrepancy is unavoid
in the medium-scales range. The quantification of this eff
is rather difficult in terms of spectral data, whereas it b
comes relatively easy in terms of correlation functions:
15% error is reported in a wide range of separations wh
the correlations functions are still statistically significant.

Finally, spatio-temporal autocorrelation functions f
wall shear, wall pressure and velocity fluctuations have b
used for a critical discussion of the effect of discretizati
parameters on the current procedures for the direct nume
simulation of wall turbulent flows with periodic boundar
conditions. Starting from an overall consideration of the f
spatio-temporal correlation in the choice of a suita
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streamwise length of the computational domain, we find t
the classical criterion based on spatial correlations rem
the most stringent, at least for the parameters considere
the present study. Based on this criterion, results from a
manding simulation where the channel length has b
doubled while keeping the spatial resolution unchanged
shown that a channel length ofLx58ph could be necessary
at the present values of the other computational parame
for the correlations at the maximum streamwise separatio
decrease to a level where the error implied by the finite
tegration interval becomes predominant.

In the same context, we also checked the sensitivity
the computed value ofC to the parameters of the numeric
discretization. In particular we found a negligible effect
the time step size, but a significant effect of the size of
computational periodic box. Despite our definition of co
vection velocity only involves the correlation at infinitesim
time and space separation, a reduced computational box
termines an overestimation of the convection velocity, for
the velocity components, of the order of 5%–7%. The f
that this inadequate computational box is still more th
twice as long as the minimal channel unit, i.e., the minim
box required for wall turbulence to be self-sustained, is
clear indication that verifying the results of a few low-ord
statistics is not enough to establish the suitability of a giv
direct numerical simulation of turbulence. Perhaps the c
vection velocity might be proposed as an indicator for t
purpose.
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