
A Parallel Algorithm for the Direct Numerical Simulation
of Turbulent Channel Flow

Maurizio Quadrio1,∗, Paolo Luchini2, J.M. Floryan3

1 Dept. Aerospace Engineering, Politecnico di Milano, Italy
2 Dept. Mechanical Engineering, University of Salerno, Italy

3 Dept. Mechanical and Materials Engineering, University of Western Ontario, Ontario, Canada

Email: maurizio.quadrio@polimi.it, luchini@unisa.it, mfloryan@uwo.ca

ABSTRACT

An algorithm for the Direct Numerical Simulation
(DNS) of the incompressible Navier–Stokes equations
for simple geometries in Cartesian coordinates is de-
scribed. This algorithm presents excellent properties
when used in large-scale or grid computing environ-
ments: an underlying fast scalar implementation, low
memory requirements, a limited amount of communi-
cation and a high degree of parallelisation.

The parallel algorithm is designed for shared- as well
as distributed-memory systems and, eventually, grid
computing; data exchange between different comput-
ing machines is minimized, so as to take advantage
of standard or non-optimal network devices and band-
widths. The key point for an efficient parallelization is
the choice of finite differences for the discretizazion of
the wall-normal direction, allowing the computational
domain to be cut into wall-parallel slices: the most
demanding computations can be carried out for dif-
ferent transverse planes without communication, and
the global memory requirements can be subdivided
amongst the computing machines.

1 INTRODUCTION

The Direct Numerical Simulation (DNS) of the in-
compressible Navier–Stokes equations is an essential
research tool for basic studies on the physics of tur-
bulent flow, for the development and testing of suit-
able sub-grid-scale models for Large Eddy Simula-
tions, and for further refinement of turbulence mod-
els to be used in the solution of Reynolds-Averaged
Navier-Stokes equations [1]. Since the computational
size of the problems to be solved with DNS is very

∗Visiting Professor, Dept. of Mechanical and Materials Engi-
neering, University of Western Ontario

large and increases rapidly with the Reynolds number,
it is mandatory for a DNS computer code to be highly
efficient, both in terms of CPU time and RAM occupa-
tion, and to be suitable for an efficient parallelization.

An effective formulation of the Navier–Stokes equa-
tions was presented almost 15 years ago by Kim, Moin
& Moser in [2], the pionieering work on the DNS of
turbulent plane channel flow. It consists of the replace-
ment of the continuity and momentum equations with
two scalar equations, one (second-order) for the nor-
mal component of vorticity and one (fourth-order) for
the normal component of velocity. This procedure is
appealing, since pressure is removed from the equa-
tions, and the recovery of the other two velocity com-
ponents can be done through the solution of a 2x2 al-
gebraic system (a very cheap procedure from a com-
putational point of view), when a Fourier expansion
is adopted for the homogeneous directions. A very
high computational efficiency can thus be achieved.
This particular formulation of the Navier–Stokes equa-
tion does not call for any particular choice for the
discretization of the differential operators in the wall-
normal direction. Many researchers have used spectral
methods (mainly Chebischev polynomials) in this di-
rection, while in more recent years the use of finite
difference schemes has seen growing popularity [1].

In this paper we present a numerical method designed
for the DNS of turbulent wall flows in cartesian coordi-
nates, with high computational efficiency, good paral-
lel performances and very low memory requirements.
The method solves the equations in the form intro-
duced in [2]. We will illustrate the main properties
concerning computational efficiency, the use of com-
pact, high-order finite differences for the wall-normal
direction, and the parallel strategy, with emphasis on
memory performance.

PSfrag replacements

Lz
Lx

yu

yl

f low

2δ

x,u

y,v

z,w

Figure 1: Sketch of the computational domain for the
cartesian coordinate system.

2 THE GOVERNING EQUATIONS

The cartesian coordinate system is illustrated in Fig.1,
where a sketch of an indefinite plane channel is shown:
x, y and z denote the streamwise, wall-normal and
spanwise coordinates, and u, v and w the respective
components of the velocity vector. The flow is as-
sumed to be periodic in the streamwise and spanwise
directions. The lower wall is at y = y1 and the upper
wall at y = y2. The reference length δ is taken to be
one half of the channel height, i.e. δ = (y2 − y1)/2.

The streamwise and spanwise lengths of the compu-
tational box are Lx and Lz respectively. Once an ap-
propriate reference velocity U is chosen, a Reynolds
number can be defined as Re = Uδ/ν, where ν is
the kinematic viscosity of the fluid. Concerning the
boundary conditions, at the wall the no-slip and no-
penetration conditions are physically meaningful. The
use of periodic boundary conditions is generally ac-
cepted for the homogeneous directions (see [3] for a
critical discussion). Once the periodicity assumption is
made for both the streamwise and spanwise directions,
the equations of motion can be conveniently Fourier-
transformed along the x and z coordinates.

2.1 Equation for the wall-normal vortic-
ity component

The wall-normal component of the vorticity vector,
which we shall indicate with η, after transforming in
Fourier space is given by:

η̂ = iβû− iαŵ (1)

where the hat indicates Fourier-transformed quantities,
i is the imaginary unit, and the symbols α and β de-
note the streamwise and spanwise wave numbers. A
one-dimensional second-order evolutive equation for
η̂ which does not involve pressure can be easily writ-

ten, following for example [2], by taking the y compo-
nent of the curl of the momentum equation, obtaining:

∂η̂
∂t

=
1
Re

[
D2(η̂)− k2η̂

]
+ iβĤU − iαĤW (2)

In this equation, D2 denotes the second derivative in
the wall-normal direction, k2 = α2 + β2, and the non-
linear terms are grouped in the following definitions:

ĤU = −iαûu−D1(ûv)− iβûw (3a)

ĤV =−iαûv−D1(v̂v)− iβv̂w (3b)

ĤW = −iαûw−D1(v̂w)− iβŵw (3c)

The numerical solution of Eq. (2) requires an initial
condition for η̂, which can be computed from the ini-
tial condition for the velocity field. The same initial
condition can be used for the calculation of the non-
linear terms ĤU and ĤW and their derivatives. The pe-
riodic boundary conditions in the homogeneous direc-
tions are automatically satisfied thanks to the Fourier
transform, whereas the no-slip condition translates in
η̂ = 0 to be imposed at the two walls y = y1 and y = y2.

2.2 Equation for the wall-normal velocity
component

An equation for the wall-normal velocity component
v̂, which does not involve pressure, can be written [2]
summing the x component of the momentum equation
differentiated with respect to x and y and the z compo-
nent differentiated with respect to y and z, and subtract-
ing the y component differentiated twice with respect
to x and then twice with respect to z. Further simpli-
fications arise if the continuity equation is invoked for
cancelling some terms, eventually obtaining the fol-
lowing fourth-order evolution equation for v̂:

∂
∂t

(
D2(v̂)− k2v̂

)
=

1
Re

[
D4(v̂)−2k2D2(v̂)+ k4v̂

]

− k2ĤV −D1

(
iαĤU + iβĤW

)
(4)

This scalar equation can be solved numerically pro-
vided an initial condition for v̂ is known. The no-
penetration condition translates in v̂ = 0 to be imposed
at y = y1 and y = y2. The continuity equation writ-
ten at the two walls makes evident that the additional
two boundary conditions required for the solution of
Eq. (4) are D1(v̂) = 0 at y = y1 and y = y2.

2.3 Velocity components in the homoge-
neous directions

The two scalar equations (2) and (4) are uncoupled
and, after proper time discretization, they can be
solved for advancing the solution by one time step,
provided the nonlinear terms (3a)-(3c) and their spatial
derivatives can be calculated. For this being possible,
one needs to know how to compute û and ŵ at a given
time knowing v̂ and η̂. By using the definition (2) of η̂
and the continuity equation written in Fourier space, a
2x2 algebraic system can be written in the unknowns
û and ŵ; its analytical solutions reads:

û =
1
k2 (iαD1(v̂)− iβη̂)

ŵ =
1
k2 (iαη̂ + iβD1(v̂))

(5)

2.3.1 Plane-averaged homogeneous velocities

The preceding system is singular when k2 = 0. This
follows from the fact that Eqns. (2) and (4) have been
derived from the initial differential system through a
procedure involving spatial derivatives.

Let us introduce a plane-average operator:

f̃ =
1
Lx

1
Lz

Z Lx

0

Z Lz

0
f dxdz

The space-averaged streamwise velocity ũ = ũ(y, t) is
a function of the wall-normal coordinate and the time
only, and in Fourier space it corresponds to the Fourier
mode for k = 0. The same applies to the spanwise
component w̃. With the present choice of the refer-
ence system, where the x axis is aligned with the mean
velocity, the temporal average of ũ is the streamwise
mean velocity profile, whereas the temporal average
of w̃ will be zero (within the limits of the temporal dis-
cretization). This nevertheless allows w̃ at a given time
to be different from zero. Two additional equations
must then be written for calculating ũ and w̃; they can
be worked out by applying the plane-average operator
to the relevant components of the momentum equation:

∂ũ
∂t

=
1
Re

∂2ũ
∂y2 −

∂(ũv)
∂y

+ fx

∂w̃
∂t

=
1
Re

∂2w̃
∂y2 −

∂(ṽw)

∂y
+ fz

In these expressions, fx and fz are the forcing terms
needed to force the flow through the channel against
the viscous resistance of the fluid. For the streamwise

direction, fx can be a given mean pressure gradient,
and in the simulation the flow rate through the channel
will oscillate in time around its mean value. fx can
be also a time-dependent spatially constant pressure
gradient, chosen in such a way that the flow rate re-
mains constant in time. The same distinction applies to
the spanwise forcing term fz: in this case however the
imposed mean pressure gradient or the imposed mean
flow rate are zero for a standard channel flow.

3 THE NUMERICAL METHOD

3.1 Spatial discretization in the homoge-
neous directions

The equations written in Fourier space readily call
for an expansion of the unknown functions in terms
of truncated Fourier series in the homogeneous direc-
tions. For example the wall-normal component v of
the velocity vector is represented as:

v(x,z,y, t) =
+Nx/2

∑
h=−Nx/2

+Nz/2

∑
`=−Nz/2

v̂h`(y, t)e
iαxeiβz (6)

where:

α =
2πh
Lx

= hα0; β =
2π`

Lz
= `β0

Here h and ` are integer indexes corresponding to the
streamwise and spanwise direction respectively, and
α0 and β0 are the fundamental wavenumbers in these
directions, defined in terms of the streamwise and
spanwise lengths Lx and Lz of the computational do-
main. The computational parameters given by the di-
mensions of the computational domain, Lx and Lz, and
the truncation of the series, Nx and Nz, must be chosen
so as to miminize computational errors. See again [3]
for details regarding a proper choice of Lx.

The numerical evaluation of the non linear terms in
Eqns. (2) and (4) would require computationally ex-
pensive convolutions in Fourier space. The same eval-
uation can be performed in a much cheaper way if
first the Fourier components of the velocity are trans-
formed back in physical space, then the velocity prod-
ucts are evaluated and eventually re-transformed into
the Fourier space, where their spatial derivatives are
computed. Fast Fourier Transform (FFT) algorithms
are used to compute the nonlinear terms exactly in a
computing-efficient manner. The exact removal of the
aliasing error deriving from the nonlinear operations
is performed by expanding the number of collocation
points by a factor of (at least) 3/2 before going from
the Fourier space into the physical space.

3.2 Time discretization

Time integration of the equations is performed by a
partially-implicit method, as described for example in
[2]. This is a standard approach in DNS: the ex-
plicitly integrated part of the equations benefit from
a higher-accuracy scheme, while the stability-limiting
implicit part is subjected to an implicit time advance-
ment, thus relieving the constraint on time step size.
Our preferred choice is to use an explicit third-order,
low-storage Runge-Kutta scheme for the integration
of the explicit part of the equations, and an implicit
second-order Crank-Nicolson scheme for the implicit
part. Here we present the equations with the Crank-
Nicolson scheme for the viscous terms and with a
generic two-levels scheme for the nonlinear terms
(k2 = h2α2

0 + `2β2
0):

λ
∆t

η̂n+1
h` −

1
Re

[
D2(η̂n+1

h`)− k2η̂n+1
h`

]
=

λ
∆t

η̂n
h` +

1
Re

[
D2(η̂n

h`)− k2η̂n
h`

]
+

θ
(

iβ0`ĤUh`− iα0hĤW h`

)n
+

ξ
(

iβ0`ĤUh`− iα0hĤW h`

)n−1
(7)

λ
∆t

(
D2(v̂

n+1
h`)− k2v̂n+1

h`

)
−

1
Re

[
D4(v̂

n+1
h`)−2k2D2(v̂

n+1
h`)+ k4v̂n+1

h`

]
=

λ
∆t

(
D2(v̂

n
h`)− k2v̂n

h`

)
+

1
Re

[
D4(v̂

n
h`)−2k2D2(v̂

n
h`)+ k4v̂n

h`

]
+

θ
(
−k2ĤV h`−D1

(
iα0hĤUh` + iβ0`ĤW h`

))n
+

ξ
(
−k2ĤV h`−D1

(
iα0hĤUh`iβ0`ĤW h`

))n−1
(8)

The three coefficients λ, θ and ξ define a particular
time-advancement scheme. For the simplest case of a
2nd-order Adams-Bashfort, for example, we have λ =
2, θ = 3 and ξ = −1.

After time discretization, the continuous problem is re-
duced to the numerical solution of Eqns. (7) and (8),
which is carried out in two logical steps. The first con-
sists in building the r.h.s. of (7) and (8), computing
psuedospectrally the non-linear terms and their spatial
derivatives from the known velocity field. The second
one involves the solution of a set of two linear systems,
one for each value of k. A finite-differences discretiza-
tion of the wall-normal derivative operators produces

real banded matrices. The solution of the linear sys-
tems gives η̂n+1

h` and v̂n+1
h` , and then the planar velocity

components ûn+1
h` and ŵn+1

h` can be computed with (5).

3.3 High-accuracy compact finite differ-
ence schemes

The discretization of the wall-normal derivatives D1,
D2 and D4 is performed through finite difference (FD)
compact Padé schemes with fourth-order accuracy
over a computational molecule composed by five ar-
bitrarily spaced grid points. We indicate here with
d1(i), i =−2, . . . ,2 the five coefficients discretizing the
exact operator D1 over five adjacent grid points:

D1(f (y))|y=y j
=

2

∑
i=−2

d1(i) f (y j+i)

where y j is the y position on the computational mesh
where the derivative has to be evaluated. A similar
notation is adopted for d2 and d4.

A compact FD formula is able to approximate a differ-
ential operator in a wider frequency range compared
to a centered scheme, thus achieving resolution prop-
erties similar to those of spectral schemes [4]. The
use of compact schemes, known also as implicit finite-
differences schemes, typically require the inversion of
a linear system for the actual calculation of a deriva-
tive [5]. Here we are able to use compact, fourth-
order accurate schemes at the cost of standard centered
schemes, taking advantage of the fact that the equa-
tions of motion do not contain the third-derivative op-
erator D3. Thanks to this property, it is possible to
find rational function approximations for the required
three FD operators, where the denominator of the func-
tion is always the same. By multiplying the equations
times this denominator, we hence obtain explicit for-
mulas again, provided a suitable FD operator d0 is ap-
plied to the right-hand-side of our equations. This sim-
plification is contained in the original Gauss-Jackson-
Noumerov compact formulation exploited in his sem-
inal work by Thomas [6], concerning the numerical
solution of the Orr-Sommerfeld equation.

The actual computation of the coefficients d0,d1,d2 and
d4 for a certain order p of accuracy must, from a con-
ceptual point of view, descend from the condition that
the error of the discrete operator d4d−1

0 decreases with
the step size according to a power law with the de-
sired exponent. In practice, following a standard pro-
cedure in the theory of Padé approximants, this can be
enforced by choosing a set tm of polynomials of y of

increasing degree

tm(y) = 1,y,y2, ...,ym (9)

by analytically calculating their derivatives D4(tm),
and by imposing that the discrete equation:

d4 (tm)−d0 (D4(tm)) = 0 (10)

is verified for polynomials from m = 0 up to m = 4+ p.

Our computational stencil contains 5 grid points, so
that the unknown coefficients d0 and d4 are 10. There
is a normalization condition, and we can write the
equations in a form where for example

2

∑
i=−2

d0(i) = 1 (11)

The other 9 conditions are given by Eqn. (10) writ-
ten for m = 0,1, . . .8. We thus can set up, for each
distance from the wall, a 10x10 linear system which
can be easily solved for the unknown coefficients. The
coefficients of the derivatives of lesser degree are de-
rived from analogous relations, leading to 5x5 linear
systems since the d0 are known.

An additional further simplification is possible. Since
the polynomials (9) have vanishing D4 for m < 4,
thanks to the normalization condition (11) the 10x10
system can be split into two 5x5 subsystems, sepa-
rately yielding the coefficients d0 and d4.

The use of a variable mesh size in the wall-normal di-
rection in such a way as to still keep a fourth-order ac-
curacy requires this procedure to be performed numer-
ically at each y station, but only at the very beginning
of the computations. The computer-based solution of
the systems requires a negligible computing time. We
end up with FD operators which are fourth-order ac-
curate (except the operator d4, which is sixth-order),
at essentially the same computational cost required for
using a second-order-accurate method.

4 THE PARALLEL STRATEGY

There are many strategies for building a computer code
suitable for parallel execution. We have favoured the
availability of a large amount of CPU time at low or
no costs, focusing towards the use of commodity com-
puting and networking hardware with a limited num-
ber of processors. As a future step we are presently
considering a different parallel implementation, still in
development at the present time, which is well suited
for use over a large number of processors.

m
ac

h
in

e
1

m
ac

h
in

e
3

m
ac

h
in

e
4

m
ac

h
in

e
2

machine 1

machine 2

machine 3

machine 4

wall

wall

PSfrag replacements

α
βy

Figure 2: Arrangement of data across the channel.

4.1 Distributed-memory machines

If the calculations are to be executed in parallel by
Np computing machines (nodes), communication be-
tween nodes will necessarily have to take place. Our
design goal has been to keep the required amount of
communication to a minimum. At first, however, it
appears that, every time the numerical solution is ad-
vanced by one time (sub)step, a transposition of the
whole dataset across the computing nodes cannot be
avoided. If data are stored by grouping contiguous
streamwise (or spanwise) wavenumbers on the same
machine, the pseudo-spectral evaluation of the nonlin-
ear terms requires all the wavenumbers to be simulta-
neously present on each machine, and this calls for a
large amount of communication. If, on the other hand,
data are stored in wall-parallel slices, the FFTs can
be done locally to each machine. When in addition
the spectral discretization in the y direction is avoided
in favour of a FD discretization (recall that the FD
operators are local), the necessary communication is
greatly reduced, since it is needed only at the interface
between contiguous slices. However, even when this
strategy is adopted, a full transposition seems nonethe-
less to be necessary, since the linear systems which
stem from Eqns. (7) and (8) require the simultaneous
inversion of banded matrices, whose principal dimen-
sion span the entire width of the channel, while data
are stored in wall-parallel slices.

This appearance is deceiving however, and a transpose
of the whole flow field can be avoided with the fol-
lowing procedure. Data are distributed in slices par-
allel to the walls, as shown schematically in Fig.2: if
Ny is the number of collocation points, each machine
stores all the streamwise and spanwise wavenumbers
for Ny/Np contiguous y positions. In this way the
planar FFTs do not require communication, since the
coefficients are local to each machine. Wall-normal
derivatives required in the r.h.s. of Eqns. (7) and (8) do
require some communication at the interface between
contiguous slices; however this communication can be

avoided if, when using a 5-point stencil, two boundary
planes on each side of each slice are duplicated.

Of course, in the second part of the time-step advance-
ment (the solution of the set of linear systems, one
for each h, ` pair, and the recovery of the planar ve-
locity components), the necessary data just happen to
be spread over all the Np machines. It is possible to
avoid a global transpose of the data, by solving each
pentadiagonal system in a serial way across the ma-
chines. The key observation to obtain reasonable par-
allel performance is that the number of the linear sys-
tems to be solved at each time step is very large, i.e.
(Nx +1)(Nz +1), which is at least 104 in a typical cal-
culation. When the LU decomposition of the matrix of
the system is performed (with a standard Thomas algo-
rithm), the flow of information is from the top row of
the matrix down to the bottom row (elimination of the
unknowns), and then vice-versa (backsubstitution). A
single machine can then perform the elimination in the
local part of the matrix for a given h, ` pair, and then
start working on the same elimination for the matrix
of the following system, say h, `+1, while waiting for
the backsubstituion of the results for the h, ` system.

4.2 Shared-memory machines

The single computing node can be single-CPU or
multi-CPU. In the latter case, it is possible to ex-
ploit an additional and complementary parallel strat-
egy, which does not rely on message-passing commu-
nication anymore, and takes advantage of the shared-
memory facilities of a Unix system. We note that this
is different from using a message-passing strategy with
shared-memory, that simply becomes a faster tram-
sission medium. Typically the FFT of a whole plane
from physical- to Fourier-space and vice-versa can be
easily parallelized this way, as well as the computing-
intensive part of building up the r.h.s. term of Eqs.
(7) and (8). With SMP machines, high parallel effi-
ciencies can be obtained quite easily by “forking” new
processes as needed: the operating system itself then
handles the assignment of tasks to different CPUs, and
only task synchronization is a concern at the program-
ming level.

4.3 A low-cost computing system

While the numerical method described heretoforth can
be used on a general-purpose cluster of machines em-
ploying traditional message-passing libraries for com-
munication, a dedicated computing system can be

Eth 0 Eth 1

CPU 1

CPU 0

CPU 1

CPU 0

Eth 1

Eth 1 Eth 0

CPU 1

CPU 0

Eth 0

Eth 0 Eth 1

Eth 2

CPU 1

CPU 0

4

3

1

switch

net

2

Figure 3: Conceptual scheme of the connection topol-
ogy between computing machines

specifically designed and built on top of the computer
code, for maximum efficiency.

Concerning the communication type, it is possible
to rely directly on standard networking services of
the Unix operating system, i.e. sockets, instead of
message-passing libraries. Using sockets allow to
take advantage easily and efficiently of the advanced
buffering techniques incorporated in the management
of the input/output streams by the operating system
(provided stdio file buffer size is empirically adjusted
to its best size). Concerning transmission protocol,
the simplest choice is the standard, error-corrected
TCP/IP protocol: we have estimated that on typical
problem sizes the benefits from using a dedicated pro-
tocol would be negligible.

At a hardware level, the present parallel strategy al-
lows one further simplification. Since the transposi-
tion of the whole dataset is avoided, communications
are always point-to-point, and each computing ma-
chine needs to exchange data with two neighboring
machines only. This can be exploited with a very sim-
ple ring-like connection topology between the com-
puting machines, schematically illustrated in Fig.3,
which replicates the logical exchange of information
illustrated in Fig.2: each machine can be connected
through two dedicated Ethernet cards only to the pre-
vious machine and to the next. The necessity of a
hub or switch is thus eliminated, in favour of simplic-

ity, cost-effectiveness and performance. We have built
such a dedicated system, composed by 8 SMP Personal
Computers. Each node is equipped with 2 Pentium
III 733MHz CPU and 512MB of 133MHz SDRAM.
The nodes are connected each other with two cheap
100MBits Fast Ethernet cards. A similar system can
be built with relative ease by anyone.

5 PERFORMANCE

For performance comparison we use data from [7], a
recent work conducted by one of the leading research
groups working on DNS, and focused on the optimiza-
tion of a similar code for parallel computing. We must
note however that we are not able to compare two dif-
ferent DNS codes running on identical machines.

5.1 Memory requirements

One important requirement for a DNS code is to save
RAM. The size of the required RAM is dictated by the
number of the 3-dimensional arrays, and is typically
reported in [2] and [7] to be no less than 7NxNyNz/2
words, where the factor 7 accounts for the 3 velocity
components, the 2 r.h.s. of the Eqs. (7) and (8), and
the same two r.h.s. stored at a previous time level for
a two-levels time integration scheme (the factor 2 ac-
counts for the saving allowed by the simmetry in the
Fourier expansion of a real function).

In our code the required memory space is reduced to
5NxNyNz/2: this saving comes from using the velocity
arrays for storing the (current) r.h.s. terms, exploiting
the fact that velocities and r.h.s. are needed in different
parts of the time integration procedure. A test case
with Nx = 129, Ny = 129 and Nz = 129 hence requires
only 95 MBytes of RAM (double precision).

The most important feature of our method is that this
memory requirement can be subdivied amongst com-
puting machines. For example the same test case run
on four machines requires only 34 MBytes of RAM
on each machine. This peculiar property of our code
descends from the particular parallel implementation,
which does not require transposing the whole dataset.

5.2 CPU requirements

Concerning the CPU efficiency, the test case men-
tioned above requires 44 CPU seconds for the com-
putation of a full three-substeps temporal step on a
single PIII processor. One can deduce from [7] that
the same case can be run on a single processor of the

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8 9

ny=129
129x129x129
193x129x193

ny=257
129x257x129
Skote ny=129

PSfrag replacements

Np

sp
ee

du
p

Figure 4: Speedup as a function of the number Np of
nodes for the Intel PIII dedicated system.

256 nodes Cray T3E of the National Supercomputer
Center of Linkoeping (Sweden) in 30 seconds, and
on a single processor of the 152 nodes IBM SP2 ma-
chine, available at the Center for Parallel Computers of
KTH University, with 7.5 seconds of CPU time. This
single-node comparison shows that the present com-
puter code runs on a commodity PC with performance
comparable with those of similar codes running on ex-
pensive supercomputers. With more modern hardware
the execution times are further reduced: the same test
case runs in 20.3 seconds on a desktop AMD Athlon
XP 1800+ at 1500 MHz.

5.3 Parallel efficiency

The parallel performances of the code are illustrated in
Fig.4, where speedup ratios are reported as a function
of the number Np of computing nodes. The speedup
is the ratio between the wall-clock time needed for a
single-node calculation and the actual wall-clock time
with Np machines.

The speedup is not expected to be linear, due to the
previously discussed duplication of four data planes at
the interface between different slices. The maximum
possible speedup, shown with lines in Fig. 4, is esti-
mated by:

speedup = Np

(
1−

4(Np −1)

Ny

)

and increases with the problem size; it is reasonably
high as long as the number of computing nodes is small
compared to the number Ny of points in the y direc-
tion. Compared to the maximum speedup, the mea-
sured performances are extremely good, and become
even better when the size of the computational prob-

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30

measured
maximum

PSfrag replacements

Np

sp
ee

du
p

Figure 5: Speedup vs Np for the Itanium II SHARC-
NET cluster, with Ny = 257.

lem increases. The communication time is not a bot-
tleneck, despite the fact that communication has been
enforced with commodity hardware and with the over-
head of the TCP protocol. With Np = 8, the com-
munication time is as low as 7% of the total comput-
ing time for the most demanding case of Nx = 129,
Ny = 257 and Nz = 129, and is 14% for the worst case
of Nx = 129, Ny = 129 and Nz = 129, which requires
6.5 seconds for iteration with a speedup of 5.5. The
same test case runs in approximately 2 seconds when
8 processors are used on the SP2 (speedup 3.75), while
it requires 7.5 seconds with 8 processors of the T3E.

Of course the parallel strategy described here tar-
gets only systems where the number Np of computing
nodes is not very high compared to the number Ny of
points in the y direction. Increasing Np leads to gradu-
ally worse performance: this is illustrated for example
in Fig.5, where we measure performances on a clus-
ter of 64 SMP machines equipped with 2 Itanium II
processors, available at SHARCNET. We observe in
Fig.5 that the actual communication times are barely
discernible. This is due to the faster communication
hardware available on the Itanium machines, namely
Gigabit Ethernet cards.

6 CONCLUSIONS

We have described the design strategy of a com-
puter code for the Direct Numerical Simulation of the
incompressible Navier–Stokes equations. The code
manages the various discretization choices to achieve
the highest computational efficiency.

Similar codes described in the literature require 40%
more RAM for a given problem size. Most impor-
tant, our parallel strategy allows the memory require-

ments to be subdivided between computing machines,
so making feasible the largest DNS computations.

One parallel implementation has been described in de-
tail, which shows very good performances as long as
the number of machines is small compared to the num-
ber of discretization points in the wall-normal direc-
tion. The layout of a computing system built on top of
this code has been described, which makes available to
the scientist a computing power comparable to that of
a supercomputer, at a fraction of the price and in a ded-
icated environment. The modification of this parallel
strategy to obtain high efficiencies also in the case of
high number of computing machines is currently un-
derway. This will pave the way towards the use of this
code in heavily distributed computing environments,
a.k.a. grid computing.

ACKNOWLEDGMENTS

The first two authors have been supported by the
SHARCNET through the Senior Visiting Fellowship
Program.

REFERENCES

[1] P. Moin and K. Mahesh. Direct numerical simula-
tion: A tool in turbulence research. Annual Review
of Fluid Mechanics, 30:539–578, 1998.

[2] J. Kim, P. Moin, and R. Moser. Turbulence
statistics in fully developed channel flow at low
Reynolds number. Journal of Fluid Mechanics,
177:133–166, 1987.

[3] M. Quadrio and P. Luchini. Integral time-space
scales in turbulent wall flows. Submitted to
Physics of Fluids, 2003.

[4] S.K. Lele. Compact Finite Difference Schemes
with Spectral-like Resolution. Journal of Compu-
tational Physics, 103:16–42, 1992.

[5] K. Mahesh. A Family of High Order Finite Dif-
ference Schemes with Good Spectral Resolution.
Journal of Computational Physics, 145(1):332–
358, 1998.

[6] L.H. Thomas. The stability of plane Poiseuille
flow. Physical Review, 91(4):780–783, 1953.

[7] M. Skote. Studies of turbulent boundary layer flow
through direct numerical simulation. PhD thesis,
Royal Institute of Technology Department of Me-
chanics, 2001.

