
March 8, 2002 0:35

Proceedings of FEDSM’02
2002 ASME Fluids Engineering Division Forum

July 14-18, 2002, Montreal, Quebec, Canada

FEDSM2002-31048

ADJOINT DNS OF TURBULENT CHANNEL FLOW

Paolo Luchini ∗
Department of Mechanical Engineering

Università di Salerno
84084 Fisciano

Italy
Email: luchini@unisa.it

Maurizio Quadrio
Department of Aerospace Engineering

Politecnico di Milano
via La Masa 34 - Milano, 20134

Italy
Email: maurizio.quadrio@polimi.it

ABSTRACT
A discrete adjoint is developed on top of a parallel-

computing code for the direct numerical simulation of wall tur-
bulence. The architecture of the direct code is designed to ob-
tain good scalar performance and high parallel efficiency using a
cluster of dual-CPU Personal Computers. The adjoint code, writ-
ten in a way that mimicks the basic structure of its direct coun-
terpart, can also benefit of the same computational and parallel
efficiency. After describing how we tested the adjoint part of the
code against its direct counterpart, we present results concerning
the sensitivity of the wall drag to blowing/suction applied at the
wall for the case of a turbulent channel flow atReτ = 180.

INTRODUCTION
Adjoint computations are an increasingly important tool

in fluid mechanics, with applications that include aerodynamic
shape optimization, state identification in weather predictions,
the quantification of transient growth and its effects on bypass
transition, the control of transition and of turbulence. Turbulence
control at large has always attracted the interest of researchers for
the technological benefits that can potentially derive from either
a drag reduction or a mixing increase in different applications;
most varied devices have been proposed for this purpose, that
range from passive modifications of the wall structure or of the
fluid properties to moving walls to active feedback control, either
empirically determined or based on optimal and robust control
theory. This latter approach has been very recently popularized

∗Address all correspondence to this author.

by the successful efforts of (Bewleyet al., 2001), (Bewley, 2001),
(Högberg and Bewley, 2000), and the field may rightfully be said
to be blooming.

An essential component of an optimal control strategy based
on direct numerical simulations of turbulence is an adjoint code.
This is, basically, a means to compute the derivatives of an ar-
bitrary objective function with respect to the control parameters.
Just as in the optimization of a simple analytical formula, the op-
timum is identified by the vanishing of derivatives, and before
applying any of several possible optimization strategies an effi-
cient evaluation of these derivatives must be available. “efficient”
is the keyword here: a direct numerical simulation of turbulence
is a very computation-intensive task, and in order to be useful an
adjoint code must first of all be as efficient as the direct code.
This is not at first sight an obvious task, as the derivatives of the
objective function with respect to all control parameters are si-
multaneously needed, and the control parameters are often the
discretized values of a velocity or other field variable distributed
all over a surface or even a volume. Yet computing the adjoint in
a time comparable to the direct simulation is theoretically pos-
sible. Here we describe an adjoint DNS code that achieves this
level of performance in a parallel-computing environment.

DIRECT NUMERICAL METHOD
The adjoint DNS code presented in this paper is built on

top of a recently developed parallel solver of the Navier–Stokes
equations for an incompressible fluid, a description of which can
be found in (Quadrio and Luchini, 2001).

1 Copyright  2002 by ASME

Our Navier–Stokes solver is based on a mixed discretization:
Fourier modes are used for the homogeneous, wall-parallel direc-
tions, and high-order finite differences in the wall-normal direc-
tion. Finite differences are produced from a fourth-order accurate
compact scheme acting on a five-point computational molecule
in a variable-spacing mesh. We have preferred finite differences
to spectral schemes for their flexibility in dealing with inhomo-
geneous boundary conditions and their better properties for the
parallelization of the code.

The Navier–Stokes equations are formulated, following a
procedure described for example in (Kimet al., 1987), in terms
of a scalar equation for the normal component of velocity and a
scalar equation for the normal component of vorticity that imitate
the Squire decomposition of stability problems, thus achieving
the largest computational efficiency when a Fourier discretiza-
tion is adopted for the homogeneous directions. The non-linear
terms of the equations are computed with a pseudo-spectral ap-
proach, transforming the flow variables back from Fourier space
to physical space before computing the products, and taking
advantage of computationally efficient Fast-Fourier-Transforms
algorithms. Dealiasing in the homogeneous directions is per-
formed by expanding the number of Fourier modes by a factor of
3/2 before going from Fourier space to physical space, to avoid
the introduction of spurious energy from the high-frequency into
the low-frequency modes during the calculations.

The advancement in time of the solution is performed
through a commonly used partially implicit approach: nonlinear
terms are advanced with an explicit scheme (a low-storage, three-
substeps, third order Runge-Kutta scheme), and linear terms with
an implicit method (a second order Crank-Nicholson scheme) in
order to overcome the stability limitations deriving from the vis-
cous terms. Even if this scheme is rather classical, it has been
embedded in a modular coding implementation that allows us to
change the time-advancement scheme very easily without other-
wise affecting the structure of the code. In fact, we have a few
other time-advancement schemes built into the code for testing
purposes.

Thanks to the use of finite differences for the discretization
of the wall-normal derivatives, the parallel algorithm requires no
inter-node communication as far as the computation of the ex-
plicit part is concerned. Fourier transforms are in fact executed in
planes parallel to the walls, and all the necessary data always re-
side on the same machine. The evaluation of wall-normal deriva-
tives through finite differences can be done without communica-
tion as well, at the expense of duplicating in each machine the
four boundary planes shared with the two neighboring machines.
Only the numerical solution of the linear systems arising from
the discretization of the implicit part requires communication,
but the impact on the overall computing time decreases when the
problem size increases, and even with cheap connection hard-
ware calculations never happen to be communication-bound.

The computer code is built to be run in parallel, on shared-

CPU0CPU0

CPU1

CPU0

CPU1 CPU1

CPU0 CPU0

CPU1CPU1

eth1

eth1

eth1

eth1eth0

eth0 eth0

2 Np3

. . . .

eth0eth1

wallwall

eth0

1 Np−1

Figure 1. CONNECTION TOPOLOGY OF THE PC CLUSTER AT PO-

LITECNICO DI MILANO

memory SMP architectures and/or a cluster of distributed-
memory computers. We focused the design of the code to-
wards the use of low-cost, commodity hardware, since with com-
modity (and hence dedicated) machines an unshared amount of
CPU time becomes available with limited financial effort. The
code is currently running on a dedicated cluster of 8 SMP Per-
sonal Computers, purposely built in late 2000 at the Diparti-
mento di Ingegneria Aerospaziale del Politecnico di Milano at
the cost of approximately 10000 Euro. Each node of the clus-
ter is equipped with 2 Pentium III 733-MHz CPUs and 256-MB
133-MHz SDRAM; the nodes are connected in a ring with two
cheap 100-MBits Fast Ethernet cards each.

The parallel algorithm is perfectly suited to a very simple
ring topology, schematically illustrated in figure 1, where each
machine is directly connected to the previous machine and to
the next only, and contains a slice of the computational domain
in the wall-normal direction. The necessity of a hub or switch
is eliminated, increasing simplicity, communication bandwidth,
and cost-effectiveness at the same time, and the transposition of
the flow field between computing nodes is never required, thanks
to the design of the algorithm.

PERFORMANCE OF THE DIRECT CODE
The direct code has been designed with the primary aim of

computational efficiency. Its memory requirements are signifi-
cantly lower that those of similar codes documented in the litera-
ture. For example the memory space used by the code described
in (Kim et al., 1987) and the recently optimized code described
in (Alvelius and Skote, 2000) and (Skote, 2001) is 40% larger
than that required by our code.

Efficiency in terms of execution time is more difficult to
evaluate, owing essentially to the lack of complete reference
data, but we have estimated that single-processor execution times

2 Copyright  2002 by ASME

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

sp
ee

du
p

Np

ny=129
ny=257

129x129x129
193x129x193
129x257x129
Skote ny=129

Figure 2. PARALLEL SPEEDUP VS. THE NUMBER NP OF COMPUT-

ING NODES. LINES WITHOUT SYMBOLS ARE THE IDEAL SPEEDUP.

PARALLEL SPEEDUPS INFERRED FROM (Skote, 2001) ARE ALSO

SHOWN.

for a given problem size are fully competitive with the avail-
able information. Despite the commodity networking hardware,
and the use of standard operating system networking services
(unix sockets and the TCP/IP protocol) for handling the inter-
node communication, the communication time is low enough to
have a very moderate impact on efficiency. Figure 2 illustrates
the measured parallel performance of the code run on the PC
cluster, for two problem sizes. Speedups are compared with the
maximum allowed speedup (lines without symbols). The latter
is slightly less than linear owing to the boundary planes dupli-
cated in neighboring slices of the computational domain, but this
is not a significant problem as long as the number of comput-
ing nodes is much less than the number of collocation points in
wall-normal direction, and is planned to be overcome anyway in
a future version of the code. Figure 2 also shows a comparison
with speedups reported by (Skote, 2001) with a DNS code run-
ning on supercomputers with expensive high-bandwidth commu-
nication hardware. It is seen that the communication time, which
is the main reason of the difference between the maximum al-
lowed speedup and the actual measured speedup, has an effect
on performance which is both marginal and decreasing with the
number of Fourier modes in the homogeneous directions. Also
the penalty deriving from the duplication of some planes is at all
acceptable with 8 computing nodes.

Using a single processor of one node of the cluster, a full
time step (i.e. 3 Runge-Kutta substeps) for a problem with 129
Fourier modes in the longitudinal and spanwise directions, and
129 collocation points in the normal direction, requires 50 CPU
seconds. Time decreases to approximately 6.5 seconds when the
entire cluster is used. The RAM requirements for such a case are
103MB.

ADJOINT DNS
A basic decision to be taken at the start of developing an

adjoint code is whether to discretize the adjoint of the continu-
ous differential problem or take the adjoint of the already dis-
cretized problem. Both are in principle possible: if the adjoint
is interpreted as the derivative of some output parameter (for in-
stance the mean friction of a turbulent flow) with respect to ex-
ternal actions (known terms in either the equations or boundary
conditions), this definition is applicable to either the continuous
problem, where the adjoint will be a functional (Fréchet) deriva-
tive, or to the discrete problem where the adjoint will be an ordi-
nary gradient with respect to each discretized variable. There are
advantages and disadvantages in either choice, and both can be
found in the literature. Here we take the adjoint of the discretized
problem. Doing so offers, among other benefits, the possibil-
ity of a foolproof test of the computer code: being the adjoint a
derivative of the output of the complete program with respect to
its input, it must give (for a specified test input) the same result
as a finite difference between two direct numerical simulations
run with slightly different input parameters.

If the entire direct code is seen as just a very complicated
compound function linking its input and output parameters, com-
puting the adjoint is tantamount to a successive application of the
chain rule. This can be done in a more or less efficient way de-
pending on the order given to the factors to be multiplied. If the
number of output parameters (typically only one) is smaller than
the number of input parameters (typically the individual values of
a discretized function along the boundary), it is much more con-
venient to start from the output and work out backwards through
the product of chained derivatives (Giles, 1999). If the underly-
ing system of differential equations is parabolic, the numerical
integration of the adjoint system will thus proceed backwards in
the parabolic variable. The Navier–Stokes system of differential
equations is parabolic in time, and its numerical solution pro-
ceeds in successive steps starting from given initial and boundary
conditions. Whereas in principle its adjoint can be derived from
the technique of Lagrange multipliers as one big system of linear
equations coupling the values of the discretized adjoint variables
at all points in space and times, it is much more efficient to solve
it through the chain rule by moving backwards step-by-step in
time.

The challenge for us was to develop an adjoint code that
mimicked the structure of the direct program enough to retain its
speed of execution and parallel organization. In fact, in principle
an adjoint code can run in about the same time as the direct code,
and this was our objective. For this purpose the modular structure
of the direct computation has been crucial: the adjoint of each
individual routine was developed separately, and tested against a
finite difference of the corresponding direct routine.

In particular, the adjoint of a discrete Fourier transform is
just another Fourier transform with suitably conjugated and/or
reversed input array; it can therefore be computed through the

3 Copyright  2002 by ASME

same Fast-Fourier-Transform algorithm as the corresponding di-
rect stage and with the same amount and technique of paral-
lelization. The adjoint of each quadratic form that appears in the
convective terms is just the easy derivative of a quadratic func-
tion. Thus, the adjoint of the routine that builds up the nonlin-
ear explicit contribution to the time-integration scheme can be
constructed with a comparable computational time and degree of
parallelization as the direct code, and tested against the corre-
sponding direct routine.

The implicit part of time integration only involves linear
terms, and only one Fourier mode at a time, so that the di-
rect computation consists in writing the matrix of coefficients
of this linear system of equations and inverting it separately for
each mode. As the adjoint of a matrix is just its transpose, the
corresponding adjoint computation requires building exactly the
same matrix for each mode and applying it with reversed indices.
Again, this operation involves the same computation time and
amount of parallelization as the direct code.

Finally, the recombination of the explicit and implicit stages
to produce the next time step (which in the adjoint will be at
a previous time) is handled by a separate routine, just as in
the direct code, so as to make it possible to change the time-
advancement scheme by replacing this routine only.

A problem specific to the adjoint calculation, which did not
exist in the development of the direct code, is posed by storage
requirements. In fact, the adjoint equations contain the direct
variables in their coefficients. Whereas both the direct variables
in the direct calculation and the adjoint variables in the adjoint
calculation are only required at one (or a few, depending on the
time-advancement scheme) adjacent time steps, which will be in
the past for the direct and in the future for the adjoint computa-
tion, the direct variables can only be utilized during the adjoint
calculation if the complete time history of the direct solution is
stored. For a direct numerical simulation of turbulence, this can
be a huge amount of disk space. To overcome this difficulty, we
have devised a scheme where the number of time steps whose
storage is required is reduced to the square root of its original
value at the expense of a doubled direct computation time. De-
noting byN2 the total number of time steps foreseen in the sim-
ulation, we store the direct solution only everyN-th step on the
first run; then we start from the final time with the adjoint, and
preliminary to each block ofN time steps recompute the cor-
responding direct solution. The end result is that the complete
direct solution has been used without ever storing more than2N
snapshots simultaneously.

RESULTS
A one-to-one test of each adjoint routine of the code against

the corresponding direct routine has been performed, by first run-
ning a direct case starting with an initial condition made of ran-
dom numbers, and a further direct case started from an initial

condition which gives a small relative increment to the same ran-
dom numbers. A finite difference of the two results is then com-
pared against the product of the result of the adjoint computation
times the initial increment, which should turn out to be the same
number to within the truncation error brought about by the finite
difference. This test, once positive, has then been gradually and
successfully extended to the entire structure of the program, in-
cluding the time integration algorithm. After tuning the amount
of the relative increment given to the initial data so as to min-
imize the truncation error, we have verified that the difference
between the two estimates can be reduced to the level permit-
ted by rounding errors (at most half the number of digits of the
floating-point hardware for a first-order difference, or 2/3 for a
central difference).

Then we turned our attention to the problem of flow control,
on which we only report here preliminary results. We consid-
ered the case where a suction/blowing is applied at one channel
wall and the effect of this on the mean drag is to be evaluated.
This suction blowing/action can be imposed through a non-zero
wall boundary condition for the velocity components which pre-
serves the condition of zero net mass flux in the wall-normal di-
rection. The sensitivity to this suction/blowing of the time- and
space-averaged wall friction is then obtained through the adjoint
calculations.

The computational domain between the two walls separated
by a distance2δ is a periodic box with streamwise and span-
wise size given byLx = 2π/α0 andLz = 2π/β0, whereα0 and
β0 are the fundamental wavenumbers in each direction. The ref-
erence velocity is chosen to be the centerline velocityUP of a
laminar Poiseuille flow with the same streamwise flow rate, so
that a Reynolds number can be defined asRP = UPδ/ν, where
ν is the kinematic viscosity of the fluid. A Reynolds number
of ReP = 4250 is used in the simulations, corresponding to a
Reynolds number of∼ 180when based on the friction velocity
uτ. The fundamental wavenumbers areα0 = 1/δ andβ0 = 2/δ,
corresponding toLx = 2πδ andLz = πδ. 129 Fourier modes are
used for the discretization of both the streamwise and the span-
wise directions. The number of collocation points in they di-
rection is129, distributed over an unevenly-spaced mesh. The
spatial resolution is relatively high as compared to that com-
monly employed in similar DNS at the same Reynolds number:
∆x+ ∼ 8.8; ∆z+ ∼ 4.4 and∆y+ ∼ 0.75−4.5. With this prelim-
inary test case we have verified that the computing time needed
for the complete calculation of the direct and adjoint solution
is of the order of 3 times that needed for the direct calculation
alone, corresponding to the fact that the direct solution is effec-
tively run twice and the adjoint solution in turn takes about the
same time as one direct computation.

In Figure 3 we report the time-dependence of the sensitiv-
ity of the mean friction to perturbations applied at the wall. Our
preliminary results show that, after approximately 30-40δ/UP,
the sensitivities to all three velocity components diverge expo-

4 Copyright  2002 by ASME

0

50

100

150

200

250

300

0 10 20 30 40 50 60

-t

u
v
w

Figure 3. TIME BEHAVIOUR OF THE SENSITIVITY OF THE MEAN

WALL FRICTION TO 3 VELOCITY COMPONENTS

nentially.
While the divergence of the adjoint computation was un-

expected for us until we actually saw it, with hindsight it is a
reasonable behavior for a chaotic dynamical system, which a nu-
merical simulation of turbulence undoubtedly is. In fact, in a sys-
tem whose dynamical phase-space trajectories diverge from each
other, the derivative of the final-time solution with respect to ini-
tial conditions diverges, a concept which is made rigorous by the
introduction of Liapounov exponents. Since it is this derivative
that the adjoint code calculates, its explosion is just an indica-
tion that the Liapounov exponents are positive, in accord with
known estimates of the latter for a turbulent flow. The possible
limitations brought about by this divergence for the applications
of turbulence control are still to be evaluated. It should be noted
that the successful control effort of (Bewleyet al., 2001) used
a finite horizon, reportedly shorter than the time after which we
now find divergence to become noticeable, and therefore may not
have incurred in this difficulty.

REFERENCES
Alvelius, K. and Skote, M.The performance of a spectral

simulation code for turbulence on parallel computers with dis-
tributed memory.TRITA-MEK 2000:17 Royal Institute of Tech-
nology - Dept. of Mechanics - Stockholm, Sweden, 2000.

Bewley, T.R.Flow Control: New Challenges for a New Re-
naissance. Progress in Aerospace Sciences, 37:21-58, 2001.

Bewley, T.R., Moin, P., and Temam, R.DNS-based predic-
tive control of turbulence: an optimal benchmark for feedback
algorithmsJ. Fluid Mech.447179–225, 2001.

Giles, M. An introduction to the adjoint approach to de-
sign. Invited lecture, ERCOFTAC Workshop on Adjoint Meth-
ods, Toulouse (France) ,June 21-23 1999.

Högberg, M. and Bewley, T.R.Spatially localized convolu-

tion kernels for feedback control of transitional flows. In Proc.
39th IEEE Conf. on Decision and Control, 4:3278–3283

J. Kim, P. Moin, and R. Moser.Turbulence statistics in fully
developed channel flow at low Reynolds number. Journal of Fluid
Mechanics, 177:133–166, 1987.

Quadrio, M. and Luchini, P.A IV-order accurate, parallel
numerical method for the direct numerical simulation of turbu-
lence in rectangular and cylindrical geometries. XV AIMETA
Meeting of Applied and Theoretical Mechanics, Taormina (Italy)
September 26-29 2001.

Skote, M.Studies of turbulent boundary layer flow through
direct numerical simulation. PhD Thesis, Royal Institute of
Technology, Dept. of Mechanics, Stockholm, Sweden, 2001.

5 Copyright  2002 by ASME

