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Abstract

The turbulent flow in a pipe of annular cross section is studied for the first time through a direct numerical simulation (DNS)
using the Navier–Stokes equations written in cylindrical coordinates. To this aim a novel numerical method is developed,
which extends to the cylindrical coordinate system an existing, efficient method designed for cartesian coordinates, and allows
us to eliminate the pressure and formulate the problem in two scalar unknowns. The unnecessary increase of resolution at
smaller radius typically brought about by polar coordinates, with its consequent stability limitations, is avoided by changing the
number of azimuthal Fourier modes with the radial coordinate itself. In addition, the azimuthal extension of the computational
domain is reduced, for the cases with lowest curvature, by considering only a part of the annulus, without loss of physical
significance of the results. A computer code based on this method is run on a desktop PC for the simulation (with up to 16
million degrees of freedom) of the turbulent flow in a pipe with annular cross section, in a range of relatively low curvatures.
This investigation highlights that curvature effects are already evident, even on first order turbulence statistics like the mean
axial velocity distribution, in a low-curvature range where it is commonly believed that the flow should be hardly distinguishable
from the flow over a plane surface. 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Amongst the most important turbulent wall flows that can be studied through direct numerical simulation (DNS), one can
mention turbulent plane-channel flows and boundary layers on one side, and turbulent flows in pipes and ducts with annular
cross sections on the other. The former naturally call for the use of a cartesian coordinate system, whereas the Navier–Stokes
equations written in cylindrical coordinates are well suited for the numerical simulation of the latter.

A large number of numerical studies exist, concerning elementary flows based on the Navier–Stokes equations in cartesian
coordinates. Flows which can be easily described in cylindrical coordinates are by no means less interesting; beside pipe flow,
annular-duct flows play a role in important engineering applications like axial, coaxial and annular jets with and without swirl,
and flow in wells being drilled [1]. They bear, moreover, speculative interest, since the effects of the transverse curvature,
although not so severe as those of streamwise curvature, can significantly impact the mean flow and the low-order turbulence
statistics, as shown for example in [2]. Such flows are nonetheless little studied through DNS.

There are many open issues concerning the effects of transverse curvature on turbulent wall flow. In comparison with the
planar case, in such flow the picture is complicated by the presence of an additional characteristic length, the radius of curvature
of the wall. Two length scales generally stand out in turbulent wall flow: one is the viscous length scaleν/uτ , whereν is
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the viscosity of the fluid anduτ is the friction velocity; the other is an external length scale, for example the boundary layer
thickness or, in the case of a pipe with annular cross section, the annular gap. Dimensional analysis suggests that the effects of
the radius of transverse curvatureR of the wall can be expressed through one of the following two nondimensional groups: the
radius of curvatureR+ = Ruτ /ν in inner units, or the ratioR/δ, whereδ is an external length scale. It is believed [2,3] that the
effects of transverse curvature become noticeable on the low order statistical moments of the turbulent velocity fluctuations only
when the external curvature parameterγ = δ/R is greater than unity. In this high-curvature regime, the perhaps most prominent
effect is an increase in the friction factor, together with a dependency of the mean velocity profile on curvature, on which no
definite consensus exists yet in the literature: some authors [4] indeed propose a curvature correction in the viscous sublayer,
while others [3] surmise a dependency of the log-law onγ , and others [5] also include a dependency onR+. At least part of this
uncertainty can be ascribed to experimental problems, particularly to difficulties in obtaining an exactly axisymmetric stable
setup and in accurately measuring or estimating the friction velocity. Owing to its experimental and numerical complexity, the
low-curvature regime is still largely unexplored, and there is no clear consensus to date as to when transverse curvature of the
wall begins to affect the low-order turbulence statistics.

From a numerical viewpoint, to our best knowledge, the turbulent flow between two concentric cylinders has been studied
through fully resolved DNS in only one paper, namely the one by Neves et al. [2]. They employed a spectral numerical method
and studied the effect of transverse curvature on the turbulence statistics computed over the inner, transversely convex wall only.
Their objective was, in fact, to study the cylindrically symmetrical turbulent boundary layer which grows spatially over very
thin and long rods: therefore the annular geometry was used rather as an approximation of an unbounded outer space than on its
own account, and a zero-stress boundary condition was imposed at the surface of the outer cylinder. Moreover, as recognized by
the authors themselves, in proximity of the outer cylinder there was definitely inadequate spatial resolution, and indeed in [2]
the outer boundary is not given any consideration at all. In addition, the curvature parameterγ was substantially higher than the
values considered in the present paper, so that a completely different region of parameter space is now investigated.

Satake and Kawamura [6] addressed the turbulent flow in an annular pipe through Large Eddy Simulation, at a higher
Reynolds number than [2] and at a similarly largeγ , but in an actual annular duct, i.e., with no-slip conditions imposed on both
walls. Kawamura [private communication] also tried to perform a DNS study of the same flow at a lower Reynolds number,
but encountered severe numerical problems. An annular geometry similar to those considered in the present paper was used by
Shapiro et al. [7] for the purpose of studying linear and nonlinear stability of a laminar flow with the aid of a DNS finite-volume
code. An extension to the fully turbulent regime was not attempted, as the required computational resources were reportedly
too high. Hence a DNS of a turbulent flow in an annular pipe has yet to be performed.

The fact that, despite its practical relevance, turbulent flow in pipes and annular ducts has not been so deeply studied
through DNS as its planar counterpart, can be at least partially ascribed to the peculiar numerical difficulties associated with the
cylindrical coordinate system. For the cartesian coordinate system, a very effective formulation of the equations of motion was
presented in [8], the pioneering and widely-referenced paper on the DNS of turbulent plane channel flow. This formulation has
since been employed in many of the DNSs of turbulent wall flow in planar geometries. It basically consists in the substitution
of the continuity and momentum equations written in primitive variables with two scalar equations, one (second-order) for
the wall-normal component of vorticity and one (fourth-order) for the wall-normal component of velocity. This procedure is
appealing, since pressure is eliminated from the equations, and the reconstruction of the other two velocity components is
immediate when a Fourier expansion is adopted for the homogeneous directions. A very high computational efficiency can thus
be achieved.

An extension of this formulation to the cylindrical case was until now missing. Most of the existing numerical studies of
turbulent flow in cylindrical coordinates write the governing equations in primitive variables, and use each a different numerical
method, ranging from simple finite-difference schemes (e.g., [9]) to finite volumes [7], to complex spectral multi-domain
techniques (as in [10,11]), but most often remain inside the pressure-correction approach. The paper [2] is based on a spectral
discretization, but the calculation of pressure is still needed for the numerical solution of the equations.

Beside the problem of possible singularities on the axis (which is of no concern when dealing with an annular geometry), an
additional, severe, difficulty entailed by cylindrical coordinates is the dependence of azimuthal resolution of the computational
grid on the radial coordinate. A sufficiently high spatial resolution of DNS calculations is known to be crucial for the reliability
of the computed turbulence statistics, especially in the near-wall region. On the other hand, an excessive resolution lowers
the stability limit of an explicit or partially explicit time-advancement scheme. The azimuthal resolution, when set so as to be
sufficient near the outer wall of an annular pipe, becomes unnecessarily high when the inner wall is approached. If, on the other
hand, the inner wall is chosen to dictate the spatial resolution, the turbulent scales are gradually less and less well resolved in
the azimuthal direction when the distance from the inner wall increases. In addition, if one wants to consider low curvatures,
the wide azimuthal extension of the annulus determines a tremendous expense of computational resources.

In this paper we present an extension of the efficient cartesian method for the DNS of turbulent wall flows to the cylindrical
geometry. This extension allows us to maintain the very same structure of a numerical code developed for the plane channel
flow, with a very modest increase of computational cost for the same number of degrees of freedom. Moreover, a strategy to
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avoid the unnecessary clustering of azimuthal resolution near the inner wall and the increase of computing cost with decreasing
curvature is described. This numerical method is then used to study the effects of mild transverse curvature on the statistics of
the turbulent flow in an annular pipe, with the aim of highlighting the differences with planar flow at low curvature values.

The outline of the paper is as follows. In the next section the reduction of the Navier–Stokes system to two scalar equations
will be worked out in cylindrical coordinates. In Section 3 the numerical method will be described, together with the solution
adopted to keep the azimuthal resolution under control. Section 4 will be devoted to the illustration of the parameters defining
our computational experiments: in particular, two values of the curvature parameterγ will be considered. In Sections 5 and 6
the results will be described in terms of the mean flow properties and the main turbulence statistics. Finally, in Section 7 some
conclusions will be drawn.

2. Governing equations

The coordinate system used in the present paper is illustrated in Fig. 1, where a sketch of the annular duct is shown:x, r

andθ denote the axial, radial and azimuthal coordinates, andu, v andw the corresponding components of the velocity vector.
The inner cylinder has radiusRi and the outer cylinder has radiusRo . The reference lengthδ is taken to be one half of the gap
width:

δ = Ro −Ri

2
.

The reference velocity is chosen to be the bulk velocityUb , so that a bulk Reynolds number can be defined as:

Reb = Ub2δ

ν
,

whereν is the kinematic viscosity of the fluid. These definitions are such that the usual Reynolds number of a plane duct is
recovered in the limit of zero curvature.

The non-dimensional Navier–Stokes equations for an incompressible fluid are, in cylindrical coordinates:
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Fig. 1. Sketch of the computational domain and the coordinate system used in the present work.



416 M. Quadrio, P. Luchini / European Journal of Mechanics B/Fluids 21 (2002) 413–427

where the (scalar) Laplacian operator∇2 takes the form:

∇2 = ∂2

∂x2
+ 1

r

∂

∂r

(
r

∂
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)
+ 1

r2

∂2

∂θ2
. (3)

As the flow will be assumed to be periodic in the axial and azimuthal directions, all variables can be conveniently represented
as Fourier series along thex and θ coordinates. The symbolsα and m will respectively denote the axial and azimuthal
wavenumber. On definingk2 = (m/r)2 + α2, and introducing the Chandrasekhar notation:

D(f ) = ∂f

∂r
, D∗(f ) = ∂f

∂r
+ f

r
,

the Fourier-transformed Laplacian operator (3) can be written in the compact form:

∇2 = −k2 + D∗D.

The transformed equations, where a hat indicates the Fourier component of the corresponding variable, are:
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In these expressions, the nonlinear convective terms have been grouped under the following definitions:
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where for examplêuv indicates the Fourier transform of the productuv of two velocity components.

2.1. A second-order scalar equation for the radial vorticity

The radial componentη of the vorticity vector, in Fourier space, is given by

η̂ = im

r
û − iαŵ.

Following a similar procedure as in the cartesian case, an equation forη̂, which does not involve pressure, can be written by
taking the radial component of the curl of the momentum equation:
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(
im

r
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On remembering the definition of the operatorsD andD∗, and the fact that:

DD∗ = D∗D − 1

r2

one can substitute(im/r)̂u − η̂ for iαŵ in the preceding equation, and write the following second-order equation forη̂:
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Eq. (8) must be solved with the two boundary conditionsη̂ = 0 atr = Ri andη̂ = 0 atr = Ro , and a suitable initial condition
in time. The equation has an overall structure which is analogous to that of the corresponding equation in the cartesian case,
except for some remaining curvature terms which containv̂ and the first radial derivative of̂u.



M. Quadrio, P. Luchini / European Journal of Mechanics B/Fluids 21 (2002) 413–427 417

2.2. A fourth-order scalar equation for the radial velocity

The derivation of a pressure-free equation for the radial componentv̂ of the velocity is less straightforward but possible,
provided repeated use is made of the continuity equation in order to obtain the necessary simplifications.

The first step consists in taking the time derivative of the Fourier-transformed continuity Eq. (4), which can be written as

∂D∗( v̂ )

∂t
= −iα

∂û
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.

Here the time derivatives of̂u andŵ can be replaced by the corresponding expressions extracted from Eqs. (5a) and (5c), thus
giving:
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The continuity equation can be invoked again to simplify some terms, together with the relations obtained by applying the
operatorsD/r andD2 to it, namely:
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By also applying the relation
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after some algebra, the following expression forp̂ is obtained:
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This expression can be differentiated with respect to the radial coordinate, and then substituted into Eq. (5b) to get rid ofp̂

altogether. Eventually the fourth-order equation forv̂ emerges in the final form:
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Eq. (9) must be solved with the four boundary conditionsv̂ = 0 and∂v̂/∂r = 0 at r = Ri andr = Ro, and a suitable initial
condition in time. It is very similar in structure to the corresponding equation for the cartesian case, except that curvature terms
proportional tôw and to its radial derivative are present.

3. The numerical method

Thanks to the periodic boundary conditions, all the flow variables have been discretized as finite sums of Fourier modes,
or truncated Fourier series, in the axial and azimuthal directions. For example, the radial componentv of the velocity vector is
represented as:

v(x, θ, r, t) =
+Nx∑

h=−Nx

+Nθ (r)∑
l=−Nθ (r)

v̂hl(r, t)eiαxeimθ ,

where

α = 2πh

Lx
= α0h, m = 2πl

Lθ
= m0l.

Hereh and l are integer indices corresponding to the axial and azimuthal direction respectively, andα0 and m0 are the
fundamental wavenumbers in each of these directions, defined in terms of the axial lengthLx of the computational domain and
its azimuthal extensionLθ expressed in radians.
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However, in a cylindrical coordinate system, the actual azimuthal size of the computational domain decreases withr ; if the
required spatial resolution, or number of Fourier modes, is set up based on the most demanding region of the flow field, i.e., the
outer wall, then the spatial resolution becomes unnecessarily high when the inner wall is approached. This not only implies a
waste of computational resources, but might also induce numerical stability problems.

To overcome this difficulty, we have made the truncation of the azimuthal Fourier series a function of the radial position. Key
to our procedure is that, whereas in a collocation approach changing the resolution with radius would have involved multiple
interpolations and numerical diffusion, in a spectral representation dropping a few Fourier modes at the high end of the spectrum
is a smooth operation, which does not introduce any spatially localized error.

Given this intrinsic smoothness of the Fourier series, we are free to make the numberNθ of azimuthal Fourier modes an
arbitrary functionNθ (r) of the radial coordinate. The simplest and most natural choice is a linear functionNθ (r), from a
maximum valueNθ,max at r = Ro down to a minimumNθ,min at r = Ri , with Nθ,min andNθ,max proportional to the inner
and outer radii themselves so as to keep thesame effective spatial resolution throughout the whole domain. This is equivalent
to assuming that the Fourier modesv̂hl with |l| � Nθ,min are defined in the whole annular gap, i.e., forRi � r � Ro , while
any modêvhl with Nθ,min < |l| � Nθ,max only exists forr(l) < r < Ro , wherer(l) is a suitable radial position, function of
the indexl, intermediate between the two walls. These modes are assumed to become zero at the lower end of this interval,
just as all modes beyondNθ,max implicitly are everywhere, and the necessary boundary conditions for their governing radial
differential equation are thus provided.

From the point of view of computer programming, a comb array of Fourier coefficients whose number varies withl (and
possiblyh too, even if this feature is not presently used) has been implemented through a suitable memory management, where
a two-dimensional array of pointers is used to reference variable-sized one-dimensional arrays, each of which stores all and
only the nonzero coefficients in a radial line, fromr = Ro down tor(l). This procedure, some more details of which can be
found in [12], is able to reduce the computational cost of DNS in cylindrical geometry, thanks to the reduction in the number
of active Fourier modes, and at the same time to avoid the numerical stability problems which could otherwise derive from an
overfine resolution of the innermost region.

The radial discretization of Eqs. (8) and (9) is performed through finite differences over a computational molecule composed
of five unevenly spaced points. The use of finite differences for the DNS of turbulent flows is a recognized reliable discretization
method (see, for example, [13]), allowing flexibility in the boundary conditions, and relative ease of programming. It also
has additional advantages in minimizing communication requirements when the numerical code is to be ported to parallel
architectures. By using a computational molecule composed of five grid points most of the radial differencing operators can be
constructed at fourth-order accuracy, while the operatorDD∗DD∗ is discretized with second-order accuracy only. The overall
scheme is therefore asymptotically second-order accurate when the radial step size tends to zero; the accuracy of the code
at practical values of the step size can nevertheless be expected to be comparable to that attainable with a fully fourth-order
scheme, if it is noticed that the termDD∗DD∗ only becomes significant near the walls, where the discretization error is reduced
by the nonuniform step size anyway.

As far as the discretization in time is concerned, in the cartesian case time integration of the equations is usually performed
by a partially implicit method, as classically described in [8]. A combination of an explicit (low-storage, third-order Runge–
Kutta) scheme for the convective terms and an implicit (second-order Crank–Nicholson) scheme for the viscous terms is used
here as well: the explicit part of the equations can benefit from a higher-accuracy scheme, while the stability-limiting part is
subjected to an implicit advancement.

At first sight a difficulty exists in that the cylindrical equations (8) and (9) are coupled by curvature terms, and therefore a
fully implicit treatment of the viscous terms would not allow each equation to be solved separately as in the cartesian case. To
solve this difficulty, we just move the additional viscous curvature terms to the explicit part. In practice, we first solve Eq. (9)
for v̂, with theŵ-dependent terms and all theH ’s as explicit terms, and then Eq. (8) forη̂, with the terms containinĝv and the
first derivative of̂u in the esplicit part. The algorithm is programmed so as to deal with a general evolutive differential equation
written as

∂unkn

∂t
= impl + expl,

where the unknownunkn is advanced in time with a method of choosable order, treating explicitly some terms grouped inexpl
and implicitly some others grouped inimpl, and thus giving us the freedom to move terms from one group to the other and
experiment with different combinations. The final choice was, for Eq. (9):
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It can be envisaged that curvature terms, which contain low-order derivatives and are multiplied by inverse powers ofr , can
be treated explicitly without compromising the numerical stability of the time scheme. Our results fully support this view, and
indeed we have been able to solve numerically the equations using a time step comparable with that used in the planar case,
without incurring in any stability limitations.

Just as in the corresponding cartesian method, FFT algorithms are used during the explicit calculation of the nonlinear
Hû,̂v,ŵ terms to compute the required convolutions in an efficient manner: the Fourier components of the velocity are
transformed back into physical space, the nonlinear terms are evaluated by simple products and then retransformed into Fourier
space. Dealiasing is performed by the 3/2 rule, expanding the number of collocation points before going from Fourier space
to physical space so as to compute the convolutions exactly and avoid any spurious energy transfer from the high-frequency to
the low-frequency modes. For the purpose of dealiasing, each plane of Fourier coefficients for a given radial position is moved
in turn from the comb array to temporary storage before this operation; at the same time care is taken to change the size of the
FFT so as to reflect the varying number of components present at eachr .

After having solved, at each time step, the linear implicit parts of Eqs. (8) and (9) by direct band-matrix inversion, the
remaining two velocity components, needed for the evaluation of the expressions (6a)–(6c) at later times, can be easily
recovered, in Fourier space, from the definition ofη̂ and the continuity equation (4); namely:

ûhl = 1

k2

(
iαD∗(̂vhl ) − im

r
η̂hl

)
, ŵhl = 1

k2

(
iαη̂hl + im

r
D∗(̂vhl)

)
.

The singularity of this solution whenk2 = 0 reflects the fact that̂v00 and η̂00 are identically zero.̂u00 andŵ00, on the other
hand, are uncoupled at the implicit stage and obey, each, an equation similar to Eq. (8), which can be directly marched in time
by a similar algorithm. At this stage the external forcing is imposed, either in the form of a pressure gradient or of a fixed
flow rate. The simulations described in this paper are performed at fixed flow rate in the axial direction and zero mean pressure
gradient in the azimuthal direction.

4. Computer code and computational parameters

The computer code for the numerical method described in the previous section has been obtained by modifying a previous
cartesian version, which was in turn developed from scratch by us to implement a numerical method similar to the one
described in [8], but using fourth-order accurate, compact finite differences in the wall-normal direction. The cartesian code
(details of which are given in [12]) was written in a modular, compact and efficient form where different time and space
discretizations and different choices of the implicit and explicit part can be easily interchanged without interfering with each
other, and was thoroughly tested on its own right before proceeding with its extension to the cylindrical geometry. It was
designed since the beginning with parallel computing in mind, and offers a very competitive speedup when run on a cluster
of commodity computers with cheap communication interfaces. The cylindrical version shares with its cartesian counterpart a
high computational efficiency in terms of both RAM requirements and CPU time: a full three-substeps Runge–Kutta time step
for a cartesian case with 129 Fourier modes in both the homogeneous directions and 129 collocation points in the wall-normal
direction takes only 50 CPU seconds on a single Pentium III 733 MHz CPU, and requires 96 MB of RAM.

As a preliminary step towards the full parallelization that is already implemented in the cartesian code, the present version
of the cylindrical code can take advantage of 2-CPU SMP personal computers.

Two numerical experiments have been performed at the Reynolds number Reb = 5600, the same adopted in the reference
planar case [8]. Two different cases have been considered, both in the mild-curvature regime: the first case has a geometry
with Ri = 2δ andRo = 4δ, and the second case corresponds toRi = δ andRo = 3δ. The curvature parameter, defined as
γ = δ/Ri , is γ = 0.5 for the first case andγ = 1 for the second case. This definition is consistent with that adopted in [2],
where the much higher values ofγ = 5 andγ = 11 were studied.

As in [8], for both cases we have chosenα0 = 0.5/δ, so that the period of the computational domain in the axial direction
is Lx = 4πδ (which corresponds toL+

x ∼ 2260). As far as the period in the circumferential direction is concerned, in the case
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with γ = 1 a full turn has been considered, takingm0 = 1: hence, the transversal length is 6πδ at the outer wall and 2πδ at
the inner wall, as compared to 2πδ of [8]. In the case ofγ = 0.5, which is nearer to a planar flow, there is no need to consider
a full turn; for it can be envisioned (and verifieda posteriori) that the spanwise correlations go to zero much before that, and
in particular at a distance comparable to the characteristic correlation distance of the planar case. This is particularly evident
if the curvature is let tend to zero, where the planar case must be approached but the length of a full turn tends to infinity. We
used herem0 = 2, i.e., half a turn, corresponding to a transversal extension of 2πδ (approximately 1130 wall units) at the inner
wall. This is the spanwise length that was used by [8] and is generally accepted in the planar case; at the outer wall our domain
is twice that length. As expected, ana posteriori examination of the autocorrelation functions (see, e.g., Fig. 7, right) confirms
that they drop to zero for an azimuthal separation significantly less than half the extension of the computational domain. The
use ofm0 = 2 was a key step to keep the required computational resources under control and make the investigation of the
low-curvature regime possible.

The radial range is divided in 128 uneven intervals. For the case withγ = 0.5 193 Fourier modes are considered for the
longitudinal direction, with−96� α/α0 � 96, and 257 modes, with−128� m/m0 � 128, for the azimuthal direction at the
outer wall, decreasing linearly to 129 at the inner wall. The case ofγ = 1 has the same axial resolution, and 481 modes in
the θ direction atr = Ro, decreasing linearly to 161 atr = Ri . This last case is the most computationally demanding, and
is discretized in space with approximately 16 million degrees of freedom, defined as the number of unknown Fourier modes
considered for̂η andv̂; the spatial resolution corresponds to$x+ ∼ 11.7 and$z+ ∼ 7; the radial step is$r+ = 0.9−4.5. Its
numerical solution requires 410 MB of RAM, and every single flow field stored on disk for further analysis takes 136 MB of
disk space. The computing time for this case is approximately 240s for a full Runge–Kutta time step, when an SMP personal
computer (with two 500 MHz Intel CPUs) running the Linux operating system is used. The parallel efficiency with respect to
the single-CPU version is around 190%.

The simulation atγ = 0.5 was started from a previously computed planar flow field, and the one atγ = 1 from a flow
field of the preceding case. The flow fields have been adapted to the new discretization by spectral interpolation, and then the
computer code has been run until any visible transient, shown by the time history of the mean friction at the inner and outer
walls, disappeared. After that, the simulations have been run for further 100δ/Ub units of time, in order to make sure that a
statistically steady state is attained, independent of the initial conditions. Only then, during another 150δ/Ub time units, flow
fields have been stored on disk for the subsequent statistical analysis.

For both computational cases the time step has been set at$t = 0.02 δ/Ub , comparable to the one employed in
corresponding planar cases. In the final phase of the calculations, flow fields are stored on disk every 10δ/Ub . At a later
time these stored fields are used to compute the average statistics of interest, whereas the time history of the mean friction over
the two walls and few other quantities are recorded at all times. Unless otherwise indicated, the mean quantities described in
the following sections have been averaged over both time and the two homogeneous directions.

5. Mean flow properties

Table 1 shows the fundamental parameters of the computed mean flow for the two cases ofγ = 0.5 andγ = 1, compared
with the results for the planar case taken from [8] and the results atγ = 5 andγ = 11, relative to the inner wall only, from [2].
The friction coefficient over the inner wall increases with curvature, and the present simulations indicate that atγ = 0.5, where
the inner radius isR+

i ∼ 370 expressed in wall units, the increase is about 7% compared to the planar case at a similar Reynolds
number of Reτ = 180. For the higher-curvature case withγ = 1, the increase in skin friction is about 14%, hence, seemingly

Table 1
Mean flow parameters forγ = 0.5 andγ = 1, compared with those reported in [8] for the plane
channel flow and the DNS results of [2] relative to the higher-curvature regime

103Cf Reτ Rem Ub/uτ,tot Umax/uτ,tot Umax/Ub

flat plate 6.04 ≈ 180 ≈ 3300 15.63 18.20 1.16
inner wallγ = 0.5 6.47 185.2 3273 15.55 18.18 1.169
inner wallγ = 1 6.87 190.7 3289 15.50 18.21 1.175
γ = 5 from [2] 8.07 214 3368
γ = 11 from [2] 9.87 239 3418
outer wallγ = 0.5 5.85 176.1 3273 15.55 18.18 1.169
outer wallγ = 0.1 5.76 174.6 3289 15.50 18.21 1.175

uτ,tot is the total friction velocity, i.e., the average of the two walls’ friction velocities weighted by
the corresponding wetted areas.
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linear with the curvature parameterγ in the low-curvature regime. The friction coefficient over the outer wall presents an
opposite behavior, but with a smaller relative decrease.

However, evaluating the total friction force which must be balanced by the pressure gradient to maintain the imposed flow
rate, i.e., the averagecf,tot of the friction coefficients over the two walls weighted by the corresponding wetted areas, shows
that the total friction is essentially unchanged from its planar value for both the curvatures considered.

The ratio between the bulk velocity and the friction velocityuτ,tot computed from the total friction coefficientcf,tot
decreases slightly with curvature, whereas the ratio between the maximum velocityUmax anduτ,tot does not exhibit significant
variations. The ratioUmax/Ub , on the other hand, increases slightly with curvature.

Fig. 2 (top) shows the computed profile, in the radial direction, of the mean axial velocity forγ = 0.5 andγ = 1. The laminar
analytical solution corresponding toγ = 1 is also indicated in the figure, and presents a maximum of approximately 1.52

Fig. 2. Top: comparison between the computed turbulent profiles (γ = 0.5 andγ = 1) of the longitudinal mean velocity and the analytical
laminar profile forγ = 1. Experimental data from [1], collected atγ = 1 but at a different Reynolds number, are also shown for comparison.
Bottom: longitudinal mean velocity distribution, plotted in viscous units, over the inner (dotted line) and the outer (continuous line) wall, for
γ = 1 only. The two limiting behaviors of the planar case (dashed line) areu+ = y+ for the viscous sublayer andu+ = 2.5 lny+ + 5.5 for the
logarithmic layer. Here and in the followingy+ = (r −Ri )

+ for the inner wall, andy+ = (Ro − r)+ for the outer wall.
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Fig. 3. Longitudinal mean velocity distribution, plotted in viscous units, in the logarithmic region over the inner wall: computed profiles for
γ = 0.5 (dotted line) andγ = 1 (continuous line). Dashed line is the planar law of the wallu+ = 2.5 lny+ + 5.5.

shifted towards the inner wall at(r −Ri )/δ ∼ 0.91. The turbulent profile is flatter, as it always is, and its asymmetry increases
with curvature. Whenγ = 1 the maximum of the profile is at(r − Ri )/δ ∼ 0.82. The overall agreement with experimental
data available forγ = 1 from the measurements made by [1], but at the somewhat lower Reynolds number of Reb = 4450,
is adequate, especially in the near-wall portion of the profile. It can be observed that the experimental data are such that its
mean value is not exactly unity, and therefore they are not actually scaled with the bulk velocity. Experimental and DNS
curves collapse much better if the experimental data are renormalized to unity mean value. To further verify our data, we have
conducted an additional simulation with a modified version of the second-order finite-difference computer program described
in [14], the source code of which was made available courtesy of P. Orlandi: this simulation has confirmed the present results.

An “inner” look at the mean-velocity profile can be obtained by plotting it in semilog axes and normalizing velocities and
lengths with inner variables. This is where the law of the wall classically appears. Our profile is shown in this form in Fig. 2
(bottom), forγ = 1 only but for both walls, each normalized with the relevant friction velocity. The distancey+ from the pipe
walls is defined as(r −Ri )

+ for the inner wall and(R0 − r)+ for the outer wall. The classical log lawu+ = 2.5 lny+ + 5.5
is also shown for reference, and can be considered the behavior of the plane channel flow in the logarithmic layer, whereas near
the wall it is simplyu+ = y+.

Farther from the wall, at these values of Reynolds number and curvature, the profile over the outer wall presents a relatively
well defined logarithmic region, where both the slope and the intercept of the straight line are in agreement with the universal
values of the planar case. On the other hand, the inner wall shows this characteristic to a much lesser extent.

The effect of the transverse curvature on the slope of the logarithmic portion of the profile can be evaluated in Fig. 3. Here
we report an enlargement of Fig. 2 (bottom), centered in the logarithmic portion, showing the profiles for bothγ = 0.5 and
γ = 1 for the inner wall only. It can be seen that, in the case with less curvature, the mean velocity profile over the inner wall
still follows very closely the universal behavior of the plane case, while an increase of curvature causes a downward shift of the
profile compared to the plane channel flow. There is at least a visual indication that the slope of the profile may change, but a
more extensive analysis over a wider range of radius ratios is needed to support this conclusion.

For the inner wall these results are in general qualitative agreement with the DNS study in [2], where, however, much higher
curvatures were considered. Here the use of a fraction of a turn as the base period for the azimuthal discretization enabled us for
the first time to explore mild curvatures and the smooth transition to a plane-channel behavior. Both Neves et al. [2] and we found
that, in agreement with many experimental observations conducted in turbulent boundary layers over small cylinders, the slope
of the mean velocity profile in the logarithmic region decreases with transverse curvature. However, in the high-curvature regime
there is still no agreement between experiments and the numerical simulations of [2] concerning the quantification of this effect.

In addition, while it is reasonable that, in the limit of vanishing curvature, a universal behavior of the mean velocity profile
in the logarithmic region should be smoothly approached, there is no indication in the literature regarding the law with which
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transverse-curvature effects begin to affect the logarithmic layer. The present study has shown that a relatively low value of
γ = 1 with R+

i ∼ 190 is enough for the log layer to be appreciably affected.

6. Turbulence statistics

Fig. 4 (top) shows the root-mean-square values of the turbulent velocity fluctuations for the case withγ = 1 only, and for
comparison provides the analogous quantities computed in the plane channel flow by [8], at a similar Reynolds number of
Reτ = 180. In analogy with the mean velocity profile, the r.m.s. profiles of all three velocity components in the annular pipe
exhibit an evident asymmetry. The asymmetry is more pronounced in the central part of the gap. The peak values of the root-
mean-square velocity components are also somewhat different at the inner and outer wall: the peak of the axial component is

Fig. 4. Top: root-mean-square values of velocity fluctuations forγ = 1 (filled symbols), plotted in outer units, compared with the plane channel
flow (lines). Channel data from [8] at the same Reynolds number. Bottom: root-mean-square values of velocity fluctuations over the inner wall
for γ = 0.5 (open symbols) andγ = 1 (filled symbols), plotted in inner units, compared with the plane channel flow data (lines) from [8].
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Fig. 5. Top: Reynolds stresses component−uv+ (filled symbols) and total shear stress−uv+ + 1/Reτ dU+/dr+ (open symbols) forγ = 1,
plotted versus(r −Ri )/δ. Dotted line correspons to the analytical expression of the total stress. Bottom: Reynolds stresses component−uv+
for γ = 0.5 (open squares) andγ = 1 (filled squares), plotted versusy+ and compared to total stresses. Plane channel data (open circles)
from [8].

slightly increased over the inner wall and correspondingly decreased over the outer wall, while the opposite is true for the other
two components.

The same quantities are plotted in Fig. 4 (bottom) in inner units, for bothγ ’s and the inner wall only, again together with
plane-channel data from [8]. In these units a general decrease of the fluctuations with curvature can be appreciated, even in the
case with smaller curvature. The axial component is the less affected by curvature, while the azimuthal and radial components
are more sensitive and show a likewise reduction.

These results extend to low curvature the findings of [2] over a cylinder of much smaller radius, and are consistent with
many experiments performed in the high-curvature range.

Fig. 5 (top) shows the plot, in the radial direction, of the Reynolds shear stress−uv/u2
τ and the total shear stress

−uv/u2
τ + 1/Reτ dU+/dr+ for the case with higher curvature. The mean total stress must balance the applied axial pressure
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Fig. 6. Streamwise (left) and azimuthal (right) one-dimensional power spectral density functions of fluctuating velocity components, forγ = 1
at a distance ofy+ ∼ 5 from the inner (symbols) and the outer (lines) walls.

gradient, and can therefore be calculateda priori and exactly. Unlike the plane case, the total stress is not a linear function of
the normal coordinate anymore, but its profile is made asymmetric by the curvature. The theoretical total stress profile is also
reported in the figure, and is nearly indistinguishable from the DNS data, indicating that a statistically steady state has been
attained.

The peak of the Reynolds stress is reduced as a consequence of curvature when compared to the planar case, as already
reported by [2] for higher curvatures. This reduction is also evident in the mild-curvature range investigated here. Fig. 5 (bottom)
shows that the peak values near the inner wall are smaller than the planar value, and that the effect is roughly proportional to
the curvature. The radial position of the peak value also tends to move closer to the wall as the curvature increases. However, it
is also evident that this effect is essentially due to the different shape and slope of the total-stress curve, whereas the wall layer
is not visibly affected.

The one-dimensional power spectral density distributions of the velocity components are shown in Fig. 6, as functions of
the axial and azimuthal wavenumber, forγ = 1 and a distance ofy+ ∼ 5 from the inner and outer walls. The spectra in the
axial direction (left) confirm the adequacy of the spatial resolution of the present simulations, already discussed in Section 4
and comparable or better than typically used in plane-channel flows. The axial spectra show almost seven decades of energy
decrease between the low- and high-wavenumber regions. By considering the spectra in the azimuthal direction (right), one
can notice that, despite the azimuthal extension of the computational domain (lowest wavenumber) in the neighborhood of the
outer wall is twice that of the inner wall, the use of variable-number-of-modes Fourier series, truncated depending on radius,
has allowed us to maintain a fair and constant resolution throughout the whole annular gap.

The autocorrelation in the streamwise direction of each of the three velocity components is displayed in Fig. 7 (left), where
data pertaining to the inner and outer wall are compared. The autocorrelation of the axial component can be observed to fall
to zero at a separation less than half the length of the computational domain, an indication that the length is sufficient for the
periodic boundary conditions to be adequate. The other two velocity autocorrelations, characterized by a shorter length scale and
hence only plotted for a limited range of axial separations, reveal that near the inner wall the correlation lengths are greater than
near the outer wall, thus suggesting the presence of more elongated turbulence structures near the inner wall. The azimuthal
autocorrelation functions are reported in Fig. 7 (right).(r$θ)+ is the distance in wall coordinates along the circumference.
There can be seen that all the transversal length scales tend to be reduced over the inner wall. This is more apparent for the
axial and transversal velocity components, whereas the autocorrelation of the radial component exhibits a more pronounced
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Fig. 7. Left: autocorrelation functions for the fluctuating velocity components versus the streamwise separation$x+ , for γ = 1, at a distance
of y+ ∼ 5 from the walls. Comparison between the inner (symbols) and the outer (continuous line) walls. Note the different axis scale for the
streamwise separation in the upper left figure (axial component). Right: autocorrelation functions for the fluctuating velocity components as a
function of(r$θ)+, for γ = 1 only, at a distance ofy+ ∼ 5 from the walls. Comparison between the inner (symbols) and the outer (continuous
line) walls.

minimum located at approximately the same transversal separation. These results are consistent with the observation, made
by [2], that the average spacing between the low-speed streaks which populate the inner layer is reduced as a consequence of
the transverse curvature. The same effect can be measured here, to a lesser extent, even if the curvature is much smaller than
considered in that paper.

7. Conclusions

The numerical formulation of the Navier–Stokes equations in cylindrical coordinates presented in this paper has allowed
us to solve them with a high computational efficiency, employing numerical techniques already well tested in the cartesian
geometry and writing a computer code which shares its essential structure with its cartesian counterpart. We have successfully
simulated for the first time the turbulent flow in an annular pipe with relatively low transverse curvature. For this purpose a
very demanding DNS with more than 16 million unknowns has been performed on a single dual-processor commodity Personal
Computer, with very moderate memory requirements and an overall computing time of the order of 15 days.

The problem of the nonuniform azimuthal resolution, which depends onr in cylindrical coordinates, has been overcome
by adopting a representation of the flow variables with finite Fourier series whose number of modes depends on the radial
coordinate itself. This procedure, which is very general in itself and might be applied in the future to all simulations involving
the cylindrical coordinate system, has both contributed a reduction in computational requirements and alleviated potential
stability problems. Moreover, the use of a fraction of a turn as the base period for the azimuthal discretization enabled us for
the first time to explore very mild curvatures and the smooth transition to a plane-channel behavior.

Results, in terms of mean flow properties and main turbulence statistics, have been presented for the turbulent flow in an
annular pipe with two different values of curvature, both in the low range where the common belief was that the flow should
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behave essentially as a planar flow. This is not the case, as even mean quantities like the friction velocity exhibit an appreciable
deviation from their planar value. The total friction, that is the pressure gradient required for a given flow rate, turns out however
to be essentially unchanged. Effects of the azimuthal curvature are also visible in the mean velocity profile plotted in logarithmic
coordinates (law of the wall), but mostly at the inner wall whereas the outer-wall profile is almost coincident with the universal
law of the planar case. The effects of transverse curvature on the root-mean-square velocity fluctuations are of smaller entity,
but in the same qualitative direction as in a related study by [2] concerning a range of much higher curvatures. The peaks of the
Reynolds stress are significantly modified by the transverse curvature of the wall, but in a way that can be simply ascribed to
the modification of the total stress.
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