Direct simulation of turbulent flow

in a pipe with annular cross-section

Maurizio Quadrio & Paolo Luchini

Dipartimento di Ingegneria Aerospaziale del Politecnico di Milano

via La Masa 34 - 20156 Milano

maurizio.quadrio@polimi.it

- Incomplete experimental information (additional measuring difficulties in & Whitelaw, JFM 1993 253 near-wall region) regarding turbulence statistics: see for example Nouri, Humur
- Effect of transverse curvature on turbulence not fully documented

- Numerical solution of incompressible NS equation (DNS) in annular geometry
- Extend to cylindrical coordinates a numerical method for the DNS of turbulent plane channel flow (adapt a computer code without structural changes)
- Perform DNS of the turbulent flow in an annular pipe (never reported)

DNS of turbulence in cylindrical coordinates

- Numerical difficulties of cylindrical coordinate system \rightarrow few DNS of turbulent flow in cylindrical geometries
- Most of the numerical schemes solve NS eqs in primitive variables, with the pressure-correction approach
- Only one DNS study (Neves, Moin & Moser, JFM 1994 272) considers the outer layer cylinders: approximate model problem, no outer wall, insufficient resolution in transverse curvature, but is concerned with the boundary layer over small

The (standard) cartesian case

Moin & Moser JFM 1987 177, by which: For plane channel flow, there is an almost standard procedure developed by Kim,

- Pressure is eliminated from the equations
- NS system is reduced to a second-order scalar equation for the normal vorticity and a fourth-order scalar equation for the normal velocity
- When using Fourier transforms in homogeneous directions, the other velocity components are easily recovered
- High (nearly optimal) computational efficiency can be achieved

S

component, one obtains for $\omega_y = \partial u/\partial z - \partial w/\partial x$: By applying ${f
abla} imes$ to the momentum equation, ${f
abla} imes {f
abla} p = 0$. Considering the yBy manipulating momentum equation, and using continuity, one obtains for v: Initial conditions. Periodicity in x and z. No-slip boundary conditions at the walls: $\frac{\partial}{\partial t} \nabla^2 v = \frac{1}{Re} \nabla^4 v + \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial z^2} \right) H_v - \frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} H_u + \frac{\partial}{\partial z} H_w \right)$ $v(x, z, \pm \delta) = 0; \quad v_y(x, z, \pm \delta) = 0; \quad \omega_y(x, z, \pm \delta) = 0$ $\frac{\partial}{\partial t}\omega_y = \frac{1}{Re}\nabla^2 \omega_y + \frac{\partial H_u}{\partial z} -$ Cartesian case (cont.) ∂H_w ∂x

By Fourier transforming in the homogeneous directions, \hat{u} and \hat{w} are easily

recovered with the solution of a 2x2 **algebraic** system:

$$\begin{aligned} \hat{u} &= \frac{-i}{\alpha^2 + \beta^2} \left(\alpha \ \frac{\partial \hat{v}}{\partial y} - \beta \ \hat{\omega}_y \right) \\ \hat{w} &= \frac{-i}{\alpha^2 + \beta^2} \left(\beta \ \frac{\partial \hat{v}}{\partial y} + \alpha \ \hat{\omega}_y \right) \end{aligned}$$

- Implicit time schemes are usually **not** used, due to the need of accuracy over a wide range of spatial scales
- Partially implicit approach is very popular: explicit schemes for the convective those needing accurate representation) part, but implicit schemes for the viscous terms (with time-scales smaller than

$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} &= 0\\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} &= -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u\\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} &= -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)\\ \frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial r} + \frac{w}{r} \frac{\partial w}{\partial \theta} + \frac{vw}{r} &= -\frac{1}{r} \frac{\partial p}{\partial \theta} + \frac{1}{Re} \left(\nabla^2 w - \frac{w}{r^2} + \frac{2}{r^2} \frac{\partial v}{\partial \theta} \right)\\ \text{where} \\ \nabla^2 &= \frac{\partial^2}{\partial x^2} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \end{aligned}$	Cylindrical case																																																																						$m \wedge m \perp m = m = m + m + m + m + m + m + m + m +$																																																
Culindrical cace																							Cylindrical caeo	Cylindrical case			Cylindrical case	Solution 1 Street 1 Solution	An 1 ລ (ກາງ) 1 ລາງ	$\partial u = 1 \partial (rv) = 1 \partial w$	$\begin{array}{c} \textbf{Cylindrical case}\\ \partial u & 1 \partial (rv) & 1 \partial w \end{array}$	$\frac{\text{Cylindrical case}}{\partial u + 1 \partial (rv) + 1 \partial w} = 0$	Cylindrical case $\frac{\partial u}{\partial w} + \frac{1}{2} \frac{\partial (rv)}{\partial w} + \frac{1}{2} \frac{\partial w}{\partial w} = 0$	$\frac{\partial u}{\partial w} + \frac{1}{2} \frac{\partial (rv)}{\partial w} + \frac{1}{2} \frac{\partial w}{\partial w} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{2} \frac{\partial (rv)}{\partial x} + \frac{1}{2} \frac{\partial w}{\partial x} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{x} \frac{\partial (rv)}{\partial w} + \frac{1}{x} \frac{\partial w}{\partial a} = 0$	$\frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	Explanation of the set of the se	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial u} \frac{\partial u}{\partial u} w \frac{\partial u}{\partial v} \frac{\partial v}{\partial p} = 0$	Out $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial u} = \frac{\partial u}{\partial u} = w \partial u$ $\frac{\partial v}{\partial \theta} = 0$	Out $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + \frac{\partial u}{r} \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{r} + \frac{1}{r}\nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{r} + \frac{1}{r}\nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial x} + \frac{w}{\partial x}\frac{\partial u}{\partial x} = -\frac{\partial p}{\partial x} + \frac{1}{2}\nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial r} + \frac{1}{r}\nabla^2 u$	$\begin{aligned} \frac{\text{Cylindrical case}}{\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0} \\ \frac{\partial u}{\partial x} + u\frac{\partial u}{\partial x} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{R_{o}}\nabla^{2}u \end{aligned}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^{2}u$	Quadratical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	Quindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	By ∂_{t} ∂_{t} ∂_{t} $+ \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^{2} u$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial u}{\partial t} = \frac{\partial v}{\partial t} + \frac{w}{r} \frac{\partial w}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$\begin{aligned} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	$\begin{bmatrix} \text{Cylindrical case} \\ \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + \frac{w}{\partial t} \frac{\partial v}{\partial t} - \frac{w^2}{r} - \frac{\partial p}{r} + \frac{1}{r} \left(\nabla^2 v - \frac{v}{r} - \frac{2}{r} \frac{\partial w}{r} \right) \end{bmatrix}$	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + \frac{\partial v}{\partial t} - \frac{w^2}{dt} = -\frac{\partial p}{\partial t} + \frac{1}{L} \left(\nabla^2 v - \frac{v}{dt} - \frac{2}{dt} \frac{\partial w}{dt} \right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial t} - \frac{w^2}{r} = -\frac{\partial p}{\partial t} + \frac{1}{2r} \left(\nabla^2 v - \frac{v}{2} - \frac{2}{2r} \frac{\partial w}{\partial t} \right)$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial x} + v \frac{\partial v}{\partial r} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{2} - \frac{2}{2} \frac{\partial w}{\partial r} \right)$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial x} + v \frac{\partial v}{\partial x} - \frac{w^2}{r} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{x^2} - \frac{2}{x^2} \frac{\partial w}{\partial \theta} \right)$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \boldsymbol{\frac{\partial u}{\partial x}} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \hline \boldsymbol{\frac{\partial u}{\partial t}} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \hline \boldsymbol{\frac{\partial v}{\partial t}} + v \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \textbf{Gylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \hline \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \hline \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \boldsymbol{\frac{\partial u}{\partial x}} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \boldsymbol{\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial \left(rv\right)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0} \\ \\ \frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^{2}u \\ \\ \frac{\partial v}{\partial t} + u\frac{\partial v}{\partial r} + \frac{w}{r}\frac{\partial v}{\partial \theta} - \frac{w^{2}}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re}\left(\nabla^{2}v - \frac{v}{r^{2}} - \frac{2}{r^{2}}\frac{\partial w}{\partial \theta}\right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^2 u$ $\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + \frac{w}{r}\frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re}\left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2}\frac{\partial w}{\partial \theta}\right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$ $\frac{\partial w}{\partial t} = \frac{\partial w}{\partial t} + \frac{w}{r} \frac{\partial w}{\partial \theta} - \frac{w}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$																		
Cylindrical cace																							Cylindrical caeo	Cylindrical case			Cylindrical case	Solution 1 Street 1 Solution	An 1 A (ກາງ) 1 An	$\partial u = 1 \partial (rv) = 1 \partial w$	$\begin{array}{c} \textbf{Cylindrical case}\\ \partial u 1 \ \partial (rv) 1 \ \partial w n \end{array}$	$\frac{\text{Cylindrical case}}{\partial u} = \frac{1}{2} \frac{\partial (rv)}{\partial u} = \frac{1}{2} \frac{\partial w}{\partial v} = 0$	Cylindrical case $\frac{\partial u}{\partial w} + \frac{1}{2} \frac{\partial (rv)}{\partial w} + \frac{1}{2} \frac{\partial w}{\partial w} = 0$	$\frac{\partial u}{\partial w} + \frac{1}{2} \frac{\partial (rv)}{\partial w} + \frac{1}{2} \frac{\partial w}{\partial w} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{2} \frac{\partial (rv)}{\partial x} + \frac{1}{2} \frac{\partial w}{\partial x} = 0$	$\frac{\partial u}{\partial w} + \frac{1}{n} \frac{\partial (rv)}{\partial w} + \frac{1}{n} \frac{\partial w}{\partial a} = 0$	$\frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	Explanation of the set of the se	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\partial u = \partial u = \partial u = \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	Out Out The second se	Out $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + \frac{\partial u}{r} \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{r} + \frac{1}{r}\nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial r} + \frac{1}{r}\nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial x} + \frac{w}{\partial x}\frac{\partial u}{\partial x} = -\frac{\partial p}{\partial x} + \frac{1}{2}\nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial r} + \frac{1}{r}\nabla^2 u$	$\begin{aligned} \frac{\text{Cylindrical case}}{\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0} \\ \frac{\partial u}{\partial x} + u\frac{\partial u}{\partial x} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{R_{o}}\nabla^{2}u \end{aligned}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^{2}u$	Quadratical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\begin{array}{l} \hline \textbf{Cylindrical case} \\ \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \end{array}$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	Quindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	By ∂_{t} ∂_{t} ∂_{t} + $\frac{1}{r}\frac{\partial(rv)}{\partial r}$ + $\frac{1}{r}\frac{\partial w}{\partial \theta}$ = 0 $\frac{\partial u}{\partial t}$ + $u\frac{\partial u}{\partial x}$ + $v\frac{\partial u}{\partial r}$ + $\frac{w}{r}\frac{\partial u}{\partial \theta}$ = $-\frac{\partial p}{\partial x}$ + $\frac{1}{Re}\nabla^{2}u$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial u}{\partial t} - \frac{\partial v}{\partial t} + \frac{w}{r} \frac{\partial w}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$\begin{aligned} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + \frac{w}{\partial v} \frac{\partial v}{d t} - \frac{w^2}{r} - \frac{\partial p}{r} + \frac{1}{r} \left(\nabla^2 v - \frac{v}{r} - \frac{2}{r} \frac{\partial w}{r} \right) \end{aligned}$	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + \frac{\partial v}{\partial t} - \frac{w^2}{dt} = -\frac{\partial p}{\partial t} + \frac{1}{L} \left(\nabla^2 v - \frac{v}{dt} - \frac{2}{dt} \frac{\partial w}{dt} \right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial t} - \frac{w^2}{r} = -\frac{\partial p}{\partial t} + \frac{1}{2r} \left(\nabla^2 v - \frac{v}{2} - \frac{2}{2r} \frac{\partial w}{\partial t} \right)$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{2} - \frac{2}{2} \frac{\partial w}{\partial t} \right)$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial x} + v \frac{\partial v}{\partial x} - \frac{w^2}{r} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{x^2} - \frac{2}{x^2} \frac{\partial w}{\partial \theta} \right)$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{aligned}$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \boldsymbol{\frac{\partial u}{\partial x}} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \hline \boldsymbol{\frac{\partial u}{\partial t}} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \hline \boldsymbol{\frac{\partial v}{\partial t}} + v \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \textbf{Gylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \hline \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \hline \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \boldsymbol{\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial \left(rv\right)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0} \\ \\ \frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^{2}u \\ \\ \frac{\partial v}{\partial t} + u\frac{\partial v}{\partial r} + \frac{w}{r}\frac{\partial v}{\partial \theta} - \frac{w^{2}}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re}\left(\nabla^{2}v - \frac{v}{r^{2}} - \frac{2}{r^{2}}\frac{\partial w}{\partial \theta}\right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \boldsymbol{\partial} u \\ \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^{2}u$ $\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial r} + \frac{w}{r}\frac{\partial v}{\partial \theta} - \frac{w^{2}}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re}\left(\nabla^{2}v - \frac{v}{r^{2}} - \frac{2}{r^{2}}\frac{\partial w}{\partial \theta}\right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$ $\frac{\partial w}{\partial t} = \frac{\partial w}{\partial t} + \frac{w}{r} \frac{\partial w}{\partial \theta} - \frac{w}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$																		
Cylindrical caco																							Cylindrical caeo	Cylindrical case			Cylindrical case	Solution 1 Street 1 Solution	An 1 A (ກາງ) 1 An	$\partial u 1 \partial (rv) 1 \partial w$	$\begin{array}{c} \textbf{Cylindrical case}\\ \partial u & 1 \partial (rv) & 1 \partial w \end{array}$	$\frac{\text{Cylindrical case}}{\partial u} = \frac{1}{2} \frac{\partial (rv)}{\partial u} = \frac{1}{2} \frac{\partial w}{\partial v} = 0$	Cylindrical case $\frac{\partial u}{\partial w} + \frac{1}{2} \frac{\partial (rv)}{\partial w} + \frac{1}{2} \frac{\partial w}{\partial w} = 0$	$\frac{\partial u}{\partial w} + \frac{1}{2} \frac{\partial (rv)}{\partial w} + \frac{1}{2} \frac{\partial w}{\partial w} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{2} \frac{\partial (rv)}{\partial x} + \frac{1}{2} \frac{\partial w}{\partial x} = 0$	$\frac{\partial u}{\partial m} + \frac{1}{m} \frac{\partial (rv)}{\partial m} + \frac{1}{m} \frac{\partial w}{\partial a} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	Explanation of the set of the se	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\partial u = \partial u = \partial u = \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	Out Out The second se	Out $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + \frac{\partial u}{r} \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{r} + \frac{1}{r}\nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial r} + \frac{1}{r}\nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial x} + \frac{w}{\partial x}\frac{\partial u}{\partial x} = -\frac{\partial p}{\partial x} + \frac{1}{2}\nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial r} + \frac{1}{r}\nabla^2 u$	$\begin{aligned} \frac{\text{Cylindrical case}}{\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0} \\ \frac{\partial u}{\partial x} + u\frac{\partial u}{\partial x} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{R_{o}}\nabla^{2}u \end{aligned}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^{2}u$	Quadratical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\begin{array}{l} \hline \textbf{Cylindrical case} \\ \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \end{array}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	Quindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	Some find an endarge out $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial u}{\partial t} - \frac{\partial v}{\partial t} + \frac{w}{r} \frac{\partial w}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$\begin{aligned} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + \frac{w}{\partial v} \frac{\partial v}{d t} - \frac{w^2}{r} - \frac{\partial p}{r} + \frac{1}{r} \left(\nabla^2 v - \frac{v}{r} - \frac{2}{r} \frac{\partial w}{r} \right) \end{aligned}$	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + \frac{\partial v}{\partial x} - \frac{w^2}{dt} = -\frac{\partial p}{\partial t} + \frac{1}{L} \left(\nabla^2 v - \frac{v}{dt} - \frac{2}{dt} \frac{\partial w}{dt} \right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial r} - \frac{w^2}{r} = -\frac{\partial p}{\partial t} + \frac{1}{2} \left(\nabla^2 v - \frac{v}{2} - \frac{2}{2} \frac{\partial w}{\partial t} \right)$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial r} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{2} - \frac{2}{2} \frac{\partial w}{\partial t} \right)$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial x} + v \frac{\partial v}{\partial x} - \frac{w^2}{r} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{x^2} - \frac{2}{x^2} \frac{\partial w}{\partial \theta} \right)$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \textbf{Gylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \hline \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \hline \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \textbf{Gylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \hline \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \hline \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \boldsymbol{\partial} u \\ \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^{2}u$ $\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial r} + \frac{w}{r}\frac{\partial v}{\partial \theta} - \frac{w^{2}}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re}\left(\nabla^{2}v - \frac{v}{r^{2}} - \frac{2}{r^{2}}\frac{\partial w}{\partial \theta}\right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^{2}u$ $\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + \frac{w}{r}\frac{\partial v}{\partial \theta} - \frac{w^{2}}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re}\left(\nabla^{2}v - \frac{v}{r^{2}} - \frac{2}{r^{2}}\frac{\partial w}{\partial \theta}\right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$ $\frac{\partial w}{\partial t} = \frac{\partial w}{\partial t} + \frac{w}{r} \frac{\partial w}{\partial \theta} - \frac{w}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$																		
Cylindrical caeo																							Cylindrical caeo	Cylindrical case			Cylindrical case	Solution 1 Street 1 Solution	An 1 A (ກາງ) 1 An	$\partial u = 1 \partial (rv) = 1 \partial w$	$\begin{array}{c} \textbf{Cylindrical case}\\ \partial u 1 \ \partial (rv) 1 \ \partial w n \end{array}$	$\frac{\text{Cylindrical case}}{\partial u} = \frac{1}{2} \frac{\partial (rv)}{\partial u} = \frac{1}{2} \frac{\partial w}{\partial v} = 0$	Cylindrical case $\frac{\partial u}{\partial w} + \frac{1}{2} \frac{\partial (rv)}{\partial w} + \frac{1}{2} \frac{\partial w}{\partial w} = 0$	$\frac{\partial u}{\partial w} + \frac{1}{2} \frac{\partial (rv)}{\partial w} + \frac{1}{2} \frac{\partial w}{\partial w} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{2} \frac{\partial (rv)}{\partial x} + \frac{1}{2} \frac{\partial w}{\partial x} = 0$	$\frac{\partial u}{\partial m} + \frac{1}{n} \frac{\partial (rv)}{\partial m} + \frac{1}{n} \frac{\partial w}{\partial a} = 0$	$\frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	Explinition of the set of the se	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial u} \frac{\partial u}{\partial u} w \frac{\partial u}{\partial v} \frac{\partial v}{\partial v} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial u} - \frac{\partial u}{\partial u} - \frac{w}{w} \frac{\partial u}{\partial u} - \frac{\partial p}{\partial r} = 1$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} = \frac{\partial p}{\partial y} + \frac{1}{r} \frac{\partial v}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{r} + \frac{1}{r}\nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{r} + \frac{1}{r}\nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial x} + \frac{w}{\partial x}\frac{\partial u}{\partial x} = -\frac{\partial p}{\partial x} + \frac{1}{2}\nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial r} + \frac{1}{r}\nabla^2 u$	$\begin{aligned} \frac{\text{Cylindrical case}}{\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0} \\ \frac{\partial u}{\partial x} + u\frac{\partial u}{\partial x} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{R_{o}}\nabla^{2}u \end{aligned}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^{2}u$	Quadratical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	Quindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	By $\partial_{t} = \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial u}{\partial t} - \frac{\partial v}{\partial t} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$\begin{aligned} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + \frac{w}{\partial v} \frac{\partial v}{d t} - \frac{w^2}{r} - \frac{\partial p}{r} + \frac{1}{r} \left(\nabla^2 v - \frac{v}{r} - \frac{2}{r} \frac{\partial w}{r} \right) \end{aligned}$	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + \frac{\partial v}{\partial t} - \frac{w^2}{dt} = -\frac{\partial p}{\partial t} + \frac{1}{L} \left(\nabla^2 v - \frac{v}{dt} - \frac{2}{dt} \frac{\partial w}{dt} \right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial t} - \frac{w^2}{r} = -\frac{\partial p}{\partial t} + \frac{1}{2} \left(\nabla^2 v - \frac{v}{2} - \frac{2}{2} \frac{\partial w}{\partial t} \right)$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial x} + v \frac{\partial v}{\partial r} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{2} - \frac{2}{2} \frac{\partial w}{\partial r} \right)$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial x} + v \frac{\partial v}{\partial x} - \frac{w^2}{r} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{x^2} - \frac{2}{x^2} \frac{\partial w}{\partial \theta} \right)$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial(rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^{2}u$ $\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial r} + \frac{w}{r}\frac{\partial v}{\partial \theta} - \frac{w^{2}}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re}\left(\nabla^{2}v - \frac{v}{r^{2}} - \frac{2}{r^{2}}\frac{\partial w}{\partial \theta}\right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \textbf{Gylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \hline \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \hline \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \textbf{Gylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \hline \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \hline \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$\begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \boldsymbol{\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial \left(rv\right)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0} \\ \\ \frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^{2}u \\ \\ \frac{\partial v}{\partial t} + u\frac{\partial v}{\partial r} + \frac{w}{r}\frac{\partial v}{\partial \theta} - \frac{w^{2}}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re}\left(\nabla^{2}v - \frac{v}{r^{2}} - \frac{2}{r^{2}}\frac{\partial w}{\partial \theta}\right) \end{array}$	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \overbrace{\partial v} \\ \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^{2}u$ $\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial r} + \frac{w}{r}\frac{\partial v}{\partial \theta} - \frac{w^{2}}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re}\left(\nabla^{2}v - \frac{v}{r^{2}} - \frac{2}{r^{2}}\frac{\partial w}{\partial \theta}\right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^2 u$ $\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + \frac{w}{r}\frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re}\left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2}\frac{\partial w}{\partial \theta}\right)$ $\frac{\partial w}{\partial t} = \frac{\partial w}{\partial t} + \frac{w}{r}\frac{\partial w}{\partial \theta} - \frac{w}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re}\left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2}\frac{\partial w}{\partial \theta}\right)$																		
Culindrical cace																							Cylindrical caeo	Cylindrical case			Cylindrical case	Solution 1 Street 1 Solution	An 1 A (ກາງ) 1 An	$\partial u = 1 \partial (rv) = 1 \partial w$	$\begin{array}{c} \textbf{Cylindrical case}\\ \partial u & 1 \partial (rv) & 1 \partial w \end{array}$	$\frac{\partial u}{\partial u} \pm \frac{1}{2} \frac{\partial (rv)}{\partial u} \pm \frac{1}{2} \frac{\partial w}{\partial u} = 0$	$\frac{\partial u}{\partial u} + \frac{1}{2} \frac{\partial (rv)}{\partial w} + \frac{1}{2} \frac{\partial w}{\partial w} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{2} \frac{\partial (rv)}{\partial x} + \frac{1}{2} \frac{\partial w}{\partial x} = 0$	$\frac{\partial u}{\partial w} + \frac{1}{2} \frac{\partial (rv)}{\partial w} + \frac{1}{2} \frac{\partial w}{\partial w} = 0$	$\frac{\partial u}{\partial m} + \frac{1}{n} \frac{\partial (rv)}{\partial m} + \frac{1}{n} \frac{\partial w}{\partial a} = 0$	$\frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	Explanation of the set of the se	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\begin{aligned} & \qquad $	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial u} - \frac{\partial u}{\partial u} - \frac{w}{w} \frac{\partial u}{\partial u} - \frac{\partial p}{\partial r} = 1$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + \frac{\partial u}{r} \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = \frac{\partial p}{\partial r} + \frac{1}{r} \frac{\partial v}{\partial \theta} = 0$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{r} + \frac{1}{r}\nabla^{2}w$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{r} + \frac{1}{r}\nabla^2 u$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{\partial x}\frac{\partial u}{\partial r} = -\frac{\partial p}{\partial r} + \frac{1}{r}\nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial r} + \frac{1}{r}\nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial x} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{R_{o}}\nabla^{2}u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \hline \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \end{array}$	$\begin{array}{l} \textbf{Cylindrical case} \\ \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \end{array}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	Solution for $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial u}{\partial t} = \frac{\partial v}{\partial t} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$\begin{aligned} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + \frac{w}{\partial v} \frac{\partial v}{d t} - \frac{w^2}{r} - \frac{\partial p}{r} + \frac{1}{r} \left(\nabla^2 v - \frac{v}{r} - \frac{2}{r} \frac{\partial w}{r} \right) \end{aligned}$	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + \frac{\partial v}{\partial t} - \frac{w^2}{dt} = -\frac{\partial p}{\partial t} + \frac{1}{L} \left(\nabla^2 v - \frac{v}{dt} - \frac{2}{dt} \frac{\partial w}{dt} \right)$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial t} - \frac{w^2}{r} = -\frac{\partial p}{\partial t} + \frac{1}{2} \left(\nabla^2 v - \frac{v}{2} - \frac{2}{2} \frac{\partial w}{\partial t} \right)$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial r} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{2} - \frac{2}{2} \frac{\partial w}{\partial r} \right) \end{aligned}$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + \frac{w}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{x^2} - \frac{2}{x^2} \frac{\partial w}{\partial \theta} \right) \end{aligned}$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$\begin{bmatrix} \textbf{Cylindrical case} \\ \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{bmatrix}$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \overbrace{\partial v} \\ \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial \left(rv\right)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^2 u$ $\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial r} + \frac{w}{r}\frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re}\left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2}\frac{\partial w}{\partial \theta}\right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$																		
Culindrical case									-				->									Culindrical case	Culindrical case	Cylindrical case			Cylindrical case	Solution 1 Street 1 Solution	An 1 ລ (ກາງ 1 ລາງ	$\partial u = 1 \partial (rv) = 1 \partial w$	$\begin{array}{c} \textbf{Cylindrical case}\\ \partial u & 1 \partial (rv) & 1 \partial w \end{array}$	$\frac{\text{Cylindrical case}}{\partial u} = \frac{1}{2} \frac{\partial (rv)}{\partial u} = \frac{1}{2} \frac{\partial w}{\partial v} = 0$	$\frac{\partial u}{\partial u} + \frac{1}{2} \frac{\partial (rv)}{\partial w} + \frac{1}{2} \frac{\partial w}{\partial w} = 0$	$\frac{\partial u}{\partial w} + \frac{1}{2} \frac{\partial (rv)}{\partial w} + \frac{1}{2} \frac{\partial w}{\partial w} = 0$	$\frac{\partial u}{\partial w} + \frac{1}{2} \frac{\partial (rv)}{\partial w} + \frac{1}{2} \frac{\partial w}{\partial w} = 0$	$\frac{\partial u}{\partial m} + \frac{1}{n} \frac{\partial (rv)}{\partial m} + \frac{1}{n} \frac{\partial w}{\partial a} = 0$	$\frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\partial u = \partial u = \partial u = \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\partial u = \partial u = w \partial u = \partial p = 1 - 2$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial u} - \frac{\partial u}{\partial u} - \frac{w}{w} \frac{\partial u}{\partial u} - \frac{\partial p}{\partial r} = 1$	Out $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + \frac{\partial u}{r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = \frac{\partial p}{r} + \frac{1}{r} \frac{\partial v}{\partial \theta} = 0$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{r} + \frac{1}{r}\nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial r} + \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{r} + \frac{1}{r} \nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{\partial x}\frac{\partial u}{\partial r} = -\frac{\partial p}{\partial r} + \frac{1}{2}\nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial r} + \frac{1}{r}\nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial x} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{R_{o}}\nabla^{2}u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + u\frac{\partial u}{\partial x} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^2 u$	Quadratical case Quadratical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	Quadratical case Quadratical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \hline \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \end{array}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	Solution for $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial u}{\partial t} = \frac{\partial v}{\partial t} + \frac{u}{Re} $	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} = \frac{\partial v}{\partial t} + \frac{w}{\partial t} \frac{\partial v}{\partial t} + \frac{w}{r} \frac{\partial v}{\partial \theta} = -\frac{\partial p}{\partial t} + \frac{1}{Re} \nabla^2 u$	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + \frac{w}{\partial t} \frac{\partial v}{\partial t} - \frac{w^2}{r} = -\frac{\partial p}{\partial t} + \frac{1}{r} \left(\nabla^2 v - \frac{v}{r} - \frac{2}{r} \frac{\partial w}{r} \right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^2 u$ $\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial t} - \frac{w^2}{\partial t} = -\frac{\partial p}{\partial t} + \frac{1}{2}\left(\nabla^2 v - \frac{v}{\partial t} - \frac{2}{2}\frac{\partial w}{\partial t}\right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial t} - \frac{w^2}{r} = -\frac{\partial p}{\Delta} + \frac{1}{E} \left(\nabla^2 v - \frac{v}{2} - \frac{2}{2} \frac{\partial w}{\partial t} \right)$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial(rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^{2}u$ $\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} - \frac{w^{2}}{r} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^{2}v - \frac{v}{r^{2}} - \frac{2}{r^{2}}\frac{\partial w}{\partial t}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial(rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^{2}u$ $\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + \frac{w}{r}\frac{\partial v}{\partial \theta} - \frac{w^{2}}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re}\left(\nabla^{2}v - \frac{v}{r^{2}} - \frac{2}{r^{2}}\frac{\partial w}{\partial \theta}\right)$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \boldsymbol{\frac{\partial u}{\partial x}} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \hline \boldsymbol{\frac{\partial u}{\partial t}} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \hline \boldsymbol{\frac{\partial v}{\partial t}} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial \left(rv\right)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial \left(rv\right)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + \frac{w}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$ \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} $	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{aligned}$	$\begin{array}{l} \begin{array}{l} \hline \textbf{Cylindrical case} \\ \hline \boldsymbol{\partial} u \\ \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \hline \boldsymbol{\partial} u \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \hline \boldsymbol{\partial} t \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$	$\begin{bmatrix} \text{Cylindrical case} \end{bmatrix}$ $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$ $\frac{\partial w}{\partial t} = \frac{\partial w}{\partial t} = \frac{\partial w}{r} + \frac{w}{r} \frac{\partial w}{\partial \theta} - \frac{w}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$																		
Culindrical case																							Culindrical case	Cylindrical case		Cvlindrical case	Cylindrical case	Solution 1 Strain 1 Strain	Cylindrical case	$\partial u = 1 \partial (rv) = 1 \partial w$	$\frac{\text{Cylindrical case}}{\partial u + 1 \partial (rv) + 1 \partial w}$	$\frac{\text{Cylindrical case}}{\partial u} = \frac{1}{2} \frac{\partial (rv)}{\partial u} = \frac{1}{2} \frac{\partial w}{\partial v} = 0$	$\frac{\partial u}{\partial u} + \frac{1}{2} \frac{\partial (rv)}{\partial w} + \frac{1}{2} \frac{\partial w}{\partial w} = 0$	$\frac{\partial u}{\partial w} + \frac{1}{2} \frac{\partial (rv)}{\partial w} + \frac{1}{2} \frac{\partial w}{\partial w} = 0$	$\frac{\partial u}{\partial w} + \frac{1}{2} \frac{\partial (rv)}{\partial w} + \frac{1}{2} \frac{\partial w}{\partial w} = 0$	$\frac{\partial u}{\partial w} + \frac{1}{n} \frac{\partial (rv)}{\partial w} + \frac{1}{n} \frac{\partial w}{\partial a} = 0$	$\frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	Explanation of the set of the se	$\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial u} \frac{\partial u}{\partial u} w \partial u \frac{\partial v}{\partial p} 1 = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial u} - \frac{\partial u}{\partial u} - \frac{w}{w} \frac{\partial u}{\partial u} - \frac{\partial p}{r} = 0$	Out $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + \frac{\partial u}{r} + \frac{w}{\partial u} - \frac{\partial v}{\partial \theta} = 0$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{r} + \frac{1}{r}\nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{r} + \frac{1}{r} \nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial r} + \frac{1}{r} \nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial r} + \frac{1}{r}\nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial x} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{R_{o}}\nabla^{2}u$	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	Quadratical case Quadratical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^2 u$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	By $\partial u = \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \end{aligned}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} = \frac{\partial v}{\partial t} + \frac{w}{\partial t} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial t} + \frac{1}{Re} \nabla^2 u$	$\begin{bmatrix} \text{Cylindrical case} \\ \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + \frac{w}{\partial t} \frac{\partial v}{\partial t} - \frac{w^2}{2} - \frac{\partial p}{\partial t} + \frac{1}{L} \left(\nabla^2 w - \frac{v}{2} - \frac{2}{2} \frac{\partial w}{\partial t} \right) \end{bmatrix}$	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + \frac{\partial v}{\partial t} - \frac{w^2}{dt} = -\frac{\partial p}{\partial t} + \frac{1}{L} \left(\nabla^2 v - \frac{v}{dt} - \frac{2}{dt} \frac{\partial w}{dt} \right)$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^2 u$ $\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial r} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re}\left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2}\frac{\partial w}{\partial \theta}\right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{aligned}$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{aligned}$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{aligned}$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} &= 0\\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} &= -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u\\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} &= -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{aligned}$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{aligned}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$	Some one we have a spectral densities and the set of t	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$ $\frac{\partial w}{\partial t} = \frac{\partial w}{\partial t} + \frac{w}{r} \frac{\partial w}{\partial \theta} - \frac{w}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$																		
																								Cylindrical case		Cvlindrical case	Cylindrical case	ລາ. 1 ລ(ການ 1 ລາ.	වනා 1 වැනා) 1 වනා	$\partial u = 1 \partial (rv) = 1 \partial w$	$\partial u = 1 \partial (rv) = 1 \partial w$	$\frac{\partial u}{\partial u} = \frac{1}{2} \frac{\partial (rv)}{\partial u} = \frac{1}{2} \frac{\partial w}{\partial v} = 0$	$\frac{\partial u}{\partial u} + \frac{1}{2} \frac{\partial (rv)}{\partial w} + \frac{1}{2} \frac{\partial w}{\partial w} = 0$	$\frac{\partial u}{\partial w} + \frac{1}{2} \frac{\partial (rv)}{\partial w} + \frac{1}{2} \frac{\partial w}{\partial x} = 0$	$\frac{\partial u}{\partial w} + \frac{1}{2} \frac{\partial (rv)}{\partial w} + \frac{1}{2} \frac{\partial w}{\partial w} = 0$	$\frac{\partial u}{\partial w} + \frac{1}{2} \frac{\partial (rv)}{\partial w} + \frac{1}{2} \frac{\partial w}{\partial a} = 0$	$\frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	Explinit Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial u} \frac{\partial u}{\partial u} w \frac{\partial u}{\partial v} \frac{\partial v}{\partial p} = 1$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial u} = \frac{\partial u}{\partial u} + \frac{w}{w} \frac{\partial u}{\partial u} = \frac{\partial p}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + \frac{\partial u}{r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = \frac{\partial p}{\partial r} + \frac{1}{r} \frac{\nabla^2 w}{\partial \theta}$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + \frac{w}{r}\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{r} + \frac{1}{r}\nabla^2 w$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial r} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{r} + \frac{1}{r}\nabla^2 u$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{\partial u}\frac{\partial u}{\partial r} = -\frac{\partial p}{\partial r} + \frac{1}{r}\nabla^2 u$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + u\frac{\partial u}{\partial r} + \frac{w}{\partial u}\frac{\partial u}{\partial r} = -\frac{\partial p}{\partial r} + \frac{1}{r}\nabla^2 u$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial x} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{R_c}\nabla^2 u$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial x} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^2 u$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} &= 0\\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} &= -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \end{aligned}$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \end{aligned}$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \end{aligned}$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \end{aligned}$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	By $\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^2 u$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^2 u$ $\frac{\partial u}{\partial t} = \frac{\partial w}{\partial t} + \frac{1}{r}\frac{\partial w}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^2 u$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + \frac{\partial v}{\partial x} + \frac{w}{\partial t} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \end{aligned}$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + \frac{\partial v}{\partial t} + \frac{w}{\partial t} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} = \frac{\partial v}{\partial t} + \frac{w}{\partial t} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + \frac{w}{\partial t} \frac{\partial v}{\partial t} - \frac{w^2}{r} - \frac{\partial p}{r} + \frac{1}{r} \left(\nabla^2 w - \frac{v}{r} - \frac{2}{r} \frac{\partial w}{r} \right)$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + w \frac{\partial v}{\partial x} - \frac{w^2}{w} = -\frac{\partial p}{\partial x} + \frac{1}{Re} (\nabla^2 w - \frac{v}{2} - \frac{2}{2} \frac{\partial w}{\partial t}) \end{aligned}$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^2 u$ $\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial t} - \frac{w^2}{2t} = -\frac{\partial p}{2t} + \frac{1}{r}\left(\nabla^2 v - \frac{v}{2} - \frac{2}{2}\frac{\partial w}{2t}\right)$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^2 u$ $\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial t} - \frac{w^2}{\partial t} = -\frac{\partial p}{\partial t} + \frac{1}{L}\left(\nabla^2 v - \frac{v}{\partial t} - \frac{2}{d}\frac{\partial w}{\partial t}\right)$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^2 u$ $\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial r} - \frac{w^2}{2} = -\frac{\partial p}{\partial r} + \frac{1}{Re}\left(\nabla^2 v - \frac{v}{2} - \frac{2}{2}\frac{\partial w}{\partial r}\right)$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^2 u$ $\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial x} - \frac{w^2}{x} = -\frac{\partial p}{\partial x} + \frac{1}{Re}(\nabla^2 v - \frac{v}{x^2} - \frac{2}{x^2}\frac{\partial w}{\partial \theta})$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^2 u$ $\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re}\left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2}\frac{\partial w}{\partial \theta}\right)$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^{2}u$ $\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial r} + \frac{w}{r}\frac{\partial v}{\partial \theta} - \frac{w^{2}}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re}\left(\nabla^{2}v - \frac{v}{r^{2}} - \frac{2}{r^{2}}\frac{\partial w}{\partial \theta}\right)$	$\frac{\partial u}{\partial x} + \frac{1}{r}\frac{\partial (rv)}{\partial r} + \frac{1}{r}\frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial r} + \frac{w}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re}\nabla^{2}u$ $\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial r} + \frac{w}{r}\frac{\partial v}{\partial \theta} - \frac{w^{2}}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re}\left(\nabla^{2}v - \frac{v}{r^{2}} - \frac{2}{r^{2}}\frac{\partial w}{\partial \theta}\right)$	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{aligned}$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{aligned}$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{aligned}$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{aligned}$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{aligned}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{aligned}$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{aligned}$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \partial u \\ \partial x \end{array} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \end{array} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \partial u \\ \partial t \end{array} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = - \frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \frac{\partial v}{\partial t} \end{array} + v \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = - \frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} \end{array} \end{array} \end{array}$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} &= 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} &= -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} &= -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{aligned}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \partial u \\ \partial x \end{array} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \end{array} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \partial u \\ \partial t \end{array} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = - \frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \end{array} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \frac{\partial v}{\partial t} \end{array} + v \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = - \frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{array} \end{array} \right) \end{array} $	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{aligned}$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} &= 0\\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} &= -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u\\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} &= -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{aligned}$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{aligned}$	$\begin{aligned} \frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right) \end{aligned}$	Cylindrical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$	Sympletical case $\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$	Sum for a form on the set of the	$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} = 0$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} + \frac{w}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial \theta} - \frac{w^2}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$ $\frac{\partial w}{\partial t} = \frac{\partial w}{\partial t} + \frac{w}{r} \frac{\partial w}{\partial \theta} - \frac{w}{r} = -\frac{\partial p}{\partial r} + \frac{1}{Re} \left(\nabla^2 v - \frac{v}{r^2} - \frac{2}{r^2} \frac{\partial w}{\partial \theta} \right)$																		

Cylindrical case (cont.)

lpha) and heta (wave number m) these difficulties are left: By Fourier transforming the equations in homogeneous directions x (wave number

- impossible implicit treatment of viscous terms: components of the momentum equation are coupled
- $k^2=lpha^2+m^2/r^2$ depends on r!

Notation:

$$\partial f = \frac{\partial f}{\partial r}; \quad D_* f = \frac{\partial f}{\partial r} + \frac{f}{r} \quad \Rightarrow \nabla^2 = -k^2 + D_* D$$

The method: equation for ω_r

considering the r component, one obtains for radial vorticity η : In analogy with the cartesian case, by taking ${oldsymbol
abla} imes$ of the momentum equation and

$$\frac{\partial \hat{\eta}}{\partial t} = \frac{1}{Re} \left(\nabla^2 \hat{\eta} - \frac{\hat{\eta}}{r^2} + 2\frac{im}{r^2}D\hat{u} + 2\frac{m\alpha}{r^2}\hat{v} \right) + \frac{im}{r}\hat{H}_u - i\alpha\hat{H}_w$$

- Not independent of \hat{v} anymore (no problem if equation for \hat{v} does not contain $\hat{\eta}^{!}$)
- Contains two curvature terms $\sim D \hat{u}$ and \hat{v}
- Both \hat{v} and \hat{u} terms can enter the explicit part: low-order derivatives, presumably small since difference with cartesian, hence no stability problems

- Continuity equation is Fourier transformed and time differenced
- Expressions for $\partial \hat{u}/\partial t$ and $\partial \hat{w}/\partial t$ are taken from momentum eq.
- Further simplifications by using continuity
- Solve for \hat{p} , then put $D\hat{p}$ in r component of momentum eq.

$$\begin{split} &\frac{\partial}{\partial t} \left[\hat{v} - D\left(\frac{1}{k^2} D_* \hat{v}\right) \right] = \\ &= \frac{1}{Re} D\left\{ \frac{1}{k^2} \left[k^2 D_* \hat{v} - D_* D D_* \hat{v} - \frac{2m^2}{r^3} \hat{v} + 2\frac{im}{r^2} D \hat{w} - 2\frac{im}{r^3} \hat{w} \right] \right\} + \\ &+ \frac{1}{Re} \left(-k^2 \hat{v} + D D_* \hat{v} - 2\frac{im}{r^2} \hat{w} \right) + D\left[\frac{1}{k^2} \left(i\alpha \ \hat{H}_u + \frac{im}{r} \hat{H}_w \right) \right] + \hat{H}_v \end{split}$$

The numerical solution

- space; De-aliasing with the 3/2 rule. FFT algorithms allow exact computation of the nonlinear terms in physical
- Radial derivatives discretized with finite differences over a 5-point stencil; scheme low-order derivatives are IV order, higher order derivatives are IInd order ightarrow formally lind order method, but advantageous compared to a lind order
- second-order Crank-Nicholson for the implicit part. Time integration: as in KMM, third-order Runge-Kutta for the explicit part, and

- Periodicity assumption in x and heta directions
- Inner radius \mathcal{R}_i , outer radius \mathcal{R}_o ; gap $\mathcal{R}_o \mathcal{R}_i = 2\delta$
- Constant flow rate; after reaching steady state, computations are carried out for $150 \; t U_b/\delta$, storing flow fields every $15 \; t U_b/\delta$
- $Re = U_b \delta/
 u = 2800$, where U_b is bulk velocity; corresponds to $\mathcal{R}_i^+ \sim 185$ (case 1) and $\mathcal{R}^+_i \sim 370$ (case 2)
- $\alpha_0 = 0.5$ which gives $L_x = 4\pi\delta$ case 1: $m_0 = 1$ which gives $2\pi\delta \leq L_{\theta} \leq 6\pi\delta$ case 2: $m_0 = 2$ which gives $2\pi\delta \leq L_{\theta} \leq 4\pi\delta$

Transversal resolution & cylindrical coordinates

- For a given m_0 , transversal size of the computational domain increases with r
- Physical considerations dictate resolution needed at outer wall
- Resolution increases (linearly) above necessary approaching inner wall
- \Rightarrow waste of computational resources, and potential stability problems
- With Fourier schemes, Fourier series must be truncated at wavenumber corresponding to maximum resolution

Solution

An r-dependent truncation of the series can remove unneeded azimuthal modes,

saving memory and CPU time, and avoiding stability problems

Transversal resolution (cont.)

implemented thanks to a suitable memory management. Linear *r*-dependency. Azimuthal resolution variable with coordinate r is

2d array of pointers into a variable-sized 1d array

Computational parameters (case 2 only)

- Radial range divided in 128 (uneven) intervals
- 193 Fourier modes in axial direction: $-96 \leq lpha/lpha_0 \leq +96$
- 481 Fourier modes in θ direction at $r = \mathcal{R}_o$: $-240 \le m/m_0 \le +240$; they linearly reduce to 161 at $r = \mathcal{R}_i$
- Spatial resolution is very high: $\Delta x^+ \sim 11.7; \Delta z^+ \sim 7; \Delta r^+ = 0.9 4.5$
- 16 millions d.o.f.; RAM memory: 410MB; single flow field on disk: 136MB
- 250 seconds / time step for a SMP personal computer (2 CPU Intel 550MHz); parallel speedup of 100%
- Time step $0.02 \ t U_b/\delta$ (comparable to planar case); computing time \sim 3 weeks

Conclusions

- been presented, as an extension of the cartesian case An efficient method for DNS of turbulent flows in cylindrical geometries has
- The number of Fourier modes in θ direction has been varied with r, so that the azimuthal resolution is constant: significant benefits
- Turbulent flow in the annular pipe has been studied for the first time via DNS
- Preliminary observations on the effect of the transverse curvature on the turbulence statistics have been reported