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Abstract

Linear stability of plane Poiseuille flow subject to spanwise velocity forcing applied
at the wall is studied. The forcing is stationary and sinusoidally distributed along the
streamwise direction. The long-term aim of the study is to explore a possible relationship
between the modification induced by the wall forcing to the stability characteristic of the
unforced Poiseuille flow and the significant capabilities demonstrated by the same forcing
in reducing turbulent friction drag. This work presents the statement of the mathematical
problem, which is quite more complex than the classic Orr-Sommerfeld-Squire approach.
Complexities are due to the forcing velocity at the wall that makes streamwise direction
non-homogeneous. We aim at exploring the main physical parameters that influence the
stability of a plane Poiseuille flow subject to the varying boundary condition comparing it
with the reference unforced problem. We present some preliminary results, although not
yet conclusive, which describe the main effects of wall forcing on modal and nonmodal
stability of the flow at different flow conditions.

Key Words: Linear Stability, Poiseuille flow, sinusoidal waves, wall forcing, steady
Stokes layer, transient growth.
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Sommario

Viene studiata la stabilità lineare di un flusso piano di Poiseuille soggetto a una
forzante di velocità trasversale applicata a parete. La forzante è stazionaria è distribuita
sinusoidalmente lungo la direzione del flusso. L’obiettivo a lungo termine di questo studio
è ricercare una possibile relazione tra la modifica indotta dalla forzante a parete sulla
stabilità di un flusso di Poiseuille non forzato e le significative capacità dimostrate dalla
medesima forzante nella riduzione della resistenza di attrito turbolento. Questo lavoro
presenta la formulazione del problema matematico, che è particolarmente più complesso
del classico approcio di Orr-Sommerfeld-Squire. Le difficoltà sono dovute alla forzante di
velocità a parete che rende la direzione del flusso non omogenea. Intendiamo analizzare
i principali parametri fisici che influenzano la stabilità del flusso piano di Poiseuille
soggetto a condizioni al contorno varianti paragonandoli al caso di riferimento non
forzato. Si presentano alcuni risultati preliminari dello studio, non ancora completi, che
descrivono i principali effetti della forzante a parete sulla stabilità modale e non-modale
del flusso, per condizioni di flusso differenti.

Parole chiave: Stabilità lineare, flusso di Poiseuille, onde sinusoidali, forzante di
parete, strato limite di Stokes stazionario, crescita transitoria.
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Introduction

The present work is a linear stability analysis of plane Poiseuille flow enforced by a
wavelike velocity field at the boundary. The basic idea consists in creating at the wall
of a channel flow a distribution of spanwise (azimuthal) velocity which varies along the
streamwise coordinate, to produce a wavelike wall forcing and to analyse the effect of
the latter on the stability characteristics of the plane Poiseuille flow.

The concept of a wavelike forcing comes from recent results [19],[3], [18] [17] about
turbulent drag reduction using travelling waves. Waves designed to reduce drag have
been shown to decrease friction by more than 50%. These waves create a spanwise,
unsteady and streamwise-modulated transversal boundary layer that has been named
the generalized Stokes layer or GSL [18]. It is interesting to notice that near-optimal
performances are guaranteed by stationary waves, where the spanwise wall forcing does
not depend upon time and the GSL becomes stationary (SSL, or steady Stokes layer, as
described by [29]).

The present work has thus turbulent skin-friction drag reduction as its background
objective, but deals with a significantly different matter. We aim at exploring how
the stability characteristics of the indefinite plane channel flow (Poiseuille flow) are
modified by the presence of an additional component to the base flow given by the
spanwise velocity distribution at the wall. It is our hope that understanding how the
SSL interacts with the Poiseuille flow in terms of linear stability properties will help
understanding how the SSL affects the turbulent drag.

This is essentially a preliminary study, with the aim to understand how the parameters
introduced by the spanwise wavelike forcing influence the stability of plane Poiseuille
base flow. We limit ourselves to the simpler case of standing waves (SSL) describing
the problem formulation that is required in this case where homogeneity in streamwise
direction is lost. The problem analysed is global in streamwise direction and spectral
in spanwise, therefore the simple spectral decomposition used for the unforced plane
Poiseuille flow, that leads to the well known Orr-Sommerfeld-Squire equations, can not be
employed. Hence the new formulation in Fourier space needs a Fourier discrete transform
of variables in streamwise direction that involves an appropriate set of wavenumbers.

Linear stability is studied through both modal and nonmodal approaches [24], [27],
[26] analysing the least stable eigenvalue and computing the transient energy growth
function.

We also report some preliminary results that concern both modal and nonmodal
stability properties with respect to an unforced plane Poiseuille flow. We aim at exploring

xv



Introduction

if a steady Stokes layer may influence the stability characteristics of the channel flow
considering both the asymptotic behaviour of an infinitesimal perturbation and its
transient energy growth.

The work is structured as follows:

• Introduction

• Chapter 1: Governing equations: A description of linear stability analysis, fo-
cusing on the process of linearization of Navier-Stokes equations, their wall-normal
velocity and wall-normal vorticity formulation and its linearization. Introduction
of the Orr-Sommerfeld-Squire problem and a description of modal and nonmodal
stability theory.

• Chapter 2: Plane Poiseuille flow over SSL: An exposition of the main
equations of the problem analysed: the linearization of Navier-Stokes equations in
presence of wavelike forcing at the wall, their wall-normal velocity and vorticity
formulation and its relative Fourier transform focusing on differences with Orr-
Sommerfeld-Squire case. A description of the modification of general equations in
case of spanwise invariance of the infinitesimal perturbation and their numerical
implementation. Finally, we describe the main implementation details of the
equations.

• Chapter 3: Results: A description of the main discretization parameters
considered to obtain reliable results. Linear code validations and results concerning
modal and nonmodal stability analysis. The least stable eigenvalue and the
maximum of the transient growth as functions of main physical parameters are
reported with respect to the plane Poiseuille flow.

• Conclusions

• Appendix A: Further Results: Further results computed through linear anal-
ysis. Results of modal and nonmodal stability analysis as function of spanwise
wavenumber. Spatial frameworks of an optimal initial condition and an optimal
output condition. Optimal output conditions on modal expansion.
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CHAPTER 1

Governing Equations

1.1. Nonlinear Disturbance Equations and Linearization

Navier-Stokes equations govern the general evolution of incompressible viscous fluid
flows. These equations are a mathematical statement of the conservation law of mass and
of the balance law for the momentum of a fluid. Written in non-dimensional formulation
[20], [16], [25], the equations read






∇ ·V = 0

∂V

∂t
+ (V ·∇)V = −∇p+

1

Re
∇2V

(1.1)

where V(x) is the non-dimensional velocity field and x ∈ Ω, p(x) = P/ρU2 is the non-
dimensional pressure field and Re = LU/ν is the Reynolds number. U is an appropriate
velocity scale, i.e. the centerline velocity for the channel flow, L is a length scale, for
example half-height of the channel flow. The incompressible nature of the fluid involves
that the energy equation is decoupled from (1.1) and pressure does not satisfy a state
equation but it acts as a Lagrange multiplier to enforce the incompressibility constraint.
Moreover mass conservation is expressed by an equation which is not evolutive. These
equations have to be supplemented with boundary and initial conditions of the form

V(x, 0) = V0((x)), x ∈ Ω, ∇ ·V0 = 0 (1.2)
V(x, t) = b(x, t), x ∈ ∂Ω, t ≥ 0. (1.3)

Boundary values must satisfy an important compatibility condition due to the diver-
gence theorem

1



Chapter1. Governing Equations

�

Ω
∇ ·VdΩ =

�

∂Ω
V · ndΩ =

�

∂Ω
b · ndΩ = 0, t ≥ 0. (1.4)

Since only the pressure gradient appears in the governing equations, pressure is defined
up to an arbitrary function of time P (t) which may be assigned [20], [21] as

P (t) =
1

Ω

�

Ω
P (x, t)dΩ (1.5)

Navier Stokes equations are nonlinear partial derivative equations, and can be solved
analytically for a few simple cases, and also numerical solutions involve a huge amount
of numerical resources (DNS).

Stability analysis involves the study of the evolution of an infinitesimal perturbation
of a fluid flow.

Assuming to know a stationary solution V(x), P (x) of Navier Stokes equations, we
want to study the evolution of a small velocity-pressure field perturbation in the fluid.
The evolutive equations for an infinitesimal disturbance can be derived by considering
a basic state (V(x), P (x) and a perturbed state (V(x) + v(x, t), P (x) + p(x, t), both
satisfying the Navier-Stokes equations. By substituting these variables in the momentum
equation and taking into account that the base flow satisfy the equations of the stationary
problem, one obtains the following equation

∂v

∂t
+ (V ·∇)v + (v ·∇)V + (v ·∇)v +∇p =

1

Re
∇2v (1.6)

This equation still remains nonlinear because of the term (v·∇)v which is quadratic for
the perturbation velocity. However if the initial perturbation is small enough (possibly
infinitesimal), one could think to study its evolution not considering this nonlinear term.
This approximation is the basis of the nonlinear stability analysis and it represents the
basis of the present work. The solutions analysed are linear solutions obtained through
the linearization of fluid equations, for a proper established, stationary base flow which
is a known stationary solution of Navier-Stokes equations.

With a linearized formulation the equations state:





∇ · v = 0

∂v

∂t
+ (V ·∇)v + (v ·∇)V = −∇p+

1

Re
∇2v

v(x, 0) = v0 x ∈ Ω

v(x, t) = b(x, t) v ∈ ∂Ω

(1.7)

where b(x, t) can be an appropriate base flow imposed at the boundary. These
representation is characterized by a simpler solution in terms of computational resources
even if it is useful to introduce a more compact formulation of the problem through the
use of the well-known wall-normal velocity-vorticity formulation.
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Flow

2h

Lx

Lz

y
xz

Figure 1.1.: Flow Physical domain geometry

1.2. Wall-normal velocity and vorticity formulation

Wall-normal velocity and vorticity formulation of Navier-Stokes equations is now
displayed.

Introducing a spatial discretization of Eq. (1.1) and Eq. (1.7) one obtains an algebraic-
differential problem in time.

Mass equation is not evolutive equation in time, whereas momentum equation is an
evolutive (differential) equation in time. It would be useful to introduce a particular
formulation that has only evolutive equations. It is useful to introduce a model problem
which consists in an incompressible flow between two plane parallel infinite walls, also
known as channel flow represented in Fig. (1.1). No-slip and no-penetration boundary
conditions are imposed at the walls. In cartesian coordinates x = (x, y, x) one may
define three Velocity components in streamwise (x), wall-normal (y) and spanwise (z)
directions U, V,W respectively

V = (U, V, W ) (1.8)

After substitution of the velocity components into Navier-Stokes equations (1.1), one
obtains:
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∂U

∂x
+

∂V

∂y
+

∂W

∂z

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
+W

∂U

∂z
= −∂p

∂x
+

1

Re
∇2

U

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
+W

∂V

∂z
= −∂p

∂y
+

1

Re
∇2

V

∂W

∂t
+ U

∂W

∂x
+ V

∂W

∂y
+W

∂W

∂z
= −∂p

∂z
+

1

Re
∇2

W.

(1.9)

Considering the geometry of the domain of the problem analysed, Reynolds number Re

can be defined as

Re =
UCh

ν
(1.10)

where UC is the centerline velocity of the Poiseuille flow and h is the half-width
of the channel flow. Projecting the equations (1.9) on a divergence-free manifold,
where continuity equation is implicitly satisfied and pressure no longer appears, in
cartesian coordinates, one obtains only evolutive equations in time, also known as
V − η formulation of Navier-Stokes equations. This formulation is a system of two
scalar differential equations for the wall-normal velocity V and for the wall normal
vorticity η defined as

η =
∂U

∂z
− ∂W

∂x
(1.11)

The equation for the wall-normal velocity can be obtained by taking the laplacian of
the y-component of the momentum equation.

∂∇2V

∂t
+∇2

�
U
∂V

∂x

�
+∇2

�
V
∂V

∂y

�
+∇2

�
W

∂V

∂z

�
= −∂∇2p

∂y
+

1

Re
∇2

�
∇2

V
�

(1.12)

Considering (1.1) and taking the divergence of the momentum equation and using
continuity equation leads to a Poisson equation for the pressure field

∇2
p = −∇ · [(V ·∇)V] (1.13)

Expanding term by term (1.13) one obtains
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∇2
p =

∂

∂x

�
U
∂U

∂x
+ V

∂U

∂y
+W

∂U

∂z

�

+
∂

∂y

�
U
∂V

∂x
+ V

∂V

∂y
+W

∂V

∂z

�

+
∂

∂z

�
U
∂W

∂x
+ V

∂W

∂y
+W

∂W

∂z

�
(1.14)

Substituting the laplacian of pressure p in Eq. (1.12) and remembering that

∇2 =

�
∂2

∂x2
,
∂2

∂y2
,
∂2

∂z2

�
, (1.15)

after some algebra one obtains:

∂∇2V

∂t
= fV +

1

Re
∇2(∇2

V ) (1.16)

where fV reads:

fV =
∂

∂y

�
∂

∂x

�
U
∂U

∂x
+ V

∂U

∂y
+W

∂U

∂z

�
+

∂

∂z

�
U
∂W

∂x
+ V

∂W

∂y
+W

∂W

∂z

��

−
�

∂2

∂x2
+

∂2

∂z2

��
U
∂V

∂x
+ V

∂V

∂y
+W

∂V

∂z

�
. (1.17)

The equation for the wall-normal vorticity can be easily obtained by taking the
y − component of the curl of the momentum equation for V , or by subtracting the x

derivative of the z momentum equation to the z derivative of the x momentum equation:

∂η

∂t
= fη +

1

Re
∇2

η (1.18)

where fη reads:

(1.19)fη =
∂

∂x

�
U
∂W

∂x
+ V

∂W

∂y
+W

∂W

∂z

�
− ∂

∂z

�
U
∂U

∂x
+ V

∂U

∂y
+W

∂U

∂z

�

The V − η formulation is therefore composed by two evolutive equations for the
wall-normal velocity component V and for the wall-normal vorticity component η:






∂∇2V
∂t = fV + 1

Re∇
2(∇2V )

∂η
∂t = fη +

1
Re∇

2η

(1.20)

These equations have to be supplemented with boundary, typically of the form
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V (x,±h, z, t) = 0 (1.21)
∂V

∂y
(x,±h, z, t) = 0 (1.22)

η (x,±h, z, t) = 0 (1.23)

where Eq. (1.21) is due to no-slip condition at the boundary of the velocity field,
whereas Eq. (1.22) results from the continuity equation at the boundary, hence ∇ ·
V |y=±h= 0, where U |y±h= 0 and W |y±h= 0.

The boundary condition Eq. (1.23) is homogeneous because of the no-slip condition at
the boundary. Indeed the y−component of the curl at the boundary depends only on the
variation at the walls of (u,w) which are tangent at the surface and equal to zero. It is
useful to remember that these boundary conditions depend on the choice to use a domain
delimited by two parallels infinite walls. One could think to define different boundary
conditions for example imposing a proper velocity flow W (x, y = ±h) �= 0 , then the
problem solved would be completely different because η (x,±h, z, t) = −∂W

∂x |y=±h.
A complete description of the fluid dynamic in both space and time needs also initial
conditions:

V (x, y, z, t = 0) = V0 (x, y, z) (1.24)
η (x, y, z, t = 0) = η0 (x, y, z) (1.25)

The spanwise and streamwise velocity components may be recovered from th definition
of η and the continuity equations:

�
∂U
∂x + ∂W

∂z = −∂V
∂y

∂U
∂z − ∂W

∂x = η
(1.26)

Once the full velocity field is known, p is recovered from the relative Poisson equation.

1.3. Poiseuille flow: Orr-Sommerfeld-Squire equations

The wall-normal velocity-vorticity formulation of Navier-Stokes equations has been
derived for a global flow field V = (U, V,W ). The study of linear stability of a plane
Poiseuille flow is based on linearized equations, so considering a reference steady solution,
the linearization process is now exposed.

1.3.1. Linear disturbance equations

Let us consider the indefinite channel flow as before, characterized by two plane
parallel infinite walls, and a channel half-gap h = 1. The wall boundary conditions are
homogeneous for the U , V and W velocity components.

The streamwise steady base flow solution U(y) of the governing equations (1.1)
generated by the longitudinal pressure gradient P x, is also known as Poiseuille flow:
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U = 1− y
2 (1.27)

The velocity field V, considering a three-dimensional small perturbation is decomposed
as:

U = U + u (1.28)
V = v (1.29)
W = w (1.30)

Assuming this, it may be noticed that flow is spatially invariant in x and z direction,
or the problem is characterized by two homogeneous directions x, z, and one non-
homogeneous direction y. Expanding the equations (1.7) for the velocity field considered,
one obtains:






∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0

∂u

∂t
+ U

∂u

∂x
+ vU

�
= −∂p

∂x
+

1

Re
∇2

u

∂v

∂t
+ U

∂v

∂x
= −∂p

∂y
+

1

Re
∇2

v

∂w

∂t
+ U

∂w

∂x
= −∂p

∂z
+

1

Re
∇2

w

(1.31)

This is a system of linearized partial differential equations and it can be noticed that the
homogeneity of x and z directions is verified because the coefficients of the equations of
the system depend only on y coordinate. The equations could be translated either in x

and z directions but they do not change, mathematically speaking this is also called an
autonomous system of differential equations in x and z directions [22].

Upon linearization of the equations in v − η (1.20), one obtains:





∂∇2V

∂t
=

�
−U∇2 ∂

∂x
+ U

�� ∂

∂x
+

1

Re
∇2∇2

�
v

∂η

∂t
=

�
−U

� ∂

∂z

�
v +

�
−U

∂

∂x
+

1

Re
∇2

�
η

(1.32)

It can be noticed that the equations are characterized by one-way coupling of the η

equation with the v equation. Moreover also this system is an autonomous system of
differential evolutive equations in x and z directions.

This pair of equations with the boundary conditions
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v (x,±1, z, t) = 0 (1.33)
∂v

∂y
(x,±1, z, t) = 0 (1.34)

η (x,±1, z, t) = 0 (1.35)

and the initial conditions

v (x, y, z, t = 0) = v0 (x, y, z) (1.36)
η (x, y, z, t = 0) = η0 (x, y, z) (1.37)

provides a complete description of the evolution of an arbitrary disturbance in both
space and time.

1.3.2. Projection in Fourier Space

The assumption of spatial invariance in x and z allows using a Fourier series expansion
[4] [8] of the unknowns v, η [27]:

v(x, y, z, t) =
∞�

α=−∞

∞�

β=−∞
= v̂ (α, y,β, t) ej(αx+βz) (1.38)

η(x, y, z, t) =
∞�

α=−∞

∞�

β=−∞
= η̂ (α, y,β, t) ej(αx+βz) (1.39)

where α and β denote the streamwise and spanwise wavenumbers. We are looking
for wavelike solutions of period 2π, and wave-length respectivelyLx for α and Lz for β

wavenumbers. Hence one obtains α = 2π
Lx

and β = 2π
Lz

.
It is not possible to solve the equations (1.32) for each wavenumber so the expansions

are truncated. Nx and Nz define the degree of the spectral expansion respectively for
streamwise wavenumbers and for spanwise wavenumbers:

v(x, y, z, t) =
Nx�

α=−Nx

Nz�

β=−Nz

= v̂ (α, y,β, t) ej(αx+βz) (1.40)

η(x, y, z, t) =
Nx�

α=−Nx

Nz�

β=−Nz

= η̂ (α, y,β, t) ej(αx+βz) (1.41)

Introducing these expansions into (1.32), considering that the linearized equations
are characterized by constant coefficient in x and z, is equivalent in taking the Fourier
transform in x and z directions, hence it results
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∂∆̂v̂

∂t
=

�
−jαU∆̂+ jαU

�� 1

Re
∆̂∆̂

�
v

∂η̂

∂t
=

�
−jβU

�
�
v̂ +

�
−jαU +

1

Re
∆̂

�
η̂

(1.42)

where ∆̂ = ∂2

∂y2 − κ2 = D2 − κ2 and κ2 = α2 + β2.
This is a parametric family of partial differential equations in y, t whose parameters are
α and β.
Linear dynamics decouples in wavenumber space because Fourier modes are orthogonal.
This is an important simplification because one can consider one wavenumber at a time
and solve (1.42) for each couple of wavenumbers (α,β).

In physical space this leads to solve the linearized equation for a small disturbance in
a spatial domain whose dimensions are (Lx = 2π/α, 2, Lz = 2π/β) for each couple of
wavenumbers (α,β) because each solution is periodic in x and z directions.

The equations (1.42) can be rewritten in the form

∂

∂t

�
v̂

η̂

�
=

�
LOS 0
LC LSQ

��
v̂

η̂

�
, (1.43)

where:

• LOS = ∆̂−1
�
−jαU∆̂+ jαU

�� 1
Re∆̂∆̂

�
is the Orr-Sommerfeld operator

• LSQ =
�
−jαU + 1

Re∆̂
�

is the Squire operator

• LC =
�
−jβU

�
�

is the coupling operator

To recover the other components of the perturbation u and w one has to consider an
expansion like (1.38) and (1.39); using the continuity equation and the definition of η in
Fourier space:

jαû+ jβŵ = −dv̂

dy
(1.44)

jβû− jαŵ = η̂ (1.45)

If one wants to study the amplitude growth or decay of a disturbance, assuming a
temporal dependence of the form

�
v̂(y, t)
η̂(y, t)

�
=

�
ṽ(y)
η̃(y)

�
e
−jωt

, (1.46)

obtains:
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��
−jω + jαU

� �
D2 − κ

2
�
− jαU

�� − 1

Re

�
D

2 − κ
2
�2
�
ṽ = 0

��
−jω + jαU

�
− 1

Re

�
D2 − κ

2
��

η̃ = −jβU
�
ṽ

(1.47)

which is known as the Orr-Sommerfeld-Squire form of equations. The first equation of
(1.47) is the classical Orr-Sommerfeld equation and the second equation for the normal
vorticity is also known as the Squire equation.

The frequency ω appears as the eigenvalue of the Orr-Sommerfeld equation, and
together with the associated eigenfuncion ṽ are generally complex. The same conclusions
can be done for Squire equation with the only difference that is coupled with Orr-
Sommerfeld equation.

The Orr-Sommerfeld-Squire equations have two classes of eigensolutions:

• Orr-Sommerfeld modes
�
ṽ, η̃f , w

�
if η̃f is given by forcing the η equation with ṽ

modes

• Squire modes {ṽ = 0, η̃, w} when the Orr-Sommerfeld equation has homogeneous
solutions.

The study of modes leads to (linear) modal stability analysis of the disturbance in
order to find the minimum parameter values above which a specific initial condition of
infinitesimal amplitude grows exponentially, or is asymptotic stable.

1.4. Hydrodynamic Stability Theory

The hydrodynamic stability theory concerns the description of the behaviour of a
flow subject to an infinitesimal disturbance superimposed. This assumption is based on
the linearization of Navier-Stokes equation exposed in Sec. (1.1) in which, considering
infinitesimal perturbation of a steady solution of steady Navier-Stokes equations, leads
to consider the nonlinear terms negligible. Therefore the principal aim of hydrodynamic
stability is to describe the evolution of an initial perturbation in time and to define the
critical parameters above which a baseflow solution of Navier-Stokes becomes unstable.

In this section we introduce the general concepts of stability analysis referring to the
simple case of Orr-Sommerfeld-Squire equations. The analysis for the Poiseuille flow
over a steady Stokes layer, which is the aim of the present work, will be discussed in
Chap. (2), for a better comprehension of the operators used in this work.

1.4.1. Stability: definitions

The description of the development of an initial infinitesimal perturbation can be
done introducing a function that measures its size. The natural choice usually is the
disturbance kinetic energy. Considering a reference volume V the kinetic energy of a
perturbation v is defined as :
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EV(t) =
1

2

�

V
v · vdV. (1.48)

In cartesian coordinate (x, y, z) for a parallel channel flow whose dimensions are
Lx, Ly, Lz obviously

EV(t) =
1

2

�

Lx

�

Ly

�

Lz

�
u
2 + v

2 + w
2
�
dxdydz. (1.49)

The choice of V depends on the flow geometry; for a plane Poiseuille channel flow a
correct choice could be a box containing one space-period of the disturbance in x and z

direction and the height of the channel in y direction.
Considering EV(t) as an indicator of the stability characteristics of a base flow, we

introduce four definitions of stability.

Definition 1 (Stability). A solution V, P solution to the Navier-Stokes equations is

stable to a perturbation if the perturbation energy goes to 0 as time tends to infinity:

lim
t→∞

EV (t) = 0 (1.50)

Definition 2 (Conditional Stability). A solution V, P is conditionally stable if exists a

threshold E > 0 and it is stable for E(0) < E.

Definition 3 (Global Stability). A solution V, P is globally stable if it is conditionally

stable and the threshold energy is infinite E → ∞

Definition 4. A solution V, P is monotonically stable if it is globally stable and:

dE

dt
< 0 ∀t > 0 (1.51)

1.4.2. Critical Reynolds Number

Considering the definitions of stability, it is possible to introduce the following critical
Reynolds number:

• (ReE) For Re < ReE the flow is monotonically stable

• (ReG) For Re < ReG the flow is globally stable

• (ReL) For Re < ReL the flow is linearly stable

It can be observed that frequently for different base flows the following relation is
verified:

ReE < ReG < ReL. (1.52)
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1.4.3. Classical Stability analysis: Modal stability

The stability of a viscous channel flow perturbed with an infinitesimal perturbation
has been studied in two different ways: linear stability analysis and energy methods.
These approaches consist in:

• Linear stability: deals with defining the minimum critical parameters above which
a specific initial condition of infinitesimal amplitude grows exponentially;

• Energy stability: deals with defining the maximum critical parameters below
which a general initial condition of finite amplitude decays monotonically.

The linear stability analysis involves two steps: linearization of Navier-Stokes equations
and diagonalization by determining the eigenvalues of the linearized problem. A common
simplification in many stability calculations is the assumption of an exponential time
dependence of the evolution of the perturbation: this leads to Orr-Sommerfeld-Squire
equation form Eq. (1.47) which can be considered as an eigenvalue problem. This analysis
is also known as normal-mode approach. The computed eigenvalues are investigated
and the basic flow is considered unstable if an eigenvalue is found in the unstable
complex-half plane, because there is an exponentially growing mode of the eigenvalue
problem.

Energy methods are based on variational approach and yield conditions for no energy
growth for perturbation of arbitrary amplitude.

The results of these analysis show that Poiseuille flow is linearly stable if the Reynolds
number Re < Rec = 5772.22 [15] and there could be possible energy amplifications for
Re > ReE = 49.6, whereas experiments show that Poiseuille flow undergoes transition
at Re ≈ 1000. These discrepancies between analytical and experimental results allow
us to infer that both energy and linear stability methods do not give informations when
ReE < Re < Rec. In this intermediate case the energy of small perturbations decays
to zero as lim t → ∞, but there could be a transient growth before the decay. Indeed,
the eigenvalues of an eigenvalue problem give us informations about the asymptotic
behaviour of the solutions, as t → ∞ but we do not have informations about short-time
dynamics as t → 0+. This growth occurs with absence of nonlinear effects and can be
explained by the non-orthogonality of the Orr-Sommerfeld eigenfunctions. This non
orthogonality is caused by Orr-Sommerfeld operator, associated to Orr-Sommerfeld
equation, which is non-normal. A complete analysis of stability must take account this
non-orthogonality, and analyse only the eigenvalues for a non-normal operator, is not
sufficient to understand completely the dynamic of an initial perturbation. Indeed we
have to take into account a possible linear instability without unstable eigenvalues.

1.4.4. Nonmodal Stability

We present a new formulation of linear stability which takes into account the evolution
of a perturbation for t → 0+ also called nonmodal stability.
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Problem Statement

We start, without any lack of generality by considering the linearized Navier-Stokes
equations Eq. (1.7) for an infinitesimal perturbation of a plane Poiseuille flow, charac-
terized by one non-homogeneous direction y and two homogeneous directions x and z.
The same procedure will be presented in Chap. (2) for the plane Poiseuille flow over
steady Stokes Layer.

Rewriting Eq. (1.43)

∂

∂t

�
v̂

η̂

�
=

�
LOS 0
LC LSQ

��
v̂

η̂

�
, (1.53)

where LOS and LSQ are respectively Orr-Sommerfeld and Squire operators and LC is
the coupling operator, one may consider the following Cauchy problem:

�
˙̂q = Aq̂

q̂(0) = q̂0
(1.54)

where q̂0 is the initial condition and with

q̂ =

�
v̂

η̂

�
(1.55)

The solution of Eq. (1.54) may be expressed as

q̂(t) = eAtq̂0 (1.56)

This expresses the evolution of an initial perturbation.
The development of a perturbation is measured by kinetic energy so we have to

define the kinetic energy density in Fourier space for the wall-normal velocity-vorticity
formulation.

Kinetic energy density

The kinetic energy density is

eV (t) =
1

2LxLyLz

�

Lx

�

Ly

�

Lz

�
u
2 + v

2 + w
2
�
dxdydz. (1.57)

In v̂ − η̂ formulation we have to Fourier transform; considering Eqs. (1.44)(1.45) the
wall-tangent velocities û and ŵ can be written as

û =
1

k2

�
α
∂v̂

∂y
− βη̂

�
(1.58)

η̂ =
1

k2

�
β
∂v̂

∂y
+ αη̂

�
. (1.59)

The kinetic energy density can be easily written in Fourier-space as:
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e(α,β, t) =
1

2

�
1

2κ2

� +1

−1

�
|Dv̂|2+k

2|v̂|2+|η̂|2
��

dy (1.60)

This is an integral operator and considering the inner product formulation [24] may
be expressed as:

e(α,β, t) =
1

2

�
1

2κ2

� +1

−1
(q̂)H

�
k2 +D2 0

0 1

�
(q̂)

�
dy (1.61)

We define the energy norm [24][27] as

�q̂�2E =

� +1

−1

�
|Dv̂|2+κ

2|v̂|2+|η̂|2
�
dy (1.62)

Therefore introducing an appropriate weighting operators in Eq. (1.62) one obtains

�q̂�2E = q̂H
Qq̂ (1.63)

where Q = QH > 0

Transient energy growth

The energy growth function is defined as [24]

G(t) = max
q̂0 �=0

�q̂(t)�2E
�q̂0�2E

=
��eAt

��2
E

(1.64)

and its maximum is

Gmax = max
t≥0

G(t) = G(tmax) (1.65)

Let Q = CHC be the Cholesky decomposition of Q defined in Eq. (1.62), then

�q̂�2E = q̂H
C

H
Cq̂ = �q̂�22 (1.66)

and for any matrix

�A�2E =
��CAC

−1
��2
2

(1.67)

Rewriting the initial value problem Eq. (1.54)
�

˙̂q = Aq̂
q̂(0) = q̂0

(1.68)

and applying the spectral decomposition A = TΛT−1 one obtains

G(t) = max
q̂0 �=0

��CT eΛtT−1C−1Cq̂0

��2
E

�Cq̂0�22
=

��CT eΛtT−1
C

−1
��2
2

(1.69)
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Optimal input - Optimal output

The energy growth function G(t) is the envelope of many individual growth curve of
different initial condition q̂0. For each t on G(t), a specific initial condition reaches its
maximum energy amplification at that time. We are interested in defining the initial
condition that results in the maximum energy amplification.

Consider a fixed time t and an initial condition q̂0, the solution of the Cauchy problem
Eq. (1.54) at time t is

q̂(t) = eAtq̂0 (1.70)

where we can call:

• q̂0 input (or initial condition)

• q̂(t) output (or final condition)

Assuming that �q̂0�E = 1 and the output is normalized such that
��q̂(t)

��
E
= 1 one

obtains

eAtq̂0 =
���eAt

���
E
q̂(t) (1.71)

or considering the assumptions of Sec. (1.4.4)

eAtq̂0 = CT eΛtT−1
C

−1
Cq̂0 =

���CT eΛtT−1
C

−1
���
2
Cq̂(t) (1.72)

where
���CT eΛtT−1C−1

���
2

can be considered the amplification factor of the normalized
output condition.

In order to define the optimal initial perturbation we have to introduce two important
theorems

Theorem 1. Let σ1(A) be the highest singular value of A then

�A�2 = σ1(A) (1.73)

If A is hermitian then

�A�2 = ρ(A) (1.74)

where ρ(A) is the spectral radius of A. If A is unitary �A�2 = 1

Theorem 2. Given A ∈ Cm×n
, with m ≥ n, there exist two unitary matrices U ∈ Cm×m

and V ∈ Cn×n
and a diagonal matrix Σ ∈ Cm×n

having non negative diagonal entries

such that

U
H
MV = Σ = diag(σ1,σ2, ...σn) (1.75)
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Chapter1. Governing Equations

with σmax = σ1 ≥ σ2 ≥ ... ≥ σn = σmin

Entries of the matrix Σ are called singular values of A.

Columns of the matrix U are called left singular vectors of A.

Columns of the matrix V are called right singular vectors of A.

Taking SVD of CT eΛtT−1C−1 one can write

�
CT eΛtT−1

C
−1

�




. . .

v1 v2 . . . vn

. . .

. . .



 =





σ1

σ2
. . .

σn









. . .

u1 u2 . . . un

. . .

. . .





(1.76)
Eq. (1.72) can be written as follows:

�
CT eΛtT−1

C
−1

�
v1 = σ1u1 (1.77)

where q̂0 = C−1v1 is the initial condition for an output at time t, q(t) = C−1u1.
Since

Gmax = max
q̂0 �=0

��CT eΛtGmaxT−1C−1Cq̂0

��2
E

�Cq̂0�22
=

��CT eΛtT−1
C

−1
��2
2

(1.78)

Let v1 the first right singular vector u1 the first left singular vector and σ1 the largest
singular value of matrix CT eΛtGmaxT−1C−1 then:

• the optimal initial condition is q̂0,opt = C−1v1

• the optimal output is q̂(tGmax
)opt = C−1u1

• Gmax = σ2
1
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CHAPTER 2

Plane Poiseuille flow over SSL

The linearized Navier-Stokes disturbance equations for a plane Poiseuille flow lead, in
v − η formulation to Orr-Sommerfeld-Squire equations.

We aim at exploring how the stability characteristics of the indefinite plane channel
flow, or Poiseuille flow, are modified by the presence of an additional component to the
base flow given by the spanwise velocity distribution at the wall. In order to achieve this
goal we present the usual procedure of converting the disturbance evolution equations
into the v − η formulation.

It is our hope that understanding how the GSL interacts with the Poiseuille flow in
terms of linear stability properties, will help understanding how the GSL affects the
turbulent drag.

2.1. Problem statement

We consider the non-dimensional incompressible Navier-Stoke equations in cartesian
coordinates for the geometry of an indefinite plane channel flow as in Fig. (2.1). We
limit ourselves to the simpler case of standing waves, Steady Stokes Layer (SSL).

The wall boundary conditions are homogeneous for the U and V components, whereas
the spanwise non-dimensional component is given by

W = A cos(κx) (2.1)

on both channel walls, where A is the wave amplitude of spanwise velocity forcing and
κ is its relative wavenumber.

The reference length and velocity scales are the channel half-gap h = 1 and the
centerline velocity UC of the reference Poiseuille flow. The reference Reynolds number
can be written as follow:
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z

2h

y
x

Flow

δ

λ

Figure 2.1.: Flow Physical domain geometry with a steady Stokes layer imposed

Re =
UCh

ν
, (2.2)

where ν is the fluid viscosity.
The base flow solution of steady Navier-Stokes equations for an indefinite plane

channel flow characterized by a pressure gradient P x and a spanwise velocity (2.1) at
the walls, can be considered, if the streamwise flow is laminar, as the overlap of two
independent base flows:

• The streamwise baseflow U(y);

• The spanwise baseflow W (x, y).

Indeed it has been shown by [18] that, when the streamwise flow is laminar its
parabolic profile does not interact with the spanwise boundary layer, also called steady
Stokes Layer created by the waves at the walls.

The streamwise non-dimensional parabolic profile for y ∈ [−1, 1] is the Poiseuille
solution:

U(y) = 1− y
2
. (2.3)

The spanwise profile is given an analytic expression under the hypotheses that its
thickness is small compared to the channel half-height [18], and the streamwise viscous
diffusion term is negligible w.r.t. the wall-normal diffusion term. If the streamwise
profile is linear within the SSL, with uy,0 its slope at the wall, then the analytical
solution is:
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2.1. Problem statement

W (x, y) =
1

Ai(0)
�
�

ejκxAi
�
−jy

δx
e−j4/3π

��
(2.4)

with Ai indicating the Airy special function, and δx = (ν/κuy,0) expressing a repre-
sentative wall-normal length scale of the transversal boundary layer, defined in terms of
the fluid viscosity ν, the wave length 2π/κ of the wall forcing and the longitudinal wall
shear uy,0.

The spanwise base flow can also be computed considering the third component W of
momentum equation of (1.9). In the laminar case where U is analytically known, for a
stationary problem one obtains for W velocity component

�
1− y

2
� ∂W
∂x

=
1

Re

�
∂2W

∂x2
+

∂2W

∂y2

�
(2.5)

The non-dimensional boundary condition is:

W (x,±1, z, t) =
A

2

�
ejκx + e−jκx

�
(2.6)

where A is made non-dimensional against the centerline velocity UC of the reference
Poiseuille flow. The equation (2.5) is linear and has constant coefficient in x direction.
Considering periodic boundary condition one uses the separation of variables by assuming
that:

W (x, y) =
1

2

�
f(y)ejκx + f

∗(y)e−jκx
�

(2.7)

with ∗ denoting complex conjugate. By substitution in (2.5) one obtains:

jk
�
1− y

2
� �

f(y)ejκx − f
∗(y)e−jκx

�
= − k2

Re

�
f(y)ejκx + f

∗(y)e−jκx
�

+
1

Re

�
f

��
(y)ejκx + f

∗��(y)e−jκx
�

(2.8)

one obtains





f
��(y)− κ

�
κ+ jRe

�
1− y

2
��

f(y) = 0

f
��∗(y)− κ

�
κ− jRe

�
1− y

2
��

f
∗(y) = 0

(2.9)

with f(±1) = A. This equation can be solved numerically using Chebyshev polyno-
mials (or an equivalent polynomials expansion) or analytically using parabolic cylinder
functions [1] [11].

2.1.1. Equations for linear stability

The procedure to obtain Linearized Navier Stokes equations is now exposed.
The linear stability involves the evolution of a perturbation of an established base

flow.
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We want to show how the presence of a spanwise flow modifies the linearized equations.
The problem is not homogeneous in streamwise direction. Indeed the usual procedure of
converting the evolutive equations of the disturbance into the well-known v-η formulation
[27] leads to coefficients that are functions of streamwise direction. Our aim is thus to
work around this problem, by first arriving to an extended form of the v-η formulation
of the equations that accounts for the new base flow, and by then showing how they can
still be Fourier-transformed in the streamwise direction, notwithstanding their variable
coefficients.

Considering a velocity field, superimposition of two dimensional base flow U(y) and
W (x, y), and three-dimensional small perturbations as

U = U + u (2.10)
V = v (2.11)
W = W + w (2.12)

After substitution into the Navier-Stokes equations, and after linearization via drop-
ping the quadratic terms in the perturbation field, considering now on the notation
∂(∗)
∂x = (∗)x one obtains:






ux + vy + wz = 0

ut + Uux + vU
�
+Wuz = −

�
P x + px

�
+

1

Re
U

��
+

1

Re
∇2

u

vt + Uvx +Wvz = −py +
1

Re
∇2

v

wt + U W x + Uwx + uW x + vW y +Wwz = −pz +
1

Re

�
W xx +W yy

�
+

1

Re
∇2

w

(2.13)
In [18] as presented in 2.1 it is shown that the base flow components obey to the

following equations





0 = −P x +
1

Re
U

��

U W x =
1

Re

�
W xx +W yy

� (2.14)

and thus the corresponding terms can be subtracted from the above perturbation
equations. The final form in cartesian coordinates is then:






ux + vy + wz = 0

ut + Uux + vU
�
+Wuz = −px +

1

Re
∇2

u

vt + Uvx +Wvz = −py +
1

Re
∇2

v

wt + Uwx + uW x + vW y +Wwz = −pz +
1

Re
∇2

w

(2.15)
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2.2. Wall-normal velocity-vorticity formulation

Considering Eq. (1.31) there are two major differences: several additional terms
arise due to the presence of W , and the resulting two equations, which are now
fully coupled, will not have constant coefficients, thus preventing the simple Fourier
transform procedure leading to one-dimensional eigenvalue problem parametrized by
the disturbance wavenumber.

2.2. Wall-normal velocity-vorticity formulation

The usual procedure applied for Poiseuille flow of converting the disturbance evolution
equations into wall-normal velocity-vorticity formulation is now shown.

2.2.1. Wall-normal vorticity equation

Remembering that the wall-normal component of the vorticity vector can be written
as

η = uz − wx (2.16)

the governing equation for η can be obtained by taking the x derivative of the z

momentum equation

∂wx

∂t
+Uwxx+uxW x+uW xx+ vxW y + vW yx+W xwz +Wwzx = −pzx+

1

Re

∂

∂x
∇2

w,

(2.17)
and subtracting it from the z derivative of the x momentum equation

∂uz

∂t
+ Uuxz + vzU

�
+Wuzz = −pxz +

1

Re

∂

∂z
∇2

u. (2.18)

After some simple algebraic operations, one obtains:

ηt +

�
U

∂

∂x
+W

∂

∂z

�
η +

�
W x

∂

∂y
+ U

� ∂

∂z
−W xy −W y

∂

∂x

�
v − uW xx =

1

Re
∇2

η

(2.19)
By comparing Eq. (2.19) with its counterpart in the Orr–Sommerfeld case Eq. (1.32),

one notices, besides the additional terms containing the base flow W , the appearance
of one term containing the u velocity component. At this stage of the procedure, the
system that relates u and w to v and η is still a differential system, and cannot be
conveniently used to get rid of this term via algebraic substitution.

2.2.2. Wall-normal velocity equation

The evolutive equation for v can be obtained with the same procedure used for the
Orr-Sommerfeld case, which involves taking the laplacian of the v-component of the
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momentum equation and taking advantage of the continuity equation. The laplacian of
y-momentum equation is

∂

∂t
∇2

v +∇2
�
Uvx

�
+∇2

�
Wvz

�
= − ∂

∂y
∇2

p+
1

Re
∇2∇2

v (2.20)

Expanding term by term and considering Eq. (1.13) one obtains

∇2
�
Uvx

�
= U

��
vx + U

∂

∂x
∇2

u+ 2U
�
vxy (2.21)

∇2
�
Wvz

�
=

�
W xx +W yy

�
vz +W

∂

∂z
∇2

v + 2W xvzx + 2W yvzy (2.22)

−∇2
p = Uuxx + vxU

�
+W xuz +Wuzx

+ U
�
vx + Uvxy +W yvz +Wvzy

+ Uwxz + uzW x + uW xz + vzW y + vW yz +W zwz +Wwzz

= 2U
�
vx + 2W xuz + 2W yvz (2.23)

− ∂

∂y
∇2

p = 2U
��
vx + 2U

�
vxy + 2W xyuz + 2W xuzy + 2W yyvz + 2W yvzy (2.24)

and after some algebra, results in:

(2.25)
∂

∂t
∇2

v +

�
U

∂

∂x
+W

∂

∂z

�
∇2

v −
�
U

�� ∂

∂x
+W yy

∂

∂z

�
v

− 2W xyuz − 2W x
∂

∂z
(uy − vx) +W xxvz =

1

Re
∇2∇2

v

Analogously to what has been just observed for Eq. (2.19), the equation for v presents
several additional terms compared to its Orr–Sommerfeld counterpart, among which
there are the spanwise baseflow W and the velocity components u which, up to this
stage, cannot be easily substituted.

2.2.3. Fourier transform in spanwise direction

The governing equations present x-varying coefficients. A straightforward preliminary
step is to apply a Fourier transform in the z direction, along which the coefficients are
constants. It could be noticed that the system of differential equations is autonomous in
z direction and so taking the Fourier transform is equal to consider wavelike solutions
in z as:
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2.3. Fourier transform in the streamwise direction

v (x, y, z, t) =
∞�

β=−∞
v(x, y, t;β)ejβz (2.26)

v (x, y, z, t) =
∞�

β=−∞
v(x, y, t;β)ejβz (2.27)

In order to have a lighter notation we omit using different symbols for discriminating
quantities which depend on z or on the spanwise wavenumber β.

and the dynamic of the problem is described by system of equations:

ηt+

�
U

∂

∂x
+ jβW

�
η+

�
W x

∂

∂y
+ jβU

� −W xy −W y
∂

∂x

�
v−uW xx =

1

Re
∆η (2.28)

∂

∂t
∆v +

�
U

∂

∂x
+ jβW

�
∆v −

�
U

�� ∂

∂x
+ jβW yy

�
v (2.29)

−2jβW xyu− 2jβW x (uy − vx) + jβW xxv =
1

Re
∆∆v

where ∆ is defined as:

∆ =
∂

∂x2
+

∂

∂y2
− β

2 (2.30)

2.3. Fourier transform in the streamwise direction

The (spanwise) base flow W has a sinusoidal dependence on x, and not just a generic
one. This feature is what is exploited to transform the perturbation equations in Fourier
space, notwithstanding its variable coefficients. Therefore we consider a proper Fourier
expansion of the unknown v and η.

In doing this we first express the spanwise base flow as:

W (x, y) = �
�
f(y)ejκx

�
=

1

2

�
f(y)ejκx + f

∗(y)e−jκx
�

(2.31)

so that the various derivatives of W become:

W x =
jκ

2

�
f(y)ejκx − f

∗(y)e−jκx
�

(2.32)

W xx = −κ
2
W (2.33)

W y =
1

2

�
f
�(y)ejκx + f

∗�(y)e−jκx
�

(2.34)
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W yy =
1

2

�
f
��(y)ejκx + f

∗��(y)e−jκx
�

(2.35)

W xy =
jκ

2

�
f
�(y)ejκx − f

∗�(y)e−jκx
�

(2.36)

Now the above assumptions are inserted into Eqs. (2.28) and (2.29), and the unknowns
are expanded with a Fourier series with κ as base wavenumber as follows:

η(x, y, t;β) =
+M�

i=−M

η̂(y, t;β)ejiκx (2.37)

v(x, y, t;β) =
+M�

i=−M

v̂(y, t;β)ejiκx (2.38)

where, i a positive integer that spans from −M to M , with the truncation defined by
M expressing the degree of the spectral expansion of the flow variables; m ∈ [0, 1) is a
real number defining the actual expansion wavenumber:

α = (m+ i)κ. (2.39)

m parameter is needed for this study because x direction is not homogeneous and the
problem is global in that direction. This parameter is also called detuning-parameter
because it is used to detune the perturbation against the spanwise base flow, in order to
consider perturbations that could have different lower wavenumbers and different spatial
periodicities than the base flow fundamental wavenumber. Therefore m �= 0, we allow
for a detuning of the perturbation against the base flow, and in particular m = 1/2
describes the case of subharmonic flow, while m = 0 implies that the perturbation is
locked into the fundamental wavenumber. The detuning wavenumber mκ is a fraction of
the base flow wavenumber κ, and the higher harmonics of the perturbations are spaced
by κ.

The continuity equation and the definition of wall-normal vorticity are a differential
system that relates v and η to u and w:

�
ux + vy + wz = 0
uz − wx = η

(2.40)

This system can now be made algebraic if the above assumption is accounted for, so
considering a Fourier series expansion also for the variable u and w

u(x, y, t;β) =
+M�

i=−M

û(y, t;β)ejiκx (2.41)

w(x, y, t;β) =
+M�

i=−M

ŵ(y, t;β)ejiκx (2.42)
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and substituting into continuity equation and in the definition of wall- normal vorticity
one obtains:

û =
j

α2 + β2

�
α
∂v̂

∂y
− βη̂

�
(2.43)

ŵ =
j

α2 + β2

�
αη̂ + β

∂v̂

∂y

�
(2.44)

and this paves the way for arriving at the final form of the equations for v and η.

2.3.1. Wall-normal vorticity equation

By introducing the operator ∆̂ = ∂2/∂y2 − α2 − β2 and by substituting variables û

and ŵ Eq.(2.28) becomes:

+M�

i=−M

�
∂η̂

∂t
+ jαU η̂ + jβU

�
v̂ − 1

Re
∆̂η

�
ejαx =

+M�

i=−M

�
−jβ

2

�
f(y)ejκx + f

∗(y)e−jκx
�
η̂ − jκ

2

�
f(y)ejκx − f

∗(y)e−jκx
� ∂v̂
∂y

+
jκ

2

�
f
�(y)ejκx − f

∗�(y)e−jκx
�
v̂ +

1

2

�
f
�(y)ejκx + f

∗�(y)e−jκx
�
jαv̂

−κ2

2

�
f(y)ejκx + f

∗(y)e−jκx
� j

α2 + β2

�
α
∂v̂

∂y
− βη̂

��
ejαx

(2.45)

Since the hatted variables depend on y and t (besides wall-parallel wavenumbers),
and f = f(y), in the above equation the dependence on the streamwise coordinate x is
uniquely contained in the complex exponentials ejαx and e±jκxejαx; as such, every term
q(x) of the equation can be Fourier-transformed according to the general formula

q̂(α̃) =
κ

2π

� 2π/κ

0
q(x)e−jα̃x

dx (2.46)

When evaluating integrals of the kind

� 2π/κ

0
e±jκxejαxe−jα̃x

dx (2.47)

one exploits the orthogonality of the trigonometric functions to state that they are
equal to δα̃,±κ+α (Kronecker symbol), i.e. they are always zero unless α = α̃− κ. By
introducing the further notation ∆̃ = ∂2/∂y2− α̃2−β2, Eq. (2.45) for a given α̃ becomes:
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(2.48)

∂

∂t
η̂α̃ = −jα̃U η̂α̃ − jβU

�
v̂α̃ +

1

Re
∆̃η̂α̃

− jβ

2
f

�
1− κ2

(α̃− κ)2 + β2

�
η̂α̃−κ

− jβ

2
f
∗
�
1− κ2

(α̃+ κ)2 + β2

�
η̂α̃+κ

− j

2

�
κf

�
1 +

κ(α̃− κ)

(α̃− κ)2 + β2

�
∂

∂y
− f

�
α̃

�
v̂α̃−κ

+
j

2

�
κf

∗
�
1− κ(α̃+ κ)

(α̃+ κ)2 + β2

�
∂

∂y
+ f

∗�
α̃

�
v̂α̃+κ

The Eq. (2.48) it is quite different with its counterpart in the Orr-Sommerfeld case;
one can notice the presence of the spanwise base flow in the terms containing the
functions f(y) and f∗(y). The evolution of each η̂α̃ depends on v̂ η̂ valued at the same
wavenumber α̃ and at the previous and following wavenumbers α̃− k and α̃+ k.

The equations can be considered as a generalization of Orr-Sommerfeld case in
presence of a spanwise flow; indeed terms containing variables v̂ and η̂ valued in α̃ are
the same as Orr-Sommerfeld counterpart η equation whereas the additional terms can
be considered as the influence of the next and previous wavenumber perturbation to
the wall-normal vorticity η̂α̃

2.3.2. Wall-normal velocity equation

An analogous derivation leads to the following form for the wall-normal velocity
component:

+M�

i=−M

�
∂

∂t
∆̂v̂ + jαU∆̂v̂ − jαU

��
v̂ − 1

Re
∆̂∆̂v̂

�
ejαx =

+M�

i=−M

�
−jβ

2

�
fejκx + f

∗e−jκx
�
∆̂v̂ +

jβ

2

�
f
��ejκx + f

∗��e−jκx
�
v̂

−βκ

�
f
�ejκx − f

∗�e−jκx
�

j

α2 + β2

�
α
∂v̂

∂y
− βη̂

�

−βκ
�
fejκx − f

∗e−jκx
�� j

α2 + β2

�
α
∂2v̂

∂y2
− β

∂η̂

∂y

�
− jαv̂

�

+
jβ

2
κ
2
�
fejκx + f

∗e−jκx
�
v̂

�
ejαx

(2.49)

After rearranging, and introducing the notation ∆̃± = ∂2/∂y2−(α̃±κ)2−β2 Eq. (2.49)
can be rewritten as:
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∂

∂t
∆̃v̂α̃ = −jα̃U∆̃v̂α̃ + jα̃U

��
v̂α̃ +

1

Re
∆̃∆̃v̂α̃

+
jβ2κ

(α̃− κ)2 + β2

�
f
� + f

∂

∂y

�
η̂α̃−κ

− jβ2κ

(α̃+ κ)2 + β2

�
f
∗� + f

∗ ∂

∂y

�
η̂α̃+κ

− jβ

2

�
f∆̃− − f

�� − κf (2α̃− κ) + 2
κ(α̃− κ)

(α̃− κ)2 + β2

�
f
� ∂

∂y
+ f

∂2

∂y2

��
v̂α̃−κ

− jβ

2

�
f
∗∆̃+− f

∗�� +κf
∗ (2α̃+κ)−2

κ(α̃+ κ)

(α̃+ κ)2 + β2

�
f
∗� ∂

∂y
+ f

∗ ∂2

∂y2

��
v̂α̃+κ

(2.50)

The same conclusions of η equation can be done. The equation for each v̂α̃ can be
considered as the equation of v for the Orr-Sommerfeld case at the same wavenumber α̃
in x forced by the spanwise flow through the previous wavenumber perturbation α̃− k

and the subsequent wavenumber perturbation α̃+ k.

2.4. Numerical discretization of the equations

We present the numerical resolution of the stability analysis of the Poiseuille flow over
a steady Stokes layer. We intend to present in details the numerical implementation
of the v̂ − η̂ equations, their discretization through Chebyshev polynomials and the
nonmodal stability analysis.

2.4.1. Discretization of x coordinate

In Sec. (2.3) we have introduced the v̂ − η̂ formulation of linearized Navier-Stokes
equations for a plane Poiseuille flow over a steady Stokes layer.

In order to define an easiest formulation we consider a slightly different notation.
The non-homogeneous x direction leads to consider a perturbation which is global in

x and that can be expressed through the Fourier expansions:

η(x, y, t;β) =
+M�

i=−M

η̂(y, t;β)ej(i+m)kx (2.51)

v(x, y, t;β) =
+M�

i=−M

v̂(y, t;β)ej(i+m)kx (2.52)

Substituting into v − η equations the expansions above and Fourier transforming
against a testing function of the form exp j(p+m)κ, where p ∈ [−M,+M ] is an integer
such that α̃ = (p+m)κ
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(2.53)

∂

∂t
η̂p = −j(p+m)κU η̂p − jβU

�
v̂p +

1

Re
∆̃η̂p

− jβ

2
f

�
1− κ2

((p+m− 1)κ)2 + β2

�
η̂p−1

− jβ

2
f
∗
�
1− κ2

((p+m+ 1)κ)2 + β2

�
η̂p+1

− j

2

�
κf

�
1 +

κ((p+m− 1)κ)

((p+m− 1)κ)2 + β2

�
∂

∂y
− f

�(p+m)κ

�
v̂p−1

+
j

2

�
κf

∗
�
1− κ((p+m+ 1)κ)

((p+m+ 1)κ)2 + β2

�
∂

∂y
+ f

∗�(p+m)κ

�
v̂p+1

(2.54)

∂

∂t
∆̃v̂p = −j(p+m)κU∆̃v̂p + j(p+m)κU

��
v̂p +

1

Re
∆̃∆̃v̂p

+
jβ2κ

((p+m− 1)κ)2 + β2

�
f
� + f

∂

∂y

�
η̂p−1

− jβ2κ

((p+m+ 1)κ)2 + β2

�
f
∗� + f

∗ ∂

∂y

�
η̂p+1

− jβ

2

�
f∆̃− − f

�� − κf ((2(p+m)− 1)κ)

+ 2
κ((p+m− 1)κ)

((p+m− 1)κ)2 + β2

�
f
� ∂

∂y
+ f

∂2

∂y2

��
v̂p−1

− jβ

2

�
f
∗∆̃+ − f

∗�� + κf
∗ ((2(p+m) + 1)κ)

− 2
κ((p+m+ 1)κ)

((p+m+ 1)κ)2 + β2

�
f
∗� ∂

∂y
+ f

∗ ∂2

∂y2

��
v̂p+1

we must now set an appropriate numerical implementation to solve them for each
p ∈ [−M,M ] with M high enough.

2.4.2. Discretization of y coordinate

The variables dependent on y direction have been numerically implemented through
the use of Chebyshev polynomials on a grid of Gauss-Lobatto nodes. The choice of
using Chebyshev polynomials instead of finite differences depends on the accuracy of
the two methods. Although Chebyshev polynomials, and in general spectral methods
have higher computational costs, they are characterized by infinite convergence order.

Using Gauss-Lobatto nodes y coordinate can be discretized as follows:

yi = cos

�
iπ

N

�
, for i = 1 . . . N (2.55)

where N + 1 is the number of Gauss-Lobatto nodes.
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The Chebyshev polynomials are defined as

Tn(y) = cos(nθ), with θ = arccos(y) (2.56)

Eq. (2.56) is also known as trigonometric formulation of Chebyshev polynomials, but
they can be implemented using recursive formula:

T0 = 1 (2.57)
T1 = x (2.58)

Tn+1 = 2xTn − Tn−1 (2.59)

For a given coordinate y we may express the perturbation for a given p, η̂p and v̂p as

v̂p(yi) =
N�

n=0

vp,nTn(yi)

η̂p(yi) =
N�

n=0

ηp,nTn(yi)

(2.60)

The discretization of v̂p(y) in y direction as for ûp, ŵp, η̂p, leads to define the following
linear system






v̂p(y0)
...

v̂p(yi)
...

v̂p(yN )





� �� �

N+1×1

=





T0(y0) . . . Tn(y0) . . . TN (y0)
...

...
...

T0(yi) . . . Tn(yi) . . . TN (yi)
...

...
...

T0(yN ) . . . Tn(yN ) . . . TN (yN )





� �� �
N+1×N+1






vp,0
...

vp,n
...

vp,n





� �� �
N+1×1

. (2.61)

or with a more readable notation

{v̂p} = [D0] {vp}

The unknowns of v − η formulation can be now expressed as

q̂p =

�
{v̂p}
{η̂p}

�
=

�
[D0] [0]
[0] [D0]

��
{vp}
{ηp}

�
=

�
[D0] [0]
[0] [D0]

�
qp (2.62)

Chebyshev polynomials can also be used to compute derivatives easily. Indeed taking
derivatives in y direction of Eq. (2.60) one obtains:
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v̂
�
p(yi) =

N�

n=0

vp,nT
�
n(yi) → {v̂p} = [D1] {vp}

η̂
�
p(yi) =

N�

n=0

ηp,nT
�
n(yi) → {η̂p} = [D1] {ηp}

v̂
��
p(yi) =

N�

n=0

vp,nT
��
n (yi) → {v̂p} = [D2] {vp}

η̂
��
p(yi) =

N�

n=0

ηp,nT
��
n (yi) → {η̂p} = [D2] {ηp}

v̂
����
p (yi) =

N�

n=0

vp,nT
����
n (yi) → {v̂p} = [D4] {vp}

(2.63)

Operators D0,D1,D2,D4 contain respectively zero order derivatives, first order deriva-
tives, second order derivatives and fourth order derivatives, of Chebyshev polynomials
discretized on Gauss-Lobatto nodes. We aim to introduce these Chebyshev operators to
express the computational implementation of v̂ − η̂ equations.

In order to consider an easier computational formulation we introduce also the
following operators:

∆̃ = D2 −
�
((p+m)k)2 + β

2
�
D0 (2.64)

∆̃+ = D2 −
�
((p+m+ 1)κ)2 + β

2
�
D0 (2.65)

∆̃− = D2 −
�
((p+m− 1)κ)2 + β

2
�
D0 (2.66)

∆̃∆̃ = D4 − 2
�
((p+m)κ)2 + β

2
�
D2 +D0

�
((p+m)κ)2 + β

2
�2

(2.67)

2.4.3. Base flow

The streamwise base flow, once one has implemented the Gauss-Lobatto nodes in y

direction can be simply computed with

U(yi) = 1− y
2
i

The spanwise baseflow can be implemented in two ways

• using Airy special function

• solving Eq .(2.5) on Gauss Lobatto nodes
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The spanwise base flow computed with Airy special function on y = {yi} for yi ∈
[−1, 1] is

∆x =

�
1

2Reκ

� 1
3

(2.68)

f(yi > 0) =
A

Airy(0)
∗ Airy

�
−j (yi + 1)∆xe−j 4π

3

�
(2.69)

f(yi < 0) =
A

Airy(0)
∗ Airy

�
+j (yi − 1)∆xe−j 4π

3

�
(2.70)

(2.71)
f(y) = f ({yi}) = f ({yi < 0}) ∪ f ({yi > 0}) (2.72)
f
�(y) = D1

�
D−1

0 f(y)
�

(2.73)
f
��(y) = D2

�
D−1

0 f(y)
�

(2.74)

where A is the wave amplitude spanwise velocity. The spanwise base flow computed with
a discretization of Eq. (2.9) on Gauss-Lobatto nodes and using Chebyshev operators,
this leads to a linear system of equations, that has been implemented defining the
following matrix

[M ] = D2 − κ








�

κ+ jRe(1− y2i )
�







D0 (2.75)

{rhs(y)} = {0} (2.76)

with the boundary conditions

[M(0, i)] = D0(0, i) ∀i ∈ (0, N) {rhs(0)} = A

[M(N, i)] = D0(N, i) ∀i ∈ (0, N) {rhs(0)} = A.
(2.77)

The linear system has been simply solved inverting matrix [M ] so one can recover the
values of function f(y) and its derivatives used in Eq. (2.53) discretized on Gauss-Lobatto
nodes. The solution of the linear system is

f(y) = f ({yi}) = D0 [M ]−1 ∗ {rhs(y)} (2.78)
f
�(y) = D1

�
D−1

0 f(y)
�

(2.79)
f
��(y) = D2

�
D−1

0 f(y)
�

(2.80)

2.4.4. Structure of the equations

The structure of v̂ − η̂ equations for a given p assumes the following block form:

31



Chapter2. Plane Poiseuille flow over SSL

∂

∂t

�
[B11] 0
0 [B22]

�

� �� �
B(p)

�
v

η

�

p

= (2.81)

�
[Lm,11] [Lm,12]
[Lm,21] [Lm,22]

�

� �� �
L(p)
m

�
v

η

�

p−1

+

�
[L11] [0]
[L21] [L22]

�

� �� �
L(p)

�
v

η

�

p

+

�
[Lp,11] [Lp,12]
[Lp,21] [Lp,22]

�

� �� �
L(p)
p

�
v

η

�

p+1

where L(p) represents the interaction of v̂ − η̂ for a given wavenumber α̃ = (p+m)κ

with itself and L
(p)
m , L(p)

p represent the interactions with the previous and the subsequent
streamwise wavenumbers. L

(p)
m and L

(p)
p elements are about the spanwise base flow.

Neglecting L
(p)
m and L

(p)
p the problem is reduced to the Orr-Sommerfeld case for a given

wavenumber α̃ = (p+m)κ.

∂

∂t

�
[B11] 0
0 [B22]

�

� �� �
B(p)

�
v

η

�

p

=

�
[L11] [0]
[L21] [L22]

�

� �� �
L(p)

�
v

η

�

p

(2.82)

where one may notice the one-way coupling of η equation with v.

Eq. (2.81) must be solved for all v, η in the modal expansion chosen [−M, ..,+M ].
Therefore one obtains the following block form
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∂

∂t





B(−M)

. . .
. . .

. . .
B(p)

. . .
. . .

. . .
B(+M)





� �� �
Bs






�
v

η

�

−M
...
...
...�
v

η

�

p
...
...
...�

v

η

�

+M






= (2.83)





L(−M) L
(−M)
p

. . . . . . . . .

L
(p)
m L(p) L

(p)
p

. . . . . . . . .

L
(+M)
m L(+M)





� �� �
Ls






�
v

η

�

−M
...
...
...�
v

η

�

p
...
...
...�

v

η

�

+M





� �� �

q

where Bs and Ls are respectively diagonal and block-tridiagonal matrices and subscript
s is used to denote the sparcity of the matrices. Matrix dimensions for both Bs and Ls

are (2M + 1)× 2(N + 1).
The standard state-space form can be obtained by inverting Bs

q̇ = B
−1
s Lsq = Asq (2.84)

The problem is characterized by a block-tridiagonal matrix, and each block is like a
standard Orr-Sommerfeld-Squire problem; therefore the size of full problem is (2M +
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1))2× a single Orr-Sommerfeld-Squire problem discretized with the same number off
Gauss-Lobatto nodes.

2.4.5. Matrix analysis

For a given integer p one has to compute B(p), L(p), L
(p)
m , L

(p)
p . These matrices have

been implemented with a specific Matlab� function named ssl_3D_crossflow_block.m.
We present the mathematical formulation with Chebyshev polynomials of Eq. (2.81).

Matrix B(p)

Considering Eq. (2.48,2.50) and Chebyshev polynomials discretization matrix B(p)

has the subsequent block-structure:

B
(p) =

�
[B11] 0
0 [B22]

�
(2.85)

where

[B11] = ∆̃ (2.86)
[B22] = D0

[B12] = [B21] = [0]

Matrix L(p)

Matrix L(p) has the subsequent block-structure:

L
(p) =

�
[L11] [0]
[L21] [L22]

�
(2.87)

where

[L11] = −j ((p+m)κ)U∆̃+ j(p+m)κU
��D0 +

1

Re
∆̃∆̃ (2.88)

[L22] = −j ((p+m)κ)UD0 +
1

Re
∆̃

[L21] = −jβU
�D0

Matrix L(p)
m

Matrix L
(p)
m has the subsequent block-structure:

L
(p)
m =

�
[Lm,11] [Lm,12]
[Lm,21] [Lm,22]

�
(2.89)
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where

[Lm,11] = −jβ

2

�
f∆̃− − f

��D0 − κf (2 ((p+m)κ)− κ)D0 + 2k
((p+m− 1)κ)

((p+m− 1)κ)2 + β2

�
f
�D1 + fD2

��

(2.90)

[Lm,12] = jβ
2 κ�

((p+m− 1)κ)2 + β2
�
�
f
�D0f +D1

�

[Lm,21] = − j

2



κf



1 + κ
((p+m− 1)κ)�

((p+m− 1)κ)2 + β2
�



D1 − f
� ((p+m)κ)D0





[Lm,22] = −j
β

2
f



1− κ2�
((p+m− 1)κ)2 + β2

�



D0

Matrix L(p)
p

Matrix L
(p)
p has the subsequent block-structure:

L
(p)
p =

�
[Lp,11] [Lp,12]
[Lp,21] [Lp,22]

�
(2.91)

where

[Lp,11] = −jβ

2

�
f
∗∆̃− − f

∗��D0 + kf
∗ (2 ((p+m)κ) + k)D0 − 2k

((p+m+ 1)κ)

((p+m+ 1)κ)2 + β2

�
f
∗�D1 + f

∗D2

��

(2.92)

[Lp,12] = jβ
2 k�

((p+m+ 1)κ)2 + β2
�
�
f
∗�D0f

∗ +D1

�

[Lp,21] = − j

2



kf∗



1− k
((p+m+ 1)κ)�

((p+m+ 1)κ)2 + β2
�



D1 + f
∗� ((p+m)κ)D0





[Lp,22] = −j
β

2
f
∗



1− k2�
((p+m+ 1)κ)2 + β2

�



D0

2.4.6. Boundary conditions

The boundary conditions for a given p are

η̂p(±1) = 0 (2.93)
v̂p(±1) = 0 (2.94)
∂v̂p

∂y
(±1) = 0 (2.95)
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Boundary conditions are simply imposed modifying properly matrices B(p), L(p), L
(p)
m , L

(p)
p

and sets the appropriate values. However boundary conditions for v̂p and ηp are not
set to zero but to negative high values, i.e. exp−5 . This is equal to impose two porous
walls whose dynamic is extremely fast against than the perturbation dynamic.Therefore,
the walls dynamic does not influence the perturbation dynamic. This choice has been
done to prevent getting spurious eigenvalues for the eigenvalue problem. Indeed solving
a linear eigenvalue problem with a spectral method composed by N + 1 expansion
function and reordering the eigenvalues in ascending order, generally, only the first N/2
eigenvalues will be accurate within a small error percentage. Moreover if the linear
(linearized) eigenvalue problem presents singularities in the complex plane may happens
to get few accurate eigenvalues, less than N/2. Setting boundary conditions different
from zero we prevent to obtain singularities, and the eigenvalues computation is more
accurate. The imposition of boundary conditions is presented in the following Matlab�

script

Listing 2.1: Boundary conditions
1 % Set t ing boundary cond i t i on s f o r the v e l o c i t y
2 muv = 1 e6 ;
3 B( 1 , : ) = ze ro s (1 , 2∗ (N+1) ) ; B( 2 , : ) = ze ro s (1 , 2∗ (N+1) ) ; B(N, : ) = ze ro s

(1 , 2∗ (N+1) ) ; B(N+1 , :) = ze ro s (1 , 2∗ (N+1) ) ;
4 Lm( 1 , : ) = ze ro s (1 , 2∗ (N+1) ) ; Lm( 2 , : ) = ze ro s (1 , 2∗ (N+1) ) ; Lm(N, : ) = ze ro s

(1 , 2∗ (N+1) ) ; Lm(N+1 , :) = ze ro s (1 , 2∗ (N+1) ) ;
5 L ( 1 , : ) = ze ro s (1 , 2∗ (N+1) ) ; L ( 2 , : ) = ze ro s (1 , 2∗ (N+1) ) ; L(N, : ) = ze ro s

(1 , 2∗ (N+1) ) ; L(N+1 , :) = ze ro s (1 , 2∗ (N+1) ) ;
6 Lp ( 1 , : ) = ze ro s (1 , 2∗ (N+1) ) ; Lp ( 2 , : ) = ze ro s (1 , 2∗ (N+1) ) ; Lp(N, : ) = ze ro s

(1 , 2∗ (N+1) ) ; Lp(N+1 , :) = ze ro s (1 , 2∗ (N+1) ) ;
7
8 B(1 , 1 :N+1) = op .D0 ( 1 , : ) ;
9 B(2 , 1 :N+1) = op .D1 ( 1 , : ) ;

10 B(N, 1 :N+1) = op .D1(N+1 , :) ;
11 B(N+1 ,1:N+1) = op .D0(N+1 , :) ;
12
13 L( 1 , 1 :N+1) = muv∗op .D0 ( 1 , : ) ;
14 L( 2 , 1 :N+1) = muv∗op .D1 ( 1 , : ) ;
15 L(N, 1 :N+1) = muv∗op .D1(N+1 , :) ;
16 L(N+1 ,1:N+1) = muv∗op .D0(N+1 , :) ;
17
18 % Set t ing boundary cond i t i on s f o r the v o r t i c i t y
19 mueta = 1 e5 ;
20 B(N+2 , :) = ze ro s (1 , 2∗ (N+1) ) ; B(2∗ (N+1) , : ) = ze ro s (1 , 2∗ (N+1) ) ;
21 Lm(N+2 , :) = ze ro s (1 , 2∗ (N+1) ) ; Lm(2∗ (N+1) , : ) = ze ro s (1 , 2∗ (N+1) ) ;
22 L(N+2 , :) = ze ro s (1 , 2∗ (N+1) ) ; L(2∗ (N+1) , : ) = ze ro s (1 , 2∗ (N+1) ) ;
23 Lp(N+2 , :) = ze ro s (1 , 2∗ (N+1) ) ; Lp(2∗ (N+1) , : ) = ze ro s (1 , 2∗ (N+1) ) ;
24
25 B(N+2,N+2:2∗(N+1) ) = op .D0 ( 1 , : ) ;
26 B(2∗ (N+1) ,N+2:2∗(N+1) ) = op .D0(N+1 , :) ;
27
28 L(N+2,N+2:2∗(N+1) ) = mueta∗op .D0 ( 1 , : ) ;
29 L(2∗ (N+1) ,N+2:2∗(N+1) ) = mueta∗op .D0(N+1 , :) ;
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2.5. Modal Stability: Eigenvalues computation

Eigenvalues of matrix As of Eq. (2.84) are computed using Arnoldi method.
In numerical Algebra, Arnoldi iteration [2] [22] [7], [28] is an eigenvalue algorithm and

an important example of iterative methods that finds the eigenvalues of general (possibly
non-Hermitian) matrices. Arnoldi belongs to a class of linear algebra algorithms, called
Krylov methods which are based on the idea of projection on Krylov subspaces and let
to compute only a part of the eigenvalues of the problem.
As is a large sparse matrix and the computation of all its eigenvalues is quite onerous

in terms of computational resources. Moreover we are not interested in all eigenvalues
but only to those with the higher real part. Hence we compute only a subset, defined
by parameter neig of all eigenvalues Ntot = 2(N + 1)× 2M + 1 of As

[T,Λ] = Arnoldi(As, neig) (2.96)

where Λ is a diagonal matrix containing the neig eigenvalues computed, and T contains
the relative eigenvectors. Rewriting Eq. (2.84)

q̇ = Asq (2.97)

and considering the modal expansion of q̇

q = Tx (2.98)

one can write the modal reduced problem (modal truncated)

T ẋ = AsTx (2.99)

ẋ = T
−1

AsTx = Λx (2.100)

whose dimensions are quite smaller (neig×neig) compared to the initial one Ntot×Ntot.
Hence T is also called truncation operator.

2.6. Nonmodal stability

The nonmodal stability analysis for the plane Poiseuille flow [27] [6],is now developed
for the Poiseuille flow over a steady Stokes layer, expressing each operator used in the
implementation of the equations.

2.6.1. Energy norm

The kinetic energy density of an infinitesimal perturbation [24], [27], [26] may be
written for a given p, or for a streamwise wavenumber α̃ = (p+m)κ
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e(p,β, t) =
1

2

�
1

2k2

� +1

−1

�
{v̂p}
{η̂p}

�H �
k2 +D2 0

0 1

��
{v̂p}
{η̂p}

��
dy (2.101)

=
1

2

�
1

2k2

� +1

−1
(q̂p)

H
�
k2 +D2 0

0 1

�
(q̂p)

�
dy

Expanding
�
{v̂p}
{η̂p}

�
with Chebyshev polynomials and integrating Eq. (2.101) over Gauss-

Lobatto nodes with a Gaussian quadrature, called Clenshaw-Curtis quadrature based
on Chebyshev polynomials [22],[23] [21],[13], [9], [5], [10] one obtains

e(p,β, t) =

�
{vp}
{ηp}

�H �
1

4k2

�
k2DH

0 [W ]D0 +D1[W ]D1 [0]
[0] DH

0 [W ]D0

��

� �� �
Q(p)

�
{vp}
{ηp}

�
(2.102)

where W is a diagonal matrix containing the integral weights and Q(p) is the energy
weight matrix for a given p. The integral weights are computed through a Clenshaws-
Curtis quadrature, which uses Hence For a given p the energy norm can be written
as

�qp�2E = qH
p Q

(p)qp (2.103)

.
The energy norm for all p ∈ [−M,+M ] has the following diagonal block form

�q�2E =






�
v

η

�

−M
...�
v

η

�

p
...�

v

η

�

+M






H





Q(p−M )

. . .
Q(p)

. . .
Q(p+M )





� �� �
Qs






�
v

η

�

p−M

...�
v

η

�

p
...�

v

η

�

p+M






(2.104)

�q�2E = qH
Qsq (2.105)

where (Qs)[2(N+1)×(2M+1)] is the energy weight matrix for all p considered in the
modal expansion and is positive definite.

Let Qs = CHC be the Cholesky decomposition of Qs then
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�q�2E = �Cq�22 (2.106)

Matrix C is not computed through Cholesky decomposition, in our implementation,
but using singular value decomposition of Qs considering that Qs = QH

s

Qs = UQs
ΣQs

V
H
Qs

Qs = VQs
ΣQs

U
H
Qs

Qs = Q
H
s

⇓

Qs = UQs
Σ

1
2
Qs� �� �

CH

Σ
1
2
Qs

U
H
Qs� �� �

C

(2.107)

2.6.2. Nonmodal analysis

We report the most important steps needed for a complete nonmodal stability analysis
for the problem studied

Expressing the unknowns v̂, η̂ with an expansion of Chebyshev polynomials leads to
a state-space form

q̇ = B
−1
s Lsq = Asq (2.108)

The computation of the higher neig eigenvalues and their relative eigenvectors, with
Arnoldi iterative method, give us a diagonal matrix Λ of eigenvalues and a matrix T of
eigenvectors. Then we may express q using the reduced modal base T .

q = Tx (2.109)

The integration of energy density leads to obtain a energy weights operator Qs:

�q�2E = qH
Qsq (2.110)

The transient energy growth function is then:

G(t) = max
q0 �=0

�q(t)�2E
�q0�2E

=
��eAtq0

��2
E

(2.111)

The numerator of Eq. (2.111) can be written with a modal expansion as

�q(t)�2E = qH
Qsq = xH

T
H
QsT� �� �
Q

x = xH
Qx (2.112)

where Q = Q
H is the condensed (truncated) energy weight matrix for the modal base

T . Taking the Cholesky decomposition of Q (or using appropriately the singular value
decomposition) leads to
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Q = C
H
C (2.113)

�q(t)�2E = xH
C

H
Cx =

��Cx(t)
��2
2

(2.114)

The energy growth function, taking into account exponential behaviour of the initial
perturbation, can be rewritten as

G(t) = max
x0 �=0

��Cx(t)
��2
2��Cx0

��2
2

= max
x0 �=0

���CeΛtC−1
Cx0

���
2

2��Cx0

��2
2

=
���CeΛtC−1

���
2

2
(2.115)

The computation of growth function with norm − 2 operator is quite onerous in
terms of computational resources. In order to improve the computation, remembering
that �∗�2 = σmax where σmax is the higher singular value we have taken a singular
value decomposition of matrix CeΛtC−1 for only the first singular value and its relatives
singular vectors (using Matlab� funcion svds(CeΛtC−1

)).
Let v1 be the first right singular vector and u1 the first left singular vector of matrix

CeΛtC−1 then

• Optimal input condition is q̂in = D0TC
−1

v1

• Optimal output condition is q̂out = D0TC
−1

u1

2.7. Spanwise invariance subcase

This Section exposes the stability analysis of a steady Stokes layer when spanwise
invariance is imposed ( ∂

∂z = 0). Physically, this assumption leads to consider con-
stant perturbations in z direction or in Fourier-space, perturbations whose spanwise
wavenumber β = 0.

Indeed if spanwise invariance is enforced, continuity equation in Fourier space may
not be employed for the streamwise wavenumber α̃ = 0, i.e. for p = 0 with m = 0, to
obtain the v − η formulation as before. Therefore we present a different formulation of
the equations to take into account conditions, in Fourier space, where the continuity
and the wall-normal vorticity equations can not be employed to relate v,≥ 1eta to u,w

We also present the main important changes that have to be considered for a linear
stability analysis if spanwise invariance is enforced.

Although the case for β = 0 requires a different formulation of the equations, we may
observe a posteriori that it is not characterised by any difference with respect to the
case with β �= 0. The same reasoning and the same steps employed for β �= 0 hold.
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2.7. Spanwise invariance subcase

Equations for linear stability

The steady solutions of Navier-Stokes equations considered are the plane Poiseuille
base flow U(y) Eq. (2.3) and a steady spanwise base flow, or SSL, W (x, y) Eq. (2.7) as
for β �= 0.

The linearized Navier-Stokes equation against a plane Poiseuille base flow U(y) over
a spanwise base flow W (x, y) subject to three-dimensional small disturbances when
spanwise invariance is enforced ( ∂

∂z = o or β = 0) can be obtained from Eq. (1.9)
considering the velocity field

U = U + u (2.116)
V = v (2.117)
W = W + w (2.118)

and through a linearization via dropping the quadratic terms of the perturbation field
(u, v, w). Therefore the linearized equations in cartesian coordinates enforcing spanwise
invariance are equal to Eq. (2.15) with the only difference of terms containing z-partial
derivatives. Then the final form in cartesian coordinate is






ux + vy = 0

ut + Uux + vU
�
= −px +

1

Re
∇2

u

vt + Uvx = −py +
1

Re
∇2

v

wt + Uwx + uW x + vW y = +
1

Re
∇2

w

(2.119)

where ∇2 =
�

∂2

∂x2 ;
∂2

∂y2

�

Wall-normal velocity-vorticity formulation

The wall-normal velocity-vorticity formulation can be obtained from Eq. (2.119) with
the usual procedure or more simply by neglecting terms containing z-partial derivatives
in Eqs. (2.25, 2.19). Then it reads:

(2.120)
∂

∂t
∇2

v +

�
U

∂

∂x

�
∇2

v −
�
U

�� ∂

∂x

�
v =

1

Re
∇2∇2

v

ηt +

�
U

∂

∂x

�
η +

�
W x

∂

∂y
−W xy −W y

∂

∂x

�
v − uW xx =

1

Re
∇2

η (2.121)

The equations unlike the Orr Sommerfeld-Squire counterparts are characterized by terms
containing spanwise baseflow W and also a term containing perturbation u but still be
one-way coupled.

The coefficients of equations depend on x and y directions so the simple Fourier
transform in streamwise direction can not be taken, the problem is not homogeneous
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in x direction. Therefore we must consider a complete modal expansion in streamwise
direction and then a Fourier transform of the equations.

Fourier transform in streamwise direction

Expressing the spanwise base flow as in Eq. (2.7) and its derivatives as in Sec. (2.2.3),
we assume that a generic perturbation field q(x, y, t) can be expanded as

q(x, y, t) =
+M�

i=−M

q̂i(y, t)ej(i+m)κx (2.122)

where i is a positive integer from −M to M with the truncation defined by M

expressing the degree of spectral expansion of the flow variables. m ∈ [0, 1) is the
well-known detuning parameter and q̂i contains the i − th Fourier coefficients of the
modal expansion. α = (m+ i)κ is the streamwise wavenumber and it is defined by the
integer index i and by the detuning parameter m.

The continuity equation is a differential system that relates v̂ to û

û = − 1

j (i+m)κ

∂v̂

∂y
(2.123)

and wall-normal vorticity definition relates η̂ to ŵ

ŵ = − 1

j (i+m)κ
η̂ (2.124)

Analysing vorticity and continuity equations one may notice that if i = 0 and if the
detuning parameter m = 0, hence α = 0, the equations become respectively

∂v̂0

∂y
= 0 (2.125)

η̂0 = 0 (2.126)

and can not be used to recover û0 and ŵ0. Moreover one may observe that, considering
homogeneous boundary conditions for the perturbation

v̂(±1) = 0, ,
∂v̂

∂y
= 0, and η̂ = 0 (2.127)

leads to

v̂0 = 0 (2.128)

η̂0 = 0 (2.129)

so using Eq. (2.123,2.124) û0 and ŵ0 are indeterminate. This aspect must be taken
into account for the subsequent simplifications, indeed for a null streamwise wavenumber
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2.7. Spanwise invariance subcase

α = (i+m)κ = 0 continuity equation and wall-normal vorticity definition can not be
used to obtain a complete v̂ − η̂ formulation. Therefore, we will define a new partial
v̂ − η̂ formulation that considers supplementary equations to take into account the
evolution of û0 and ŵ0.

General case

First of all we consider the case with α �= 0 in which continuity equation can always
be employed. Expanding term by term in Eqs.(2.120,2.121) and using continuity one
obtains

+M�

i=−M

�
∂η̂i

∂t
+ Uj(i+m)κη̂i

�
ej(i+m)κx =

+M�

i=−M

�
−jκ

2

�
f(y)ejκx − f

∗(y)e−jκx
� ∂v̂i
∂y

+
jκ

2

�
f
�(y)ejκx − f

∗�(y)e−jκx
�
v̂i

+
j(p+m)κ

2

�
f
�(y)ejκx + f

∗�(y)e−jκx
�
v̂i

+
jκ

2

�
f(y)ejκx + f

∗(y)e−jκx
� 1

(i+m)

∂v̂i

∂y

1

Re
∆̂η̂i

�
ej(i+m)κx

(2.130)

+M�

i=−M

�
∂∆̂v̂i

∂t
+ Uj(i+m)κ∆̂v̂i − U

��
j(i+m)κv̂i

�
ej(i+m)κx =

+M�

i=−M

�
1

Re
∆̂∆̂η̂i

�
ej(i+m)κx

(2.131)
where ∆̂ = ∂2

∂y2 − (i+m)2κ2.
Taking a Fourier transform of previous equations, testing with a function of the form

exp−j(p+m)κx one obtains for a given p:

∂∆̃v̂p

∂t
+ j(p+m)κU∆̃v̂p − j(p+m)κU

��
v̂p =

1

Re
∆̃∆̃v̂p (2.132)

∂η̂p

∂t
+ j(p+m)κU η̂p =

1

Re
∆̃η̂p

+
jκ(p+m)

2

�
f
� − f

p+m− 1

∂

∂y

�
v̂p−1

+
jκ(p+m)

2

�
f

�∗ +
f∗

p+m+ 1

∂

∂y

�
v̂p+1

(2.133)

where for the p-th index one has:

∆̃ =
∂2

∂y2
− (p+m)2κ2 and ∆̃∆̃ =

∂4

∂y4
−2(p+m)2κ2

∂2

∂y2
+(p+m)4κ4 (2.134)
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Hence if α̃ �= 0, these equations can be employed for m = 0, |p|> 1 or m �= 0, ∀p.

Case m = 0, p± 1

Each streamwise wavenumber α̃ interacts with the previous wavenumber α̃− κ and
the subsequent wavenumber α̃ + κ. Therefore the wavenumbers of index p = ±1
(α = (±1 + m)κ) interact with wavenumber of index p = ±0 . If m = 0, p = 0 the
continuity equation can not be used to obtain a well-defined v̂ − η̂ formulation.

Taking a Fourier transform of Eq. (2.131) and Eq. (2.130) considering only p ± 1
(m = 0) and remembering that v̂0 = 0 one obtains:

for m = 0, p = 1:

∂∆̃v̂1

∂t
+ jκU∆̃v̂1 − jκU

��
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1
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�
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(2.135)

for m = 0, p = −1:

∂∆̃v̂−1

∂t
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��
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1
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�
v̂−2

(2.136)

Case m = 0, p = 0

If m = 0 and p = 0 one has to consider directly the linearized x and z momentum
equations of Eq. (2.119) equations for x-component and z-component of momentum
equation and to proceed as before expanding term by term with Fourier expansions:
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∂ûi
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(2.137)
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Taking a Fourier transform of the previous equations considering only p = 0 with
m = 0 and applying continuity one obtains

∂û0

∂t
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Re

∂2û0
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∂2ŵ0

∂y2
− 1

2

�
f
� + f

∂

∂y

�
v̂−1 −

1

2
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�
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(2.139)

Stability analysis

The asymptotic stability analysis for m �= 0 and m = 0 for β = 0 is identical to that
of the case β �= 0. Asymptotic stability is verified if each eigenvalue of As in Eq. (2.84)
has negative real part. The only trouble concerns the dimensions of the matrix, so
the computation of eigenvalues and relatives eigenvectors is truncated to the first neig

higher eigenvalues.
The nonmodal stability analysis steps are the same as for the plane Poiseuille flow

over a steady Stokes layer case, reported in Sec. (2.6.2). The only difference is due
to the definition of the energy per unit volume of the flow and consequently to the
definition of the energy norm.

Using the notation above, one obtains the following expressions for energy per unit
volume:

For m �= 0:

E =
M�
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1

4(i+m)2κ2

� 1
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|2+|η̂i|2 dy (2.140)

For m = 0:
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For a given integer p for m �= 0 or for a given integer p with p �= 0 and m = 0 using
inner-product representation

e(p, t) =
1
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�
1
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� +1
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�
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{η̂p}
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��
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For m = 0 and for p = 0

e(0, t) =
1

4

�� +1

−1

�
{û0}
{ŵ0}

�H �
1 0
0 1

��
{û0}
{ŵ0}

��
dy (2.143)

Expanding unknowns with Chebyshev polynomials and integrating Eqs. (2.142,2.143)
over Gauss-Lobatto nodes with a Clenshaw-Curtis quadrature, one obtains:
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e(p,β, t) =
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and if m = 0 and p = 0
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where W is a diagonal matrix containing the integral weights and Q(p) is the energy
weight matrix for a given p− th streamwise wavenumber .

The energy weight matrix Qs for all p ∈ [−M,M ] has the following diagonal block
form

Qs =





Q(−M)

. . .
Q(0)

. . .
Q(+M)




(2.146)

where Q(0) is computed with Eq. (2.144) if m �= 0 whereas if m = 0 with Eq. (2.145).
After the definition of the energy norm through energy weight matrix one may proceed

with the standard procedure to compute the transient growth function and the optimal
input for the maximum amplification of the perturbations.
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Results

The present work is essentially a parametric study that requires exploring a huge
parameter space, where the following physical parameters are at play: Re,A,κ,β. Re is
the Reynolds number, A and κ are respectively the non-dimensional wave amplitude and
the wavenumber of the wall forcing and β is the spanwise wavenumber. The parameter
space has been discretized employing the following discretization:

Re = [500, 1000, 2000] (3.1)
A = [0.0 : 0.1 : 1.0] (3.2)
κ = [0.5 : 0.25 : 5] (3.3)
β = [0.0, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0, 1.1, 1.25, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0] (3.4)

Uniform discretization is employed for the wavenumber κ and for the amplitude A

whereas the spanwise wavenumber β has been discretized, after some preliminary studies
on the least stable eigenvalues, introducing a denser discretization for β � 1.

The discretization of the parameter space is then shown in Fig. (3.1).
In addition to physical parameters there are two main discretization parameters: the

number of Chebyshev polynomials N and the truncation factor of the modal expansion
M . These are crucial parameters that have great influence on the reliability of the
results and have to be setted properly to carry out correct modal and nonmodal stability
analysis within a small error percentage.
Finally, the number of eigenvalue neig computed through Arnoldi iteration and the time
discretization employed to compute the transient energy growth need to be defined
properly.
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Figure 3.1.: Mesh grid discretization of parameters for each Reynolds number

This chapter presents the main implementation settings employed for the linear
computation, its validations against a DNS code and some preliminary results carried
out for different Reynolds numbers considered with the detuning parameter m = 0 and
m = 0.5

Further results are reported in Apx. (A)

3.1. Implementation Settings

In this section we show how the discretization parameters M,N, time and the number
of eigenvalues neig have been defined.

3.1.1. Choice of modal truncation parameter

The modal truncation parameter M has been defined to ensure reliability of the
results of both modal and nonmodal stability analysis.

The asymptotic stability of a given base flow depends on the real part of the least
stable eigenvalue. Hence the truncation parameter M of the modal expansion must be
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Figure 3.2.: Eigenvalue spectrum for Re = 1000, k = 5, A = 1,β =
1.Thediscretizationparametersare : N = 80,M = 5

defined so that the least stable eigenvalue λ1 is made independent from M itself. The
eigenvalue spectrum is reported in Fig. (3.2).

The eigenvalue spectrum of the plane Poiseuille flow over a SSL can be related to
the Orr-Sommerfeld case. Hence, it can be considered as the Orr-Sommerfeld-Squire
spectrum repeated and translated on the imaginary axis for each streamwise wavenumber
considered in the modal expansion. The imaginary part of the eigenvalues of the
spectrum increases with the streamwise wavenumber α̃ = (p+m)κ with p ∈ [−M,M ].
Moreover, as the modulus of the streamwise wavenumber |α̃| increases the real part of
the eigenvalues decreases.

The reliability of results of modal stability analysis is ensured implementing a loop on
the truncation factor M so that the relative error between the least stable eigenvalue
computed for M and for M − 1 is less then a specific value (O(−6)) defined, in our
code with the parameter ratio.

However the analysis on the eigenvalue with the largest real part does not give us
information about the accuracy of the nonmodal stability and its transient growth. It
is necessary to define a criterion to choose M high enough to compute the transient
energy growth with adequate accuracy.

For a given set of physical parameters Re,κ, A,β, the transient energy growth function
is the envelope of all possible energy amplifications for each initial perturbations. The
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maximum of the transient energy growth is reached when the optimal initial condition
is imposed on the base flow. Hence an useful criterion to establish a proper value of
the modal truncation factor M is to analyse the distribution of the modulus of the
optimal initial conditions and the optimal output conditions on the modal expansion.
We must ensure compact support for the modulus of the optimal initial conditions and
the optimal output conditions on the modal expansion to ensure reliability of results of
the nonmodal stability analysis.

Computing the singular values and the singular vectors of matrix

A = CT eΛtGmaxT
−1

C
−1

with the detuning parameter m = 0, two possible distributions of the optimal initial
condition on the modal expansion have been found.
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(a) Wall-normal velocity
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Figure 3.3.: Optimal initial condition for the wall-normal velocity and wall-normal vorticity as
a function of the wall-normal position y and p− th wavenumber of the modal expansions. The
contours describe the modulus of the optimal initial condition for Re = 1000,κ = 5, A = 1,β = 2
with detuning parameter m = 0. The discretization parameters are: N = 100, M = 10,
neig = 1415
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Fig. (3.3) plots the modulus of the first type of the optimal initial condition in terms
of wall-normal velocity and wall-normal vorticity as a function of the wall-distance, and
of the p− th wavenumber of the modal expansion. The first distribution is characterized
by an optimal initial condition for the wall-normal velocity which has its maximum
components on the streamwise wavenumber α̃ = 0, i.e. at index p = 0 of the modal
expansion. The optimal initial condition for the wall-normal vorticity reaches its
maximum values, near the walls, for the streamwise wavenumbers α̃ proportional to the
ratio between the non-dimensional wave amplitude A of the wall forcing and its relative
wavenumber κ. As A/κ increases, the maximum values of the optimal initial condition
for the wall-normal vorticity are found at streamwise wavenumbers of higher modulus of
index p. Hence increasing A/κ ratio, the maximum values of the optimal initial condition
for the wall-normal vorticity are located at higher streamwise wavenumbers. Therefore
Minit has to be defined high enough to ensure compact support for the wall-normal
vorticity on the modal expansion.

The second distribution of the optimal initial condition for the wall-normal velocity
and wall-normal vorticity on the modal expansion is shown in Fig. (3.4). This case
is characterized by maximum values for both wall-normal velocity and wall-normal
vorticity whose position p on the modal expansion depends on A/κ as seen for the
wall-normal vorticity of the first distribution. Finally these optimal initial conditions
cover a set of streamwise wavenumbers on the modal expansion inversely proportional
to κ. A criterion that let us to relate the two possible frameworks of the optimal initial
condition on the modal expansion with the physical parameters has not been understood
yet.

Therefore in order to ensure compact support for the optimal initial conditions,
considering the assumptions exposed before, we take:

Minit ∝
CA

κ
+

1

κ
(3.5)

where C is a security factor, usually C = 2 or C = 3 are good choices.

Hence the reliability of results of both modal and nonmodal stability analysis is
achieved defining: Minit to ensure compact support of the optimal initial conditions and
then iterating on M till the relative error between the least stable eigenvalues computed
for M and for M −1 is less then ratio. The optimal output conditions modulus in terms
of wall-normal velocity and wall-normal vorticity as a function of the wall-distance,
and of the p− th wavenumber of the modal expansion are characterized by the same
distribution of maximum values of the corresponding optimal initial conditions and are
reported in Apx. (A).
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Figure 3.4.: Optimal initial condition for the wall-normal velocity and wall-normal vorticity
as a function of the wall-normal position y and p− th wavenumber of the modal expansions.
The contours describe the modulus of the optimal initial condition for Re = 1000,κ = 0.75, A =
0.5,β = 0.1 with detuning parameter m = 0. The discretization parameters are: N = 130,
M = 10, neig = 917

3.1.2. Choice of N parameter

The number of Chebyshev polynomials N employed must ensure a regular compact
support for the optimal initial conditions and the optimal output conditions. The
components of the singular vectors must define a regular pattern both on y direction
and on the modal expansion. Moreover N must be defined so that the maximum value
of the transient energy growth does not depend on N itself. The number of Chebyshev
polynomials chosen in this work is N = 80 for wavenumbers κ ≥ 1 and N = 100 for
wavenumbers κ < 1. We found, after some preliminary analysis that, for lower values of
κ the number of Chebyshev polynomials required to obtain accurate results is higher.
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3.1.3. Choice of neig parameter

The eigenvalues are computed using Arnoldi iteration with the ARPACK option
"smallest magnitude". Then the computed eigenvalues are the neig eigenvalues whose
modules are nearest to zero The choice of neig is done considering both the optimal initial
condition, as a function of wall-distance and of the modal expansion, and the spectrum
of the eigenvalues. One has to define neig in order to ensure a good approximation
of the dynamics of the maximum components of the optimal initial condition. Hence
the needed neig increases if the locations of the maximum values of the optimal initial
condition lie at higher values of modulus of p. The number of eigenvalues neig employed
is Ntot/6 for κ ≥ 1 whereas is Ntot/3 for κ < 1 with Ntot = 2(N + 1)× (2M + 1).

Arnoldi option "largest real" which computes the eigenvalues with the largest real
parts is not used, because does not always converge and the time of convergence is 10
or 100 times higher than "smallest magnitude" option.

3.1.4. Time discretization

The transient energy growth function G(t), for the problem analysed is not charac-
terized by only a global maximum as in Orr-Sommerfeld-Squire case. The stability
of the plane Poiseuille flow indeed is characterized by a monotonic growth till the
maximum and beyond it, a monotonic decrease as represented in Fig. (3.5). Moreover
the maximum value is reached with a smooth trend of growth function, then an uniform
time discretization is considered as an appropriate choice for a good computation of the
energy growth function.
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Figure 3.5.: Orr-Sommerfeld-Squire growth function for Re = 1000,α = 0.5,β = 3

On the other hand, for the plane Poiseuille flow over a steady Stokes layer the energy
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growth function is characterized by at least two local maximum. The actual global
maximum of the energy growth depends, as for the optimal initial conditions, by the
singular values of the matrix:

A = CT eΛtGmaxT
−1

C
−1

.

Two possible maximum conditions are observed and are strictly related with the
distribution of the modulus of the optimal initial conditions on the modal expansion.

If the distribution of the modulus of the optimal initial condition on the modal
expansion is that represented in Fig. (3.3) then the transient growth function is shown
in Fig. (3.6).Hence the transient growth function at the global maximum is sufficiently
smooth that a loose discretization is allowed.
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Figure 3.6.: Plane Poiseuille over a SSL growth function for Re = 1000,κ = 1.5,β = 0.5, A =
0.3. The discretization parameters are: N = 80, M = 10, neig = 567
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Figure 3.7.: Plane Poiseuille over a SSL growth function for Re = 1000,κ = 1.5,β = 0.5, A = 1.
The discretization parameters are: N = 80, M = 10, neig = 567

Otherwise if the distribution of the modulus of the optimal initial condition on the
modal expansions is represented in Fig. (3.4) then the corresponding transient energy
growth function is represented in Fig. (3.7). Hence the transient growth is characterized
by a peak trend at the maximum, therefore a denser discretization is needed to ensure
sufficiently accurate results.

The two possible maximum conditions occur at two different distinct time steps
and the maximum of the second condition occurs always before the first one. This
separation on time steps is shown in Fig. (3.8) where is represented the time step in
which the transient growth function reaches its maximum for κ = 1.50 as a function of
the spanwise wavenumber β and of the amplitude A. One may observe that the two
conditions occur at two different time levels, i.e. for A = 0.2,β = 0.1 the first one is
found at time � 15 and the second one, β = 0.3 at time � 85. Further studies may
evince a possible dependence of the maximum values of the transient energy growth
function on Reynolds number and on β
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Figure 3.8.: Plane Poiseuille over a SSL time for Gmax for Re = 1000,κ = 1.5 as a function
of A and β

The second maximum condition, occurs always before time1 = 100 , for each combina-
tion of physical parameters analysed in this work; then the following time discretization
is employed:

time1 = {0 : 1 : 99}
time2 = {100 : 10 : 800}
time = {time1, time2}

3.1.5. Effect of the detuning parameter

The main important effect introduced by the detuning parameter m �= 0 can be
considered as a shift on the modal expansion. This is clearly reported in Fig. (3.9),
where is shown the modulus of the optimal initial condition in terms of wall-normal
velocity and wall-normal vorticity as a function of wall-distance, and of the p − th

streamwise wavenumber of the modal expansion for m = 0.5. The corresponding
optimal output condition is reported in Apx. (A).
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Figure 3.9.: Optimal initial condition for the wall-normal velocity and wall-normal vorticity as
a function of the wall-normal position y and p− th wavenumber of the modal expansions. The
contours describe the modulus of the optimal initial condition for Re = 1000,κ = 5, A = 1,β = 2
with detuning parameter m = 0.5. The discretization parameters are: N = 100, M = 10,
neig = 1415

Comparing Fig. (3.9) with Fig. (3.3) it may be observed that the parameter m shifts the
maximum values from p = 0 to p = −0.5. Moreover assuming m = 0.5 we are implicitly
excluding α̃ = (p+m)κ = 0 and then the lower streamwise wavenumbers considered are
α̃p = mκ and α̃m = (m− 1)κ. This aspect in not relevant for implementation purposes
but has important effects on modal and nonmodal stability characteristics of the plane
Poiseuille flow over a SSL; as will be shown later. See also Apx. (A)
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3.2. Validations

In order to verifying the correctness of the linear code implemented, validations
against a DNS code are required. We aim at verify the results of both modal and
nonmodal stability analysis considering respectively the correctness of the least stable
or unstable eigenvalue and the reliability of the transient growth function computed.

The DNS has been carried out with the same DNS code employed by [19]
A validation of modal stability analysis against a DNS code is carried out for the

following condition: Re = 9000, A = 1,κ = 1,β = 1. For the calculation of the most
unstable eigenvalue in the linear code, we employ N = 80 Chebyshev polynomials and a
truncation parameter M = 10. The DNS is initialized with the optimal initial condition
obtained from the nonmodal stability analysis. The predicted growth rate from the
stability code is 0.0090382 for the dominant mode, and twice that for the growth of its
energy. The temporal evolution of energy of an initial perturbation computed with the
DNS code represented in Fig. (3.10) is a nice validation of the linear code. It may be
notice that after a transient period the emergence of a dominant mode whose energy
grows at exactly the expected rate.

Figure 3.10.: Validation of the calculation of the most unstable eigenvalue. Green straight
line is the energy growth prediction from the linear stability code, whereas red line is the DNS-
computed temporal evolution of energy. The discretization parameters are: N = 80, M = 10,
neig = 567

Validations of nonmodal stability analysis against a DNS code are carried out for the
following conditions: Re = 1000, A = 0,κ = 1,β = 2 and for Re = 1000, A = 0.1,κ =
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1,β = 2. The first one is simply the plane Poiseuille flow for which we employ N = 80
Chebyshev polynomials and M = 10. The second one is the Poiseuille flow subject to
a wall forcing whose non-dimensional amplitude is A = 0.1, for which we employ the
same discretization used for the Poiseuille unforced flow. The DNS-computed temporal
evolutions of energy are initialized with the optimal initial conditions obtained by the
nonmodal stability analysis. DNS and linear analysis comparison are represented in
Fig. (3.11) for the plane Poiseuille flow and in Fig. (3.12) for the case with wall forcing.
One may observe that the optimal initial condition computed with the linear code
produce the expected energy growth at the expected time. Indeed the red curve and the
green curve coincide at time t = 0 where the energy of the initial perturbation is E(t) = 1
and at time tmax where the temporal evolution of energy reaches its maximum value.
The transient energy growth function computed with the linear code is characterized
by a local maximum at time step t � 20 which is due to the non-homogeneity of the
streamwise direction.

Figure 3.11.: Transient energy growth validation against DNS code for Re = 1000, A = 0,κ =
1,β = 2. Green line is the energy growth prediction from the linear stability code, whereas
red line is the DNS-computed temporal evolution of energy. The discretization parameters are:
N = 80, M = 10, neig = 567

The forced case is characterized by a small discrepancy between the maximum values
of the temporal evolution of energy computed with the linear code and with DNS.
However this discrepancy has not been completely understood, hence further analysis
are required. A good approximation of the transient energy growth is still observed.
Finally, as first consideration, comparing Fig. (3.11) and Fig. (3.12) one may notice
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that the effect of the wall forcing causes a reduction of the maximum of the transient
energy growth verified both through DNS code and linear analysis.

Figure 3.12.: Transient energy growth validation against DNS code for Re = 1000, A = 0.1,κ =
1,β = 2. Green line is the energy growth prediction from the linear stability code, whereas
red line is the DNS-computed temporal evolution of energy. The discretization parameters are:
N = 80, M = 10, neig = 567

3.3. Modal Stability

Modal stability of plane Poiseuille flow over a steady Stokes layer has been studied
considering the least stable eigenvalue λ1 as function of parameters κ, A,β at different
Re. Results are exposed comparing the effect of the wall forcing on the plane Poiseuille
flow with respect to the reference unforced problem.

Tab. (3.1) reports the combinations of wavenumber κ, wave amplitude A, and spanwise
wavenumber β that maximize the ratio Re(λ1)/Re(λ1,ref ), at different Re numbers
considered, where Re(λ1,ref ) is the real part of the least stable eigenvalue for the plane
Poiseuille flow and Re(λ1) is the real part of the least stable eigenvalue when the wall
forcing is imposed. Therefore, the wall forcing increases the modulus of the real part of
the least stable eigenvalue leading to a more asymptotic stable condition. Indeed the
modulus of the real part of the least stable eigenvalue at Re = 2000 is more than two
times the modulus of the least stable eigenvalue for the unforced flow.
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Re κ β A Re(λ1)/Re(λ1,ref )

500 2.25 0.7 1 1.9380
1000 2 0.5 1 2.1725
2000 3 0.5 1 2.3636

Table 3.1.: Physical parameter combinations for maximum Re(λ1)/Re(λ1,ref ) at Re =
500,Re = 1000 and Re = 2000
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Figure 3.13.: Maximum Re(λ1)/Re(λ1,ref ) ,for all κ and for all β as a function of A. The
curves represent the different Reynolds numbers analysed.

We report in Fig. (3.13) the maximum Re(λ1)/Re(λ1,ref ) ratio, for all wavenumbers
κ and for all spanwise wavenumbers β considered, as a function of amplitude A at
different Reynolds numbers analysed. Fig. (3.13) clearly shows that the maximum
Re(λ1)/Re(λ1,ref ) ratio increases with A for each Reynolds number considered. The
reference Poiseuille flow is asymptotically stable, then the wall forcing has a stabilization
effect in terms of modal stability. Indeed the absolute value of the real part of the least
stable eigenvalue increases monotonically with A.

The maximum values of Re(λ1)/Re(λ1,ref ) are found for A = 1 and are the same
reported in Tab. (3.1).

Moreover the maximum Re(λ1)/Re(λ1,ref ) ratio for all wavenumbers κ and for all
spanwise wavenumbers β considered increases with Re.

We report in Fig. (3.14) the maximum Re(λ1)/Re(λ1,ref ) ratio, for all wave amplitudes
A and for all spanwise wavenumbers β, as a function of wavenumber κ of the wall
forcing at different Reynolds numbers considered. The asymptotic stabilizing effect
also depends on κ. As κ increases, the maximum Re(λ1)/Re(λ1,ref ) ratio increases
till κ = 2.25 for Re = 500 , κ = 2 for Re = 1000 and till κ = 3 for Re = 2000. At
higher values of κ the maximum Re(λ1)/Re(λ1,ref ) (for all A and for all β ) mildly
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decreases as κ increases but the wall forcing still has an asymptotic stabilization effect
with respect to the Poiseuille flow.
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Figure 3.14.: Maximum Re(λ1)/Re(λ1,ref ) for all A and for all β as a function of κ. The
curves represent the Reynolds numbers analysed
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Figure 3.15.: Least stable eigenvalue as a function A and β with Re = 2000, κ = 0.5

Modal unstable conditions have been obtained at Re = 2000 for κ = 0.5 as reported
in Fig. (3.15), where one may observe a crucial decrease of the stabilization properties
due to the wall forcing. Indeed for A � 1 and β � 1 one may observe a region of the
least stable eigenvalues whose real parts are positive.

We do not know if the flow is physically unstable for these conditions or if instabilities
may be due to possible poor discretizations for κ < 1. Hence a DNS analysis is required
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to confirm these unstable regions of the parameter space.

3.3.1. Dependence on detuning parameter

The effect of a detuning parameter m = 0.5 on the real part of the least stable
eigenvalue is considered. Tab. (3.2) reports the combinations of wavenumber κ, wave
amplitude A, and spanwise wavenumber β that maximize the ratio Re(λ1)/Re(λ1,ref )
with a detuning parameter m = 0.5

Re κ β A Re(λ1)/Re(λ1,ref )

1000 1.5 0.5 0.8 1.0142

Table 3.2.: Physical parameter combination for maximum Re(λ1)/Re(λ1,ref ) at Re = 1000
with m = 0.5

Fig. (3.16) shows the maximum Re(λ1)/Re(λ1,ref ) ratio, for all κ and for all β, as
a function of A at Re = 1000 with m = 0 and m = 0.5. One may observe that the
wall forcing with m = 0.5 affects weakly Re(λ1)/Re(λ1,ref ) as A increases. Even if
small growths of Re(λ1)/Re(λ1,ref ) are observed, they are not significant, and also may
depend on possible discretization effect.
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Figure 3.16.: Maximum Re(λ1)/Re(λ1,ref ) for all κ and for all β as a function of A at
Re = 1000 with m = 0 and m = 0.5

Fig. (3.16) shows the maximum Re(λ1)/Re(λ1,ref ) ratio for all A and for all β as a
function of κ at Re = 1000 with m = 0 and m = 0.5. Even wavenumber κ of the wall
forcing does not influence the real part of the least stable eigenvalue if perturbations
with m = 0.5 are considered.
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Figure 3.17.: Maximum Re(λ1)/Re(λ1,ref ) for all A and for all β as a function of κ at
Re = 1000 with m = 0 and m = 0.5

Therefore modal stability characteristics of the flow are not affected by the wall
forcing if m = 0.5

The modal analysis leads us to infer that for m = 0 the SSL has a stabilization
effect on the plane Poiseuille flow especially for A � 1. This asymptotic stabilization
is not observed for m = 0.5 but we do not know what happens for other values of m.
The highest value of Re(λ1)/Re(λ1,ref ) is found for Re = 2000 and is equal to 2.3636.
However for the same Re has been observed a strong downgrading of these asymptotic
characteristics for small values of κ.

Hence in order to ensure an improvement of the asymptotic stability characteristics
of a plane Poiseuille flow one could think to impose a wall forcing with 2 ≤ κ ≤ 3 and
possibly A � 1

3.4. Nonmodal Stability

Nonmodal stability analysis is carried out computing the transient energy growth
function and taking its maximum as a function of physical parameters A,κ,β. Tab.(3.3)
reports the combinations of wavenumber κ, wave amplitude A, and spanwise wavenumber
β that minimize the ratio Gmax/Gmax,ref at different Re numbers considered, where
Gmax,ref is the maximum of the transient energy growth function for the plane Poiseuille
flow and Gmax is the maximum of the transient energy growth when the wall forcing is
imposed. Therefore, for Re = 2000 the wall forcing may reduce the Gmax up to 72%
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Re κ β A Gmax/Gmax,ref

500 1.25 1.5 1 0.3463
1000 0.75 2.5 1 0.2970
2000 0.75 1.5 1 0.2767

Table 3.3.: Physical parameter conditions for minimum Gmax/Gmax,ref ratio at Re = 500,Re =
1000 and Re = 2000

We report in Fig. (3.18) the minimum Gmax/Gmax,ref ratio, for all wavenumbers
κ and for all spanwise wavenumber β considered, as a function of amplitude A for
different Reynolds numbers analysed. As A increases the minimum Gmax/Gmax,ref

ratio decreases and reaches its minimum values for A = 1, in our study. Possible further
reductions may be obtained for higher values of A. Moreover one may observe that the
effect of wall forcing on Gmax/Gmax,ref increases with Re even if this is less remarkable
for high values of A (A ≥ 0.7)

We report in Fig. (3.19) the minimum Gmax/Gmax,ref ratio, for all wave amplitudes A
and for all spanwise wavenumbers β considered, as a function of wavenumber κ at different
Reynolds numbers. Considering Fig. (3.19) one may observe that Gmax/Gmax,ref reaches
its minimum values for κ = 0.75 at Re = 1000 or Re = 2000 and for κ = 1.25 at
Re = 500.
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Figure 3.18.: Minimum Gmax/Gmax,ref ratio for all κ and for all β as a function of A. The
curves represent the Reynolds numbers analysed with m = 0

Beyond the minimum conditions, the minimum Gmax/Gmax,ref ratio mildly depends
on κ for each Re number considered. For κ < 1 at Re = 500 and for κ < 0.75 at
Re = 1000 the ratio Gmax/Gmax,ref increases significantly. This increment is not
observed for Re = 2000 but a further study considering lower κ values may be useful to
understand if we have similar behaviour as for Re = 500 and Re = 1000.
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Figure 3.19.: Minimum Gmax/Gmax,ref ratio for all A and for all β as a function of κ. The
curves represent the Reynolds numbers analysed with m = 0

Unstable conditions for Re = 2000 and κ = 0.5 are also confirmed by nonmodal
analysis. Moreover for β � 1 an increment of Gmax/Gmax,ref is observed at small values
of wavenumber κ as reported in Fig. (3.20) for κ = 0.5 where is reported Gmax as a
function of A and β at Re = 1000
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Figure 3.20.: Gmax as a function A and β with Re = 2000, κ = 0.5

One may observe a region located at A = 1, β � 1 of strong growth of Gmax with
respect to the plane Poiseuille flow (A = 0). Hence the positive stabilization effects
observed, in terms of nonmodal stability, are vanished. These regions where Gmax grows
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with respect to Gmax,ref of the plane Poiseuille flow, must be verified with DNS in
order to exclude possible discretization problems. Therefore we aim at verify if these
conditions are physically observed.

3.4.1. Dependence on detuning parameter

The dependence of nonmodal stability of the flow is analysed for a detuning parameter
m = 0.5. Results are reported comparing the conditions: Re = 1000 with m = 0 and
Re = 1000 with m = 0.5. Tab.(3.4) the combination of wavenumber κ, wave amplitude
A, and spanwise wavenumber β that minimize the ratio Gmax/Gmax,ref with m = 0.5
at Re = 1000. Therefore, the wall forcing may reduce the maximum energy growth up
to 65%, less than the case with m = 0 but it is still quite remarkable.

Re κ β A Gmax/Gmax,ref

1000 0.75 2.5 1 0.3575

Table 3.4.: Physical parameter condition for minimum Gmax/Gmax,ref at Re = 1000 and
m = 0.5
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Figure 3.21.: Minimum Gmax/Gmax,ref ratio for all κ and for all β as a function of A at
Re = 1000 with m = 0 and m = 0.5

We report in Fig. (3.19) the minimum Gmax/Gmax,ref ratio, for all κ and for all β
considered, as a function of A at Re = 1000 for m = 0 and m = 0.5 As A increases
Gmax/Gmax,ref ratio monotonically decreases for m = 0.5 and reaches its minimum
value for A = 1 even if the effect on energy growth ratio is smaller than for m = 0 for
all wave amplitudes considered.
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Figure 3.22.: Minimum Gmax/Gmax,ref ratio for all A and for all β as a function of κ at
Re = 1000 with m = 0 and m = 0.5

We report in Fig. (3.19) the minimum Gmax/Gmax,ref ratio for all A and for all
β as a function of κ at Re = 1000 for m = 0 and m = 0.5 Considering Fig. (3.22)
one may observe that the Gmax/Gmax,ref ratio for κ ≥ 0.75 increases with κ both for
m = 0 and m = 0.5 but this growth is more significant for m = 0.5. Indeed for κ = 5
the minimum ratio Gmax/Gmax,ref � 0.83 and the positive effects of the SSL on the
nonmodal stability characteristics of the flow are significantly reduced.

The steady Stokes layer allows us to obtain important improvements on both modal
and nonmodal stability properties of the plane Poiseuille flow. The most important
results are observed for A � 1 and κ � 1 where the module of the least stable eigenvalue
is approximately doubled and the maximum of the energy growth function may be
reduced up to 72% with respect to the maximum observed for the plane Poiseuille flow.

The main wall forcing parameter that affects both modal and nonmodal stability
properties of the plane Poiseuille flow is the wave amplitude A. Indeed as A increases
the module of the real part of least stable eigenvalue increases for a detuning parameter
m = 0, and the maximum of the transient energy growth decreases for both m = 0 and
m = 0.5.

Modal and nonmodal stability characteristics of the plane Poiseuille flow over a SSL
also depend on κ, but this dependence for κ ≥ 1.25 is less remarkable incrementing
Re number. However these improvements may downgrade considering κ < 1 where
amplifications of the transient energy growth function with respect to the plane Poiseuille
flow are observed.
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3.4.2. Optimal initial conditions

A nonmodal analysis also provides us with the spatial shape of the optimal input, or
optimal initial condition, i.e. the spatial shape of the pertubation at time t = 0 that
is capable of maximum energy growth amplification before long-term decay. For the
present problem, the optimal initial condition is not constrained to be described by a
single streamwise wavenumber but covers a set of streamwise wavenumbers considered
in the modal expansion.

The optimal initial and optimal output conditions in physical domain are reported
comparing the unforced plane Poiseuille flow A = 0 and the Poiseulle flow subject to a
wavelike wall forcing with non-dimensional wave amplitude A = 1. Only the detuning
parameter m = 0 is considered: no subharmonics are allowed.

We report the optimal initial and the optimal output conditions space appearance
for Re = 1000, κ = 1,β = 2.0, in Figs. (3.23, 3.24), a further case, for Re = 1000,
κ = 2,β = 0.5, is reported in Apx. (A).

The wall forcing affects the shape of both optimal initial and optimal output conditions.
For A = 0 with m = 0 no modulations in streamwise direction are observed, for all
velocity components u, v, w of the perturbation for both optimal input and optimal
output. These perturbation appearances in Fourier space are represented by only
the mode p = 0 of the modal expansion. Indeed considering a modal expansion on
streamwise wavenumbers, the optimal initial condition for the plane Poiseuille flow that
leads to the maximum of the transient energy growth for a spanwise wavenumber β = 2
occurs for a streamwise wavenumber α = 0. Hence the spatial shape of the optimal
initial condition does not modulate in streamwise direction.

For A = 1, optimal initial condition is characterized by an overlap of perturbations
of different wavenumbers in streamwise direction; i.e. the optimal initial condition u

component is characterized by one-time periodic fundamental harmonics overlapped
with higher harmonics components. The wall forcing also modulates w component of the
optimal input in streamwise direction introducing higher harmonics of lower magnitude
to the fundamental mode with p = 0.

Similar effects are also noticeable in the spatial shape of the output condition. Indeed
the wall forcing modulates w component of the optimal output in streamwise direction
introducing higher harmonics of lower magnitude to the fundamental mode with p = 0

Similar modulation effects of the spatial shape of the optimal initial condition and of
the optimal output condition due to the steady Stokes layer may be observed for the
case Re = 1000, κ = 2,β = 0.5 reported in Apx. (A).

The Orr mechanism [12] [14] leads to a shear inversion between the spatial shapes
of the optimal input and of the optimal output . The initial perturbation pattern is
simply advected by the flow. Indeed the effect of Orr-mechanism is to rotate the initial
vorticity pattern in the direction of the shear; this may be observed considering u,w

components.
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Conclusions

The linear stability of plane Poiseuille flow modified by a wall velocity forcing in the
form of streamwise stationary waves of spanwise velocity has been analized. Both modal
and nonmodal stability characteristics have been studied analysing respectively the real
part of the least stable eigenvalue and the maximum of the transient energy growth
function.

The mathematical formulation and its implementation of linearized wall-normal
velocity and vorticity equations are not straightforward due to the fact that the wall
forcing introduces inhomogeneity in streamwise direction.

The simple transform in Fourier space to decouple wavenumbers and to transform
the problem to a one-dimensional eigenvalue study can not be taken any more. Hence
we have to consider a sufficient large set of wavenumbers in streamwise direction to
describe correctly its spatial non-homogeneity.

The linearized equations have been implemented using Chebyshev polynomials and
their integration with a Gaussian quadrature over Gauss-Lobatto nodes. Reliability of
results has been verified against DNS code employed by [19].

Modal stability analysis shows:

• The presence of a SSL with m = 0 leads to asymptotic more stable conditions: as
A increases, the real part of the least stable eigenvalues decreases; even if it is not
always observed for values of κ < 1.

• The modal stability for m = 0.5 is not influenced by the wall forcing.

• The modal stabilization effect due to the SSL increases with Re.

• Unstable conditions are found for β = 1,κ < 1, Re = 2000, A � 1.

Nonmodal stability analysis shows:
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• The maximum of the transient energy growth decreases as wave amplitude A

increases, and for A = 1 reductions up to ∼ 72% with respect to the plane
Poiseuille flow are observed.

• Transient energy growth amplifications with respect to the reference plane Poiseuille
flow are observed for κ < 1.

• Nonmodal maximum energy growth reduction increases with Re number.

• The maximum reduction of Gmax for m = 0.5 is lower than for m = 0, even if an
important Gmax/Gmax,ref decrease with A is also observed.

Therefore a steady Stokes layer allows us to obtain important improvements on
both modal and nonmodal stability properties of the plane Poiseuille flow. These
improvements reach their maximum values imposing a wall forcing with κ � 1 and A = 1
(where κ is the non-dimensional streamwise wavenumber and A the non dimensional
amplitude). Wall forcing with κ << 1 may lead to Gmax/Gmax,ref amplifications and if
m = 0.5 for κ ≥ 1 the positive stabilization effects may vanish. However these strange
amplifications of the maximum of the transient energy growth have to be verified against
a DNS analysis.

Future studies

This work is essentially a preliminary study that spans the entire parameter space, to
comprehend how the SSL affects the stability characteristics of a plane Poiseuille flow.
Some other relevant studies may be done:

• Repeat the analysis for higher Re numbers to confirm the reduction of the
maximum of the transient energy growth observed increasing Re for k ≥ 1.

• Carry out a complete study on Re for m �= 0.

• DNS analysis to understand energy amplification against the plane Poiseuille
reference case for values of κ lower than 1.

• DNS analysis to verify the unstable conditions found at Re = 2000 for κ < 1

• Analyse the stability of plane Poiseuille flow over a generalized Stokes layer, when
the wall forcing is time dependent.
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APPENDIX A

Further results

In this Appendix we present further results analysed. We aim at showing the main
modal and nonmodal stability properties of plane Poiseuille flow over a SSL as functions
of physical parameters Reκ,β, A that we have not considered in the preliminary results
exposed in Chap. (3). We provide visualizations of the least stable eigenvalue and the
maximum of the energy growth function in the physical parameter space, that let us to
observe the global effect of the SSL on the main streamwise base flow.

A.1. Modal Stability

Modal stability has been studied considering the least stable eigenvalue as a function
of parameters κ, A,β. We show in Figs. (A.1, A.2, A.3) how the main parameters affect
the asymptotic stability of the least stable eigenvalue.

In these figures is shown the condition for A = 0, which corresponds to the plane
Poiseuille flow. One may notice that the presence of spanwise base flow gives us
eigenvalues with lower real parts and then more stable asymptotic conditions.

As A increases for β > 3 the real part of the largest eigenvalue approximately decreases
monotonically . For β < 3 the least stable eigenvalue also decreases with respect to
the Poiseuille flow but at β = 1 we observe an increment of its real part for A > 0.5.
Indeed comparing Figs. (A.1, A.2, A.3) one may observe a region for β < 2 where as
A increases the real part of the least stable eigenvalue decreases, i.e. the asymptotic
stabilization effect, in terms of modal stability, of the spanwise wall forcing diminishes.
This reduction of asymptotic stability margin increase with Re number, in particular
for Re = 2000 for κ < 1,β = 1 and A = 1 an asymptotic unstable region is observed
Fig.(A.3). A further DNS analysis could be useful to understand if the instability, could
be related to some discretization problems, or if the asymptotic stability properties
of the baseflow are actually unstable for that wall forcing condition. DNS of small
κ conditions are not presented in this work, which is only a preliminary study that
may introduce further complete studies on the main important difficulties or problems
evinced.
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Figure A.1.: Least stable eigenvalue at Re = 500 as a function of parameters κ, A and β
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Figure A.2.: Least stable eigenvalue at Re = 1000 as a function of parameters κ, A and β
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Figure A.3.: Least stable eigenvalue at Re = 2000 as a function of parameters κ, A and β

We report in Fig. (3.13) the maximum Re(λ1)/Re(λ1,ref ) ratio for all wavenumbers
κ and for all wave amplitudes A as a function of β at different Reynolds numbers
considered. The maximum Re(λ1)/Re(λ1,ref ) ratio is achieved for low values of β,
i.e. for β = 0.5 at Re = 1000 or Re = 2000 and for β = 0.7 at Re = 500. For
β > 1 as β increases the maximum Re(λ1)/Re(λ1,ref ) ratio, for all κ and for all A,
monotonically decreases. Moreover the maximum Re(λ1)/Re(λ1,ref ) ratio increases with
Re. Therefore the maximum asymptotic stabilization effects due to the SSL are observed
for perturbations whose spanwise wavenumbers are sufficiently small, i.e. β ≤ 1.
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Figure A.4.: maximum Re(λ1)/Re(λ1,ref ) ratio for all κ and for all A as a function of β.
The curves represent the Reynolds numbers analysed
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Figure A.5.: Re(λ1)/Re(λ1,ref ) ratio for, A = 1, κ = 3 as a function of β. The curves
represent the Reynolds numbers analysed

However considering Fig(A.2), possible regions in which Re(λ1) increases with A

may exist. We report in Fig. (A.5) the Re(λ1)/Re(λ1,ref ) ratio for, A = 1, κ = 3
as a function of β. Therefore for 0.7 ≤ β ≤ 2 the Re(λ1)/Re(λ1,ref ) decreases as Re

increases. It looks as if for 0.7 ≤ β ≤ 2 the asymptotic stabilization effect of the wall
forcing is reduced and this reduction, may lead to unstable conditions for Re = 2000
as observed in Fig. (A.3). However further analysis against DNS may be useful to
understand if these unstable conditions may be related with possible discretization
problems.
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A.1.1. Dependence on detuning parameter

The least stable eigenvalues may be affected by the detuning parameter. We report in
Fig. (A.6) the least stable eigenvalue as a function of parameters κ, A,β for a detuning
parameter m = 0.5. We report in Fig. (3.13) the maximum Re(λ1)/Re(λ1,ref ) ratio for
all κ and for all A as a function of β at Re = 1000 with m = 0 and m = 0.5.
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Figure A.6.: Least stable eigenvalue at Re = 1000 as a function of parameters κ, A and β with
m = 0.5

One may observe that the asymptotic stability of the flow is not affected by the
wall forcing for any combination of parameters κ,β, A as we observed in Chap. (3).
Therefore, the flow, is characterized by the same asymptotic stability characteristics of
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the plane Poiseuille flow. Indeed, the maximum Re(λ1)/Re(λ1,ref ) ratio for all κ and
for all A, with m = 0.5 is unitary for all β values considered.
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Figure A.7.: Maximum Re(λ1)/Re(λ1,ref ) ratio for all κ and for all A as a function of β at
Re = 1000 with m = 0 and m = 0.5.

A.2. Nonmodal Stability

Non modal stability analysis is done computing the transient energy growth function
and taking its maximum as a function of physical parameters A,κ,β.

Figs. (A.8, A.9, A.10) concern the maximum growth of an initial perturbation at
respectively Re = 500, Re = 1000 and Re = 2000.

A = 0 is the reference plane Poiseuille flow. As A increases the maximum of energy
growth progressively decreases. Hence the presence of the steady Stokes layer has a
stabilization effect, in terms of nonmodal stability, on the plane Poiseuille flow.

The amplification of an infinitesimal initial perturbation is less significant than the
reference plane Poiseuille flow, in terms of nonmodal stability this implies that the flow
may be more stable. Indeed if the energy growth is lower than the plane Poiseuille flow
for each given combination of physical parameters then an infinitesimal perturbation
may remain small enough to prevent transition, when nonlinearity are considered.

The effect of the nonlinear quadratic terms dropped in the v − η formulation is less
important than in the Poiseuille flow. Amplifications of the transient energy growth
are found for κ < 1 , β � 1 and A � 1. The flow as predicted by modal analysis at
Re = 2000, for κ = 0.5, A = 1 and β = 1 is unstable and linearity is lost.

81



Appendix A. Further results

k

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

β

0

1

2

3

4

5

A

0

0.5

1

Gmax: 5 10 15 20 25 30 35 40 45 50 70

(a) Poiseuille reference A = 0

k

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

β

0

1

2

3

4

5

A

0

0.5

1

Gmax: 5 10 15 20 25 30 35 40 45 50 70

(b) A = 0.5

k

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

β

0

1

2

3

4

5

A

0

0.5

1

Gmax: 5 10 15 20 25 30 35 40 45 50 70

(c) κ = 3 (d) Parameters view

Figure A.8.: Maximum energy growth at Re = 500 as a function of parameters κ, A and β
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Figure A.9.: Maximum energy growth at Re = 2000 as a function of parameters κ, A and β
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Figure A.10.: Maximum energy growth at Re = 2000 as a function of parameters κ, A and β

We report in Fig. (A.11) the minimum Gmax/Gmax,ref ratio for all κ and for all A
as a function of β at different Reynolds numbers considered. One may observe that
the minimum values Gmax/Gmax,ref ratio are obtained for 1 ≤ β ≤ 3. For β < 1 as β

increases, the minimum Gmax/Gmax,ref ratio for all κ and for all A, strongly increases
and reaches its maximum values Gmax/Gmax,ref = 1 for β ≤ 0.3 for each Re considered.
Therefore, for β ≤ 0.3 the condition that minimizes Gmax/Gmax,ref ratio is the plane
Poiseuille flow. Indeed considering the Gmax/Gmax,ref ratio for κ = 0.75, A = 1 as a
function of β, reported in Fig. (A.12), one may observe that the presence of the wall
forcing may lead to possible Gmax amplification against the plane Poiseuille flow for
β ≤ 1
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Figure A.11.: Minimum Gmax/Gmax,ref ratio for all κ and for all A as a function of β at
different Reynolds numbers considered.
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Figure A.12.: Gmax/Gmax,ref ratio for κ = 0.75, A = 1 as a function of β. The curves
represent the Reynolds numbers analysed
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A.2.1. Dependence on detuning parameter

The detuning parameter m has also an important role on the maximum of the transient
growth function. We have only analysed the case for m = 0.5 at Re = 1000 and reported
the results in Fig. (A.13).
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(b) A = 0.5
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Figure A.13.: Maximum energy growth at Re = 1000 as a function of parameters κ, A and β

with detuning parameter m = 0.5

A = 0 is the plane Poiseuille model problem. The distribution of Gmax on param-
eters κ,β with A = 0 is comparable with Gmax dependence on wavenumbers α,β for
an equivalent nonmodal stability analysis with α �= 0 of the Orr-Sommerfeld-Squire
equations.
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Differently from the case with m = 0, Gmax for A = 0 depends also on κ with
κ �= 0. It looks as if we set the detuning parameter m �= 0 for A = 0, (hence we are
implicitly excluding α̃ = κ = 0 streamwise wavenumber) the Gmax is also dependent
by p − th streamwise wavenumber of the modal expansion. The analysis in Fourier
space leads us to infer that for a given SSL of wavenumber κ, the Gmax distribution on
parameters (κ,β) is comparable to the Orr-Sommerfeld case distribution for a given
couple of wavenumbers (α,β) with α = mκ.

As A increases the Gmax decreases, and the flow could be considered more stable in
terms of nonmodal stability.

The combination of physical parameters that minimizes the Gmax/Gmax,ref is reported
in Tab. (3.4), and the main effect of the wall forcing on nonmodal stability are addressed
in Chap. (3).
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Figure A.14.: Minimum Gmax/Gmax,ref ratio, for all κ and for all A considered, as a function
of β at Re = 1000 with m = 0 and m = 0.5

We show in Fig. (A.14) the minimum Gmax/Gmax,ref ratio for all κ and for all A as a
function of β at Re = 1000 with m = 0 and m = 0.5. One may observe that if m = 0.5
the minimum Gmax/Gmax,ref ratio for β < 2.5 could strongly increase than the case
for m = 0 and its maximum values are obtained for β ≤ 0.3 where the condition that
minimizes Gmax is the reference plane Poiseuille flow. Indeed considering Fig. (A.15)
for β ≤ 1.5 the Gmax/Gmax,ref strongly increases for both m = 0 and m = 0.5, but this
growth is greater for m = 0.5.
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Figure A.15.: Gmax/Gmax,ref ratio for κ = 0.75 and for A = 1 as a function of β at Re = 1000
with m = 0 and m = 0.5

A.2.2. Output conditions in Fourier space

We report the optimal output conditions relative to the optimal initial conditions
shown in Chap. (3). Figs. (A.16, A.17, A.18) plot the modulus of the optimal output
conditions in terms of wall-normal velocity and wall-normal vorticity as a function of
wall-distance, and of the p− th wavenumber of the modal expansion.
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Figure A.16.: Optimal output condi-
tion for the wall-normal velocity and
wall-normal vorticity as a function of
the wall-normal position y and p− th

wavenumber of the modal expansions.
The contours describe the modulus of
the optimal output condition for Re =
1000,κ = 5, A = 1,β = 2 with de-
tuning parameter m = 0. The dis-
cretization parameters are: N = 100,
M = 10, neig = 1415
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Figure A.17.: Optimal output condi-
tion for the wall-normal velocity and
wall-normal vorticity as a function of
the wall-normal position y and p− th

wavenumber of the modal expansions.
The contours describe the modulus of
the optimal output condition for Re =
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Figure A.18.: Optimal output condi-
tion for the wall-normal velocity and
wall-normal vorticity as a function of
the wall-normal position y and p− th

wavenumber of the modal expansions.
The contours describe the modulus of
the optimal output condition for Re =
1000,κ = 5, A = 1,β = 2 with de-
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cretization parameters are: N = 100,
M = 10, neig = 1415

A.2.3. Spatial shape of optimal initial conditions

We report the optimal initial condition and the optimal output condition in physical
domain for Re = 1000, κ = 2,β = 0.5, in Figs. (A.19, A.20)
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Allegato

Estratto in Italiano ai sensi dell’Art. 9 del Regolamento degli esami di Laurea magistrale 2012

Questa Tesi presenta uno studio della stabilità lineare di un flusso di Poiseuille
soggetto ad uno strato limite di Stokes Stazionario. Il problema analizzato introduce
una forzante sinusoidale a parete stazionaria al comune flusso di Poiseuille piano. Si
intende pertanto analizzare in qual modo quest’ultima ne influenzi la stabilità.

L’idea di questo studio nasce da un’analisi su un problema differente ovvero dalle
osservazioni di riduzione di resistenza di attrito turbolento in presenza di onde viaggianti
rispetto al flusso di canale piano (channel flow) [19]. In questo caso le onde creano
uno strato limite trasversale al flusso non stazionario sinusoidale nella direzione del
flusso che è stato chiamato strato limite di Stokes generalizzato (o GSL) [18]. Tali onde
definite per diminuire la resistenza hanno mostrato riduzioni di attrito a parete anche
superiori al 50 %. Inoltre questo elevato beneficio è ottenuto a basso costo energetico e
l’energia risparmiata netta è circa il 20 %.
Tuttavia si è notato che zone a forte riduzione di resistenza d’attrito sono state trovate
per condizioni di strato limite gereralizzato di Stokes non dipendente dal tempo, che è
stato quindi chiamato strato limite di Stokes stazionario.

Questi fenomeni di riduzione della resistenza di attrito turbolento hanno forti im-
plicazioni ingegneristiche in quanto l’attrito costituisce una importante fonte di costi
energetici in diversi ambiti e applicazioni quali l’aeronautico, l’automobilistico o il
navale. Trovare una metodologia che consenta quindi una riduzione dei fenomeni legati
all’attrito è estremamente importante.

Questo lavoro si fonda su questo concetto anche se tratta di un argomento totalmente
differente, ovvero di stabilità lineare. L’obbiettivo ultimo è capire come lo strato limite
generalizzato di Stokes interagisce con il flusso di Poiseuille nell’ambito della stabilità
lineare per capire come questo GSL influenza la resistenza di attrito turbolento.

Lo studio della stabilità lineare di un flusso di Poiseuille soggetto a una forzante a
parete comporta svariate difficoltà rispetto al caso indisturbato. Tali difficoltà sono
strettamente legate allo strato limite di Stokes che rende il problema non omogeneo
nella direzione del flusso.
In caso di flusso piano di Poiseuille, anche noto come channel flow, si può osservare
che le direzioni parallela al flusso e trasversale ad esso sono omogenee; ciò permette di
definire un sistema di equazioni di Navier Stokes i cui coefficienti dipendono solo dalla
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coordinata normale a parete. Il problema pertanto si dice autonomo nelle direzioni
parallela e trasversale al flusso piano di Poiseuille. La linearizzazione delle equazioni di
Navier-Stokes e la successiva rielaborazione delle stesse rispetto alle variabili di velocità
e vorticità normale alla parete, ovvero la famosa formulazione v−η, consente di ottenere
le equazioni di Orr-Sommerfeld-Squire. Tali equazioni sono puramente evolutive e non
più equazioni alle derivate parziali, come nel caso delle equazioni di Navier-Stokes.
Pertanto, considerando una dipendenza esponenziale rispetto al tempo, costituiscono
un problema agli autovalori che può essere risolto nello spazio di Fourier semplicemente
considerando una espansione modale delle incognite nelle direzioni parallela e trasversale
al flusso di Poiseuille e sfruttando l’ortogonalità dei modi (grazie alla omogeneità di tali
direzioni) .

In caso di flusso di Poiseuille soggetto ad una forzante sinusoidale a parete modulata
in direzione del flusso, il problema si complica. La direzione parallela al flusso non è più
omogenea e l’ortogonalità dei modi lungo essa non può essere sfruttata.
Il problema pertanto si dice essere globale nella direzione parallela al flusso di Poiseuille
e spettrale in direzione trasversale ad esso. Pertanto per ottenere equazioni analoghe
a quelle di Orr-Sommerfeld-Squire nel caso di un flusso di Poiseuille soggetto a strato
limite di Stokes stazionario, sfruttando la sinusoidalità della forzante a parete, si opera
una espansione in serie di Fourier delle incognite che consideri tutti i numeri d’onda (o
una espansione opportunatamente troncata) nella direzione del flusso e si effettua quindi
una trasformata di Fourier nella direzione dello stesso. Un aspetto cruciale di queste
equazioni scritte nel dominio di Fourier è che ciascun numero d’onda definito nella
direzione del flusso interagisce con se stesso e i numeri d’onda successivo e precedente
dell’espansione modale considerata.

Questo lavoro di tesi presenta pertanto un confronto sia matematico sia intermini
di analisi di stabilità tra ciò che accade nel caso di flusso piano di Poiseuille e quanto
invece riguarda il caso perturbato dalla forzante sinusoidale imposta.

In una prima parte viene analizzata la fisica del problema osservando che se il
flusso di Poiseuille è laminare il suo profilo parabolico non interagisce con lo strato
limite trasversale a esso. Vengono pertanto ricavati analiticamente i due flussi base
considerati: ll flusso di Poiseuille, il flusso trasversale o strato limite stazionario di
Stokes. Introducendo quindi un campo di velocità perturbatorio infinitesimo, vengono
linearizzate le equazioni di Navier Stokes rispetto ai flussi base in gioco, eliminando i
termini quadratici della perturbazione. Effettuando un cambiamento di variabili si può
ottenere la formulazione nelle variabili di velocità e vorticità normale a parete. Infine
viene effettuata una trasformata di Fourier nelle direzioni parallela e trasversale al flusso
di Poiseuille per ottenere la formulazione finale delle equazioni del problema.

Le incognite del problema, fissato il numero d’onda in direzione trasversale al flusso
di Poiseuille, sono pertanto le componenti di velocità e di vorticità normale a parete per
ogni numero d’onda considerato nella espansione modale adottata.

Successivamente si è passati alla implementazione numerica delle equazioni trasformate
nel dominio di Fourier. Per ogni numero d’onda considerato nell’espansione modale, le
incognite di velocità e vorticità normale a parete vengono discretizzate mediante una
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esapnsione di polinomi di Chebyshev.
La discretizzazione delle equazioni rispetto ad una espansione troncata di numeri

d’onda nella direzione del flusso di Poiseuille permette di ottenere un problema di tipo
evolutivo nelle variabili di velocità e vorticità normali a parete (per ogni numero d’onda
nella direzione del flusso considerato). Si ottiene quindi un problema agli autovalori che,
portato agli stati, è caratterizzato da una matrice sparsa tridiagonale a blocchi.

Tale matrice tuttavia è di dimensioni ragguardevoli infatti dato il fattore di tronca-
mento dell’espansione modale M , la sua dimensione è comparabile al problema standard
di Orr-Sommerfeld moltiplicato per un fattore pari a (2M + 1)2. Volendo calcolare con
buona approssimazione la dinamica della perturbazione infinitesima imposta, tuttavia
non è necessario considerare tutti i modi del problema, ma solo un sottoinsieme degli
stessi. Gli autovalori, necessari sia per l’analisi modale, sia per l’analisi non-modale
sono quindi calcolati mediante metodo di Arnoldi, della libreria ARPACK, che calcola i
primi neig autovalori con parte reale più grande.

L’analisi di stabilità modale o stabilità modale considera l’autovalore a parte reale più
grande, in quanto definisce il comportamento asintotico di una generica perturbazione.
Se l’autovalore a parte reale più grande λ1 ha parte reale positiva, si ha una condizione
di instabilità altrimenti il flusso è asintoticamente stabile per quella data perturbazione
infinitesima imposta. Pertanto si effettua uno studio dell’andamento dell’autovalore
a parte reale più grande in funzione dei parametri fisici del problema analizzato che
risultano essere: il numero di Reynolds Re, il numero d’onda relativo alla direzione
trasversale al flusso di Poiseuille β e il numero d’onda κ della forzante sinusoidale in
streamwise e la sua relativa ampiezza A adimensionalizzata rispetto velocità di mezzeria
del flusso di Poiseuille Up.

L’analisi di stabilità non-modale è basata sul concetto di crescita transitoria, [24],
[27], [26] per il quale è necessario definire l’operatore norma energia. Si tratta di un
operatore integrale che deve essere ridefinito rispetto al semplice caso di Orr-Sommerfeld
per considerare tutti i numeri d’onda della espansione modale nella direzione parallela
al flusso di Poiseuille. L’integrazione numerica utilizzata è una particolare quadratura
gaussiana che sfrutta i polinomi di Chebyshev per definire gli opportuni pesi di inte-
grazione; tale integrazione è anche chiamata quadratura di Clenshaw-Curtiss. L’analisi
di stabilità non-modale è quindi definita analizzando il massimo della crescita transitoria
in funzione dei parametri fisici Re,κ, A,β.

Sia per l’analisi di stabilità modale sia per quella non-modale sono state considerate
anche possibili perturbazioni infinitesime il cui primo numero d’onda dell’espansione
modale possa essere una sub-armonica del numero d’onda della forzante a parete
introducendo un opportuno parametro di detuning pari a m = 0.5.

A seguito della implementazione del codice si è passati quindi alla calibrazione dei
parametri di discretizzatione adottati quali, il numero di polinomi di Chebishev N

adottati, il fattore di troncamento dell’espansione modale M per ottenere risultati
affidabili. Tale calibrazione è stata effettuata considerando diversi casi test in modo tale
che i risultati fossero dipendenti dai parametri di discretizzazione con un piccolo errore
percentuale. In tesi vengono mostrati i criteri osservati per ottenere questa accuratezza
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nei risultati. A seguito di una indagine preliminare di stabilità modale e non modale
è stata definita anche una discretizzazione dei parametri fisici Re,κ, A,β infittendo
la griglia di calcolo dove particolari variazioni delle proprietà di stabilità sono state
riscontrate.

Si è quindi passati alla validazione del codice lineare mediante DNS. Sono stati
verificati il corretto calcolo dell’autovalore a parte reale più grande considerando una
condizione instabile e verificando che il rateo di crescita dell’energia cinetica della
perturbazione fosse pari al doppio della parte reale dell’autovalore più instabile. Si è
verificata anche la completa accordanza tra la funzione di crescita transitoria calcolata
mediante ilcalcolo lineare e mediante DNS.

Infine, una volta accertata l’affidabilità dei risultati si è passati alla vera e propria
analisi della stabilità modale e non modale per differenti combinazioni dei parametri
fisici Re,κ, A,β, considerando come parametro di detuning m = 0, m = 0.5

I risultati vengono riportati in tesi nei termini di massima diminuzione della parte
reale dell’autovalore meno stabile e di massima riduzione della funzione di crescita
transitoria per tutti i parametri fisici analizzati.

I risultati ottenuti sono particolarmente significativi sia in termini di stabilità modale,
sia in termini di stabilità non modale. La forzante sinusoidale a parete infatti per
m = 0 determina una diminuzione (un aumento del modulo) della parte reale degli
autovalori rispetto al caso di flusso di Poiseuille non forzato. Il flusso risulta quindi
essere asintoticamente più stabile, anche se sono state trovate condizioni di asintotica
instabilità per Re = 2000, A � 1,β � 1 e κ = 0.5. Lo strato limite di Stokes non
influenza praticamente la stabilità modale del flusso di Poiseuille in caso di parametro di
detuning m = 0.5. Il massimo della crescita transitoria viene diminuito rispetto al caso
di flusso di Poiseuille piano. In particolare, sono state osservate riduzioni fino al 70 %
del massimo valore della funzione di crescita energetica transitoria del flusso di Poiseuille
non forzato. Si è notato che il massimo della funzione di crescita transitoria decresce
monotonicamente al crescere dell’ampiezza adimensionalizzata della forzante di parete.
Si osserva inoltre che le più significative riduzioni del massimo della crescita transitoria
rispetto al flusso di Poiseuille piano si ottengono per valori di κ � 1. Aumentando κ

questo effetto diminuisce e risulta particolarmente ridotto in caso si consideri m = 0.5.
Amplificazioni della funzione di crescita transitoria sono state determinate per κ < 1

Si può quindi concludere che la forzante sinusoidale imposta a parete determina un
incremento delle caratteristiche di stabilità modale e non modale del flusso piano di
Poiseuille. I maggiori benefici si ottengono per valori di A = 1 e κ � 1.
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Questo lavoro è strutturato come segue:

• Introduzione: Viene presentato il problema analizzato, il tipo di analisi che
verrà condotta e le motivazioni di questo studio

• Capitolo 1: Equazioni di governo: Vengono presentati i concetti alla base
della stabilità linerare,ì cercando di evidenziare gli aspetti della linearizzazione
delle equazioni di Navier-Stokes rispetto ad un flusso base stazionario imposto,
eliminando i termini quadratici perturbatori. Viene presentata la formulazione
v−η, la sua trasformazione nel dominio di Fourier e le equaziondi Orr-Sommerfeld-
Squire.

• Capitolo 2: Flusso piano di Poiseuille soggetto ad uno strato limite
stazionario di Stokes: Viene esposto il problema in analisi della tesi, defini-
tii flussi base, la formulazione matematica delle equazioni, e la loro successiva
linearizzazione. Si evidenziano i problemi dovuti alla globalità della direzione
parallela al flusso base e si trasformano le equazioni nel dominio di Fourier. Si
presenta inoltr la discretizzazione delle equazioni mediante polinomi di Cheby-
shev e la struttura implementativa del codice. Viene analizzato il sottocaso di
una possibile perturbazionie invariante spazialmente nella direzione trasversale al
flusso di Poiseuille. Vengono evidenziate le problematiche matematiche connesse e
analizzata la struttura delle equazioni. Viene infine riportato un metodo per il
calcolo degli autovalori più efficiente ma valido solo nel caso β = 0

• Capitolo 3: Risultati: Si presenta come sono stati definiti i parametri di
discretizzazione principali del codice. Si effettua la validazione del calcolo lineare
mediante DNS. Vengono riportati i principali risultati di stabilità modale e non-
modale. Viene analizzata la dipendenza dell’autovalore a parte reale maggiore dai
parametri fisici in analisi Viene analizzato l’andamento del massimo della crescita
transitoria in funzione dei parametri Re,κ, A,β

• Conclusioni: Vengono riportate le principali conclusioni e i possibili sviluppi
futuri per questo lavoro di Tesi

• Appendice A: Ulteriori risultati Vengono riportati ulteriori risultati per differ-
enti numeri di Reynolds, sia per la stabilità modale sia per la stabilità non-modale.
Si riportano i risultati di stabilità modale e non modale in funzione del numero
d’onda in direzione trasversale al flusso di Poiseuile. Si riportano le condizioni di
optima initial e optimal output sia nello spazio fisico sia in funzione dell’espansione
modale e della coordinata normale a parete.
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