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Abstract

We perform a direct numerical simulation (DNS) of a turbulent channel flow
over porous walls. In the fluid region the flow is governed by the Navier-Stokes
equations, while in the porous layers is governed by the Volume-Averaged Navier-
Stokes equations derived by Whitaker [54, 55, 56]. The latter equations are
obtained by volume-averaging the microscopic flow field over a small volume,
in order to model a macroscopic, or volume-averaged, flow field. The volume-
averaging technique allows to treat the porous medium as a continuum. To
formulate numerically this problem, we derive and implement the v-η formu-
lation of the Navier-Stokes and Volume-Averaged Navier-Stokes equations. At
the interface between the porous layers and the fluid region, we impose the mo-
mentum transfer conditions proposed by Ochoa-Tapia and Whitaker [31, 32, 33].
The DNS solver used to integrate the coupled evolution equations is a substan-
tial extension of an existing solver [26]. Our solver uses a Fourier discretization
in the streamwise and spanwise directions, and a compact, explicit high-order,
finite difference discretization in the wall-normal direction. Time integration is
performed using a semi-implicit method, where the nonlinear terms are advanced
with a third-order Runge-Kutta scheme, whereas the other terms are advanced
using an implicit second-order Crank-Nicholson scheme. We perform extensive
DNSs at two Reynolds numbers: a very low Reynolds number, Reτ = 65 and an
intermediate one, Reτ = 200. For both turbulent flows we analyze the turbu-
lence statistics and the flow fields. For the intermediate case, at Reτ = 200, we
perform a parametric study, where we vary the height of the porous layers and
the coefficient of the momentum transfer conditions. The results are compared
with the DNS of a turbulent channel flow over impermeable walls. For the very
low Reynolds number, Reτ = 200, we investigate if the porous wall can sustain
turbulent flows.

Key Words

Direct Numerical Simulation - Turbulence - Porosity - Permeability -
Volume-Averaged Navier-Stokes equations





Sommario

Svolgiamo una simulazione numerica diretta (DNS) di un flusso turbolento in un
canale piano con pareti porose. Nella regione di fluido il flusso è governato dalle
equazioni di Navier-Stokes, mentre negli strati porosi è governato dalle equazioni
di Navier-Stokes mediate sul volume, derivate da Whitaker [54, 55, 56]. Queste
equazioni sono ottenute mediando il campo di moto microscopico su un piccolo
volume, in modo da modellare il campo di moto macroscopico, o mediato sul
volume. Questa tecnica permette inoltre di poter considerare il mezzo poroso
come un continuo. Per formulare numericamente il problema, deriviamo e imple-
mentiamo la formulazione v-η delle equazioni di Navier-Stokes e delle equazioni di
Navier-Stokes mediate sul volume. All’interfaccia tra lo strato poroso e la regione
di fluido, imponiamo delle condizioni che accoppiano i due flussi e che assicurano
che gli scambi di massa e quantità di moto siano corretti [31, 32, 33]. Il solutore
DNS usato per integrare le equazioni è un ampliamento sostanziale di un solutore
già esistente [26]. Questo usa una discretizzazione di Fourier nelle direzioni assiale
e trasversale, e una discretizzazione con differenze finite compatte di alto ordine
in direzione normale alla parete. L’integrazione nel tempo è effettuata con uno
schema semi-implicito, in cui i termini non lineari sono avanzati con lo schema
di Runge-Kutta del terzo ordine, mentre gli altri termini sono avanzati con lo
schema implicito di Cranck-Nicholson. Simuliamo flussi a due differenti numeri
di Reynolds: uno molto basso Reτ = 65 e uno intermedio Reτ = 200. Per il caso a
Reτ = 200 svolgiamo uno studio parametrico in cui variamo l’altezza dello strato
poroso e il coefficiente che regola gli scambi di quantità di moto all’interfaccia. I
risultati sono confrontati con quelli di una DNS di un flusso turbolento su pareti
impermeabili. Per il caso a Reτ = 65 vogliamo scoprire se la parete porosa sia in
grado di sostenere un flusso turbolento.

Parole chiave

Simulazione numerica diretta - Turbolenza - Porosità - Permeabilità -
Equazione di Navier-Stokes mediate sul volume





Estratto della tesi in lingua italiana

Questa ricerca è motivata dalle molte applicazioni presenti e future che coinvol-
gono flussi attraverso o su materiali porosi, permeabili e traspiranti. Esempi di ap-
plicazioni ingegneristiche in cui sono sfruttati i materiali porosi sono l’estrazione
di petrolio dai giacimenti e il filtraggio di inquinanti attraverso le falde acquifere.
A livello industriale i materiali porosi sono usati nei sistemi di raffreddamento,
in cui viene sfruttata la porosità per aumetare gli scambi termici, nei processi
di filtraggio, in cui si vogliono separare particelle solide dai fluidi. Inoltre pareti
traspiranti sono spesso usate nei sistemi di controllo di flussi turbolenti. Nel
campo bio-medico troviamo coinvolti i materiali porosi nei meccanismi di scam-
bio tra sangue, aria e tessuti in diversi organi, come i reni e i polmoni.

Si è soliti pensare che un flusso su pareti porose senta una resistenza e in-
tensità del livello di turbolenza vicino alla parete maggiori rispetto allo stesso
flusso su una superficie impermeabile. Tilton e Cortelezzi [49, 50] hanno stu-
diato la stabilità lineare di un flusso piano su pareti porose e hanno mostrato
l’effetto destabilizzante della permeabilità, che abbassa il numero di Reynolds
critico. Il loro risultato ha ulteriormente ribadito il potenziale di tali materiali in
applicazioni che coinvolgono la stabilità del flusso e la sua transizione al regime
turbolento, sui meccanismi utilizzati per ridurre od aumentare la resistenza e sui
sistemi che controllano le proprietà di mescolamento del flusso.

In questa tesi vogliamo studiare numericamente il flusso turbolento in un
canale delimitato da strati porosi piani, omogenei e isotropi. Lo simulazione
accurata di flussi turbolenti è complicata dal grande numero di scale temporali e
spaziali coinvolte. Nel corso degli anni per simulare numericamente questi flussi
sono state sviluppate diverse tecniche, con diversi livelli di approssimazione. La
tecnica che noi utilizziamo è la DNS (Direct Numerical Simulation), utilizzata per
la prima volta da Kim, Moin and Moser [19]. Nelle DNS si risolvono direttamente
le equazioni di Navier-Stokes, con condizioni iniziali e condizioni al contorno
appropriate, risolvendo tutte le scale della turbolenza. Questo approccio è stato
impraticabile per molti anni perchè richiede ingenti risorse di calcolo. Oggi le
DNS sono diventate uno strumento molto utile per lo studio di flussi turbolenti
[28], anche se si è in grado di effetuarle solo su geometrie semplici, come i flussi
in canali piani, flussi in condotti a sezione circolare e strati limiti.

La DNS di flussi turbolenti su pareti porose è stata effettuata raramente a
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causa della difficoltà di modellare la parete porosa. Nel corso degli anni sono stati
usati diversi modelli. Un primo modo è stato quello di ridurre tutto l’effetto dello
strato poroso ad una opportuna condizione al contorno, con lo scopo di non dover
simulare il flusso all’interno dello strato poroso. Questa tecnica è stata utilizzata
da Hahn, Je e Choi [15] e da Wagner e Friedrich [53]. Tuttavia per poter studiare
con più precisione gli scambi di massa e quantità di moto tra lo strato poroso e
la regione di fluido, bisogna modellare anche il flusso in tutto lo strato poroso.

Si può pensare di risolvere le equazioni di Navier-Stokes in tutto il campo di
moto, applicando le condizioni al contorno di non penetrabilità e di non slitta-
mento su tutte le superfici solide. Però i materiali porosi hanno una struttura
interna molto complessa e che spesso non è nemmeno nota, quindi l’imposizione
delle condizioni al contorno risulta molto ardua. Tale tecnica si può usare per
materiali porosi che hanno una geometria molto semplice, come cilindri o sfere
impachettate. Ad esempio Prosperetti et al. ha modellato lo strato poroso con
dei cilindri [59] e con delle sfere [25], mentre Breugem, Boersma et al. [6, 7, 8, 9]
lo hanno modellato con dei cubi. I loro risultati hanno mostrato che la perme-
abilità causa un considerevole aumento della resistenza e della produzione degli
sforzi di Reynolds.

Per riuscire a descrivere il flusso attraverso materiali porosi più complessi, si
è spesso costretti a utilizzare una tecnica in cui il materiale poroso viene trat-
tato come un continuo. In questo metodo si risolvono le equazioni di Navier-
Stokes nella regione di fluido e le equazioni di Navier-Stokes mediate sul volume
(Volume-Averaged Navier-Stokes equations), derivate da Whitaker [54, 55, 56],
nello strato poroso. Queste equazioni sono ottenute mediando il campo di moto
microscopico su un piccolo volume, in modo da modellare il campo di moto macro-
scopico, o mediato sul volume. A seguito del processo di media sul volume queste
equazioni contengono nuovi termini, quali il termine di Darcy, che rappresenta
una resistenza viscosa, e il termine di Forchheimer, che coinvolge un tensore del
secondo ordine ed esprime la resistenza dovuta ad effetti inerziali. Questo ten-
sore dipende dalla struttura interna del mezzo poroso. In una piccola regione
di transizione vicina all’interfaccia con lo strato di fluido, l’uso delle equazioni
di Navier-Stokes mediate sul volumo non è corretto, ma l’errore si può rimuo-
vere tramite l’utilizzo di condizioni che assicurano il giusto scambio di quantità
di moto. Se si trascurano gli effetti inerziali, queste condizioni assumono una
forma piuttosto semplice ed inoltre il termine di Forhheimer delle equazioni si
può trascurare. Ciò vale per materiali porosi con piccola permeabilità, in cui
le velocità nello strato porose sono piccole rispetto a quelle caratteristiche del
canale. Esempi di lavori che hanno usato questo approccio sono [45, 58, 10, 11].

In questa tesi effettuiamo una DNS di flusso turbolento in un canale piano su
pareti porose. Le equazioni di Navier-Stokes sono risolte nella regione di fluido,
mentre la loro versione mediata sul volume viene risolta negli strati porosi. Alle
interfaccie accoppiamo i flussi con le condizioni al contorno di trasferimento di
quantità di moto. Il solutore DNS è un’estensione di uno esistente per flussi su
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pareti impermeabili [26] e usa una discretizzazione di Fourier nelle direzioni assiale
e trasversale, che sono direzioni omogenee, e delle differenze finite in direzione
normale alla parete. L’integrazione nel tempo viene effettuato con un metodo
semi implicito, in cui i termini non lineari delle equazioni sono avanzati con lo
schema Runge-Kutta del terzo ordine, mentre gli altri termini sono avanzati con
lo schema di Cranck-Nicholson.

Abbiamo analizzato due casi a numeri di Reynolds differenti, pari a Reτ = 200
e Reτ = 65. Il primo numero di Reynolds è scelto con lo scopo di studiare come
lo strato poroso modifichi il flusso turbolento in un canale piano, mentre con il
secondo numero di Reynolds vogliamo scoprire se la parete porosa sia in grado
di sostenere un flusso turbolento. Dalla simulazione a Reτ = 200 osserviamo che
lo strato poroso modifica le statistiche del flusso turbolento. In particolare la
velocità media viene modificata dalla presenza di una velocità di slittamento e
dall’aumento della derivata del profilo medio all’interfaccia, causando anche un
aumento della velocità d’attrito. Anche gli sforzi di Reynolds e le velocità rms
vengono modificate, specialmente all’interfaccia dove non sono nulle; all’interno
del canale le loro componenti trasversali e normali alla parete sono incremen-
tate, mentre quelle in direzione assiale vengono ridotte. Tramite uno studio
parametrico in cui variamo l’altezza degli strati porosi e il coefficiente della con-
dizione al contorno che domina gli scambi di quantità di moto, vogliamo vedere
se questi parametri hanno effetto sul flusso turbolento. Mentre le differenze al
variare dell’altezza degli strati porosi sono limitate, al variare del coefficiente
all’interfaccia si ottengono grandi variazioni. A Reτ = 65 si riesce a ottenere un
flusso turbolento e si scopre che la parete porosa è in grado di sostenerlo. Il profilo
medio di tale flusso sembra non avere una regione logaritmica, mentre le velocità
rms sono profondamente differenti, specialmente quelle in direzione trasversale e
normale alla parete.

In questa ricerca abbiamo considerato flussi turbolenti su pareti porose con
bassa permeabilità, scoprendo che queste modificano le statistiche del flusso tur-
bolento. Questi risultati possono avere implicazioni sulla ricerca che si occupa
di sistemi di controllo del flusso tramite pareti traspiranti. Infatti il modello di
materiale poroso usato può essere impiegato come primo passo per un modello
più realistico di parete traspirante, usato ad esempio per inibire la transizione alla
turbolenza negli strati limiti asintotici. Questi vengono generalemente simulati
sperimentalmente usando fori discreti o materiali porosi. Mentre i primi hanno il
vantaggio che la superficie può svolgere ancora dei compiti strutturali, i secondi
sono di più facile realizzazione e inoltre non generano effetti tridimensionali che
possono accelerare la transizione.

Dopo la nostra simulazione a numero di Reynolds molto basso, lavori futuri
dovrebbero investigare meglio i meccanismi che sono in grado di sostenere un
flusso turbolento a questi numeri di Reynolds, cercando inoltre di scoprire even-
tuali flussi in cui si alternano il regime turbolento e laminare.

Nel nostro lavoro abbiamo usato una versione semplificata delle equazioni di
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Navier-Stokes mediate sul volume e della condizione di interfaccia, in cui non ab-
biamo tenuto conto degli effetti inerziali. Infatti quando questi sono trascurabili,
il termine di resistenza di Forchheimer viene trascuarato. Mentre la resistenza di
Forchheimer è spesso trascurabile all’interno dello strato poroso, gli effetti iner-
ziali potrebbero essere ancora importanti all’interfaccia. L’ipotesi di trascurare
gli effetti inerziali limita il valore di permeabilità che si può considerare. Un possi-
bile sviluppo futuro, può quindi essere quello di provare a modificare le equazioni
e le condizioni all’interfaccia per tenere conto di questi effetti.



Chapter 1

Introduction

This work is the result of a collaboration between myself Mr. Marco Rosti, Mr.
Davide Scarselli, Professor Maurizio Quadrio of the Politecnico di Milano and
Professor Luca Cortelezzi of McGill University, who visited the Politecnico di
Milano during a sabbatical leave.

This research is motivated by the many present and future engineering ap-
plications which involve fluid flows over or through porous materials, which are
permeable and transpirating. Examples in nature are flows through sedimen-
tary rocks, such as sandstones, conglomerates and shales, and water flows over
seabeds and riverbeds. Extraction of oil from ground reservoirs, management of
water ground basins and filtration of pollutants through aquifers, are examples
of engineering applications which involves porous media and the fluid motion
through them. Moreover, industrial applications which use porous media are, for
example, transpiration cooling, in which the porosity is used to enhance the heat
exchange capability of the material; filtration processes used to separate solid
particles from fluids; use of wall transpiration for flow control and transition de-
lay. In bio-mechanics, porous media are involved in fluid and mass transfer at
the walls of many organic tissues, such as blood vessels, lungs and kidneys.

In general, it is assumed that a flow over a porous wall experiences higher drag
and turbulent intensities near the wall than the same flow over a flat impermeable
surface. Tilton and Cortelezzi [49, 50] investigated the stability of channel flows
over porous walls, and they showed that wall permeability has a destabilizing
effect, lowering the critical Reynolds number. This result indicates the potential
of porous materials in applications involving transition and turbulence, such as
flow control, drag reduction and enhancement, transition triggering and delaying,
and amplifying mixing properties of turbulent flows.

In this thesis, we study numerically the turbulent flow of an incompressible
fluid through a channel delimited by flat, homogeneous, isotropic porous layers.
First, we investigate how a porous layer affects the turbulence statistics of a
channel flow at moderate Reynolds numbers. Then, we characterize the effects of
varying the height of the porous layer and of the momentum transfer coefficient on
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the turbulent flow. Finally, leveraging the destabilizing effect of wall permeability,
we obtain and study a turbulent channel flow at very low Reynolds numbers.

The accurate simulation of turbulent flows is challenging because involves
resolving a wide range of lengths and time scales, and predicting its chaotic
behaviour. Over the years, different techniques with different levels of approx-
imation have been developed to study turbulent flows. For example, Reynolds
Averaged Navier-Stokes (RANS) solve the evolution of the average turbulent flow,
while Large Eddy Simulations (LES) compute only the large scales of the tur-
bulent flow. On the one hand, these methods suffer from the lack of closure
because the evolution equations contain terms that require modeling [35, 57, 23],
on the other hand, RANS and LES allow the simulation of turbulent flows in
the complex geometries of interest to industry. It is possible, however, to sim-
ulate accurately turbulent flows in simple geometries using a recent technique
called Direct Numerical Simulations (DNS). DNSs solve the Navier-Stokes equa-
tions, with appropriate initial and boundary conditions, resolving all the scales
of motion.

DNSs were infeasible until computers of sufficient power became available.
Kim, Moin and Moser [19] performed one of the first DNS, for a fully developed,
turbulent, channel flow at moderate Reynolds numbers. They proposed to use
the v-η formulation of the Navier-Stokes equations. Many DNS of turbulent
flows in planar geometries employ this formulation. Nowadays, the DNS for
incompressible, low Reynolds number, turbulent flows with geometrically simple
boundaries has become a valuable tool for fundamental turbulence research [28].
Currently, DNS are used to study turbulent plane channel flows, pipe flows,
boundary layers and flows in ducts with anular cross-section.

The DNS of turbulent channel flows over porous walls has been rarely at-
tempted because of the difficulty of modeling the porous walls. A few models
have been implemented over the years. In the first method, the effects of a
porous wall are simulated using a suitable boundary condition at the interface
between the porous layer and the fluid region. The advantage of this method is
that the flow inside the porous layers is not needed. Hahn et al. [15] performed
a DNS of a turbulent channel flow using this approach. At the porous wall, they
use a boundary condition which is an extension of the condition proposed by
Beavers and Joseph [3]. The condition allows slip velocities for the wall-tangent
components of the velocity, and a zero wall-normal velocity component. Wagner
and Friedrich [53] simulated a turbulent pipe flow over permeable walls using a
different boundary conditions. They imposed a permeability condition for the
radial velocity component, and the no-slip condition for the other two velocity
components.

In order to describe more accurately the mass and momentum transfer be-
tween the porous layer and the fluid region, we have to model the flow through
the entire porous medium. In general, porous media have a very complex struc-
ture, which is not known in full details. Inside the porous layers, one can envi-
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sion to solve directly the Navier-Stokes equations, imposing the no-slip and no-
penetration conditions at each solid surface. However, this is hard to implement
in general because of the complexity of the geometry of the boundaries. There-
fore, this approach can be used for porous materials of very simple geometry,
such as packed cylinders or spheres. For example, Prosperetti et al. modelled
the porous media with cylinders [59] and with spheres [25]. They solved the
Stokes layers near the solid surfaces of the cylinders and spheres that compose
the porous material, and the Navier-Stokes equations everywhere else, and they
studied the lift, drag and torque applied to a cylindrical and spherical particle by
the flow. Breugem and Boersma [6, 7], and Breugem et al. [8, 9], have performed
DNSs of channel flow over porous walls, modelling the porous layers with a grid
of cubes. They showed that wall permeability causes a considerable increase in
the total drag and in the production of all the Reynolds stresses. This approach
is computationally costly, and it is limited by the scarce applicability of these
types of porous materials.

Flows through porous media with a complex structure can be studied by
treating the porous medium as a continuum. In this method, the Navier-Stokes
equations are solved in the fluid region, and the Volume-Averaged Navier-Stokes,
first derived by Whitaker et al. [54, 55, 56], are solved in the porous layers. The
latter equations are obtained by volume-averaging the microscopic flow field over
a small volume, in order to obtain a macroscopic, or volume-averaged, flow field.
The volume-averged equations contain new terms, such as the Darcy term, which
represents a volume-averaged viscous drag, and the Forchheimer term, which
involves a second-order tensor accounting for the drag due to inertial effects. The
exact form of this tensor depends on the geometrical structure of the porous
medium.

The flow at the interface between the fluid region and the porous material
is especially difficult to model. In fact, in a small transition layer adjacent to
the interface with the channel region, the Brinkman layer [3], the structure of
a porous medium undergoes rapid changes and the use of the Volume-Averaged
Navier-Stokes equations is incorrect. Ochoa-Tapia and Whitaker [31, 32, 33] have
derived a momentum transfer condition, which correct the error by introducing a
jump in the shear stresses at the interface. When inertial effects can be neglected
in the porous regions, the interface conditions become simpler and the convective
and Forcheimer terms drop from the evolution equations governing the flow in the
porous layer. This assumption is valid for porous media of small permeability
in which the flow velocities in the porous layer are small with respect to the
characteristic velocity in the channel region. Examples of numerical simulations
which use this approach are [45, 58, 10, 11].

In this thesis, we perform a DNS of a turbulent channel flow over permeable
walls. We solve the Navier-Stokes equations in the the fluid region coupled with
the Volume-Averaged Navier-Stokes in the porous layers. At the interface be-
tween the fluid region and the porous layer we impose the momentum transfer
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conditions. Since we neglect the inertial effects in the porous layers, we thus
limit our study to permeabilities for which the velocity at the interface is much
smaller (≈ 5%) than the mean flow. To solve numerically this problem, we sub-
stantially extended an existing DNS solver [26]. We use a Fourier discretization
in the streamwise and spanwise directions, and a compact, explicit high-order,
finite difference discretization in the wall-normal direction. Time integration is
performed using a semi-implicit method.

The outline of the thesis is as follows. In Chapter 2 we review the theory
of flow through porous media. We present the main models that have been
developed to describe such a complex flow. We also describe the conditions to
be imposed at the interface between the fluid region and the porous medium.
Chapter 3 presents the mathematical model of the flow over porous media. We
make the problem non-dimensional and transform it in a more suitable form.
In Chapter 4, we discuss the numerical discretization of the problem. Finally,
in Chapter 5, we present some results of our simulations. In particular, we
present two main cases: one at very low Reynolds number and one at intermediate
Reynolds number.

As a consequence of the collaboration with Mr. Scarselli, my thesis shares
two chapters with his thesis. In particular, the review of flow through porous
media, performed in Chapter 2, and the definition of the mathematical model of
the flow over porous media, presented in Chapter 3, are in common.



Chapter 2

Flow through porous media

This chapter succinctly reviews the theory of flow through porous media. The
flow of an incompressible viscous fluid within the pore-like structure of a porous
medium is governed by the Navier-Stokes equations

∂u

∂t
+ ∇ · (u⊗ u) = −1

ρ
∇p+ ν∇2u, (2.1)

∇ · u = 0, (2.2)

with no-slip and no-penetration boundary conditions on the solid surfaces and
an appropriate initial condition, where u is the velocity, p the pressure, ρ the
density and ν the kinematic viscosity of the fluid, respectively.

ls

lf

Figure 2.1: Sketch of a porous medium with a wide range of length scales. lf and ls
are the pore and particle diameters of the pore-like structures.

In general, porous media have very complex structure which is not known
in full details. Therefore, in most cases, the boundary conditions are nearly
impossible to impose. Secondly, the flow inside a porous medium is characterized
by a wide range of length scales, see figure 2.1. Porous media can be sponge-like
porous foams and porous layers of packed particles. The smallest scales, lf and
ls, represent the pore and particle diameters of the pore-like structures, while the
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largest scale is the characteristic macroscopic porous length L. These aspects
make prohibitively difficult and costly a direct numerical simulation of flows in
porous medium. Consequently, in order to study these kind of flows, different
techniques have been proposed so far.

2.1 Darcy’s law
One of the first studies on flow through porous media was published by Darcy
in 1856 [12]; he investigated the flow of water filtering through a layer of sand,
in connection with the fountains of the city of Dijon in France, as illustrated in
figure 2.2. He concluded that, for creeping flows, the average flow rate passing

x

y

p1
p2

L

Figure 2.2: Filtration of water through a layer of sand.

through a layer of sand is proportional to the pressure gradient across the layer.
Based on the result of his experiments, he proposed the following relation

Q = −kAp2 − p1

ρgL
, (2.3)

where Q is the volumetric flow rate through the layer, A is the cross sectional
area normal to the flow, g the gravitational acceleration, p1 and p2 the measured
pressures, L the length of the sand layer over which the pressure difference is mea-
sured and k is the hydraulic conductivity. The previous equation was originally
written as

Q = −kA∆H
L

, (2.4)

where ∆H is the hydraulic head. Figure 2.3 shows the Darcy velocity uD =
Q/A versus ∆H/L. Darcy’s data clearly show the linearity between the average
discharge rate of fluid and the pressure gradient.

The hydraulic conductivity depends on the kinematic viscosity ν [2]

k = gK

ν
, (2.5)
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Figure 2.3: Darcy’s experiment data. The solid line are the fit of the experimental
data.

where K is the permeability. So Darcy’s law becomes

Q = −KA
µ

p2 − p1

L
, (2.6)

where µ is the dynamic fluid viscosity.
Permeability represents the ease with which fluid passes through a porous

material, and is a property of the material. Typical values are reported in table
2.1. We can now define a Reynolds number characteristic of the porous flow as

Rep =
√
KuD
ν

. (2.7)

For the flow illustrated in figure 2.4, equation (2.6) can be written for the
Darcy velocity, or filtering velocity, in a differential form as:

uD = Q

A
= −K

µ

dp

dx
. (2.8)

Writing Darcy’s law as
dp

dx
+ µ

K
uD = 0, (2.9)



8 Flow through porous media

Material − log10K

Clean gravel 7 ÷ 9
Clean sand 9 ÷ 12
Very fine sand 12 ÷ 16
Peat 11 ÷ 13
Stratified clay 13 ÷ 15
Unweathered clay 16 ÷ 20
Oil rocks 11 ÷ 14
Sandstone 14 ÷ 16
Dolomite 16 ÷ 18
Granite 18 ÷ 20

Table 2.1: Some typical values of permeability taken from [2].

Figure 2.4: Sketch of a porous layer.

the second term can be interpreted as an average drag felt by the fluid as it passes
through the porous medium, which is balanced by the pressure gradient [54, 18].
For the low porous Reynolds number for which Darcy’s law hold Rep � 1, the
flow is governed by Stokes’ equation

∇p− µ∇2u = 0. (2.10)

Therefore, the viscous term in Stokes’ equation is responsible for the Darcy drag.
As Re increases we observe a deviation from the linear relationship. To the

best of our knowledge, Forchheimer was the first to suggest a nonlinear relation-
ship, adding a quadratic drag term which provides a better fit with experimental
data. The new equation is called Forchheimer equation and reads

dp

dx
+ µ

K
uD + Cu2

D = 0, (2.11)

where C is a coefficient which depends both on the fluid and material properties.
Recent studies have confirmed that this term is due to inertial effects in the flow
within the pores [18, 54, 55, 56, 14, 21]. When the flow is no more governed
by the Stokes equation the quadratic drag term is due to the convective term,
(u ·∇)u, in the Navier-Stokes equations.

Subsequently, Brinkman [21] suggested to extend Darcy’s law to high perme-
able materials, adding a sort of viscous term in the Stokes’ equation. This results
in the following equation

∇p+ µ

K
uD − µe∇2uD = 0, (2.12)
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where µe is the effective Brinkman viscosity, which must be determined experi-
mentally, and uD is the multidimensional Darcy velocity a sort of locally averaged
quantity.

From an historical point of view Darcy’s law was born by experiments, but
theoretical support for its validity has been obtained quite recently by Whitaker
[55] by means of the method of Volume Averaging [54]. The procedure consists
in averaging the microscopic flow field over a small spatial volume to obtain the
macroscopic or volume-averaged flow field. Whitaker showed that Darcy’s law
can be deduced applying the volume averaging technique to the Stokes’ equation.

2.2 Volume Averaged Navies-Stokes

x

r

y

O

Figure 2.5: Sketch of porous medium with position vectors.

The method of volume averaging have been formally derived by Whitaker
[54, 55, 56]. The technique considers only the large scale behaviour of the flow,
i.e. , the macroscopic behaviour. This is obtained by averaging the governing
equations over a small volume V of radius r � Lp, and solving for the volume
averaged unknowns. A general assumption is that the length scales are well
separated, ls ∼ lf � r � Lp. The radius r should be large enough so that
volume-averaged quantities result in smooth functions and are free of small scale
fluctuations. The method involves to treat the porous medium as a continuum,
so fluid quantities are defined in every point, notwithstanding it corresponds to
fluid or solid phase.

Following [55, 56, 6], the first step in the derivation of the Volume Averaged
Navies-Stokes (VANS) equations is the introduction of the averages. For an
arbitrary quantity φ, the superficial volume average is defined as [56, 38]

〈φ〉|sx = 1
V

∫
Vf (x)

φ (x+ y) dVf , (2.13)

where Vf < V is the volume of fluid contained within the averaging volume V ,
the subscript x means that 〈φ〉s is evaluated at the centroid x of the averaging
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volume V , and y = r − x is the relative position vector. The position vectors
used in (2.13) are identified in figure 2.5.

We can define another volume average, the intrinsic volume average, as

〈φ〉|fx = 1
Vf

∫
Vf (x)

φ (x+ y) dVf , (2.14)

The difference between the two averages is that the superficial average (2.13) is
averaged over the entire averaging volume V , while the intrinsic average (2.14) is
averaged over only the volume of fluid Vf . The two averages are related by

〈φ〉s = Vf
V
〈φ〉f = ε〈φ〉f , (2.15)

where ε = Vf/V is the porosity, or volume-fraction of the fluid and it is generally
a function of position x in a heterogeneous porous media.

To derive the volume averaged form of the Navier-Stokes equations it is nec-
essary to find the relations between the volume average of a derivative and the
derivative of the volume average, both for time and spatial derivatives. The rela-
tionship for the volume average of a time derivative is known as general transport
theorem [43, 38]

〈∂φ
∂t
〉s = ∂〈φ〉s

∂t
− 1
V

∫
A
n ·w φ dA, (2.16)

where A is the interface area between the fluid and the solid phase inside the
averaging volume V , n is the unit normal at A that points from the fluid into the
solid phase, and n ·w is the local speed of displacement of the surface A. Since
we restrict ourselves to rigid porous media, it holds that w = 0. Consequently,
for rigid porous media, the volume average of a time derivative is equal to the
time derivative of the volume average. The relation for the volume average of
spatial derivatives is known as the spatial averaging theorem [57, 37]

〈∇φ〉s = ∇〈φ〉s + 1
V

∫
A
n φ dA, (2.17)

A useful relation for the porosity’s spatial derivatives is obtained from the sub-
stitution of φ = 1 in equation (2.17)

0 = ∇〈1〉s + 1
V

∫
A
n dA = ∇

(
ε〈1〉f

)
+ 1
V

∫
A
n dA =⇒ ∇ε = − 1

V

∫
A
n dA.

(2.18)
A generalization of equation (2.17) is [38]

∇〈M〉s = − 1
V

∫
A
nM dA, (2.19)

where M is a tensor of nth order rank.
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In order to obtain the VANS we apply the volume-averaging operator 〈. . .〉s
to the Navier-Stokes equations, (2.1) and (2.2), for an incompressible, Newtonian
fluid

〈∂u
∂t
〉s + 〈∇ · (u⊗ u)〉s = 〈−1

ρ
∇p〉s + 〈ν∇2u〉s, (2.20)

〈∇ · u〉s = 0. (2.21)

Application of the general transport theorem (2.16) yields

〈∂u
∂t
〉s = ∂〈u〉s

∂t
− 1
V

∫
A
n ·wu dA = ∂〈u〉s

∂t
, (2.22)

where we have used that w = 0 for rigid porous media, while the application of
the spatial averaging theorem (2.17) yields

〈∇ · u⊗ u〉s = ∇ · 〈u⊗ u〉s + 1
V

∫
A
n · u⊗ u dA = ∇ · 〈u⊗ u〉s, (2.23)

〈−1
ρ

∇p〉s = −1
ρ

∇〈p〉s − 1
V

∫
A
n
p

ρ
dA, (2.24)

〈ν∇2u〉s = ν∇ · 〈∇u〉s + ν
1
V

∫
A
n ·∇u dA =

= ν∇2〈u〉s + ν
1
V

∫
A
n ·∇u dA+ ν∇ · 1

V

∫
A
n⊗ u dA =

= ν∇2〈u〉s + ν
1
V

∫
A
n ·∇u dA,

(2.25)

〈∇ · u〉s = ∇ · 〈u〉s + 1
V

∫
A
n · u dA = ∇ · 〈u〉s, (2.26)

where some integrals vanish since u = 0 at the interface area A. The continuity
equation (2.26) underlines the difference between the superficial and intrinsic
volume averages; in fact in case of spatially varying porosity, only the superficial
velocity is divergence free. So, we obtain

∂〈u〉s

∂t
+ ∇ · 〈u⊗ u〉s = −1

ρ
∇〈p〉s + ν∇2〈u〉s+

+ 1
V

∫
A
n ·

(
−p
ρ
I + ν∇u

)
dA,

(2.27)

∇ · 〈u〉s = 0. (2.28)

The problem defined by equations (2.27) and (2.28) lack of closure because the
convective and integral terms involve not averaged quantities. The system can
be written more generally as

∂〈u〉s

∂t
+ ∇ ·

[
〈u〉s ⊗ 〈u〉s

ε

]
+ ∇ · τ = −1

ρ
∇〈p〉s + ν∇2〈u〉s + f , (2.29)

∇ · 〈u〉s = 0, (2.30)
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where τ is the subfilter-scale stress and f is the drag force that the solid phase
exerts on the fluid phase. The definition for τ and f are

τ ≡ 〈u⊗ u〉s − 〈u〉
s〈u〉s

ε
, (2.31)

f ≡ 1
V

∫
A
n ·

(
−p
ρ
I + ν∇u

)
dA. (2.32)

Performing the following decomposition:

p = 〈p〉f + p̃ = 1
ε
〈p〉s + p̃, (2.33)

u = 〈u〉f + ũ = 1
ε
〈u〉s + ũ, (2.34)

the integral term can be developed further

f = 1
V

∫
A
n ·

(
−p
ρ
I + ν∇u

)
dA =

= 1
V

∫
A
n ·

−
(
〈p〉f + p̃

)
ρ

I + ν∇
(
〈u〉f + ũ

) dA =

= 1
V

∫
A
n ·

(
−〈p〉

f

ρ
I + ν∇〈u〉f

)
dA+ 1

V

∫
A
n ·

(
− p̃
ρ
I + ν∇ũ

)
dA =

= −∇ε ·
(
−〈p〉

f

ρ
I + ν∇〈u〉f

)
dA+ 1

V

∫
A
n ·

(
− p̃
ρ
I + ν∇ũ

)
dA.

(2.35)

Exploiting (2.35) and

− 1
ρ

∇〈p〉s = −1
ρ

∇
(
〈p〉fε

)
= −ε

ρ
∇〈p〉f − 1

ρ
〈p〉f∇ε, (2.36)

the Volume Averaged Navier-Stokes (VANS) equations become

∂〈u〉s

∂t
+ ∇ ·

[
〈u〉s ⊗ 〈u〉s

ε

]
+ ∇ · τ = −ε

ρ
∇〈p〉f + ν∇2〈u〉s+

−ν∇ε ·∇〈u〉s + 1
V

∫
A
n ·

(
− p̃
ρ
I + ν∇ũ

)
dA,

(2.37)

∇ · 〈u〉s = 0. (2.38)

The first viscous term ν∇2〈u〉s is the Brinkman correction and it is often included
in the analysis of flow in the boundary region between a porous medium and a
homogeneous fluid. In such regions the second viscous term ν∇ε ·∇〈u〉s has the
same order of magnitude as the Brinkman correction, and, generally, it can not
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be neglected. The latter is referred to as the second Brinkman correction. A key
point about equations (2.37) and (2.38) is that they are valid everywhere since
no length scale constraints have been imposed.

It has been shown [55] that the integral term

1
Vf

∫
A
n · (−p̃I + µ∇ũ) dA = −µφ, (2.39)

has an especially simple form in a homogeneous porous medium ∇ε = 0, where
it can be written as

− µφ = −µK−1 · 〈u〉s − µK−1 · F · 〈u〉s, (2.40)

where K is the second-order permeability tensor. The first term is called Darcy
drag, while the second is the Forchheimer term. F is a second-order tensor
whose exact form depends on the structure of the porous medium. Experimen-
tally, it is usually found to be a linear function of the volume averaged velocity
〈u〉s, producing a Forchheimer term that is quadratic [5, 18, 56, 14]. Moreover,
Whitaker [56] found that the convective terms generated by the nonlinear part
of the Navier-Stokes equations are of the same order of magnitude and are both
usually negligible in comparison with the dominant Forchheimer term. The latter
is negligible when the inertial effects are small.

In the homogeneous region, where ∇ε = 0, and for an isotropic porous mate-
rial with small inertial effects, the VANS equations become

∂〈u〉s

∂t
= −ε

ρ
∇〈p〉f + ν∇2〈u〉s − ν

K
ε〈u〉s, (2.41)

∇ · 〈u〉s = 0. (2.42)

So far we have adopted the convention of preferring the superficial volume-
averaged velocity 〈u〉 and the intrinsic volume averaged pressure 〈p〉f . When
dealing with VANS equations, the superficial volume-averaged velocity 〈u〉 is the
preferred representation of the velocity since it is always solenoidal, while the
intrinsic volume-averaged velocity 〈u〉f is only solenoidal in the case of constant
porosity. However for the pressure the intrinsic volume average 〈p〉f is preferred,
because it is the one measured by a probe in an experimental apparatus.

2.2.1 Darcy’s law
Whitaker [55] and Ochoa-Tapia and Whitaker [31] have shown that volume
averaging the Stokes’ equations for a stationary, incompressible, viscous flow
through a rigid homogeneous porous medium (2.10) produces Darcy’s law with
the Brinkman term

−∇〈p〉f + µ

ε
∇2〈u〉 − µK−1 · 〈u〉 = 0. (2.43)
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Note that volume averaging produces a Brinkman term, µ/ε∇2〈u〉, without an
effective viscosity. Ochoa-Tapia and Whitaker [31] found also that the Brinkman
term is usually negligible in comparison with the dominant pressure and Darcy
terms. The exception is near the interface between a porous region and a purely
fluid region.

2.2.2 LES analogy
The VANS procedure can be considered as a generalization of the LES proce-
dure. The volume-averaging operator (2.13) acts as a filter which passes only
information on the large scale structures of the flow field. It can be generalized
defining a filter operator analogous to the one used in Large Eddy Simulations
[37, 38, 23, 6] as it follows

〈φ〉|sx =
∫
V
m (y) γ (r)φ (r) dV, (2.44)

where γ is the phase-indicator function and m is a weighting function. γ equals
unity when r points in the fluid phase and zero when r points in the solid phase.
The weighting function must satisfy the following normalization condition∫

V
m (y) dV = 1. (2.45)

The LES equations can be obtained from the VANS equations (2.29) and (2.30)
for a purely homogeneous fluid region, where ε = 1, and observing that, because
of the absence of a solid phase the drag force is zero f = 0

∂〈u〉s

∂t
+ ∇ · (〈u〉s ⊗ 〈u〉s) + ∇ · τ = −1

ρ
∇〈p〉s + ν∇2〈u〉s, (2.46)

∇ · 〈u〉s = 0. (2.47)

2.3 Interface conditions
The problem of momentum transport at the boundary between a porous medium
and a homogeneous fluid, see figure 2.6, occurs in a wide variety of technological
applications, and has been the object of a great deal of study in the porous flow
community. In order to study the problem, we consider a flat channel delimited by
an upper impermeable wall and a lower, semi-infinite porous wall, as illustrated in
figure 2.7(a). In particular, porous layers are fluid saturated, rigid, homogeneous
and isotropic. A uniform longitudinal pressure gradient dp/dx drives a steady
fully developed laminar flow in both the channel and porous region.

At the interface, the fluid velocity must decrease from its interface value to
the Darcy velocity. This is achieved in the so called Brinkman layer. This small
region is where mass and momentum transfer take place.
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Figure 2.6: Interface between a porous region and a purely fluid region.

The interface can be treated mainly in two ways, as smooth (within a single-
domain model) or sharp (within a two-domain model). In the single-domain
approach, the composite region is considered as a continuum and one set of
general governing equations is applied for the whole domain. All averaged flow
variables are continuous and the change in flow physics is simulated by varying
porosity. In the two-domain approach, two sets of governing equations are applied
to describe the flow in the two regions and additional boundary conditions are
applied at the interface to close the two sets of equations. The interface region
is replaced with an interface of zero height, and both the free-fluid and porous
regions are extrapolated over the interface region, resulting in step change of
some flow variables across the interface. This method is more reliable, since it
tries to simulate the flow behaviour at the interface and it will be used in this
work.

For a systematic analysis of the variance among different boundary conditions
see Alazmi and Vafai [1]. In this work, the authors concluded that, in most of

uD

Brinkman layer

(a)

uD

uslip

(b)

Figure 2.7: Velocity profiles of the flow through a porous medium, not to scale.
Figure (b) shows the velocity profile obtained with the Beavers and Joseph condition.
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the cases, the variances between the different models have negligible effect on the
results.

2.3.1 The Beavers and Joseph condition
To the best of our knowledge, Beavers and Joseph [3] were the first to prove
that when a viscous fluid flows at the interface of a porous medium, the effects
of viscous shear will penetrate beneath the permeable surface, to form what is
effectively a boundary layer, the Brinkman layer. They performed a series of
experiments and they observed that the slip velocity at the interface differs from
the Darcy velocity uD. In fact Darcy’s law is not compatible with the existence
of a boundary layer region, because no macroscopic shear term is associated with
this equation. They proposed to model the effects of the Brinkamn layer on the
external flow by introducing a discontinuous slip velocity, uslip, as shown in figure
2.7(b). They postulated that this slip velocity is proportional to the shear rate,
du/dy, at the permeable boundary

Material 10−5K [in2] α τ

Foametal A 1.5 0.78 0.70
Foametal B 6.1 1.45 0.00
Foametal C 12.7 4.00 -1.00
Aloxite 0.1 0.10 1.47

Table 2.2: Some typical values of permeability together with the coefficient αBJ
determined experimentally by Beavers and Joseph [3], and the momentum transfer
coefficient τ determined by Ochoa-Tapia and Whitaker [32] assuming ε = 0.4.

du

dy
= αBJ√

K
(uslip − uD) (2.48)

where αBJ is a dimensionless coefficient which depends on the structure of the
porous material in the boundary region, and that must be determined by ex-
periments. Beavers and Joseph calculated it for the materials reported in table
2.2.

Beavers, Sparrow and Magnuson [4] confirmed the Beavers and Joseph condi-
tion experimentally, while Saffman [40] further justified it theoretically. Saffman
also found that, as the permeability tends to small but finite values, the Darcy
velocity in the Beavers and Joseph interface condition may be ignored.

Taylor [46] and Richardson [39] collaborated in order to perform an experi-
ment with a particular porous material for which both K and α could be calcu-
lated analytically, and they compared the results of calculation with experiments.
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The geometry of the porous media is called Taylor brush configuration, and it
has been further studied by other authors, as in [42].

Other authors determined the values of the slip coefficient αBJ for other mate-
rials and other geometries. Liu, Chen and Wang [24] performed an experimental
and numerical estimation of slip coefficient in a partially porous cavity. Their
paper reported an experimental investigation of natural convection flow in a two-
dimensional cavity, partially filled with a vertical porous layer.

2.3.2 The Brinkman condition
The Beavers and Joseph condition does not provide information on the structure
of the Brinkman layer within the porous region. Neale and Nader [30] reconsid-
ered the channel problem and modelled the flow in the porous region using the
Brinkman equation

dp

dx
= − µ

K
uD + µe

d2ud
dy2 . (2.49)

Thanks to the macroscopic shear term, the Brinkman equation is fully compatible
with the presence of a boundary layer region within the porous medium; outside
the Brinkman layer, the Brinkman term is very small, indicating that Darcy’s
law is valid everywhere except at the boundaries.

In order to couple the flow through the porous material and through the fluid
region, they imposed continuity of velocity and its derivative at the interface,
using the following interface conditions

u = uD µ
du

dy
= µe

duD
dy

. (2.50)

While these conditions where first proposed by Neale and Nader, they are also
commonly referred to as Brinkman interface conditions.

Neale and Nader discovered that their conditions (2.50) produce the same in-
terface velocity as the slip velocity predicted by the Beavers and Joseph condition
(2.50), provided that

µe = µα2
BJ . (2.51)

It is useful to define the Brinkman layer thickness δB as the distance mea-
sured from the interface into the porous region at which the fluid velocity first
approaches within 1 of the Darcy velocity; the Brinkman conditions also predict
that the Brinkman layer thickness δB is of the order of the square root of the
permeability, δB ∼

√
k.

We have observed that in order to agree with the experimental data of Beaver
and Joseph, the effective viscosity must satisfy relation (2.51). However, in order
to agree with Whitaker’s derivation of VANS, it must satisfy

µe = µ

ε
, (2.52)
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see equations (2.12) and (2.43). Generally, it is not possible to satisfy all these
relationships simultaneously.

2.3.3 The momentum transfer conditions of Ochoa-Tapia
and Whitaker

homogeneous
fluid region

boundary
region

homogeneous
porous region

Figure 2.8: Fluid velocity profile at the interface between a porous region and a
purely fluid region.

Figure 2.8 illustrates a hypotetical fluid velocity profile at the interface be-
tween a porous region and a purely fluid region. In this region the flow is governed
by equations (2.37) and (2.38),

∂〈u〉s

∂t
+ ∇ ·

[
〈u〉s ⊗ 〈u〉s

ε

]
+ ∇ · τ = −ε

ρ
∇〈p〉f + ν∇2〈u〉s+

−ν∇ε ·∇〈u〉s − νεK−1 · 〈u〉s − νεK−1 · F · 〈u〉s,
(2.53)

∇ · 〈u〉s = 0, (2.54)

which have been obtained without imposing any length scale constraints. Solution
of the problem requires the knowledge of the variation of porosity within the
transition region; moreover, suitable models are necessary to evaluate nonlinear
terms and Forchheimer tensor. For recent developments on this approach, we refer
the reader to Valdes, Goycau and Ochoa-Tapia [52] and Breugem [6]. Usually,
the variation of the porosity in the transition region is not known in advance, so
the problem requires closure. Providing a suitable profile for ε is difficult even
experimentally. This problem can be avoided if an acceptable jump condition is
constructed.

In a region sufficiently below the interface, we assume the porous material
is homogeneous and the flow is governed by the VANS and continuity equations
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(2.41) and (2.42),

∂〈u〉s

∂t
= −ε

ρ
∇〈p〉f + ν∇2〈u〉s − ν

K
ε〈u〉s, (2.55)

∇ · 〈u〉s = 0. (2.56)

This region is called the homogeneous porous region. Previous equations are not
valid in a small heterogenous transition layer adjacent to the interface, where
the structure of the porous material undergoes rapid changes. For example, the
porosity increase rapidly from its value in the homogeneous porous region ε to
unity slightly above the interface.

We extend validity of equations (2.55) and (2.56) to the interface, even if the
porous material is heterogeneous. As consequence, this assumption produces an
error in the local averaged velocity 〈v〉s and pressure 〈p〉f . However, the error will
be corrected by means of an additional condition, the so-called jump condition,
which ensures that equations (2.53) and (2.54) are satisfied on average in the
boundary region.

The conditions created by Ochoa-Tapia and Whitaker couple the Navier-
Stokes equations (2.1) and (2.2) directly to the Volume Averaged Navier-Stokes
equations (2.55) and (2.55). The velocity and the pressure are forced to be con-
tinuous at the interface and generally produce a discontinuity in the shear stress.
In figure 2.8 the dashed line illustrates a hypotetical velocity profile generated by
the interface conditions of Ochoa-Tapia and Whitaker; note that the conditions
may not predict the profile of the Brinkman layer as accurately as equations
(2.53) and (2.54).

When the porous region is homogeneous and isotropic, and the permeability
is sufficiently small to neglect inertial effects, the momentum transfer conditions
are [31]

u = 〈u〉s, (2.57a)
v = 〈v〉s, (2.57b)
w = 〈w〉s, (2.57c)
p = 〈p〉, (2.57d)

1
ε

∂〈u〉s

∂y
− ∂u

∂y
= ± τ√

K
u, (2.57e)

1
ε

∂〈w〉s

∂y
− ∂w

∂y
= ± τ√

K
w. (2.57f)

In equations (2.57) positive sign is used when the purely fluid region is above a
porous interface, while the negative sign denotes the converse. Symbol τ has been
introduced as constant coefficient which accounts for the distribution of momen-
tum at the interface and depends on the manner in which a porous material’s
structure varies in the transition layer. While there is work on determining τ
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theoretically [52], it must usually be determined experimentally. Analytically,
Ochoa-Tapia and Whitaker [31] estimated that τ is of the order of one and may
be either positive or negative.

Ochoa-Tapia and Whitaker [32] found that conditions (2.57) showed good
agreement with the experimental data of Beavers and Joseph [3]. The results for
τ are summarized in table 2.2.

When inertial effects are significant in the porous region the jump condition is
more complicated. Ochoa-Tapia and Whitaker [33] extended the stress condition
to include inertial effects

1
ε

∂〈u〉s

∂y
− ∂u

∂y
= ± τ√

K
u± γ

ν
u2, (2.58)

where γ, which accounts for the effects of inertia in the momentum transfer
process, is a dimensionless coefficient of order one that must be determined ex-
perimentally; anyway there are currently no published experimental data for it.

The stress jump boundary conditions (2.57) has been studied and used by
many researchers.

Kuznetsov [20] investigated the dependence of the velocity on the adjustable
coefficient in the stress jump boundary condition. He obtained analytical solu-
tions for three different types of channels partially filled with a porous medium
and the stress jump boundary condition is utilized at the interface. He showed
that accounting for a jump in the shear stress at the interface essentially influ-
ences velocity profiles.

Tan and Pillai [45] considered the interface between a porous medium and a
clear fluid. Their results have shown that, when the porosity of the porous media
is high, the stress jump condition yields a result significantly different from the
one provided by the stress-continuity condition. It is also shown that when the
porosity of the porous medium is high, the stress continuity condition results in a
much larger boundary layer as compared to the stress jump condition. However,
the two interface conditions tend to yield similar results as the porosity decreases.

Yu, Lee, Zeng and Low [58] and Chen, Yu, Winoto and Low [10] developed a
numerical method for flows involving an interface between a homogeneous fluid
and a porous medium. The Brinkman-Forcheimmer extended model was used to
govern the flow in the porous medium region. At its interface, the flow bound-
ary condition imposed is a shear stress jump, which includes the inertial effect,
together with a continuity of normal stress.

Costa, Oliveira and Baliga [11] implemented the stress jump condition simu-
lating laminar coupled flows in adjacent open and porous domains.
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Problem definition
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z

x

hu

hl

h

-h

Figure 3.1: Sketch of the channel geometry.

We consider the flow of an incompressible viscous fluid through a channel with
flat porous walls, as sketched in fig 3.1. We assume the porous layers to be fluid
saturated, rigid, homogeneous and isotropic. We model the fluid flow through
the porous medium using the Volume Averaged Navier-Stokes equations (2.41)
and (2.42). The momentum transfer at each interface between the purely fluid
region and porous layer is described by the conditions derived by Ochoa-Tapia
and Whitaker (2.57). At the walls, we impose the no-penetration and no-slip
conditions. The fully developed turbulent channel flow is homogeneous in the
streamwise and spanwise directions, and periodic boundary conditions are used
in these directions.

We consider the cartesian coordinate system shown in figure 3.1, where x, y
and z denote the streamwise, wall-normal and spanwise coordinates, while u, v
and w denote the respective components of the velocity vector field. The lower
and upper interface are located at y = −h and y = h, respectively, while the
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lower and upper impermeable walls are located at y = hl = −h − 2hhp1 and
y = hu = h+ 2hhp2 , respectively. In the above relationships, hp1 and hp2 are the
non-dimensional half-heights of the lower and upper porous layers, respectively.

3.1 Non-dimensional equations
We formulate the mathematical problem and make it dimensionless. Note that
non-dimensional quantities are identified by the superscript "¯".

We define as a characteristic length one-half the height of the central purely
fluid layer

L? = h, (3.1)
and as characteristic velocity U?

U? = Ub = 1
hu − hl

∫ hu

hl

Udy, (3.2)

where U (y) can be either the laminar or turbulent mean velocity profile. There-
fore, the Reynolds number is defined as

Re = U?L?

ν
. (3.3)

3.1.1 Navier-Stokes equations
To make the Navier-Stokes equations (2.1) and (2.2) nondimensional, we use the
reference length L?, the reference velocity U? and define as reference time T ? =
L?/U?. Then, writing u = U?ū and p = ρU?2

p̄ and dividing the two equations
respectively by U?2

/L? and U?/L?, we obtain the non-dimenional Navier-Stokes
equations

∂ū

∂t̄
+ ∇ · (ū⊗ ū) = −∇p̄+ 1

Re∇
2ū, (3.4)

∇ · ū = 0. (3.5)

3.1.2 Volume Averaged Navier-Stokes equations
In this study we model the flow through the porous media with equations (2.41)
and (2.42), that we report here for convenience

∂〈u〉s

∂t
= −ε

ρ
∇〈p〉f + ν∇2〈u〉s − ν

K
ε〈u〉s,

∇ · 〈u〉s = 0.

To make the above equations nondimensional, we use the reference length L?, the
reference velocity U? and define as reference time T ? = L?/U?. Then, writing u =



3.2 v-η formulation 23

U?ū and p = ρU?2
p̄ and dividing the two equations respectively by U?2

/L? and
U?/L?, we obtain the non-dimensional Volume-Averaged Navier-Stokes equations

∂〈ū〉s

∂t
= −ε∇〈p̄〉f + 1

Re∇
2〈ū〉s − ε

σ2Re〈ū〉
s, (3.6)

∇ · 〈ū〉s = 0, (3.7)

where σ =
√
K

L?
is the non-dimensional permeability.

3.1.3 Boundary and interface momentum transfer condi-
tions

At the solid walls, no-slip and no-penetration conditions hold. These boundary
conditions written in non-dimensional form are

〈ū〉s = 0, (3.8a)
〈v̄〉s = 0, (3.8b)
〈w̄〉s = 0. (3.8c)

When the porous region is homogeneous and isotropic, and the permeability
is sufficiently small to neglect inertial effects, the momentum transfer conditions
at the interface with the fluid region are (2.57). Their non-dimensional form is

ū = 〈ū〉s, (3.9a)
v̄ = 〈v̄〉s, (3.9b)
w̄ = 〈w̄〉s, (3.9c)
p̄ = 〈p̄〉, (3.9d)

σ

ε

∂〈ū〉s

∂ȳ
− σ∂ū

∂ȳ
= ±τ ū, (3.9e)

σ

ε

∂〈w̄〉s

∂ȳ
− σ∂w̄

∂ȳ
= ±τw̄. (3.9f)

where we use the ± symbol with the positive sign to refer to an interface below
the purely fluid region, and with the negative sign to refer to an interface above
the purely fluid region. From now on, we will consider only non-dimensional
quantities and we will omit, for simplicity, the superscript "¯".

3.2 v-η formulation
In this section, we rewrite the two pairs of equations (3.4) and (3.5), and (3.6)
and (3.7) in the primitive variables u and p with another set of equations, where
pressure formally disappears and is replaced by the normal component of vorticity
η.
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3.2.1 Navier-Stokes equations
The wall-normal component of the vorticity vector η is defined as

η = ∂u

∂z
− ∂w

∂x
, (3.10)

A one-dimensional, second-order, evolution equation for η can be obtained sub-
tracting the x-derivative of the z-component of momentum equation from the
z-derivative of the x-component of the same equation. We have

∂2u

∂z∂t
− ∂2w

∂x∂t
= ∂2p

∂z∂x
− ∂2p

∂x∂z
+ 1

Re
∂∇2u

∂z
− 1

Re
∂∇2w

∂x
+ ∂HU

∂z
− ∂HW

∂x
, (3.11)

where

HU = −∂(uu)
∂x

− ∂(uv)
∂y

− ∂(uw)
∂z

, (3.12)

HW = −∂(wu)
∂x

− ∂(wv)
∂y

− ∂(ww)
∂z

. (3.13)

Using the definition (3.10), the equation for the normal vorticity (3.11) can be
rewritten as

∂η

∂t
= ∂HU

∂z
− ∂HW

∂x
+ 1

Re∇
2η. (3.14)

To obtain an equation for the wall-normal velocity component v free of pres-
sure, we take the laplacian of the y-component of momentum equation (3.4)

∂∇2v

∂t
= −∂∇

2p

∂y
+ 1

Re∇
2∇2v +∇2HV, (3.15)

where
HV = −∂(vu)

∂x
− ∂(vv)

∂y
− ∂(vw)

∂z
. (3.16)

In order to eliminate the pressure term in (3.15), we use the Poisson equation
obtained by taking the divergence of the momentum equation (3.4)

∇2p = ∂HU

∂x
+ ∂HV

∂y
+ ∂HW

∂z
. (3.17)

Therefore, we obtain

∂∇2v

∂t
= −∂

2HU

∂y∂x
− ∂2HW

∂y∂z
+ ∂2HV

∂x2 + ∂2HV

∂z2 + 1
Re∇

2∇2v. (3.18)

Finally, continuity equation (3.5)

∂u

∂x
+ ∂w

∂z
= −∂v

∂y
, (3.19)
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and the definition of η (3.10)

∂u

∂z
− ∂w

∂x
= η, (3.20)

form a 4 × 4 system with equations (3.14) and (3.18) in the unknowns u, v, w
and η.

3.2.2 Volume Averaged Navier-Stokes equations
Analogously to the definition (3.10), the wall-normal component of the volume
averaged vorticity 〈η〉s is defined as

〈η〉s = ∂〈u〉s

∂z
− ∂〈w〉s

∂x
. (3.21)

We apply the same procedure described in sub-section (3.2.1). We subtract the x-
derivative of the z-component of momentum equation (3.6) from the z-derivative
of the x-component of the same equation. We obtain

∂2〈u〉s

∂z∂t
− ∂2〈w〉s

∂x∂t
= 1

Re

(
∂∇2〈u〉s

∂z
− ∂∇2〈w〉s

∂x

)
− ε

σ2Re

(
∂〈u〉s

∂z
− ∂〈w〉s

∂x

)
.

(3.22)
Exploiting the definition of the wall-normal component of the volume averaged
vorticity 〈η〉s (3.21), the above equation can be rewitten as follows

∂〈η〉s

∂t
= 1

Re∇
2〈η〉s − ε

σ2Re〈η〉
s. (3.23)

Note that, differently from equation (3.14), the above equation does not contain
any non-linear terms. This is due to the fact that we have considered negligible
inertial effects in the porous layers. Moreover, in the above equation there is a
zero-order term, 〈η〉sε/ (σ2Re), which comes from the Darcy drag 〈u〉sε/ (σ2Re)
of equation (3.6).

As described for the Navier-Stokes equations, in order to find an equation for
〈v〉s we take the laplacian of the y-component of momentum equation,

∂∇2〈v〉s

∂t
= −ε∇2∂〈p〉f

∂y
+ 1

Re∇
2∇2〈v〉s − ε

σ2Re∇
2〈v〉s (3.24)

Average pressure is eliminated from the previous equation by using the Poisson
equation

ε∇2〈p〉f = 0. (3.25)

Differently from equation (3.17), the above equation is homogeneous. Therefore,
the volume-averaged pressure 〈p〉f is determined only by boundary conditions at
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the impermeable wall and by the momentum transfer condition at the interface
with the fluid region. Using equation (3.25), the normal velocity equation (3.24)
becomes

∂∇2〈v〉s

∂t
= 1

Re∇
2∇2〈v〉s − ε

σ2Re∇
2〈v〉s. (3.26)

Note that in the above equation, analogously to equation (3.23), non-linear terms
are missing, while is present the laplacian Darcy drag term.

Continuity equation (3.7)

∂〈u〉s

∂x
+ ∂〈w〉s

∂z
= −∂〈v〉

s

∂y
, (3.27)

and the definition of η (3.21)

∂〈u〉s

∂z
− ∂〈w〉s

∂x
= 〈η〉s, (3.28)

form a 4× 4 system with equations (3.23) and (3.26) in the unknowns 〈u〉s, 〈v〉s,
〈w〉s and 〈η〉s.

3.2.3 Boundary and interface momentum transfer condi-
tions

Once the equations in the new variables are obtained, the next step is to express
the boundary conditions (3.8) and (3.9) in the same set of variable. At the solid
walls the no-slip and no-penetration conditions hold. Condition (3.8b) remains
unchanged, as follows

〈v〉s = 0. (3.29)
At the walls, the streamwise and spanwise velocities, 〈u〉s and 〈w〉s, are zero
as their derivatives in the x and z directions. Therefore, using the continuity
equations (3.7) and the definition of 〈η〉s (3.21), we obtain the following conditions
at the walls

d〈v〉s

dy
= 0, (3.30)

〈η〉s = 0. (3.31)

At each interface between the fluid region and the porous layers, the momen-
tum transfer conditions (3.9) must be satisfied. The condition (3.9b) remains
unchanged

v = 〈v〉s, (3.32)
while the other conditions need to be transformed. We begin by subtracting the
x-derivative of the (3.9c) from the z-derivative of the (3.9a). We obtain

∂u

∂z
− ∂w

∂x
= ∂〈u〉s

∂z
− ∂〈w〉s

∂x
, (3.33)
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which states that the normal vorticity at the interface is continuous, i.e.

η = 〈η〉s. (3.34)

Adding the z-derivative of the (3.9c) to the x-derivative of the (3.9a), gives

∂u

∂x
+ ∂w

∂z
= ∂〈u〉s

∂x
+ ∂〈w〉s

∂z
. (3.35)

Using the continuity equations (3.5) and (3.7), we obtain

∂v

∂y
= ∂〈v〉s

∂y
, (3.36)

which states that the normal derivative of the normal velocity is continuous at
the interface. Next boundary condition is derived by subtracting the x-derivative
of the (3.9f) from the z-derivative of the (3.9e). We have

σ

ε

∂2〈u〉s

∂y∂z
− σ ∂2u

∂y∂z
− σ

ε

∂2〈w〉s

∂y∂x
+ σ

∂2w

∂y∂x
= ±τ ∂u

∂z
∓ τ ∂w

∂x
, (3.37)

which can be further simplified by using the definitions of the normal vorticity to

σ

ε

∂〈η〉s

∂y
− σ∂η

∂y
= ±τη. (3.38)

Adding the x-derivative of the (3.9e) to the z-derivative of the (3.9f), we obtain

σ

ε

∂2〈u〉s

∂y∂x
− σ ∂2u

∂y∂x
+ σ

ε

∂2〈w〉s

∂y∂z
− σ ∂

2w

∂y∂z
= ±τ ∂u

∂x
± τ ∂w

∂z
. (3.39)

Using the continuity equations (3.5) and (3.7), we obtain

σ

ε

∂2〈v〉s

∂y2 − σ
∂2v

∂y2 = ±τ ∂v
∂y
. (3.40)

In order to obtain the last interface condition, we sum the second x-derivative of
(3.9d) to the second z-derivative of equation (3.9d). We have

∂2p

∂x2 + ∂2p

∂z2 = ∂2〈p〉f

∂x2 + ∂2〈p〉f

∂z2 . (3.41)

Then, we exploit Poisson’s equations (3.17) and (3.25), to obtain

∂2p

∂y2 −
(
∂HU

∂x
+ ∂HV

∂y
+ ∂HW

∂z

)
= ∂2〈p〉f

∂y2 . (3.42)
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To eliminate pressure from the above equations, we take the y-derivatives of
equation (3.15)

∂2p

∂y2 = − ∂2v

∂t∂y
+ 1

Re∇
2∂v

∂y
+ ∂HV

∂y
, (3.43)

and the y-derivatives of equation (3.24)

∂2〈p〉f

∂y2 = −1
ε

∂2〈v〉s

∂t∂y
+ 1
εRe∇

2∂〈v〉s

∂y
− 1
σ2Re

∂〈v〉s

∂y
. (3.44)

Substituting (3.43) and (3.44) in (3.42), and using (3.36), we obtain
(

1− 1
ε

)
∂

∂t

∂v

∂y
− 1

Re

[(
1− 1

ε

)(
∂2

∂x2 + ∂2

∂z2

)
∂v

∂y
+ ∂3v

∂y3 −
1
ε

∂3〈v〉s

∂y3

]
+

− 1
σ2Re

∂v

∂y
= −

[
∂HU

∂x
+ ∂HW

∂z

]
.

(3.45)

Finally, the the six interface conditions can be summarized as follows

v =〈v〉s, (3.46a)
η =〈η〉s, (3.46b)

∂v

∂y
=∂〈v〉

s

∂y
, (3.46c)

σ

ε

∂〈η〉s

∂y
− σ∂η

∂y
=± τη, (3.46d)

σ

ε

∂2〈v〉s

∂y2 − σ
∂2v

∂y2 =± τ ∂v
∂y
, (3.46e)

(
1− 1

ε

)
∂

∂t

∂v

∂y
− 1

Re

[(
1− 1

ε

)(
∂2

∂x2 + ∂2

∂z2

)
∂v

∂y
+ ∂3v

∂y3 −
1
ε

∂3〈v〉s

∂y3

]
+

− 1
σ2Re

∂v

∂y
= −

[
∂HU

∂x
+ ∂HW

∂z

]
.

(3.46f)



Chapter 4

Direct Numerical Simulation

In this chapter we describe our implementation of a DNS solver for turbulent
channel flows over porous layers. The program is an extension of an existing
solver for channel flows created by Quadrio [26, 36, 34]. The chapter has two
main parts. In the first section we discretize the equations derived in the previous
chapter, while in the second section we validate our code.

4.1 Numerical procedure
In this section we present the discretized form of the evolution equations and
boundary conditions. To compute the spatial derivatives in the streamwise and
spanwise directions, we use a spectral method, while we use high-order compact
finite difference approximation for the derivatives in the wall-normal direction.
Time integration is performed using a semi-implicit method. In particular, the
nonlinear terms are advanced with a third-order Runge-Kutta scheme, whereas
the other terms are advanced using an implicit second-order Crank-Nicholson
scheme.

4.1.1 Spectral discretization of the evolution equations
Spectral methods are used to numerically solve differential equations. The so-
lution of a differential equation is written as the sum of the modes of certain
basis functions, for example a Fourier series, and the solution is determined by
choosing the coefficients in the sum appropriately.

We can use spectral methods to solve our problem, equations (3.14), (3.18),
(3.19) and (3.20), and (3.23), (3.26), (3.27) and (3.28), because the fully developed
turbulent channel flow is homogeneous in the streamwise and spanwise directions,
and periodic boundary conditions are used in these directions. Therefore, we
write the velocity component v and the vorticity component η as a truncated
Fourier expansion along the x and z coordinates. The wall-normal velocity v and
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vorticity η can be expressed as

v (x, y, z, t) =
nx
2∑

h=−nx
2

nz
2∑

l=−nz
2

v̂hl (y, t) eiαxeiβz, (4.1a)

η (x, y, z, t) =
nx
2∑

h=−nx
2

nz
2∑

l=−nz
2

η̂hl (y, t) eiαxeiβz, (4.1b)

and the wall-normal volume-averged velocity 〈v〉s and vorticity 〈η〉s becomes

〈v〉s (x, y, z, t) =
nx
2∑

h=−nx
2

nz
2∑

l=−nz
2

v̂phl (y, t) eiαxeiβz, (4.2a)

〈η〉s (x, y, z, t) =
nx
2∑

h=−nx
2

nz
2∑

l=−nz
2

η̂phl (y, t) eiαxeiβz, (4.2b)

where

α = 2πh
Lx

= α0h, β = 2πl
Lz

= β0l. (4.3)

The fundamental wavenumbers α0 and β0, and the indexes h and l, correspond to
the streamwise and spanwise directions, respectively. The length, Lx, and width,
Lz, of the computational domain, and the associated number of modes, nx and
nz, must be chosen in order to minimize computational errors. In particular, the
computational domain must be large enough to resolve the largest scales of the
turbulent flow, while the grid resolutions ∆x = Lx/2nx and ∆z = Lz/2nz, must
be small enough to resolve the smallest scales.

The Fourier representations of v, η, 〈v〉s and 〈η〉s are substituted into evolution
equations (3.14) and (3.18)-(3.20), and (3.23) and (3.26)-(3.28). After a simple
manipulation the evolution equations for each Fourier mode are

∂

∂t

(
D2v̂hl − k2v̂hl

)
= 1

Re
(
D4v̂hl − 2k2D2v̂hl + k4v̂hl

)
+

−k2ĤV hl −D1
(
iαĤUhl + iβĤW hl

)
,

(4.4)

∂η̂hl
∂t

= 1
Re

(
D2η̂hl − k2η̂hl

)
+ iβĤUhl − iαĤW hl, (4.5)

ûhl = i
k2 (αD1v̂hl − βη̂hl) , (4.6)

ŵhl = i
k2 (βD1v̂hl + αη̂hl) , (4.7)
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while the evolution equations for the fluid motion in the porous region become

∂

∂t

(
D2v̂

p
hl − k2v̂phl

)
= 1

Re
(
D4v̂

p
hl − 2k2D2v̂

p
hl + k4v̂phl

)
− ε

σ2Re

(
D2v̂

p
hl − k2v̂phl

)
,

(4.8)
∂η̂phl
∂t

= 1
Re

(
D2η̂

p
hl − k2η̂phl

)
− ε

σ2Re η̂
p
hl, (4.9)

ûphl = i
k2 (αD1v̂

p
hl − βη̂

p
hl) , (4.10)

ŵphl = i
k2 (βD1v̂

p
hl + αη̂phl) . (4.11)

In the above equations we have introduced the wall-normal derivative operator
of order n, Dn, and the wave vector k, whose magnitude is

k =
√
α2 + β2. (4.12)

Moreover, ĤUhl, ĤV hl and ĤW hl are the convolution terms representing in
Fourier-space the nonlinear terms (3.12), (3.16) and (3.13) of Navier-Stokes equa-
tions. The numerical evaluation of the convolution of N modes, i.e. the compu-
tation of all the so-called triadic interactions, requires a number of operations of
order N2. To reduce this computational cost, the nonlinear terms are evaluated in
physical space and then transformed back to Fourier space. This procedure, when
Fast Fourier Transform (FFT) algorithm is used, requires a number of operations
of the order of N logN . Note that aliasing errors are avoided by increasing the
number of modes by a factor of at least 3/2 before the inverse Fourier transforms.

At solid walls, the wall-normal volume-averaged velocity and vorticity satisfy
no-penetration and no-slip conditions written in Fourier space as

v̂phl = 0, (4.13a)
D1v̂

p
hl = 0, (4.13b)
η̂shl = 0, (4.13c)

while at the interface with the fluid region, momentum transfer conditions must
be satisfied

v̂hl =v̂phl, (4.14a)
η̂hl =η̂phl, (4.14b)

D1v̂hl =D1v̂
p
hl, (4.14c)

σ

ε
D1η̂

p
hl − σD1η̂hl =± τ η̂hl, (4.14d)

σ

ε
D2v̂

p
hl − σD2v̂hl =± τD1v̂hl, (4.14e)
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(
1− 1

ε

)
∂

∂t
D1v̂hl −

1
Re

[
−k2

(
1− 1

ε

)
D1v̂hl +D3v̂hl −

1
ε
D3v̂

p
hl

]
+

− 1
σ2ReD1v̂hl = −

[
iαĤUhl + iβĤW hl

]
.

(4.14f)

4.1.2 Space discretization
Finite difference schemes can be explicit or implicit. Explicit schemes express
the nodal derivatives as a weighted sum of the nodal values of the function, while
implicit schemes equate a weighted sum of the nodal derivatives to a weighted sum
of the function. Compact schemes are considered implicit schemes because they
typically require the inversion of a linear system to compute a derivative. Implicit
schemes are generally more accurate than explicit schemes with the same stencil
width. This increase in accuracy is achieved at the cost of inverting a banded
matrix to obtain the nodal derivatives. The most popular implicit schemes are
the Padé schemes, which are based on Padé’s approximants.

In this section, we use a finite difference fourth-order compact schemes for
the discretization of the wall-normal derivatives in the evolution equations (4.4)-
(4.11). The computational stencil is composed by five grid points, arbitrarily
spaced but with smooth stretching [22, 27]. Note that we are able to use a
fourth-order compact scheme at the cost of an explicit scheme, because of the
absence of the third derivative operator, D3, in the equations of motion. For
details, the reader is referred to Thomas work on the numerical solution of the
Orr-Sommerfeld equations [47].

We indicate with djn (i) , i = −2, . . . , 2 the five coefficients used to approximate
the exact n-th operatorDn over five adjacent grid points, centered at yj, as follows

Dnf (y) |y=yj
=

2∑
i=−2

djn (i) f (yj+i) . (4.15)

To obtain the coefficients djn of the finite difference formula (4.15), we choose a
set tm of polynomials of y of increasing degree

tm (y) = ym, m = 0, 1, 2, . . . , 8 (4.16)

and calculate analytically their derivatives D4tm. Then, we obtain the required
coefficients imposing that the following discrete equations are satisfied,

d4tm − d0 (D4tm) = 0, m = 0, 1, 2, . . . , 8. (4.17)

Since our computational stencil contains 5 grid points, the unknown coefficients
d0 and d4 are 10. The last condition, the tenth, is the normalization condition

2∑
i=−2

d0 (i) = 1. (4.18)
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Equations (4.17) and (4.18) form a 10 × 10 linear system for the unknown co-
efficients d0 and d4. Note that D4tm = 0 for m < 4. Therefore, it is possible
to split the 10 × 10 system into two 5 × 5 sub-systems, one for d0 and one for
d4. The coefficients of the derivatives of lesser degree, d1 and d2, are derived
similarly and determined by solving two 5 × 5 linear systems. All the differen-
tial operators admit a representation in which d0 remains the same, so it can
be computed just one time. The procedure outlined above should be repeated
for the whole y range, from one wall to the other. This requires a negligible
amount of computing time, because it has to be done only at the beginning of a
computation. This technique let us obtain finite difference discretization which
is uniformly fourth-order accurate. To impose the boundary conditions we need
to use not centered stencils at the boundaries. To determine their coefficients,
we can follow an approach similar to the one used for the centered stencil at the
interior points of the domain, therefore preserving the fourth-order accuracy of
the method.

We use a mesh of variable size in the wall-normal direction, with more grid
points near the boundaries and the interfaces than in the center. The grid points
yj in the fluid region of the channel are constructed as follows

yj = −1 +
tanh

(
a 2j
ny−1

)
tanh (a) + 1

 j = −1, . . . , ny + 1, (4.19)

while the grid points in the upper and lower porous layers, respectively, are
constructed as follows

ypj = 1 + hp

tanh
(
a 2j
np

y−1

)
tanh (a) + 1

 j = −1, . . . , npy + 1, (4.20)

ypj = −1− 2hp + hp

tanh
(
a 2j
np

y−1

)
tanh (a) + 1

 j = −1, . . . , npy + 1. (4.21)

In the above expressions a is a parameter, which determines the amount of
stretching of the mesh in the wall-normal direction, and ny and npy are the number
of grid points in the fluid region and in the porous layers, respectively. The nodes
identified by indexes −1 and ny + 1 are called ghost nodes. We introduce these
nodes to impose the boundary conditions (4.13a) and (4.13b) at each wall, and
the momentum transfer conditions, (4.14a), (4.14c), (4.14e) and (4.14f), at each
interface. Note that the use of ghost nodes implies a supplementary condition
for η̂ at each boundaries

D4 (η̂hl) |yj
= 0, j = 1, ny − 1 (4.22)

D4 (η̂phl) |yj
= 0, j = 1, npy − 1 (4.23)



34 Direct Numerical Simulation

These conditions are consequence of the cubic extrapolations used to obtain the
values η̂hl and η̂phl at the ghost nodes.

The space discretization described above is used to discretize the evolution
equations (4.4)-(4.7) in the fluid region as follows

∂

∂t

(
dj2v̂hl − k2dj0v̂hl

)
= 1

Re
(
dj4v̂hl − 2k2dj2v̂hl + k4dj0v̂hl

)
+

−k2dj0ĤV hl − dj1
(
iαĤUhl + iβĤW hl

)
,

(4.24)

∂dj0η̂hl
∂t

= 1
Re

(
dj2η̂hl − k2dj0η̂hl

)
+ idj0βĤUhl − idj0αĤW hl, (4.25)

dj0ûhl = i
k2

(
αdj1v̂hl − βd

j
0η̂hl

)
, (4.26)

dj0ŵhl = i
k2

(
βdj1v̂hl + αdj0η̂hl

)
, (4.27)

where j = 1, . . . , ny − 1, while the evolution equations (4.8)-(4.11) in the porous
region become

∂

∂t

(
dj2v̂

p
hl − k2dj0v̂

p
hl

)
= 1

Re
(
dj4v̂

p
hl − 2k2dj2v̂

p
hl + k4dj0v̂

p
hl

)
+

− ε

σ2Re
(
dj2v̂

p
hl − k2dj0v̂

p
hl

)
,

(4.28)

∂dj0η̂
p
hl

∂t
= 1

Re
(
dj2η̂

p
hl − k2dj0η̂

p
hl

)
− ε

σ2Red
j
0η̂
p
hl, (4.29)

dj0û
p
hl = i

k2

(
αdj1v̂

p
hl − βd

j
0η̂
p
hl

)
, (4.30)

dj0ŵ
p
hl = i

k2

(
βdj1v̂

p
hl + αdj0η̂

p
hl

)
, (4.31)

where j = 1, . . . , npy − 1.
At the solid walls, the no-penetration and no-slip conditions (4.13) become

dj0v̂
p
hl = 0, (4.32a)

dj1v̂
p
hl = 0, (4.32b)

dj0η̂
s
hl = 0, (4.32c)

where j is equal to zero at the lower wall and j = npy at the upper wall. The
momentum transfer conditions (4.14) become

dj0v̂hl =dj
p

0 v̂
p
hl, (4.33a)

dj0η̂hl =dj
p

0 η̂
p
hl, (4.33b)

dj1v̂hl =dj
p

1 v̂
p
hl, (4.33c)

σ

ε
dj

p

1 η̂
p
hl − σd

j
1η̂hl =± τdj0η̂hl, (4.33d)

σ

ε
dj

p

2 v̂
p
hl − σd

j
2v̂hl =± τdj1v̂hl, (4.33e)
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(
1− 1

ε

)
∂

∂t
dj1v̂hl −

1
Re

[
−k2

(
1− 1

ε

)
dj1v̂hl + dj3v̂hl −

1
ε
dj

p

3 v̂
p
hl

]
+

− 1
σ2Red

j
1v̂hl = −dj0

[
iαĤUhl + iβĤW hl

]
,

(4.33f)

where j = 0 and jp = nyp at the lower interface, while j = ny and jp = 0 at the
upper interface. Moreover, the conditions (4.22) for the ghost nodes become

dj4v̂hl = 0, (4.34)
dj

p

4 v̂hl = 0, (4.35)

where jp = 1 at the lower solid wall, jp = npy− 1 and j = 1 at the lower interface,
j = ny − 1 and jp = 1 at the upper interface, and jp = npy − 1 at the upper solid
wall.

4.1.3 Time discretization
To integrate in time the evolutions equations (4.24)-(4.31), we adopt a semi-
implicit method. The nonlinear terms are advanced with a third-order Runge-
Kutta scheme, whereas we use an implicit second-order Crank-Nicholson scheme
for the others terms [29, 44, 13].

Before time integration, the evolution equations in the fluid region (4.4)-(4.7)
are fully coupled. In the porous regions, however, equations (4.8) and (4.9) are
uncoupled from equations (4.10) and (4.11). When nonlinear terms in equations
(4.4) and (4.5) are treated explicitly, the equations for v̂ (4.4) and η̂ (4.5) uncouple
from the one for û (4.6) and ŵ (4.7). At this point, the full set of equations (4.4)-
(4.11) can be integrated in two steps. First, we compute v̂ and η̂ integrating
equations (4.4) and (4.5), and v̂p and η̂p integrating equations (4.8) and (4.9).
Subsequently, we compute û and ŵ using equations (4.6) and (4.7), and ûp and
ŵp using equations (4.10) and (4.11).

After time discretization, the evolution equations (4.24) and (4.25) can be
rewritten as follows[

λs
∆t

(
dj2v̂ − k2dj0v̂

)
− 1

Re
(
dj4v̂ − 2k2dj2v̂ + k4dj0v̂

)]ns+1

=

=
[
λs
∆t

(
dj2v̂ − k2dj0v̂

)
+ 1

Re
(
dj4v̂ − 2k2dj2v̂ + k4dj0v̂

)]ns

+

+θs
[
−k2dj0ĤV − d

j
1

(
iαĤU + iβĤW

)]ns +

+ξs
[
−k2dj0ĤV − d

j
1

(
iαĤU + iβĤW

)]ns−1
,

(4.36)

[
λs
∆td

j
0η̂ −

1
Re

(
dj2η̂ − k2dj0η̂

)]ns+1

=
[
λs
∆td

j
0η̂ + 1

Re
(
dj2η̂ − k2dj0η̂

)]ns

+

+θs
[
iβdj0ĤU − iαdj0ĤW

]ns + ξs
[
iβdj0ĤU − iαdj0ĤW

]ns−1
,

(4.37)
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while equations (4.28) and (4.29) become

[
λs
∆t

(
dj2v̂

p − k2dj0v̂
p
)
− 1

Re
(
dj4v̂

p − 2k2dj2v̂
p + k4dj0v̂

p
)]ns+1

+

+
[

ε

σ2Re
(
dj2v̂

p − k2dj0v̂
p
)]ns+1

=

=
[
λs
∆t

(
dj2v̂

p − k2dj0v̂
p
)

+ 1
Re

(
dj4v̂

p − 2k2dj2v̂
p + k4dj0v̂

p
)]ns

+

−
[

ε

σ2Re
(
dj2v̂

p − k2dj0v̂
p
)]ns

,

(4.38)

[
λs
∆td

j
0η̂
p − 1

Re

(
dj2η̂

p − k2dj0η̂
p − ε

σ2d
j
0η̂
p
)]ns+1

=

=
[
λs
∆td

j
0η̂
p + 1

Re

(
dj2η̂

p − k2dj0η̂
p − ε

σ2d
j
0η̂
p
)]ns

,

(4.39)

where ∆t is the time-step, ns the index of the discretized time and λs, θs and ξs are
three coefficients of the combined third-order Runge-Kutta and Cranck-Nicholson
scheme, whose values are reported in table 4.1. The subscript s indicates the
substeps used in the combined Runge-Kutta and Cranck-Nicholson scheme to
advance the integration from time istant tn to the time istant tn+1 = tn + ∆t.
In the first substep s = 1, we integrate equations (4.36)-(4.39) from tn1 = tn to
tn2 = t1 + 2/λ1∆t. In the second substep s = 2, we integrate equations (4.36)-
(4.39) from tn2 to tn3 = tn2 + 2/λ2∆t. Finally, in the third substep s = 3, we
integrate equations (4.36)-(4.39) from tn3 to tn4 = tn3 + 2/λ3∆t = tn+1. Note
that, in the first substep ξ1 = 0 so we do not need to define n0.

The boundary conditions (4.13) and momentum transfer conditions (4.14),
except (4.14f), remain unchanged after time discretization. The condition (4.14f),

substep λs θs ξs

1 120/32 2 0
2 120/8 50/8 -34/8
3 120/20 90/20 -50/20

Table 4.1: Coefficients for time integrations of evolution equations (4.36), (4.37),
(4.38) and (4.39) with an implicit second-order Crank-Nicholson and a third-order
Runge-Kutta schemes.
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which is time-dependent, becomes[(
1− 1

ε

)
λs
∆tD1v̂hl + k2

Re

(
1− 1

ε

)
D1v̂hl −

1
σ2Re

D1v̂hl

]ns+1

=[(
1− 1

ε

)
λs
∆tD1v̂hl −

k2

Re

(
1− 1

ε

)
D1v̂hl + 1

σ2Re
D1v̂hl

]ns

+

+θs
[ 1
Re

(
D3v̂hl −

1
ε
D3v̂

p
hl

)
−
(
iαĤUhl + iβĤW hl

)]ns

+

+ξs
[ 1
Re

(
D3v̂hl −

1
ε
D3v̂

p
hl

)
−
(
iαĤUhl + iβĤW hl

)]ns−1

.

(4.40)

In our numerical simulations, the time step ∆t is an important parameter,
because the time-integration scheme described above is not unconditionally sta-
ble. At each time step, a suitable ∆t is computed imposing the following CFL
condition

∆t =
max

Ω
(CFL)

max
Ω

(
u

∆x

)
+ max

Ω

(
v

∆y

)
+ max

Ω

(
w

∆z

) , (4.41)

where Ω is the computational domain.

4.1.4 Mean flow in the homogeneous directions
The equations (4.6) and (4.7) are singular when k2 = 0 . In order to com-
pute the velocity components corresponding to the mode k =

√
α2 + β2 = 0,

(α = 0, β = 0), we have to introduce the plane-average values of the velocity ũ
and w̃, as follows

ũ (y, t) = 1
Lx

1
Lz

∫ Lx

0

∫ Lz

0
u (x, y, z, t) dx dz, (4.42)

w̃ (y, t) = 1
Lx

1
Lz

∫ Lx

0

∫ Lz

0
w (x, y, z, t) dx dz. (4.43)

The plane-averaged velocities ũ and w̃ are functions of the wall-normal coordinate
and time only, and they are the Fourier modes for k = 0. The temporal average
of ũ and w̃ are the streamwise and spanwise mean velocities.

The calculation of ũ and w̃ requires two additional equations that can be
obtained by applying the plane-average operator, used in (4.43) and (4.43), to the
x and z components of the momentum equations (3.4) and (3.6). The evolution
equations for the plane-averaged velocities in the fluid region are

∂ũ

∂t
= 1

ReD2ũ−D1ũv + f̃x, (4.44)
∂w̃

∂t
= 1

ReD2w̃ −D1ṽw + f̃z, (4.45)
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while their counterpart in the the porous region are

∂ũp

∂t
= 1

ReD2ũ
p − ε

σ2Re
ũp + εf̃x, (4.46)

∂w̃p

∂t
= 1

ReD2w̃
p − ε

σ2Re
w̃p + εf̃z, (4.47)

where f̃x and f̃z are the forcing terms and correspond to the mean pressure
gradients. The discretized version of equations (4.44) and (4.45) are[

λs
∆td

j
0ũ−

1
Red

j
2ũ

]ns+1

=
[
λs
∆td

j
0ũ+ 1

Red
j
2ũ

]ns

+

−θs
[
dj1ũv

]ns − ξs
[
dj1ũv

]ns−1 + f̃x,

(4.48)

[
λs
∆td

j
0w̃ −

1
Red

j
2w̃

]ns+1

=
[
λs
∆td

j
0w̃ + 1

Red
j
2w̃

]ns

+

−θs
[
dj1ṽw

]ns − ξs
[
dj1ṽw

]ns−1 + f̃z,

(4.49)

while the discretized version of equations (4.46) and (4.47) are[
λs
∆td

j
0ũ

p − 1
Red

j
2ũ

p + ε

σ2Red
j
0ũ

p

]ns+1

=
[
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∆td

j
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Red

j
2ũ
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σ2Red
j
0ũ

p

]ns

+

+εf̃x,
(4.50)[

λs
∆td

j
0w̃

p − 1
Red

j
2w̃

p + ε

σ2Red
j
0w̃

p

]ns+1

=
[
λs
∆td

j
0w̃

p + 1
Red

j
2w̃

p − ε

σ2Red
j
0w̃

p

]ns

+

+εf̃z.
(4.51)

The flow rates in the spanwise and streamwise directions per unit lengths are

Qx =
∫ −1

−1−2h1
ũp dy +

∫ 1

−1
ũ dy +

∫ 1+2h2

1
ũp dy, (4.52)

Qz =
∫ −1

−1−2h1
w̃p dy +

∫ 1

−1
w̃ dy +

∫ 1+2h2

1
w̃p dy. (4.53)

In general, in the case of a turbulent flow, when one of the pressure gradients, f̃x
or f̃z, is constant, the flow rate in the same direction oscillates in time around
a constant value, while, when one of the flow rates, Qx or Qz, is constant, the
pressure gradient in the same direction oscillates around a constant value. If we
want to perform a simulation at constant flow rate, Qx, we need to determine the
appropriate forcing term at every time step. However this can be avoided with
the following procedure. We first solve the equations (4.48) and (4.50) with zero
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forcing terms, fx = 0, and we compute the flow rate Qx|fx=0. Then, we solve
the same equations (4.48) and (4.48), but with the RHS composed only by unit
forcing terms, fx = 1, and we compute the flow rate Qx|fx=1. Finally, we combine
the two solutions as follows

ũ = ũ|fx=0 + Q̄x −Qx|fx=0

Qx|fx=1
ũ|fx=1, (4.54)

ũp = ũp|fx=0 + Q̄x −Qx|fx=0

Qx|fx=1
ũp|fx=1, (4.55)

where Q̄x is the imposed flow rate.

4.1.5 Numerical implementation
The program is written in CPL, a programming language created by Paolo Luchini.
The CPL compiler preprocesses the source code to generate an ANSI-C source,
which is then compiled by any ANSI-C compliant compiler. The invocation of a
make-like command makes this procedure automatic. Figure 4.1 shows a flowchart
of the DNS algorithm.

4.2 Code validation
In this section we validate our program. In order to do that, we first define the
kinetic energy of the disturbances, and then we compare the computed growth
rate of this quantity, with the one predicted by the linear stability analysis.

The kinetic energy of the disturbance per unit volume is defined as follows

E (t) =
∑
α,β

1
2

∫ hu

hl

|û|2 + |v̂|2 + |ŵ|2 dy. (4.56)

When we consider wavelike velocity perturbation of the following form

û (x, y, z, t) = ũ (y) ei(αx+βz−αct), (4.57)

where c = cr + ici is the complex streamwise phase speed, and α and β are
the streamwise and spanwise wavenumbers, the temporal linear stability theory
predict that the energy of the disturbances has an exponential growth, as follows

e2αcit. (4.58)

Tilton [48, 50] was the first to perform the linear stability analysis for a channel
flow over permeable walls and Scarselli [41] further develops this work. For further
details, the reader is referred to their works.
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Figure 4.1: Flowchart representing the DNS algorithm.
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Figure 4.2: Eigenvalues (a) and eigenfunction (b) of mode α = 1 and β = 0 for
parameters Re = 3100, half-height of the porous layer hp = 0.5, permeability σ = 0.004,
porosity ε = 0.6 and momentum transfer coefficient τ = 0. In sub-figure (b) the
continuos and dash-dotted lines are used for the real and imaginary parts of v, while
the dashed and dotted lines are used for the real and imaginary parts of η

In order to verify that our program works properly, we compare the initial
growth rate of perturbation’s kinetic energy (4.56) obtained by our calculations,
with the one predicted by the linear stability analysis (4.58). In particular, we
consider an unstable case, ci > 0, and in that case the most unstable eigenvalue
is the one dominating the energy growth rate.

We consider a flow at Re = 3100, with the half-height of the porous layers hp =
0.5, permeability σ = 0.004, porosity ε = 0.6 and momentum transfer coefficient
τ = 0. Note that this case is one of the cases studied in the next chapter. For
mode α = 1 and β = 0, the linear stability analylis provides the eigenvalues
plotted in figure 4.2(a). The value of the unstable eigenvalue is c = 0.336 +
0.00227i. The numerical simulation starts form the laminar solution, plotted in
figure 4.3(a), with the eigenfunction, plotted in figure 4.2(b), as perturbation on
mode α = 1 and β = 0.

The computed energy growth rate is shown in figure 4.3(b) with a solid line,
compared with the one predicted by equation (4.58) plotted with dashed line.
Note that, we have to compare only the rate of the two curves, not their values.
We can see that the computed energy growth rate is very similar to the one
predicted by the linear stability analysis. We want to verify that linearity is
preserved varying the simulations parameters, such as the number of modes in
the streamwise and spanwise directions, the number of grid nodes in the wall-
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Figure 4.3: Laminar solution (a) and energy growth of disturbances (b) for a channel
flow over porous walls at Re = 3100. The porous layers have half-height hp = 0.5,
permeability σ = 0.004, porosity ε = 0.6 and momentum transfer coefficient τ = 0. In
sub-figure (b) the dashed line is the energy growth rate used as reference, while the
solid line represents the computed energy growth.

normal direction, the time step, and the initial amplitude of the perturbation.
Figure 4.4 shows the energy growth rates for the different cases. We note that,
the differences in all the cases are negligible. Only figure 4.4(b) shows a deviation
from the linear behaviours for large values of energy. In this case, the perturbation
is too big to neglect the nonlinear terms, so the linear analysis is no more valid.
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Figure 4.4: Energy growth of perturbation of mode α = 1 and β = 0, of a channel
flow at Re = 3100 over porous walls of half-height hp = 0.5, permeability σ = 0.004,
porosity ε = 0.6 and momentum transfer coefficient τ = 0. The dash-dotted lines
represent the predicted growth rate. The figures differ for the parameters used in the
simulations. In sub-figure (a) we use different ∆t: dash-dotted line ∆t = 0.02, solid
line ∆t = 0.04 and dotted line ∆t = 0.06. In sub-figure (b) we use perturbation with
different initial amplitude. The different scale factors are: dash-dotted line 10−3.5, solid
line 10−4 and dotted line 10−4.5. In sub-figure (c) we use different number of modes:
solid line nx = nz = 4, dash-dotted line nx = nz = 8 and dotted line nx = nz = 16.
In sub-figure (d) we use different number of grid points in the wall normal direction:
dash-dotted line ny = 150, solid line ny = 200 and dotted line ny = 250.





Chapter 5

Results

In this chapter, we present the results obtained by the direct numerical simula-
tions of channel flows over two identical porous walls. We considered two cases,
one at medium Reynolds number Re = 3100 and one at very low Reynolds num-
ber Re = 950. In the first case we study how the porous walls affect turbulence
statistics, while in the second case we investigate if the porous wall can sustain
turbulent flows at low Reynolds number.

5.1 Turbulent channel flow over a porous wall
We consider a turbulent channel flow, at a bulk Reynolds number of 3100, over
two identical porous walls, whose half-heights are hp = 0.5. The permeability of
the porous layers is σ = 0.004, the porosity is ε = 0.6, and the coefficient τ of the
momentum transfer conditions is set equal to zero. The computation is carried
out on a grid of 128× (128 + 128 + 128)×128 points, in the x, y and z directions
respectively, on a computational domain of 2π × (1 + 2 + 1)× π. The resolution
of the numerical simulation is ∆x+ ≈ 10 in wall units in the streamwise direction,
∆z+ ≈ 5 in the spanwise direction, and with a minimum ∆y+ in the wall-normal
direction which is less than 1.

The wall units, indicated by the superscript " + ", are measured in terms of
the dimensionless viscous length δν , which is defined as follows

δν = 1
uτRe

, (5.1)

where uτ is the dimensionless friction velocity. Note that we use the viscous length
and the friction velocity as reference length scale and velocity scale, respectively,
in the near-wall regions. For a turbulent channel flow with solid walls, the friction
velocity is defined as follows

uτ =
√√√√ 1

Re
du

dy

∣∣∣∣∣
y=−1

, (5.2)



46 Results

where u is the mean velocity, y = −1 is the location of the wall, and the " ¯ "
indicates the average over t and over the homogeneous directions, x and z. In
the case of a turbulent channel flow over porous walls, the definition (5.2) must
be modified to account for the slip velocity at the interface as follows (Breugem
and Boersma [7])

uτ =
√√√√ 1

Re
du

dy

∣∣∣∣∣
y=−1

− u′v′
∣∣∣
y=−1

, (5.3)

where u′v′ is one of the components of the Reynolds stresses and the superscript
" ′ " indicates the perturbation from the average. The Reynolds number based
on the friction velocity uτ is called friction Reynolds number Reτ , and is defined
as Reτ = uτRe. In our case, the friction Reynolds number is Reτ = 200.

We start the comparison between the turbulent channel flows with porous or
impermeable walls by analyzing their mean properties. Figure 5.1 shows the x-
component u of the mean velocity profile. The other two components of the mean
velocity, v and w, are equal to zero. As a reference, in the same figure we plot the
mean velocity profile of a channel flows over impermeable walls with a dashed line.
For both cases the maximum velocity is reached at the centerline and is uc = 1.16.
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Figure 5.1: Mean velocity profile of turbulent channel flow at Re = 3100 over porous
walls. The half-heights of the porous layers are hp = 0.5, the permeability is σ = 0.004
and the porosity is ε = 0.6. The solid and dashed line indicate the velocity profiles of
channel flows over porous and impermeable walls, respectively.
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Figure 5.2: Zoomed views of the mean velocity profile in the porous layer (a) and
at the interface with the fluid region (b) for a turbulent flow at Re = 3100. The
half-heights of the porous layers are hp = 0.5, the permeability is σ = 0.004 and the
porosity is ε = 0.6. The dashed line indicates the velocity profile of a channel flow over
impermeable walls.

We can observe a few differences at the interface between the fluid region and
the porous layers, where there is a slip velocity of about ui = 0.0417. We show
zoomed views of the mean velocity profiles at the interface and in the porous
layer in figure 5.2. In the porous layers, figure 5.2(a), the velocity is zero at the
impermeable wall and rises to a constant value through a small boundary layer.
Inside the porous layer the velocity is constant and equals the Darcy velocity,
whose magnitude is uD = 0.000215. As we approach the interface, figure 5.2(b),
the fluid velocity increases from the Darcy velocity uD to the interface velocity
ui, and this is achieved in the so called Brinkman layer whose height is 0.0201.
At the interface, the mean velocity profile has a y-derivative which equals 13.3,
while in a channel with impermeable walls the y-derivative is 12.1. As shown by
the value of the y-derivative, the friction velocity in the porous case (0.0667) is
greater than in the case of impermeable walls (0.0627).

Figure 5.3 shows the mean velocity profiles as ∆u+ = u+ − u+
i versus the

logarithm of the distance from the interface ỹ = y − 1 expressed in wall-units.
We draw the velocity profiles with this downward shift, as done by Hahn et al.
[15], to remove the upward shift due to the slip velocity at the permeable wall.
Note that after the downward shift, the mean velocity profiles pass for the point
ỹ+ = 1, u+ = 1. For the channel flow, we can usually identify three regions. The
region where ỹ+ < 5 is called viscous sublayer and the variation of u+ with ỹ+ is
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Figure 5.3: Mean velocity profile of turbulent channel flow at Re = 3100 in wall
units. The curves are shifted downwards by U i. The half-heights of the porous layers
are hp = 0.5, the permeability is σ = 0.004 and the porosity is ε = 0.6. The solid and
dashed line indicate the velocity profiles of channel flows over porous and impermeable
walls, respectively.

approximately linear, i.e.
u+ = ỹ+. (5.4)

The region where ỹ+ > 30 is called log-law region where the variation of u+ versus
ỹ+ is logarithmic, i.e.

u+ = 1
k

log ỹ+ +B+, (5.5)

where k (Von Karman constant) and B+ are two constants. This relationship
is called logarithmic law. The values of k and B+ for smooth walls are usually
assumed to be k = 0.41 and B+ = 5. However, for the Reynolds number that
we are considering, a better fit with experimental and numerical simulations is
obtained with k = 0.41 and B+ = 5.5. Finally, the region between 5 and 30 wall
units is called buffer layer and neither laws hold. We note that the three regions
are still present in the simulation of the channel flow over porous walls. The main
differences between the two turbulent flows are present in the logarithmic region,
where the curve of the porous case is lower than the case with solid walls, and
this is generally representative of a greater friction.



5.1 Turbulent channel flow over a porous wall 49

y

u+rms

−2 −1.5 −1 −0.5 0
0

0.5

1

1.5

2

2.5

3

3.5

−1.05 −1 −0.95

0

0.2

0.4

(a)

y

v+rms

−2 −1.5 −1 −0.5 0
0

0.5

1

1.5

−1.05 −1 −0.95

0

0.2

0.4

(b)

y

w+
rms

−2 −1.5 −1 −0.5 0
0

0.5

1

1.5

−1.05 −1 −0.95

0

0.2

0.4

(c)

Figure 5.4: Rms velocity made dimensionless with the friction velocity, for a turbulent
flow at Re = 3100. The half-heights of the porous layers are hp = 0.5, the permeability
is σ = 0.004 and the porosity is ε = 0.6. The solid and dashed line indicate the flow
over porous and impermeable walls, respectively.

We continue our comparison between the turbulent channel flows with porous
or impermeable walls by analyzing the turbulence intensities. For both flows, the
root mean square (rms) velocities, made dimensionless with the friction velocity,
are defined as follows,

u+
rms =

√
u′u′

uτ
, v+

rms =
√
v′v′

uτ
, w+

rms =
√
w′w′

uτ
. (5.6)
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Figure 5.5: Reynolds stresses for a turbulent flow at Re = 3100. The half-heights
of the porous layers are hp = 0.5, the permeability is σ = 0.004 and the porosity is
ε = 0.6. The solid and dashed line are used for the flow over porous and impermeable
walls, respectively.

Figure 5.4 shows the rms velocities of a turbulent channel flow over porous walls,
compared with the ones of a channel flow over impermeable walls, and we note
a changing in all the rms velocities, especially near the centerline and at the in-
terface with the fluid region. All the rms velocities are not null at the interface,
but they rapidly decrease inside the porous layer. The greatest difference can
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be noticed in the wall-normal and spanwise rms velocities, whose peaks and the
values of the rms velocities at the centerline are greater in the porous case, indi-
cating greater fluctuations, than in the impermeable case. Therefore, we conclude
that the porous walls affects the turbulence intensities mainly by increasing the
wall-normal and spanwise fluctuations. Moreover, the permeability of the wall
enhances all the turbulence fluctuations near the interface.

We continue our comparison between the turbulent channel flows with porous
or impermeable walls by analyzing the total shear stress and the components of
the Reynolds stress tensor. The Reynolds stress tensor is a symmetric tensor
defined as follows  u′u′ u′v′ u′w′

u′v′ v′v′ v′w′

u′w′ v′w′ w′w′

 . (5.7)

The diagonal components, u′u′, v′v′ and w′w′, are called normal stresses, while
the off-diagonal components, u′v′, u′w′ and v′w′, are called shear stresses. Due to
the symmetry of the flow, the Reynolds stresses u′w′ and v′w′ equal zero, u′v′ is
an odd function of y, and u′u′, v′v′ and w′w′ are even functions of y. Figure 5.5
shows the Reynolds stresses of the turbulent channel flow over porous walls. As in
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Figure 5.6: The solid line represents the total shear stress, decomposed in the viscous
stress, plotted with a dotted line, and the Reynolds shear stress, plotted with a dashed
line. The half-heights of the porous layers are hp = 0.5, the permeability is σ = 0.004,
the porosity is ε = 0.6 and the Reynolds number is Re = 3100. In figure (b) the
dashed and dotted lines represent the shear and viscous stresses for the porous case,
respectively, while the dash-dotted and crossed lines represent the shear and viscous
stresses, respectively, for the case with solid walls.
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the case for the rms velocities, we observe an increase in the peaks of the normal
stresses in the wall-normal and spanwise directions, while there is a decrease of
the normal stress in the streamwise direction. Moreover, all the peaks are shifted
towards the interface, and the stresses are non zero at the interface.

We can define the total shear stress τ as the sum of the Reynolds shear stress
u′v′ with the viscous stress. So, we have

τ = 1
Re

du

dy
− u′v′. (5.8)

Figure 5.6 shows the total shear stress and its decomposition in viscous and
Reynolds stress. With respect to the channel flow over impermeable walls, we
note that at the interface with the porous layer the Reynolds stress u′v′ does not
vanish, and the viscous stress does not reach unity, but their sum is one.

5.1.1 The effects of the porous half-height hp

hp npy uτ

0.10 64 0.0669
0.25 96 0.0668
0.50 128 0.0667
1.00 164 0.0666
2.00 192 0.0660

Table 5.1: Number of grid points npy in the porous layers and friction velocity uτ
obtained from the simulations of turbulent channel flows over porous walls at Re =
3100. The half-height of the porous layers hp is varied between 0.10 and 2. The
permeability of the porous layers is σ = 0.004 and the porosity is ε = 0.6.

We present a parametric study where we varied the half-height of the porous
layers hp. The purpose of this study is to understand which is the height of the
porous layers that affects the most turbulence statistics. We consider a turbulent
flow at Reynolds number Re = 3100, and the porous layers have permeability
σ = 0.004, porosity ε = 0.6, and the momentum transfer coefficient τ is set equal
to zero. We consider five cases, where the half-height of the porous layer hp
ranges from 0.10 to 2, hp = 0.10, 0.25, 0.50, 1, 2.

To resolve accurately the flow in the porous region, we set a different number
of nodes in the wall-normal direction for each simulation, increasing the number
with the height of the porous layers, in order to maintain the same numerical
resolution. In table 5.1, we report the number of grid points for each simulation,
together with the friction velocity uτ . We note that the friction velocity increases
as the height of the porous layers decreases.
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Figure 5.7: Mean velocity profiles of turbulent channel flows, made dimensionless
with the friction velocity, for different half-heights of the porous layers hp. The curves
are shifted downwards by U i. The case with hp = 0.10 is plotted with dash-dotted line,
hp = 0.25 with dashed line, hp = 0.5 with solid line, hp = 1 with dotted line and hp = 2
with crossed line. The permeability of the porous layers is σ = 0.004, the porosity is
ε = 0.6 and the Reynolds number is Re = 3100,.

In figure 5.7, we show the mean velocity profiles, made dimensionless by the
friction velocity, as ∆u+ = u+ − u+

i . We note that the differences between the
various cases are quite small. We observe that all the curves are close to each
other and ordered with hp, the lower corresponding to lower hp. Note that the
curves are shifted downwards, and the downward shift is greater for higher hp.

Figure 5.8 shows the Reynolds stresses at different heights of the porous layers.
Only small differences are noticeable. The normal stress u′u′ and the shear stress
u′v′ seem not affected by the height of the porous layer, even if the peak of the
normal stress has a little increase and the peak of the shear stress has a little
decrease for the higher porous layers. The other two normal stresses, v′v′ and
w′w′, instead, change with hp. In both cases, the peaks are lower for the higher
heights of the porous layers, and are shifted towards the centerline.
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Figure 5.8: Reynolds stresses for different heights of the porous layers for a turbulent
channel flows over porous walls at Re = 3100. The case with hp = 0.10 is plotted
with dash-dotted line, hp = 0.25 with dashed line, hp = 0.5 with solid line, hp = 1
with dotted line and hp = 2 with crossed line. The permeability of the porous layers is
σ = 0.004 and the porosity is ε = 0.6.

5.1.2 The effects of the momentum transfer coefficient τ

We now investigate the effects of the momentum transfer coefficient τ on the tur-
bulence statistics. We consider only the cases with the minimum and maximum
half-heights of the porous layers, hp = 0.10 and hp = 2.00, because we expect that
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Figure 5.9: Mean velocity profiles of turbulent channel flow over porous walls, made
dimensionless with the friction velocity, with varying momentum transfer coefficient τ .
The Reynolds number is Re = 3100 and the porous layers have permeability σ = 0.004,
porosity ε = 0.6. The half-height of the porous layer hp equals 0.10 in figure (a) and
equals 2.00 in figure (b). The solid lines are the profile for τ = 0, the dashed line are
used for τ = −1, and the dash-dotted lines are used for τ = 1.

the turbulence statistics of the others cases will fall within these two. We study
only three values of τ , −1, 0 and 1, because the momentum transfer coefficient τ
of most of the porous media falls in this range. Note that the case τ = 0 is used

hp τ npy u+
i uτ

0.10 -1 64 0.355 0.0668
0.10 0 64 0.631 0.0668
0.10 1 64 2.601 0.0626
2.00 -1 192 0.359 0.0666
2.00 0 192 0.630 0.0660
2.00 1 192 2.99 0.0579

Table 5.2: Number of grid points npy in the porous layers, interface velocity expressed
in wall units u+

i , and friction velocity uτ obtained from the simulations of turbulent
channel flows over porous walls at Re = 3100. The simulations differ for the half-height
of the porous layers, which is hp = 0.10 or hp = 2, and for the momentum transfer
coefficient τ which is varied between −1 and 1.
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Figure 5.10: Mean velocity profiles of turbulent channel flows, made dimensionless
with the friction velocity, with varying momentum transfer coefficient τ . The Reynolds
number is Re = 3100 and the porous layers have permeability σ = 0.004, porosity
ε = 0.6. The half-height of the porous layer hp equals 0.10 in figure (a) and equals
2.00 in figure (b). The solid lines are the profile for τ = 0, the dashed line are used for
τ = −1, and the dash-dotted lines are used for τ = 1.

as a reference case. We keep unchanged the other parameters of the porous layers
as in the previous simulations. In particular, the permeability σ equals 0.004 and
the porosity ε equals 0.6. The turbulent flow is simulated at Re = 3100.

Figure 5.9 shows the mean velocity profiles for the three momentum transfer
coefficients considered. In figure 5.9(a) is plotted the velocity profile for the flow
over a porous layer whose height is hp = 0.10, while figure 5.9(b) shows the
profile when hp = 2.00. The case with the positive τ is drawn with a dash-dotted
line, while the case with the negative τ is drawn with dashed line. The effects
of the momentum transfer coefficient τ on the mean velocity profile are quite
evident. In both figures, the positive τ induces a decrease of the velocity at the
centerline, while increases significantly the velocity at the interface between the
porous layers and the fluid region. Also the derivatives of the mean velocity
profile at the interface are quite different. We report the interface velocities in
wall units and the friction velocities for the various cases in table 5.2. Note that
the velocities at the interface with the fluid region increase significantly as τ
increases from −1 to 1. Apparently, this increase is not linear with the linear
variation of the momentum transfer coefficient. Consistently, the friction velocity
uτ is greater when τ is negative than when τ is positive.

Figure 5.10 shows the mean velocities profiles, in wall units, on a logarithmic
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Figure 5.11: Reynolds stresses with varying momentum transfer coefficient τ . The
half-height of the porous layer hp equals 0.10. The solid lines are the profile for τ = 0,
the dashed line are used for τ = −1, and the dash-dotted lines are used for τ = 1.

scale. Note that we plot ∆u+ = u+−u+
i , to compensate for the effects of the slip

velocity. For low height of the porous layers, the positive τ lowers the velocity
profile in the logarithmic region, while the negative τ raise it (figure 5.10(a)).
We observe that the effect of the momentum transfer coefficient seems reducing
when the height of the porous layers hp increase (figure 5.10(b)).

Figure 5.11 and 5.12 show how the Reynolds stresses are affected by the
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Figure 5.12: Reynolds stresses with varying momentum transfer coefficient τ . The
half-height of the porous layer hp equals 2.00. The solid lines are the profile for τ = 0,
the dashed line are used for τ = −1, and the dash-dotted lines are used for τ = 1.

momentum coefficient τ . In particular in figure 5.11 we plot the Reynolds stresses
for the smallest porous height hp = 0.10, while in figure 5.12 we plot the Reynolds
stresses for the largest porous height hp = 2.00. We observe that the positive
τ induces an increase of the Reynolds stress u′u′, while reduces the Reynolds
stresses v′v′, w′w′ and u′v′. The negative τ has an opposite but weaker effect.
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5.2 Very low Reynolds number turbulent flow

We consider a turbulent channel flow, at a bulk Reynolds number of 950, over two
identical porous walls, whose heights are hp = 1. The permeability of the porous
layers is σ = 0.01, the porosity is ε = 0.6, and the coefficient of the momentum
transfer conditions is set equal to zero τ = 0. The computation is carried out
on a grid of 128 × (128 + 128 + 128) × 128 points, in the x, y and z direction
respectively, on a computational domain of 2π/0.4 × (2 + 2 + 2) × 2π/0.8. The
resolution of the numerical simulation is ∆x+ ≈ 8 in the streamwise direction,
∆z+ ≈ 4 in the spanwise direction, and with a minimum ∆y+ in the wall-normal
direction which is less than 0.5. The friction Reynolds number is Reτ = 65. To the
best of our knowledge, the lowest friction Reynolds number at which a turbulent
channel flow has been simulated is Reτ = 70 [51]. The authors reported that,
a big computational domain is needed to simulate accurately very low Reynolds
number flows. We use a computational domain twice as large as the one used in
the previous simulations. Note that, the effects of the size of the computational
domain should be investigated further.

We start analyzing the mean properties of the turbulent channel flows with
porous walls at low Reynolds number. Figure 5.13(a) shows the x-component
of the mean velocity profile u compared with the laminar profile U at the same
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Figure 5.13: Mean velocity profiles of channel flows at Re = 950. The half-heights of
the porous layers are hp = 1, the permeability is σ = 0.01, the porosity is ε = 0.6. The
solid and dotted line are the velocity profiles of turbulent and laminar channel flows
over porous walls, respectively. In figure (b) the dashed line is the mean velocity profile
of a turbulent channel flow over impermeable walls at Re = 3100.
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Figure 5.14: Zoomed views of the mean velocity profile in the porous layer (a) and at
the interface with the fluid region (b). The half-heights of the porous layers are hp = 1,
the permeability is σ = 0.01, the porosity is ε = 0.6. The solid and dotted lines are the
turbulent and laminar velocity profiles of the flow at Re = 950, while the dashed line
is the velocity profile of a channel flow over impermeable walls at Re = 3100.

Reynolds number. The other two components of the mean velocity, v and w,
are equal to zero, as in the case at Re = 3100 discussed in section 5.1. We can
observe that, in the fluid region, the two profiles are quite different, especially
at the centerline where the turbulent profile has a lower maximum velocity uc =
1.25 than the laminar case where Uc = 1.49. Figure 5.13(b) shows the same
velocity profiles and also a mean velocity profile of a turbulent channel flow over
impermeable walls at Re = 3100, drawn with a dashed line. We notice that, all
three profiles are significantly different. In the inset figure in figure 5.13(b), we
show the mean velocity profiles at the interface. Turbulence, apparently, increases
the velocity at the interface. In the laminar solution the interface velocity is
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Figure 5.15: Time history of the y-derivative of the mean velocity profile u.
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Figure 5.16: Mean velocity profiles of turbulent channel flow made dimensionless
with the friction velocity. The solid line is the velocity profile of a turbulent flow over
porous wall at Re = 950, while the dashed line is the velocity profile of a turbulent
channel flow over impermeable walls at Re = 3100.

Ui = 0.0230, while in the turbulent simulation the mean value is ui = 0.0381.
In figure 5.14(a) we show the velocity profile inside the porous layer. As

already noticed, the velocity at the interface is clearly not zero. Moreover, the
Darcy velocity uD, in the turbulent case, is greater than the laminar one, changing
from 0.000293 in the laminar case to 0.000475 in the turbulent case. This increase
is caused by the fact that we are running simulations at constant flow rate. In
fact, the pressure gradient needed to maintain the flow rate constant is different
in the laminar and turbulent cases, and is generally greater in the turbulent case.
We also notice that the Brinkman layer is slightly thicker in the turbulent case,
passing from 0.0458 (laminar) to 0.0517 (turbulent). This becomes clearer when
we look at the interface region between the porous layer and the fluid region, figure
5.14(b). At the interface with the fluid region, the value of the y-derivative of the
velocity profile passes from 2.93 in the laminar case to 4.84 in the turbulent case.
Figure 5.15 shows the time fluctuations of the y-derivative of the mean velocity
profile. The increase in the y-derivative reflects in the increase of the friction
velocity uτ , which increases from 0.0555 (laminar) to 0.0722 (turbulent).

Figure 5.16 shows the mean velocity profiles corrected by a factor u+
i , ∆u+ =

u+−u+
i , versus the logarithm of the distance from the interface ỹ = y−1 expressed
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Figure 5.17: Rms velocities made dimensionless with the friction velocity. The solid
and dashed line are used for the flow over porous and impermeable walls, respectively.
For the flow over porous layers, the half-heights of the porous layers are hp = 1, the
permeability is σ = 0.01, the porosity is ε = 0.6.

in wall-units. In this figure is also plotted with a dashed line the curve for the
channel flow over impermeable walls at Re = 3100. We note that the viscous
layer (ỹ+ < 5) is still present in the case at Reynolds number 950. However, at
Re = 950, the mean velocity distribution does not have a clear logarithmic region
(ỹ+ > 30).

We continue the analysis of the turbulent channel flows with porous walls at
low Reynolds number by analyzing the turbulence intensities. Figure 5.17 shows
the rms velocities of the flow at Re = 950, compared with the ones of a turbulent
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Figure 5.18: Reynolds stresses. The solid line is used for the flow over porous walls
at Re = 950, while the dashed line is used for the flow over impermeable walls at
Re = 3100. For the flow over porous layers, the half-heights of the porous layers are
hp = 1, the permeability is σ = 0.01, the porosity is ε = 0.6.

channel flow over impermeable walls at Re = 3100. We observe that the rms
velocities at Re = 950 are smaller than in the case at Re = 3100. In particular,
the wall-normal v+

rms and the spanwise w+
rms rms velocities, reach their maximum

near the centerline, while the streamwise rms velocity u+
rms has a peak near the

interface, which is shifted towards the centerline in comparison to the Re = 3100
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Figure 5.19: The solid line represents the total shear stress, decomposed in the
viscous stress and in the Reynolds shear stress. The dashed and dotted lines represent
the shear and viscous stresses for the porous case, respectively, while the dash-dotted
and crossed lines represent the shear and viscous stresses, respectively, for the case with
solid walls.

case.
Figure 5.18 shows the Reynolds stresses of the turbulent channel flow over

porous walls at Re = 950, made dimensionless with the friction velocity. We note
that the Reynolds stresses are very different from the ones at at Re = 3100 with
impermeable walls. All the Reynolds stresses at Re = 950 are smaller and the
peak values are shifted towards the centerline than in the case at Re = 3100.
The wall-normal v′v′ and spanwise w′w′ Reynolds stresses seems to be the most
affected at at Re = 950, while the streamwise normal stress u′u′ seems to be less
sensitive. However, we notice that at the centerline, the normal Reynolds stress
u′u′ at Re = 950 are twice as big as at Re = 3100. Contrary to the case at at
Re = 3100, the wall-normal Reynolds stress at Re = 950 is lower and reaches
the maximum value at the centerline. The spanwise and shear Reynolds stresses
at Re = 950 are everywhere smaller than the case at Re = 3100, but at the
centerline where they are nearly the same. The decomposition of the total shear
stress in the Reynolds shear stress and in the viscous stress is shown in figure
5.19. With respect to the channel flow over impermeable walls at Re = 3100,
we note that at Re = 950 the Reynolds shear stress is always smaller, but it is
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Figure 5.20: Slice in the x-y plane of the computational domain. The three velocity
components u, v and w are shown in subfigures (a), (b) and (c), respectively.

compensated by the overall increase in the viscous stress.
We now show some flow visualization of the turbulent channel flow over porous

walls at Re = 950. Figures 5.20(a)-5.20(c) show the three velocity components
u, v and w on a slice in the x-y plane, respectively. The maximum of the stream-
wise velocity u is located at around the centerline, and u becomes very small at
the interface with the porous layers. The other two velocity components v and
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Figure 5.21: Slice in the y-z plane of the computational domain. The three velocity
components u, v and w are shown in subfigures (a), (b) and (c), respectively.

w are also greater in absolute value near the centerline, and very small in the
porous layers. However, there are some intermittent strong fluctuations at small
distances from the interface with the porous layers. Figures 5.21(a)-5.21(c) show
the three velocity components u, v and w on a slice in the y-z plane, respectively.
We note that streamwise velocity u seems to show an alternance of low-speed
and high-speed streaks near the porous walls. Correspondently, the maximum
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Figure 5.22: Slice in the x-z plane of the computational domain at the interface with
the porous layer. The three velocity components u, v and w are shown in subfigures
(a), (b) and (c), respectively.

wall-normal and spanwise velocity are reached between the streaks. To better
visualize the streaks, we cut the computational domain in the x-z plane, at an
appropriate distance from the interface with the porous layer. Figure 5.22(a)
clearly shows an alternance of streak lines at high and low speed. Note that
around these streaks, the other two velocity components, v and w, have their
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Figure 5.23: Slice in the x-z plane of the computational domain at the centerline.
The three velocity components u, v and w are shown in subfigures (a), (b) and (c),
respectively.

largest fluctuations, as shown in figures 5.22(b) and 5.22(c). At the centerline, as
shown in figure 5.23, we notice strong fluctuations in all the velocity components.

Although the concept of a vortex is an essential tool in the comprehension of
turbulent flows, it is still very difficult to find a universal definition for a vortex
[16]. In this thesis, we use the definition of vortex given by Jeong and Hussain
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Figure 5.24: Isosurfaces of λ2 = −0.25 in the computational domain, coloured with
the magnitude of velocity.

[17], the so-called λ2 criterion. The velocity gradient ∇u is decomposed as follows

∇u = S + Ω, (5.9)

where S is the rate of strain tensor S = 1/2
[
∇u+ (∇u)T

]
and Ω is the vorticity

tensor Ω = 1/2
[
∇u− (∇u)T

]
. S and Ω are the symmetric and anti-symmetric

parts of the velocity gradient tensor, respectively. According to the λ2 criterion,
vortices are regions where

λ2
(
S2 + Ω2

)
< 0, (5.10)

where λ2 represents the intermediate eigenvalue. In figure 5.24 we show the
isosurfaces of λ2 = −0.25.





Chapter 6

Conclusions and future work

In this thesis we have presented some results from DNSs of turbulent channel
flows over porous walls. We have solved the flow inside the porous layers with
the Volume-Averaging Naviers-Stokes equations, and the flow inside the fluid
region with the Navier-Stokes equations. We have coupled the flow in the porous
layer with the flow in the fluid region with the momentum transfer conditions. We
have analyzed two cases, at different Reynolds numbers: moderate, Reτ = 200,
and very low, Reτ = 65.

The simulations at Reτ = 200 showed that the porous walls modify all the tur-
bulence statistics of the flow. In particular, the mean velocity profile is modified
by the presence of a slip velocity at the interface between the porous layer and
the fluid region, and by the increase of the friction velocity. The rms velocities
and the Reynolds stresses are also modified, especially near the interface. The
components in the wall-normal and spanwise directions are magnified, while the
streamwise component is reduced, with respect to the ones of a turbulent channel
flows over impermeable walls. We observed that all the components of the rms
velocities and the Reynolds stresses are non-zero at the interface between the
porous layers and the fluid region. A parametric study showed that the height
of the porous layers has only small effects on the statistics of the turbulent flow.
However, the coefficient τ of the momentum transfer conditions have great im-
pact on the turbulent flow. A positive τ increases substantially the slip velocity
of the mean velocity profile, and reduces the wall-normal and spanwise fluctua-
tions. On the contrary, a negative τ has less impact, it slightly decreases the slip
velocity of the mean velocity profile, and increases the wall-normal and spanwise
fluctuations.

We have been able to perform a turbulent simulation at Reτ = 65, discov-
ering that the porous walls can sustain turbulent flows even at low Reynolds
number. At this Reynolds number, the mean velocity profile does not present
the expected logarithmic region, showing that the log-law apparently has a signif-
icant Reynolds number dependence at low/very-low Reynolds numbers. Also the
rms velocities and the Reynolds stresses show great differences with respect to



72 Conclusions and future work

the ones of a turbulent channel flows over impermeable walls at higher Reynolds
numbers, especially for the components in the wall-normal and spanwise direc-
tions. Moreover, the Reynolds shear stress is strongly reduced, while the viscous
stress is enhanced, with respect to the case with impermeable walls.

This study considered a turbulent flow over porous walls with small wall per-
meability, and showed that the wall porosity modifies the turbulence statistics.
These results could have profound implications on the research devoted to flow
control using wall transpiration. In fact, the model of the porous media may be
considered as a first step towards a more realistic model of a wall transpiration
actuator. The latter are used to inhibit transition to turbulence, such as in the
asymptotic suction boundary layer (ASBL). In experiments, suction has been im-
plemented using spanwise slots, discrete holes, and wholly porous materials. The
application of suction through discrete holes have the advantage that a skin with
discrete holes can continue to act as a continuous structural member, however, the
discrete holes generally lead to three-dimensional effects which can provoke early
transition. Recent experimental studies used wholly porous materials, because
they can provide a uniform suction velocity without provoking three-dimensional
effects, and can be cheaply manufactured.

After our turbulent simulation at very low Reynolds number, future works
should better study the turbulent flows at very low Reynolds numbers, in order to
investigate the mechanisms that are able to sustain the turbulent flow. Moreover,
future works should verify the existence of low Reynolds numbers flow which
fluctuates between a turbulent and laminar regimes.

The volume-averaged equations used to solve the flow in the porous layer,
and the momentum transfer conditions used to couple the flow in the fluid region
and in the porous layers, were simplified by neglecting inertial effects. These
assumptions are valid only when the slip velocity at the solid walls is small.
When inertial effects are not important in the porous regions, the momentum
equation does not contain the Forchheimer drag term. While the Forchheimer
drag may be negligible in the porous regions, inertial effects may still be important
near the interfaces. Moreover, the assumption of neglecting the inertial effects at
the interface limits strongly the amount of permeability of the porous wall. So, a
possible development of this work is to modify the momentum transfer conditions
in order to include the inertial effects at the interface between the porous layer
and the fluid region.
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