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Abstract

With the aim of understanding drag reduction mechanism on a turbulent channel flow,
modified by in-plane sinusoidal oscillations of the walls, statistics of energy and enstrophy
balances of the mean and fluctuating flow field obtained by direct numerical simulations,
are studied. It is observed that as the bulk streamwise velocity increases and the in-
tensity of the turbulent kinetic energy decreases due to the wall motion, the viscous
dissipations associated with both the mean flow and the turbulent fluctuations increases.
Through energy and enstrophy balances, it is found that the spanwise oscillating shear
acts strongly on the turbulent dissipation, which is suitably represented by the turbulent
enstrophy. Turbulent vorticity lines in planes perpendicular to the streamwise direction
are stretched by the large-scale spanwise forcing, which is evidenced by flow visualizations
and elucidated by a simple dynamical model. The study of enstrophy production allows
extracting a parameter useful for predicting drag reduction. The present approach may
be readily extended to other turbulent flows forced at large scale to unravel the physical
mechanisms.

Keywords: Turbulent wall flows, Drag rduction, Spanwise-oscillating wall
forcing, Enstrophy



Sommario

Con l’obiettivo di capire il meccanismo di riduzione d’attrito con un approccio statis-
tico, i bilanci di energia ed enstrofia dei campi di flusso medio e turbolento sono stu-
diati per il caso di un canale piano indefinito, forzato da un’oscillazione sinusoidale della
parete in direzione trasversale, mediante DNS. Viene quindi condotta un’analisi di tipo
statistico sulle caratteristiche principali del flusso medio e del flusso turbolento. Con
l’aumento dell’energia cinetica e la diminuzione dell’intensità dell’energia cinetica turbo-
lenta, a causa dell’azione della parete, la dissipazione viscosa associata alle fluttuazioni
turbolente aumenta. Con l’ausilio dei bilanci di energia ed enstrofia, si trova che l’azione
trasversale agisce fortemente sulla dissipazione turbolenta, che può essere in alternativa
rappresentata dall’enstrofia turbolenta. Le visualizzazioni del campo di moto eviden-
ziano il comportamento delle linee vorticose che vengono stirate e deviate dall’azione
della forzante trasversale. Lo studio della produzione di enstrofia permette di evidenziare
un termine che può essere legato linearmente alla riduzione d’attrito e ricavare un modello
utile per la sua predizione. Il presente approccio può essere esteso ad altri flussi turbo-
lenti forzati su grande scala per rivelarne il meccanismo fisico alla base della riduzione
d’attrito.

Parole chiave: Flussi turbolenti di parete, Riduzione d’attrito, Parete
oscillante, Enstrofia
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Chapter 1

Introduction

An introduction to turbulent drag reduction and the related open questions is outlined
in this chapter. In order to set the stage for the present work, a brief review of the main
flow control techniques is presented, and the plain channel flow considered throughout
this work is introduced.

1.1 Turbulent flow and drag reduction

The reduction of the skin-friction drag in wall-bounded turbulent flows is one of the
most challenging and important areas of fluid mechanics, due to economical and ecolog-
ical interests in various industrial applications. The difficulty lies both in the extreme
complexity of the physics underlying turbulent flows and in the resilience of such flows
to favourably change when disturbed by external agents. In spite of the huge amount
of experiments and numerical simulations, the physical process of drag reduction is still
not satisfactorily understood, and some disagreements exist among researchers. As an
example, let us consider the oscillating wall forcing on a turbulent channel flow, one of
the most studied benchmark problems among active control systems. Due to Jung et al.
(1992), the oscillating wall is one of the open-loop control system, based on the span-
wise forcing of the wall with sinusoidal law, which gives a drag reduction rate of ∼ 0.5.
Even for this case there is not an exact solution of the problem, there is not a specific
guideline whether using for the simulations a constant mass flow rate (Quadrio et al.,
2009) or keeping the pressure gradient constant (Quadrio and Ricco, 2010). Results are
often in contrast with previous studies, for example in some cases the root mean squared
value of the fluctuating velocity components increase (Du and Karniadakis, 2000), while
in other works an opposite behaviour is demonstrated (Quadrio and Ricco, 2010). The
physical meaning and consequently the identification of some parameters describing drag
reduction behaviour, is also not agreed upon among authors; for example, in Choi (2002)
it is explained how the reduction of drag only depends on the forcing velocity amplitude
and that the oscillating period is not important in the scaling process; this statement is
confuted by Quadrio and Ricco (2004) in which a scaling model is proposed depending
on both the amplitude and the oscillating period.

Channel flows with spanwise-wall oscillations have been studied extensively mainly
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Turbulent flow control 5

through turbulence statistics (Choi et al., 1998; Quadrio and Sibilla, 2000), flow visual-
izations of the near-wall modified flow (Quadrio and Ricco, 2003), and simplified models
of turbulence (Dhanak and Si, 1999) to the end of explaining the physical mechanisms
leading to drag reduction. Further efforts have been directed to the search for analytic
formulas for drag reduction prediction (Choi et al., 2002). Despite decades of research,
the fundamental questions of why a skin-friction coefficient reduction occurs and how
wall-bounded flows can be modified most efficiently to achieve a global energy saving still
remain elusive.

The interest in the subject is steadily growing as the viscous action exerted by turbu-
lence is cause of dramatic energetic losses in flow systems of technological relevance, such
as oil and gas pipelines, high-speed aircraft wings, jet engines intakes, and turbine blades.
Even a small reduction of turbulence activity, and thus of wall friction, translates in an
improved system efficiency and therefore in lower fuel consumption. Further advantages
are the attenuation of noise, structural vibrations, and aerodynamic heating.

1.2 Turbulent flow control

During the past several decades a number of strategies to control the turbulence level
in order to reduce the skin friction coefficient has been developed. A brief review of
the principal control techniques is summarized in this section. The techniques currently
under development are mainly active (i.e. require energy to work) and open-loop (no need
for sensors), although a general description is also given for passive control techniques
and closed-loop techniques. The approach used to evaluate a control algorithm concerns
both the energetic efficiency and the effectiveness of the control technique. Following the
notation proposed by Kasagi et al. (2009a), we define the drag reduction rate R as the
reduction of power pumped into the system:

R =
P0 − P

P0

, (1.1)

where the subscript 0 refers to the uncontrolled flow. A second parameter, the effec-
tiveness of the control algorithm, related to the additional power required to enforce the
control system Pin, reads as follows:

G =
P0 − P

Pin

. (1.2)

Finally, the third parameter is the net power saved rate S, defined as:

S =
P0 − (P + Pin)

P0

(1.3)

and represent the maximum energy saving rate achieved. These parameters are related
each other and are chosen as the foundamental performance indices to evaluate a flow
control scheme.
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1.2.1 Passive techniques

Passive flow control techniques, for which there is no need of energy input, are mainly
characterized by a non-smooth surface capable of interacting favourably with the flow.
Even if potential drag reductions are not particularly large, they are under active study
because of their appealing simplicity. A well referenced example is represented by riblets
(Walsh, 1980), a surface with V-shaped protrusions (crests) directly applied on surfaces.
They act on the wall cycle (Choi, 1989) stabilizing the quasi-streamwise-vortex struc-
tures. Although the good performance (R ∼ 0.1), the limits of this technique are the
increase of weight, the sensitivity to dust and ultraviolet radiation and the increase in
the maintenance costs. Alternative roughness distributions are being considered. One
example is proposed by Sirovich and Karlsson (1997) who proposed pattern of V-shapes
on a surface disposed randomly or aligned with the flow direction, with a drag reduction
rate R ∼ 0.15. A more recent technique is presented by Frohnapfel et al. (2007), the
surfaces-embedded grooves. The surface is modified by grooves aligned with the flow
direction, which force the fluid near the wall inside the grooves in order to suppress ve-
locity fluctuations in both the normal and tangential directions. Energy dissipation is
minimized, then a reduction of drag is observed up to R = 0.26. Among passive control
techniques compliant coating surfaces, bubbles and polymeric chains are also included.

1.2.2 Open-loop techniques

Open-loop techniques, for which the control law is predetermined, usually operate at large
scales. Near-wall flows have been excited by Lorentz forces (Berger et al., 2000; Pang and
Choi, 2004), alternating suction and blowing (Segawa et al., 2007), and cross-flow pressure
gradients and wall motion (Jung et al., 1992) with the intent to disrupt the self-sustaining
turbulence production mechanisms. The forcing has taken the form of spanwise-traveling
waves (Du et al., 2002; Itoh et al., 2006), spanwise (Laadhari et al., 1994) or streamwise
oscillations (Mito and Kasagi, 1998), and, more recently, of streamwise-traveling waves
of spanwise wall velocity (Quadrio et al., 2009).

The choice of addressing open-loop control techniques renders energy effectiveness of
the control particularly important. Indeed, the weak side of the open-loop techniques is
that they employ forcing at finite amplitudes and thus require a considerable amount of
energy when compared to feedback techniques. This energy must be compared to the
potential savings to establish the energetic performance of the technique, as done by the
performance indicator S (1.3)

1.2.3 Closed-loop techniques

Closed-loop feedback control strategies represent an emerging field of research where
the activation is usually applied at the wall as wall-normal distributed transpiration
(Bewley et al., 2001; Kim and Bewley, 2007). In a feedback control its input is always
determined from sensor signals by a control law, so that it can be more robust and
flexible. As reviewed by Kasagi et al. (2009a), the feedback control generally offers better
control performance with smaller power consumption than the open-loop control. The
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disadvantage is the request of a number of sensors to detect the instantaneous flow state
and then control the actuators. These devices are massively located on a wall surface,
then, considering that the physical dimensions and response times of these hardware
components should be very small, i.e., less than millimeter and millisecond (Kasagi et al.,
2009b), fabrication and maintenance of these devices would impose an elevated cost even
with rapidly developing of MEMS technology. Thus, the open-control is superior in
a sense that it employs a much simpler hardware system than the feedback control,
although the better results in term of net energy saved S and gain G.

1.2.4 Spanwise forcing

The important role played by spanwise-forcing techniques among open-loop control schemes
has been recently enlighted by Quadrio (2010b). In his work the attention is focused on
the attempts carried out in the recent past towards achieving a reduction of the turbulent
friction. The choice of the direction in which the wall forcing is applied was somewhat
heuristic. At the wall the flow is highly anisotropic, and forcing in each direction brings
about its own peculiarities. Forcing along the streamwise direction is usually thought as
the less effective means to affect the flow. On intuitive ground, forcing in the wall-normal
direction is usually thought of as the “best” way of forcing, but disrupts the natural
state of turbulence significantly, at the finite amplitudes typically required by open-loop
control. Lastly, forcing in the spanwise direction is found to be quite effective, and this
section considers several open-loop techniques based on it: the spanwise-oscillating wall
control, the spanwise-traveling waves control and the streamwise-traveling waves.

Spanwise-oscillating wall

The first demonstration of spanwise wall forcing to achieve a significant turbulent drag
reduction dates back to almost 20 years ago, with the papers by Jung et al. (1992).
They leveraged the idea (Bradshaw and Pontikos, 1985; Coleman et al., 1996) that, in
the context of three-dimensional boundary layers, a sudden spanwise pressure gradient
generates a transient drop in turbulent friction, eventually followed by a recovery and
a realignment of the near-wall flow to the new oblique direction. Making the spanwise
pressure gradient harmonic in time, and suitably adjusting its frequency, makes it possible
to obtain a sustained reduction of drag. In their original paper, Jung et al. (1992) carried
out a numerical DNS study, and assessed the equivalence between an alternating pressure
gradient and an harmonic oscillation of the wall, which leads us to the first (and simplest)
form of spanwise wall forcing considered in this paper:

w = A sin(ωt), (1.4)

where A is the forcing amplitude, and T = 2π/ω is the forcing period.
The reported performance of the oscillating-wall technique are interesting, with drag

reduction rates R ∼ 0.5 at the low values of Re considered in that early DNS. Experi-
mental confirmation of the drag reduction effect appeared soon thereafter, in particular
by Laadhari et al. (1994) for a boundary layer geometry and Choi and Graham (1998) for
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a circular pipe. Presently, the challenging aim is the optimization of the oscillating-wall
parameters and the understanding of the mechanism of drag reduction.

Spanwise-traveling waves

A spatially non-uniform spanwise forcing was first proposed by Du and Karniadakis
(2000) and Du et al. (2002): they simulated via DNS the forcing of the flow with a
spanwise-oriented body force as follows:

Fz = Ie−y/∆ sin(κzz − ωt) (1.5)

where the forcing, with intensity I and exponentially decreasing away from the wall on
a length scale ∆, is modulated in time and in the spanwise direction to form a harmonic
wave with wavelength 2π/κz that travels along the z direction.

Although non conclusive because of the limited number of parameter combinations,
their study is however important since the flow visualizations reported therein clearly
point to a significant modification of the near-wall turbulence cycle, with the meandering
low-speed streaks almost totally disappearing and a wide, straight ribbon of low-speed
fluid appearing in turn. This is contrasted with the flow modifications above the oscillat-
ing wall, that does not appear to alter the nature of turbulence regeneration significantly,
apart from a periodic left/right tilting of the streaks and the obvious change in Reτ .

Zhao et al. (2004) translated the spanwise-traveling wave of body force into a space-
time distribution of wall acceleration. This is a considerable step forward, since one
important parameter exits the picture, making it potentially simpler to determine the
general dependence of drag reduction on the wave parameters. If one wants to write the
wall velocity forcing equivalent to (1.5) with ∆ = 0 in terms of velocity waves, i.e.:

w = A sin(κzz − ωt), (1.6)

it turns out that a second harmonic component enters the picture. Zhao et al. (2004)
indeed found very similar results between wall traveling waves and waves of body force
in terms of drag reduction and flow statistics, but with disappointing results in terms of
energetics, with negative S for all the parameters tested. However, they too carried out
a limited number of simulations, so that the general dependence of flow energetics on the
wave parameters is an issue that deserves further consideration.

Streamwise-traveling waves

The spanwise-traveling waves considered by Zhao et al. (2004) are a peculiar type of
forcing where the spanwise velocity component is spatially modulated in the spanwise
direction to form waves traveling in the spanwise direction. Quadrio et al. (2009) have
tried a deceivingly simple modification of the forcing described by Eq. 1.6, namely:

w = A sin(κxx− ωt) (1.7)

where the forcing still acts along z, but is modulated along x, so that the waves may travel
in the streamwise direction with phase speed c = ω/κx , the sign of which discriminates
between forward- and backward-traveling waves.
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Figure 1.1: Adapted from Kasagi et al. (2009a). Feedback control (black triangles): V-
control (right triangles) and sub-optimal control (left triangles) (Iwamoto et al., 2002).
Predetermined control (white symbols and black circles): temporally-periodic spanwise
wall-oscillation control (white circles) (Quadrio and Ricco, 2004); streamwise traveling
wave control (white diamond) (Min et al., 2006); steady streamwise forcing control (white
square) (Xu et al., 2007); spatially-periodic spanwise oscillation control (white delta)
(Yakeno et al., 2009); streamwise traveling wave control (black circles) (Quadrio et al.,
2009)

The waves (1.7) represent a generalization of both the oscillating wall and the sta-
tionary waves as limiting cases, for κx = 0 and ω = 0 respectively. Quadrio et al. (2009)
carried out a large DNS-based parametric study, exploring several hundredths parame-
ter combination. Although the study was focused on finding best performance in terms
of drag reduction at given A, a few calculations have highlighted the extremely good
energetic characteristics of the waves (1.7), owing to the notable circumstance that the
parameters that yield maximum R are also those that guarantee almost minimal power
requested. In the paper a case is documented where G = 12 with S > 0.1, but it is
believed (Quadrio, 2010a) that much better performances are possible. G = 12, however,
is an high enough gain that a device with an intrinsic efficiency of as low as 8% could
still achieve a net saving.

As a summary, figure 1.1 shows a scheme of some flow control techniques as a function
of two parameters, the effectiveness of a control algorithm G and the net energy saved
rate S, as defined in Kasagi et al. (2009a). It is clearly shown how spanwise-traveling
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waves represent the best compromise between efficiency and realization costs, and for this
reason this technique seems the most feaseble way to obtain drag reduction.

1.3 Goal of the present work

In the present work, the objective is to gain unique insight into the physics of an incom-
pressible channel flow altered by spanwise wall oscillations. This flow is chosen as it is
one of the simplest open-loop drag reduction techniques, with the view that the approach
adopted herein will be applied to more complex flows. The focus will be on how the en-
ergy transfer is affected by the wall motion and on the role played by the forcing on the
modification of the turbulent enstrophy. The numerical results on such balances will be
instrumental to determine the behaviour of drag reduction and to extract an analytic
formula which allows accurate prediction of drag reduction.

1.4 Flow configuration

An incompressible fully-developed turbulent channel flow between two parallel indefinite
flat plates is studied by direct numerical simulations (DNS). The flow is driven by a
constant streamwise pressure gradient P,x. The coordinates x, y, z define the streamwise,
wall-normal and spanwise direction, respectively, and t indicates time. The walls oscillate
in phase along the z direction according to

Uzw = Uzm cos

(
2πt

T

)

,

where Uzm is the maximum wall velocity and T is the period of oscillation. Dimensional
quantities are indicated by the symbol *. Quantities are scaled by viscous units, i.e.
by the kinematic viscosity of the fluid ν∗ and the friction velocity u∗

τ =
√

τ ∗w/ρ
∗, where

τ ∗w is the time- and space-averaged wall-shear stress and ρ∗ is the density of the fluid.
The friction velocity Reynolds number is Reτ = u∗

τh
∗/ν∗ = 200, where h∗ is half the

distance between the channel walls. As P,x is held at a constant value of =-1/Reτ , the
momentum balance at the walls shows that τ ∗w (and therefore Reτ ) is unchanged during
the wall motion, which implies that a unique wall-unit scaling is defined. A schematic of
the physical domain is shown in figure 1.2.

Details on the DNS code are found in Luchini and Quadrio (2006). Fourier se-
ries expansions are used along the homogeneous x and z directions and a fourth-order
compact finite-difference discretization scheme is employed along the wall-normal di-
rection. The time advancement is implemented through a combination of an explicit
third-order Runge-Kutta scheme for the convection terms and an implicit second-order
Crank-Nicolson scheme for the viscous terms. The computational domain has the follow-
ing dimensions in the x, y, z directions, respectively: Lx = 6πh, Ly = 2h, Lz = 3πh. The
wall-normal direction is discretized by 160 mesh points and 320× 320 Fourier modes are
used along the homogeneous x and z directions. With the described DNS code a velocity
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Streamwise mean flow
x

y

z
Lx

Ly

LzUzw = Uzm cos
(
2π
T
t
)

Figure 1.2: Schematic of the physical domain. The lengths Lx, Ly, and Lz are the
dimensions of the computational domain along the x, y and z directions, respectively.
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field database is calculated for a reference case with fixed walls and for five oscillating-
wall cases in which the amplitude of the wall motion is held constant at Uzm = 12 and
the period of oscillation is varied in the range 0 < T ≤ 500. As the simulations are
started from a fully-developed turbulent flow field with fixed walls, a temporal transient
exists during which the flow adapts to the new oscillating-wall regime (see Quadrio and
Ricco (2003) for further details). The numerical procedures to disregard such transient
are discussed in Quadrio and Ricco (2004). In that paper the mass flux is kept constant
so that the quantity monitored to assess whether the new regime has established is the
wall-shear stress, whereas here such quantity is the mass flow rate. We point out that
this is the first numerical study on the oscillating-wall problem where the mean pressure
gradient is kept constant. After this transient period has been discrted, each flow field
has been saved every 0.125 T , i.e. every 0.0625 time units, for 12 periods. Each field of
the database has a dimension of 257.1 MB.

The effect of Uzm on drag reduction is studied in Quadrio and Ricco (2004).

1.4.1 Flow field decomposition

The velocity and vorticity flow fields are expressed through the Reynolds decomposition,
namely as sums of an averaged flow and a fluctuating flow. Once the initial temporal tran-
sient has elapsed, quantities can be averaged along the homogeneous x and z directions
and in phase as follows

∗(y, t) = 1

NLxLz

N−1∑

n=0

∫ Lx

0

∫ Lz

0

∗(x, y, z, t+ nT )dzdx,

whereN is the number of periods of oscillations. Note that averaged quantities henceforth
depend on the “window” phase-average time t, 0 ≤ t ≤ T .

The velocity and the vorticity fields, U = U(x, y, z, t) = {Ux, Uy, Uz} and Ω =
Ω(x, y, z, t) = {Ωx,Ωy,Ωz}, are decomposed as follows

U = {Ux(y, t), 0, Uz(y, t)}+ {ux, uy, uz}, Ω = {Ωx(y, t), 0,Ωz(y, t)}+ {ωx, ωy, ωz},
where Ωx = Uz,y and Ωz = −Ux,y in our case of spanwise wall oscillations. We also define
the x-, z−, phase-averaged vorticity squared, i.e. the enstrophy, as follows:

Ω ·Ω = Ωi Ωi + ωiωi.

The Einstein summation convention of repeated indexes is adopted henceforth. The time
average is defined as

〈∗〉 (y) = 1

T

∫ T

0

∗(y, t)dt,

where ∗(y, t) here refers to a quantity or a product of two quantities averaged along x,
z and in phase. All the statistical samples are doubled by averaging quantities on both
halves of the channel. A quantity is defined as global when it is averaged along x,z, in
phase (or it is a product of two such quantities), on both halves of the channel, in time
and integrated along y from the wall at y = 0 to the centerline of the channel at y = h.
A transport equation is defined as global when its terms are global.
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1.4.2 Definition of turbulent drag reduction

The skin-friction coefficient is defined as Cf = 2τ ∗w/ρ
∗U∗2

b , where U∗
b is the bulk velocity

U∗
b =

1

h∗

∫ h∗

0

〈
U∗
x

〉
dy∗. (1.8)

The turbulent drag reduction rate, R, is calculated from the variation of Cf with respect
to the fixed-wall value

R =
Cf,r − Cf,o

Cf,r

,

where the subscripts r and o indicate the fixed-wall and oscillating-wall cases, respectively.
In the present case of constant P,x, the R is due to the increase of mass flow rate. As

Cf =
2

U2

b

, (1.9)

the R may be written as

R =
U2

b,o − U2

b,r

U2

b,o

. (1.10)

Note that the percent change in skin-friction coefficient R does not coincide with the
percent change in mean streamwise kinetic energy because the squared bulk velocity in
the oscillating-wall case is at the denominator in (1.10), while the variation of kinetic
energy is expressed with respect to the squared bulk velocity in the fixed-wall case.

1.5 Turbulence statistics

The effect of the wall oscillation on
〈
Ux

〉
is shown in figure 1.3 (T = 100, R=0.31). The

velocity
〈
Ux

〉
increases significantly throughout the channel while the mean wall-shear

stress remains constant. Figure 1.4 displays the R dependence on T . The drag reduction
increases sharply up to the optimum Topt ≈ 70 and then decays at a slower rate. This
behaviour has been well documented by previous numerical studies (see Quadrio and
Ricco (2004) for further details). The optimum period at fixed maximum wall velocity
has been usually reported as T ≈ 100 − 125 in previous studies conducted at constant
mass flow rate, where u∗

τ for the fixed wall case was employed for scaling. The root-mean-

square (rms) of the turbulent velocity fluctuations, defined as brms =
〈

b2
〉1/2

, where b

represents ux, uy or uz, and the Reynolds stresses 〈uxuy〉 are shown in figure 1.5 (left).
The wall motion primarily affects uxrms up to y ≈ 30; the peak decreases by about 15%
and it shifts from y ≈ 14 to y ≈ 20. The profile of uyrms is largely unvaried, while uzrms

increases up to y ≈ 40. The Reynolds stresses 〈uxuy〉 are attenuated up to y ≈ 60. The
wall oscillation induces the additional Reynolds stresses uyuz, shown in figure 1.5 (right).
This term is null in the fixed-wall case. Its maximum is located at y ≈ 16, almost at the
same position of the uxrms maximum. At opposite phases of the cycle, the uyuz profiles
show the same trend with opposite sign, which leads to 〈uyuz〉 = 0.
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Chapter 2

Energy balance

The DNS database is analyzed through the statistics of the balance equations of kinetic
energy for the mean and fluctuating flow, and the global balance of energy.

2.1 Balance of energy

Relation (1.9) shows the importance of investigating the increment of Ub to understand
the mechanism of Cf reduction. As a first step, we therefore study the transport equations

for the mean kinetic energy (MKE),
(

Ux
2

+ Uz
2
)

/2, where Ub appears explicitly, and for

the turbulent kinetic energy (TKE), q2/2, where q2 = uiui. These two equations are
summed to obtain the global balance for the total kinetic energy.

2.1.1 Balance equation for the mean kinetic energy

The time-dependent transport equation for MKE reads
(

Ux
2

+ Uz
2
)

,t
/2

︸ ︷︷ ︸

1

+ UxP,x
︸ ︷︷ ︸

2

= uxuyUx,y
︸ ︷︷ ︸

3

+ uyuzUz,y
︸ ︷︷ ︸

4

−
(
uxuyUx

)

,y
︸ ︷︷ ︸

5

−
(
uyuzUz

)

,y
︸ ︷︷ ︸

6

+
(
Ux Ux,y

)

,y
︸ ︷︷ ︸

7

+
(
Uz Uz,y

)

,y
︸ ︷︷ ︸

8

−
(
Ux,y

)2

︸ ︷︷ ︸

9

−
(
Uz,y

)2

︸ ︷︷ ︸

10

.
(2.1)

Term 1 denotes the temporal change of MKE and term 2 is the work done by P,x, i.e. the
energy used to drive the flow along x. Thanks to the wall oscillation, the system absorbs
more kinetic energy than in the fixed-wall case through the increment of Ux. Term 3
is the work of deformation carried out by the Reynolds stresses uxuy and it exchanges
energy between the mean flow and the fluctuating flow. Term 4 indicates the work of
deformation done by the Reynolds stresses uyuz. Similarly to term 3, it transfers energy
between the mean flow and the fluctuating flow. Terms 3 and 4 appear with the opposite
sign in the TKE equation, as shown in §2.1.2. The transport works performed by the
Reynolds stresses uxuy and uyuz are denoted by terms 5 and 6, respectively. Terms 7 and
8 are the transport works done by the mean streamwise and spanwise viscous stresses,

16



Balance of energy 17

100 101 102
-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

y

−
u
y
u
z
U
z
,y
,
−
〈
u
y
u
z
U
z
,y

〉

0

π/4

π/2

3π/4

Figure 2.1: Wall-normal profiles of −uyuzUz,y at different phases (solid lines) and
−
〈
uyuzUz,y

〉
(dashed line) for T = 100.

respectively. Term 9 is the viscous dissipation of MKE by the mean streamwise flow
gradient, while term 10 is the viscous dissipation by the mean spanwise flow gradient.

The second term in 1 and terms 4, 6, 8, 10 are directly related to the wall oscillation
because Uz appears explicitly in their expressions. The turbulent production term 4,
−uyuzUz,y, which is absent in the fixed-wall case because uyuz and Uz are null, is shown
in figure 2.1 at different phases of the cycle for T = 100. Although it is negative during
part of the cycle (mainly for y < 15, when it instantaneously extracts energy from the
turbulent fluctuations to enhance MKE), it is positive for most of the cycle, i.e. its
average contribution is to transfer MKE to the turbulent fluctuations (see dashed line in
figure 2.1).

As the interest resides in the change of Ub, which is a global quantity as defined in
(1.8), the MKE equation (2.1) is now averaged in time and integrated along y in order
to make Ub appear in the energy balance. Time averaging eliminates term 1 because of
time periodicity. Terms 2, 3, 4, 9, 10 are retained and so is term 8 because Uz is non zero
at y = 0. Terms 5 and 6 disappear when made global because uxuy and uyuz are null at
y = 0 and at y = h. Term 7 becomes null because Ux is null at y = 0 and Ux,y is so at
y = h.
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The global transport equation for MKE is

Ub +
〈

Uzw Uz,y

∣
∣
y=0

〉

︸ ︷︷ ︸

Sw

=−
∫ h

0

〈
uxuyUx,y

〉
dy

︸ ︷︷ ︸

Puxuy

−
∫ h

0

〈
uyuzUz,y

〉
dy

︸ ︷︷ ︸

Puyuz

+

∫ h

0

〈(
Ux,y

)2
〉

dy

︸ ︷︷ ︸

DUx

+

∫ h

0

〈(
Uz,y

)2
〉

dy

︸ ︷︷ ︸

DUz

(2.2)

The bulk velocity Ub comes from term 2 in (2.1) and represents the global energy pumped
into the system through P,x. Term Sw denotes the power spent to move the walls against
the frictional resistance of the fluid, and it stems from the transport term 8 in (2.1). It
is the energy input given by the wall motion. Terms Puxuy and Puyuz indicate the global
TKE production terms related to uxuy and uyuz, respectively, and originate from terms
3 and 4 in (2.1). The global viscous dissipation terms due to the gradients of the mean
streamwise and spanwise velocity components are denoted by DUx and DUz , and come
from terms 9 and 10 in (2.1), respectively. Equation (2.2) represents the first step toward
understanding drag reduction because Ub now appears explicitly. It states that part of
the energy inputs, Ub and Sw, is transferred to the turbulence via Puxuy and Puyuz and
part is dissipated into heat through DUx and DUz .

2.1.2 Balance equation for the turbulent kinetic energy

The time-dependent transport equation for TKE is studied in this section. It reads

q2,t/2
︸ ︷︷ ︸

1

= −
[

uy (p+ q2/2)
]

,y
︸ ︷︷ ︸

2

−uxuyUx,y
︸ ︷︷ ︸

3

−uyuzUz,y
︸ ︷︷ ︸

4

+ q2,yy/2
︸ ︷︷ ︸

5

−ui,jui,j
︸ ︷︷ ︸

6

(2.3)

where p is the turbulent pressure. The temporal change of TKE is denoted by term
1, while term 2 represents the work of transport done by the total dynamic pressure of
turbulence. Terms 3 and 4 indicate the works of deformation done by Reynolds stresses
uxuy and uyuz by which energy is exchanged between the mean flow and the fluctuating
flow. These terms appear in the MKE equation (2.1) with opposite sign. Terms 5 and
6 together represent the combined effect of the work done by the viscous shear stresses
of the turbulent motion and of the viscous dissipation of TKE into heat. Term 6 is
often referred to as the pseudo-dissipation (see Pope (2000) at page 132). The turbulent
production term 4, uyuzUz,y, is the only one containing Uz explicitly.

Analogously to the analysis of the MKE equation, time averaging and integration
along y lead to the following simplifications. Term 1 disappears because of time period-
icity. Term 2 becomes null upon y-integration because of the no-slip condition at y = 0
and uyp = uyq2/2 = 0 at y = h. Term 5 is also null because

∫ h

0

〈

q2,yy

〉

dy =

∫ h

0

〈

q2,y

〉

,y
dy =

〈

q2,y

〉∣
∣
∣
y=h

− 〈qq,y〉|y=0
= 0,
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as q2,y = 0 at y = h and q = 0 at y = 0.
The global transport equation for TKE is

−
∫ h

0

〈
uxuyUx,y

〉
dy

︸ ︷︷ ︸

Puxuy

−
∫ h

0

〈
uyuzUz,y

〉
dy

︸ ︷︷ ︸

Puyuz

−
∫ h

0

〈
ui,jui,j

〉
dy = 0 (2.4)

where Puxuy and Puyuz are as in (2.2). The next-to-last equation at page 74 in Hinze
(1975) shows that the last term in (2.4) is the global TKE dissipation,

DT ≡
∫ h

0

〈

ui,j

(

ui,j + uj ,i

)〉

dy =

∫ h

0

〈
ui,jui,j

〉
dy (2.5)

Equation (2.4) may therefore be written as

−Puxuy − Puyuz = DT . (2.6)

The balance in (2.6) indicates that the global TKE produced through the mean flow
gradients, Puxuy and Puyuz , is dissipated into heat by the viscous stresses of the turbulence.
The global dissipation DT increases by about 18% when the walls are in motion for
T = 100. The production Puxuy contributes to about 73% of this change and Puyuz to
about 27%. Figure 2.2 shows the wall-normal profiles of the three terms whose integrals
compose the balance (2.6). The time average of term 4 in (2.3),

〈
uyuzUz,y

〉
, is much

smaller than term 3,
〈
uxuyUx,y

〉
, which is the only production term in the fixed-wall

case.
By use of the fluctuating vorticity, term 6 in (2.3) becomes (Pope, 2000)

ui,jui,j = ωiωi + uiuj ,ij (2.7)

The global dissipation of TKE in (2.3) becomes

DT =

∫ h

0

〈ωiωi〉 dy, (2.8)

which follows from the substitution of (2.7) into (2.5), from the periodicity along the
homogeneous x and z directions, from the velocity fluctuations being zero at y = 0 and
from vv,y = 0 at y = h. Note that the viscous dissipation of the total mechanical energy,
i.e. DM+DT , is equal to the global enstrophy only in the case of stationary boundaries
(Davidson, 2004), and therefore not in the oscillating-wall case. However, equation (2.8)
is valid for the wall-oscillation case because the turbulent fluctuations vanish at the walls.

2.1.3 Total kinetic energy balance

In the previous section, the global transport equations for MKE, (2.2), and TKE, (2.4),
have been studied. By summing these two equations, the global balance for the total
mechanical energy is found

Ub + Sw = DUx +DUz +DT . (2.9)
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Figure 2.2: Wall-normal profiles of production terms −
〈
uxuyUx,y

〉
(term 3 in (2.3), de-

noted by triangles), −
〈
uyuzUz,y

〉
(term 4 in (2.3), squares), and of pseudo-dissipation

−
〈

(ui,j)2
〉

(term 6 in (2.3), circles) for fixed-wall (thin lines) and oscillating-wall cases

for T = 100 (thick lines). Integration of these terms along y gives Puxuy , Puyuz and DT ,
respectively, which compose the global TKE transport equation (2.6).
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Figure 2.3: Schematic of the global energy balance for the total mechanical energy for
T = 100. The numbers indicate the magnitude of the terms and their change during the
wall oscillation. The light grey portions of arrows denote the contributions at fixed-wall
conditions, while the dark grey arrows or portions of arrows indicate the changes due to
the wall motion.

The energy input Ub to drive the flow along the streamwise direction, given by P,x, and
the power Sw, spent to enforce the wall motion, are dissipated into heat through the
viscous action of the mean streamwise and spanwise flow gradients, denoted by DUx and
DUz respectively, and through the viscous dissipation DT of the turbulent fluctuations.
Note that, as shown by Laadhari (2007), DT ≫ DUx as Reτ → ∞, so that (2.9) simplifies
in this limit as DUx may be neglected.

Figure 2.3 summarizes the global energy balance for T = 100. The two boxes rep-
resent MKE and TKE; the light grey portions of arrows indicate the energy terms in
the fixed-wall configuration, while the dark grey arrows or portions of arrows denote the
energy transfers due to the wall motion. The schematic distinctly shows that the produc-
tion terms, Puxuy and Puyuz , only transfer energy “internally” between MKE and TKE,
therefore disappearing from the total energy balance (2.9).

As discussed in §1.5, as Cf and Ub are related, the aim is to study how the wall
motion acts on Ub to discern information on R. The total energy balance (2.9) is therefore
analyzed in more detail because it contains Ub explicitly. The two terms containing Uz,
i.e. Sw = 12.6 and DUz = 12.3, almost balance each other; the difference is about 1%
and it is due to Puyuz , which is absent in (2.9) and much smaller than the other terms in
(2.9). It is therefore sufficient to investigate how the wall oscillation affects the dynamics
of the two remaining relevant terms, i.e. DUx and DT , to gain insight on the changes of
Ub.

In order to discern how the wall motion acts on DUx , the transport equation for
(
Ux,y

)2
, the integrand of DUx (see (2.2)), is studied. It reads

1

2

[(
Ux,y

)2
]

,t
= −uxuy,yyUx,y +

1

2

[(
Ux,y

)2
]

,yy
− Ux,yy (2.10)
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The spanwise velocity Uz is absent in the transport equation for
(
Ux,y

)2
, which implies

that the oscillating wall does not influence the dynamics of the mean streamwise flow
directly. The focus is then directed toward understanding how the wall motion affects
the dynamics of the global dissipation DT (or the global fluctuating enstrophy, see (2.8)),
given by the viscous action of the turbulent fluctuations.



Chapter 3

Enstrophy balance

Following the previous chapter analysis, the statistics for the fluctuating enstrophy bal-
ance equation are calculated from the DNS database in order to explain the drag reduction
behaviour due to spanwise forcing.

3.1 Enstrophy instead of dissipation

Through the global balance of the total energy, it has been shown that, in order to under-
stand how the wall motion affects Cf , the variation of the turbulent energy dissipation
DT must be studied. As shown in (2.8), DT can be expressed as the global turbulent
enstrophy. In section 3.2.3 it is demonstrated by an order-of-magnitude analysis, that
studying transport equation for turbulent dissipation is in reality the same as studying
that for the turbulent enstrophy. As the main purpose is to evince one or some terms
directly responsible for drag reduction, the two different approaches lead to the same
result. The choice of studying the enstrophy balance is suggested by the number of liter-
ature and research works about enstrophy and vorticity related to flow control instead of
that about turbulent dissipation. Besides the fact that the expression for DT in terms of
the turbulent enstrophy is more compact than if the turbulent dissipation is used (com-
pare (2.8) with (2.5)), the transport equation for the turbulent enstrophy has the main
advantage over the dissipation equation that the turbulent pressure does not need to be
computed. (This advantage is shared by the Orr-Sommerfeld and vorticity formulations
of the Navier-Stokes equations over the framework involving primitive variables.) Fur-
thermore, the physical meaning conveyed by the enstrophy equation is arguably more
immediate than the one provided by the dissipation equation; for example, terms 2 and 3
in (3.1) denote production of vorticity, while the corresponding terms in the dissipation
equation indicate production of turbulent dissipation.

23



Balance of enstrophy 24

3.2 Balance of enstrophy

The transport equation for the fluctuating component of enstrophy is therefore investi-
gated in this section. It reads (Tennekes and Lumley, 1972)

ωiωi,t/2
︸ ︷︷ ︸

1

=ωxωyUx,y
︸ ︷︷ ︸

2

+ωzωyUz,y
︸ ︷︷ ︸

3

+ωjux,jUz,y
︸ ︷︷ ︸

4

−ωjuz,jUx,y
︸ ︷︷ ︸

5

−uyωxUz,yy
︸ ︷︷ ︸

6

+

uyωzUx,yy
︸ ︷︷ ︸

7

+ωiωjui,j
︸ ︷︷ ︸

8

−uyωiωi,y/2
︸ ︷︷ ︸

9

+ωiωi,yy/2
︸ ︷︷ ︸

10

−ωi,jωi,j
︸ ︷︷ ︸

11

.
(3.1)

The physical meaning of each term is as follows. Term 1 indicates the time rate of change
of the turbulent enstrophy due to the wall motion. Terms 2 and 3 are the production (or
removal) of turbulent vorticity caused by stretching (or squeezing) of vorticity fluctuations
by the mean flow gradients Ux,y and Uz,y, respectively. Terms 4 and 5 indicate the
production of mean and turbulent enstrophy by the stretching of fluctuating vorticity
through the fluctuating strain rates ux,j and uz,j , respectively. These terms occur in
the equation for the mean enstrophy with the same sign. Terms 6 and 7 represent the
exchange of fluctuating vorticity between the mean enstrophy and the turbulent enstrophy
due to the gradients of streamwise and spanwise mean vorticity, respectively. They
are analogous to the turbulent kinetic energy production terms in the MKE and TKE
equations. Term 8 is the production of turbulent enstrophy by stretching of turbulent
vorticity through turbulent velocity gradients. Term 9 denotes the transport of turbulent
enstrophy by the fluctuating wall-normal velocity component. Term 10 is the viscous
transport of turbulent enstrophy and term 11 is the viscous dissipation of turbulent
enstrophy. The only terms in (3.1) that become null when the equation is made global
are term 1 when averaged in time because of time periodicity and term 9 when integrated
along y.

Differently from the case of the transport equation (2.10) for (Ux,y)
2, which contributes

to DUx (see (2.2)), the velocity Uz appears explicitly in terms 3, 4 and 6 of the turbulent
enstrophy equation (3.1). These terms arise only when the wall oscillates. This indicates
that the action of the spanwise motion is direct on the turbulent enstrophy, and therefore
on the global turbulent dissipation DT . As this quantity increases during the wall motion,
it is worth studying how these oscillating-wall terms contribute to modify the enstrophy
balance, thereby affecting DT , and, in turn, Ub through (2.9) and Cf through (1.9).

Figure 3.1 shows the profiles of the time-averaged terms in the turbulent enstrophy
balance (3.1) for fixed-wall (top) and oscillating-wall conditions for T = 100 (bottom).
The numbers refer to the terms in (3.1) and the thick lines represent the terms only
occuring when the walls are in motion. The fixed-wall profiles compare successfully with
the ones in Antonia and Kim (1994), Gorski et al. (1994) and Abe et al. (2009). (Note
that in Gorski et al. (1994) and Abe et al. (2009) the terms are multiplied by a factor of
2.) In the oscillating-wall case, the vorticity production term 3,

〈
ωzωyUz,y

〉
, is dominant

in the proximity of the wall, y < 10, over terms 4 and 6, and over the production and
transport terms already present in the fixed-wall case, i.e. terms 2,5,7,8,10. Term 3
peaks at y ≈ 6 and distinctly affects term 11, the time-averaged dissipation of turbulent
enstrophy, at the edge of the viscous sublayer and in the lower part of the buffer region,
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Figure 3.1: Wall-normal profiles of terms in transport equation (3.1) for turbulent en-
strophy in the fixed-wall case (top) and the oscillating-wall case (bottom) for T = 100.
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as clear from the similar shapes of the profiles for 2 < y < 20. Figure 3.2 shows that the
vorticity production term 3 increases with T up to periods larger than the optimum T
for drag reduction. In a very thin near-wall layer, y < 2, term 3 is small. Term 10, the
viscous transport of turbulent enstrophy, is instead responsible for the intense increase of
dissipation of turbulent enstrophy there. While the production term

〈
ωzωyUz,y

〉
highlights

the direct action of the spanwise shear layer on the turbulent enstrophy, the increase of
the production term 2,

〈
ωxωyUx,y

〉
, outlines the indirect effect of the wall motion caused

by the increment of Ux,y. Term 3 is primarily dominant near the wall, whereas term
2 increases at higher locations. This is because term 3 is dictated by the near-wall
spanwise velocity Uz, while Ux,y only varies significantly for y > 15 being the wall-shear
stress constant (see figure 1.4). We finally note that the production term 5,

〈
ωjuz,jUx,y

〉
,

decreases substantially in the oscillating-wall case, while the production and transport
terms 8 and 9, which only involve fluctuating quantities, are largely unaffected.

3.2.1 Order-of-magnitude analysis

The order of magnitude of the terms in (3.1) arising because of the wall motion can be
estimated through an analysis similar to the one carried out for example by Tennekes and
Lumley (1972) at pages 89 and 90. Two symbols are adopted, following the introductory
discussion on the use of symbols in Tennekes and Lumley (1972). The symbol ∼ denotes
a crude approximation; it highlights the dependence of the term under scrutiny on the
characteristic length and velocity scales of the turbulent motion. Upon decomposing
an enstrophic term into sub-terms containing the fluctuating velocity components, the
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symbol O denotes its magnitude in terms of the dominant sub-term. In Tennekes and
Lumley (1972), a generic length scale is assumed to describe the mean flow motion and the
Taylor microscale is taken as the reference length scale for the turbulent fluctuations in
all directions, suggesting that such an analysis is useful primarily for isotropic turbulence.
However, our interest is on the wall-bounded turbulence dynamics with oscillations, which
is strongly anisotropic. It is therefore necessary to distinguish different length and velocity
scales along the three Cartesian directions. Although the following analysis may appear
approximate, the estimates of the orders of magnitude match the numerical calculations
well.

The near-wall turbulent dynamics is characterized by three distinct length scales. The
length scale of the disturbance along the z direction can be taken as λz = O(100), namely
the characteristic spacing of the low-speed streaky structures (Kline et al., 1967). As
shown by Ricco (2004), the streaks spacing increases by about a fifth when R ≈ 0.3%, so
that the order-of-magnitude estimate is still valid. The streaks length, λx = O(1000) for
fixed-wall conditions, is representative of the disturbance flow along the x-direction (Kline
et al., 1967). Ricco (2004) has shown that λx decreases by about a third when R ≈ 0.3%.
The order of magnitude of λx = O(1000) is therefore applicable under wall-oscillation
conditions. The length scale along y for the mean flow is the spanwise boundary layer
thickness δ, defined here as the distance from the wall where the maximum Uz equals
exp(−1)Uzm. As amply verified (see Choi et al. (2002), amongst many) Uz agrees well with
the laminar solution of the second Stokes problem for the flow induced by wall oscillations
beneath a still fluid (Batchelor, 1967), so that the spanwise boundary layer thickness can
be approximated well by δ =

√

T/π. For T = 100, δ ≈ 5.7, so that it can be assumed
that δ = O(10). The boundary layer thickness δ can be taken as the characteristic length
scale for the near-wall disturbance flow because the oscillating boundary layer affects
the turbulence in a region close to the wall whose width is comparable with δ. This is
shown for example in figure 1.5 by the 〈uxuy〉 profile being markedly affected only for
y < 25 and by the uyuz profile reaching its maximum at y ≈ 15. The mean-flow length
scale becomes the length scale of the fluctuations along the direction of the shear also
in other shear-driven phenomena, such as the penetration of free-stream turbulence into
the Blasius boundary layer to form the Klebanoff modes (Leib et al., 1999). In that
case, the wall-normal scale of the fluctuations within the boundary layer is the Blasius
boundary layer thickness. The characteristic length scales along the Cartesian directions
can therefore be taken as λx > λz > δ.

As for the order of magnitude of the velocity components near the wall, as outlined
by Pope (2000) at page 283, both ux and uz show a linear growth near the wall, but
the coefficient is larger for the streamwise component. The wall-normal component uy is
smaller than both ux and uz because it grows quadratically from the wall. The hypothesis
ux > uz > uy can therefore be adopted.

The order of magnitude of the enstrophy terms 3, 4 and 6, arising in (3.1) because of
the wall oscillation, can now be estimated. The terminologies ‘larger’ and ‘smaller’ are
to be intended in the order-of-magnitude sense. For brevity, the time-averaging symbol
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is omitted to the end of §3.2.1. Term 3 can be first decomposed as follows.

Term 3 : ωzωyUz,y =




uy,xux,z
︸ ︷︷ ︸

3a

−uy,xuz,x
︸ ︷︷ ︸

3b

−ux,yux,z
︸ ︷︷ ︸

3c

+ ux,yuz,x
︸ ︷︷ ︸

3d




Uz,y, (3.2)

and the order of magnitude of each sub-term is

3a ∼ uxuy

λxλz

, 3b ∼ uyuz

λ2
x

, 3c ∼ u2
x

δλz

, 3d ∼ uxuz

δλx

, Uz,y ∼
Uzm

δ
.

It is evident that term 3c, ux,yux,zUz,y, is dominant. It follows that

Term 3 : ωzωyUz,y = O
(
u2
xUzm

δ2λz

)

.

It further occurs that term 3d > term 3a > term 3b. The magnitude of term 4 is estimated
as follows.

Term 4 : ωiux,iUz,y =

[(

uz,y − uy,z

)

ux,x +
(
ux,z − uz,x

)
ux,y +

(

uy,x − ux,y

)

ux,z

]

Uz,y

=




uz,yux,x
︸ ︷︷ ︸

4a

−uy,zux,x
︸ ︷︷ ︸

4b

−uz,xux,y
︸ ︷︷ ︸

4c

+ uy,xux,z
︸ ︷︷ ︸

4d




Uz,y,

4a, 4c ∼ uxuz

δλx

, 4b, 4d ∼ uxuy

λxλz

.

Terms 4a and 4c are larger than 4b and 4d because uz > uy and δ < λz, so that

Term 4 : ωiux,iUz,y = O
(
uxuzUzm

δ2λx

)

. (3.3)

Note that this represents an upper bound because terms 4a and 4c may add to produce a
term of the order of magnitude given in (3.3) or give a term of smaller amplitude if these
terms are of opposite sign. The magnitude of term 6 can be estimated as follows.

Term 6 : −uyωxUz,yy =
(

−uyuz,y + uyuy,z

)

Uz,yy,

uyuz,y ∼
uyuz

δ
, uyuy,z ∼

uyuy

λz

, Uz,yy ∼
Uzm

δ2
.

The term −uyuz,yUz,yy is clearly dominant because uz > uy and δ > λz. It follows that

Term 6 : −uyωxUz,yy = O
(
uyuzUzm

δ3

)

.
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Figure 3.3: Wall-normal profile of ωzωy for T = 100 at the phase at which it reaches its
maximum (thick line). Thin lines indicate the sub-terms in (3.3).

In order to compare term 6 with term 3, we resort to the continuity equation, as follows

uy,y ∼ ux,x =⇒ uy

δ
∼ ux

λx

,

Term 6 : −uyωxUz,yy = O
(
uyuzUzm

δ3

)

= O
(
uxuzUzm

δ2λx

)

.

Since ux > uz and λx > λz, one obtains

Term 3 : O
(
u2
xUzm

δ2λz

)

> Term 6 : O
(
uxuzUzm

δ2λx

)

.

Terms 4 and 6 are either comparable, when the upper bound case for the order-of-
magnitude estimate for term 4 is considered, or term 4 < term 6 if the two comparable
leading terms in 4 have opposite sign. It can be concluded that term 3 > term 6 ≥ term
4, which is the result found through the numerical simulations.

3.2.2 Physical interpretation of
〈
ωzωyUz,y

〉

Term 3 in the enstrophy equation (3.1),
〈
ωzωyUz,y

〉
, has been found to be dominant

and largely responsible for the change of global turbulent enstrophy and thus for drag
reduction. It is positive and therefore indicates a production of vorticity, i.e. the mean
spanwise flow shear Uz,y acts on the turbulence structures represented by the correlation
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Figure 3.4: Colour map for streamwise velocity fluctuations for fixed-wall case in the x−z
plane at y = 6. Surfaces are for ux,yux,z > 1.25 (dark red) and ux,yux,z < −1.25 (dark
blue).

Figure 3.5: Surfaces at constant ux,yux,z and colour map for streamwise velocity fluctu-
ations for oscillating-wall case (T = 100) in the x − z plane at y = 6. Colour scales are
the same of figure 3.4.
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term ωzωy to increase the turbulent enstrophy. This physical meaning of such interaction
is investigated in more detail in this section.

Figure 3.3 confirms the result of the order-of-magnitude analysis in §3.2.1, i.e. that
term 3c, ux,yux,z, is dominant amongst the ones composing ωzωy, and that the next sub-
term in magnitude is term 3d, ux,yuz,x. Terms ux,z and ux,y may be linked separately to
the dynamics of the turbulent low-speed streaks. In the near-wall region, ux,z denotes
the spanwise gradient of the low-speed streaks and it is maximum at their edge, i.e. at
the interface of the low-velocity and high-velocity regions. Lee and Kim (2002) indeed
state that the streaks are associated with fluctuations of wall-normal vorticity. The
wall-normal gradient ux,y may instead be interpreted as the eruption of near-wall low-
speed structures to higher locations or as sweep-like motion of high-speed fluid toward
the wall. In order to understand the meaning of the product of the two quantities,
we resort to flow visualizations. Figure 3.4 shows contour plots of streamwise velocity
fluctuations ux (light contours) and of the correlation ux,yux,z (dark contours) over the
x − z plane at y = 6 for the reference case. Low- and high-speed streaks show the
characteristic streamwise-stretched shape. Low-speed ones are longer and thinner than
the high-speed ones. Regions of high magnitude of the correlation appear sporadically
and always occur at the side of the high-speed streaks. Figure 3.5 shows the contours
plots for the oscillating-wall case at four different phases, where the characteristic cyclic
tilting of the near-wall structures is evident (Quadrio and Ricco, 2003). The streaks are
less energetic, which confirms the attenuation of uxrms, shown in figure 1.5. The number,
the amplitude and the spatial size of the ux,yux,z pockets increases during the wall motion,
in line with the observed intensified enstrophy fluctuations.

Further insight may be gained by a model of the turbulent enstrophy transport, fol-
lowing Davidson (2004) at pages 211, 213 and 263, and other analogous studies focussed
on the passive scalar transport in a turbulent flow (Bouremel et al., 2009a,b). The ap-
proach is similar to the rapid distortion theory problem of a large eddy stretching a
smaller blob of vorticity, presented at page 213 in Davidson (2004). Analogously, we con-
sider here small-scale vorticity structures being continuously stretched, compressed and
transported by the large-scale action of the Stokes layer. It is assumed that the energy
associated with the small-scale motion is much smaller than the one of the large-scale
forcing, the Stokes layer is quasi-steady with respect to the small-scale fluctuations, its
action is inviscid, and its gradient is uniform on the scale of the small motions. The
contribution of the wall motion to the enstrophy production may thus be distilled into
the following simplified enstrophy equation in the y − z plane

1

2

(
ω2

y + ω2

z

)

,t
= ωzωyUz,y, (3.4)

where ωy and ωz are to be intended here as turbulent vorticity fluctuations which are
smaller than the spatial scale at which the Stokes layer operates. The term on the r.h.s.
of (3.4) may be written in matrix form as follows

ωzωyUz,y = [ωy;ωz]
1

2

[
0 Uz,y

Uz,y 0

] [
ωy

ωz

]

.

In order to elucidate the mechanism of vorticity production, a set of perpendicular axes
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Figure 3.6: Coordinate systems in y − z plane for turbulent vorticity vector ω‖.

(xn, xs) may be considered where xn is orientated along the vorticity vector in the y − z
plane, ω‖ = [ωy;ωz]. The angle α is defined as the angle between ω‖ and the wall-normal
axis y, as shown in figure 3.6. Upon considering the new set of coordinates, the production
term is written as

ωzωyUz,y = [ωn; 0]

[
Snn Sns

Ssn Sss

] [
ωn

0

]

= Snnω
2

n,

where Snn = sinα cosαUz,y and ω2
n = ω2

y + ω2
z . The other components of the strain-rate

tensor Sns, Ssn, Sss only contribute to change the direction of the vorticity vector, not its
magnitude. Equation (3.4) may be integrated to give

ω2

n = (ωn)
2

0
exp (2 sinα cosαUz,yt) , (3.5)

where (ωn)
2
0
is the initial magnitude. Equation (3.5) shows that the Stokes layer may

generate or attenuate the local enstrophy depending on the sign of its gradient and the
orientation of the vorticity vector. Turbulent enstrophy production by stretching occurs
when sinα cosαUz,y > 0, and the rate of growth or decay of enstrophy is never larger
than Uz,y. The rate of change is null when the vorticity vector is parallel or perpendicular
to the wall, and the maximum enstrophy production occurs when either i) Uz,y is at its
negative peak at that y location and simultaneously ω‖ is orientated at π/2 with respect
to the axes and along the first or third quadrant in figure 3.6, or ii) Uz,y is at its positive
peak and simultaneously ω‖ is orientated at π/2 with respect to the axes and along the
second or fourth quadrant in figure 3.6.

3.2.3 Turbulent energy dissipation balance

We close this section by pointing out that the transport equation for the turbulent energy
dissipation could have been used in lieu of the turbulent enstrophy equation (3.1).

The transport equation for the turbulent energy dissipation, called ǫ here

ǫ ≡ ui,j(ui,j + uj ,i),
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is studied (Mansour et al., 1989; Fischer et al., 2001). For the case of turbulent channel
flow with spanwise wall oscillations, the equation reads

ǫ,t/2
︸︷︷︸

1

=− ux,iuy,iUx,y
︸ ︷︷ ︸

2

= −uz,iuy,iUz,y
︸ ︷︷ ︸

3

−ui,xui,yUx,y
︸ ︷︷ ︸

4

−ui,zui,yUz,y
︸ ︷︷ ︸

5

−uyux,yUx,yy
︸ ︷︷ ︸

6

− uyuz,yUz,yy
︸ ︷︷ ︸

7

−ui,kuj ,kui,j
︸ ︷︷ ︸

8

−
(
uyui,jui,j

)

,y
/2

︸ ︷︷ ︸

9

−ui,jp,ij
︸ ︷︷ ︸

10

−ui,jkui,jk
︸ ︷︷ ︸

11

+ ǫ,yy
︸︷︷︸

12

.
(3.6)

The turbulent dissipation equation has a form similar to the enstrophy one. The order
of magnitude of the terms arising in (3.6) because of the wall motion can be estimated
through an analysis similar to one for the enstrophy equation (3.1). The magnitude of
term 3 is found as follows.

Term 3 : uz,iuy,iUz,y =




uz,xuy,x
︸ ︷︷ ︸

3a

+ uz,yuy,y
︸ ︷︷ ︸

3b

+ uz,zuy,z
︸ ︷︷ ︸

3c




Uz,y, (3.7)

3a ∼ uyuz

λ2
x

, 3b ∼ uyuz

δ2
∼ uxuz

λxδ
, 3c ∼ uyuz

λ2
z

∼ uyux

λzλx

, Uz,y ∼
Uzm

δ
.

Term 3b is dominant, so that

Term 3 : uz,iuy,iUz,y = O
(
uxuzUzm

δ2λx

)

.

The magnitude of term 5 is estimated as follows.

Term 5 : ui,zui,yUz,y =




ux,zux,y
︸ ︷︷ ︸

5a

+ uy,zuy,y
︸ ︷︷ ︸

5b

+ uz,zuz,y
︸ ︷︷ ︸

5c




Uz,y, (3.8)

5a ∼ u2
x

δλz

, 5b ∼
u2
y

δλz

, 5c ∼ u2
z

δλz

.

Term 5a is dominant. It follows that

Term 5 : ui,zui,yUz,y = O
(
u2
xUzm

δ2λz

)

.

The magnitude of term 7 is found as follows.

Term 7 : uyuz,yUz,yy, (3.9)

uyuz,y ∼
uyuz

δ
∼ uxuz

λx

, Uz,yy ∼
Uzm

δ2
,

Term 7 : uyuz,yUz,yy = O
(
uxuzUzm

δ2λx

)

.

Term 5a is estimated to be the largest one amongst the terms in (3.6) induced by the wall
motion. This result confirms the analysis of the turbulent enstrophy equation (3.1) in
§3.2, where term 3, of the same order of magnitude, emerges as dominant and significantly
modifies the balance.



Chapter 4

Prediction of turbulent drag
reduction

As a consequence of the results found in §3, it follows a number of considerations about the
scaling of drag reduciton to the aim of clarifying the physical mechanism and predicting
R.

4.1 Drag reduction and ωzωyUz,y

In this section, the focus is on the relationship between R and term 3 in (3.1), ωzωyUz,y.
In line with the finding that ωzωyUz,y is the main responsible factor for the turbulent
enstrophy change, and therefore for the Cf reduction, figure 4.1 shows that R scales
linearly with the global value of ωzωyUz,y up to R ≈ 0.3%, which corresponds to T = 42.
The global value of the enstrophic term is chosen here because R is linked via (1.9) to the
change of Ub, a global quantity as defined in (1.8). After the linear growth the relationship
between these two terms is not linear anymore and this negative behaviour get worse with
the period. For very high periods term three is not dominant in the enstrophy balance
and the relationship with R is lost. This is the most important result of the entire work.
Figure 4.2 further reveals that the global term relates linearly with

√
T up to conditions

exceeding the optimum.

4.2 An analyticl formula to predict R

Prompted by these results, the objective is now to model the global value of ωzωyUz,y by
analytic expressions in order to extract a parameter S = S(T ;Uzm), which relates to R.
An analytical formula for R can be a useful tool to experimentalists for design purposes.
The parameter is therefore as follows

S = S(T ;Uzm) =

∫ h

0

〈
ωzωyUz,y

〉
dy. (4.1)

34
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Figure 4.1: Drag reduction rate R vs. global term
∫ h

0

〈
ωzωyUz,y

〉
dy.

The aim is to predict R for as high values of T as possible. However, R and the global
enstrophic term are related linearly only up to T ≈ 42 < Topt, whereas, at higher periods,
the enstrophic term is larger than what it would be if the linear correlation were valid,
as shown in figure 4.1 (left). This suggests that, in order to extract a linear correlation
between S and R for conditions up to (or exceeding) the optimal ones, the enstrophic term
should be modelled accurately up to T ≈ 42, and it should be suitably underestimated
by the model at higher periods. This prediction, based solely on observation of the
numerical data shown in figure 4.1, will be confirmed as accurate once the scaling function
is extracted.

The modelling of ωzωy is carried out as follows. Figure 4.3 (left) shows its wall-normal
profiles at different phases for T = 21. The vorticity fluctuations do not penetrate through
a very thin near-wall layer, y < ys ≈ 2. For y > ys, the correlation grows linearly up to
a maximum and then decays as y increases. The correlation shares the frequency-shift
behaviour of the wall-normal profile of Uz at different heights. A formula which captures
well the correlation profile is therefore

ωzωy =

{

0, y < ys,

φ (y − ys) exp [−γ (y − ys)] cos
[
2πt
T

− γ (y − ys)
]
, y ≥ ys,

(4.2)

where γ = γ(T ) and φ = φ(T ) model the peak correlation value Cm(T ) and its position
ym(T ). For small T , Cm and ym(T ) − ys grow as ∼

√
T , while, at large T , they tend

asymptotically to constant values, Copt and ỹ = yopt − ys, respectively. The trends are



An analyticl formula to predict R 36

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

√
T

∫
h 0

〈
ω
z
ω
y
U
z
,y

〉
d
y

R=0.6

R=0.19

R=0.30

R=0.31

R=0.06

Figure 4.2: Global term
∫ h

0

〈
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√
T .
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Figure 4.3: Wall-normal DNS profiles of ωzωy at different phases for T = 21 (left) and
corresponding model profiles (right), calculated with the free parameters in (4.2) that
minimize the difference between the amount of drag reduction calculated via DNS and
the modelled data (refer to discussion in the text).
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thus represented well by the following

ym(T ) = ys + ỹ

[
2 arctan (αT )

π

]1/2

, Cm(T ) = Copt

[
2 arctan (βT )

π

]1/2

. (4.3)

By differentiating the envelope of the model correlation (4.2), it is found that γ = (ym −
ys)

−1, and φ = eγCm. The constants α, β, yopt, Copt, ys will be found later by best fitting
of the numerical R data.

The spanwise flow Uz is modelled by the Stokes problem laminar solution of the
flow engendered by sinusoidal wall oscillations beneath a still fluid (Batchelor, 1967).
As verified by Quadrio and Sibilla (2000) and Choi et al. (2002), the laminar solution
approximates well the mean spanwise flow for T < Topt at constant mass flux, i.e. for
T < 150. Ricco and Quadrio (2008) showed that the discrepancy between the two flows
is due to the additional term uyuz,y in the turbulent z-momentum equation with respect
to the corresponding laminar equation. For T = 125, its magnitude has been shown to
be significant during the initial temporal transient but negligible once the new regime
has established. This has been further verified in §2.1.3 by the terms Sw and DUz (which
coincide in the laminar case) being different by only 1% for T = 100. It is therefore
assumed that

Uz = Uzm exp

(

−y

√
π

T

)

cos

(
2π

T
t− y

√
π

T

)

. (4.4)

For T ≈ 100, the spanwise boundary layer thickness δ =
√

T/π is much smaller than the
half-width of the channel, h = 200. The latter condition is necessary because solution
(4.4) is valid for a semi-infinite domain bounded only by one oscillating wall. It further
follows that the upper limit of the integral in (4.1) can be replaced by ∞.

The quantity S is obtained by substituting (4.2) and (4.4) into (4.1), as follows

S(T ;Uzm) =
UzmπφT

1/2

4 (π + γ2T )2

[(

π + 2γ
√
πT − γ2T

)

ℜ (Ψ) +
(

π − 2γ
√
πT − γ2T

)

ℑ (Ψ)
]

,

(4.5)

where Ψ = exp
(

−ys
√

2πi/T
)

and ℜ and ℑ indicate the real and imaginary parts. The

quantity S relates linearly with R up to T ≈ 100 when the free parameters α, β, yopt, Copt

and ys are chosen so as to minimize the difference between the numerical R data and the
data estimated through the model, i.e. Rs = kS, where k is a constant. It is found that
α = 0.13, β = 0.03, yopt = 6, Copt = 0.033, ys = 1.5 and k = 57.14286. Figure 4.3 (right)
depicts the model of ωzωy at different phases for these values of the parameters. Figure
4.4 shows the excellent agreement between R and Rs up to T ≈ 100 (solid line), which is
further evidenced by their linear correlation in the right graph. The minimal period to
obtain drag reduction, Tmin ≈ 3, is defined as the period where S = 0.

4.3 A brief discussion on the dependence of R on T

At very small periods, i.e. T ≤ Tmin, the friction drag is unchanged with respect to
the fixed-wall case, as shown in figures 4.4 and 4.5. The layer where Uz is at work is so
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Figure 4.4: R data calculated via DNS (symbols) and Rs = kS, computed through S
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thin (δ ≤
√

Tmin/π ≈ 1) that its viscous effects do not diffuse sufficiently through the
interior of the channel to affect the near-wall turbulence. As ωzωy is negligibly small for
y < 1, the production term ωzωyUz,y is not large enough to alter the turbulent enstrophy
balance. The friction coefficient Cf is therefore unvaried.

For Tmin < T < Topt, both ωzωyUz,y and R grow as
√
T , i.e. R ∼ δ, as shown in figure

4.1 and 4.2. The Stokes layer is thick enough for ωzωyUz,y to influence the enstrophy
balance. The spanwise viscous effects act only on the near-wall portion of ωzωy, which
suggests that a crude approximation can be ωzωy = (y − ys) cos(2πt/T ). Substitution of
the latter into (4.1) indeed leads to Rs ∼

√
T .

For T comparable with Topt, the viscous effects engendered by Uz penetrate farther
into the turbulent flow. The correlation ωzωy is modelled by (4.2) because the Stokes
layer is thick enough to affect the structures along their whole wall-normal extent. The
prediction Rs is much less accurate for T > Topt. For T > 1000, the flow is highly three-
dimensional and quasi-steady and drag increase occurs (Quadrio et al., 2009). It would
be of interest to explore the turbulent enstrophy balance for drag-increase conditions.

4.4 A note on the scaling parameter by Quadrio and

Ricco (2004)

In this section, a conceptual link is proposed between the scaling factor found in the
present work and the parameter employed by Choi et al. (2002) and discovered by Quadrio
and Ricco (2004) to be related linearly to the amount of skin-friction reduction for periods
of oscillations smaller or comparable with the optimum. This scaling parameter was
constructed by combining a characteristic length scale related to the wall-normal distance
at which the wall motion affects the turbulent structures and the maximum spanwise
acceleration of the Stokes layer. It reads:

S = 2

√
π

T
ln

(
Uzm

Uzth

)

exp

(

−ŷ

√

2π

T

)

where Uzth ≈ 1.2 is a threshold velocity and ŷ ≈ 6.3 is a wall-normal distance represen-
tative of the diffusion of the Stokes-layer viscous effects. The first interesting observation
is that such parameter can be written as follows:

S =
2

Uzm

ln

(
Uzm

Uzth

)

Ωxm(ŷ), (4.6)

where Ωxm is the maximum streamwise vorticity of the Stokes layer at y = ŷ. Relation
(4.6) endows the scaling parameter with a more direct and physically relevant meaning,
in that it simply states that the drag reduction is linearly proportional to the maximum
spanwise shear induced by the Stokes layer at constant Uzm, and that such shear is most
effective when at work at y ≈ 6.3.

The fact that the parameter used by Quadrio and Ricco (2004) relates well with drag
reduction is not surprising in view of the scaling analysis previously presented. Indeed,
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(4.6) can be seen as a very simplified version of the new scaling factor (4.1). Although the
parameter (4.1) is more elaborate as it possesses a precise physical meaning and involves
averaging and wall-normal integration, the spanwise shear of the Stokes layer plays a key
role in both expressions. The other point of note is that

〈
ωzωyUz,y

〉
reaches its maximum

at y ≈ 6.5 for optimum conditions for R, i.e. almost at the same distance at which the
correlation between R and the parameter (4.6) is maximum.



Chapter 5

Conclusions

With the aim of understanding the turbulent drag reduction phenomenology, the physics
of an incompressible turbulent channel flow, driven by a constant streamwise pressure
gradient and modified by spanwise wall oscillations, has been studied by direct numerical
simulations. The main effect of the oscillation is the increment of the bulk streamwise
velocity, which translates in a reduction of the skin-friction coefficient. The energy spent
to drive the wall motion almost coincides with the viscous dissipation of the large-scale
spanwise motion, the difference taking the form of a small turbulence kinetic energy
production term. The energy balance elucidates that the increase of the streamwise-flow
kinetic energy is mainly balanced by the viscous dissipation associated with the mean
streamwise flow and by the dissipation related to the turbulent fluctuations.

The oscillating spanwise boundary layer has a direct effect only on the latter, which
can be conveniently expressed as the volume integral of the turbulent enstrophy. The
study of transport equation for the turbulent enstrophy reveals that a single enstrophy
production term synthesizes the stretching of the vorticity lines by the oscillating layer
and it is therefore responsible for the increase of bulk velocity. Although the turbulent
enstrophy increases, the intensity of the turbulent fluctuations decreases in the proximity
of the wall. The amount of drag reduction relates linearly with square root of the period
of oscillation and with the new enstrophy production term at small periods. A simple
analytical model of such term has led to an analytical formula for prediction of drag
reduction.

The present work has shown the importance of studying the turbulent enstrophy
budget in order to gain a deeper understanding of turbulent drag reduction by spanwise
wall oscillation. Arguably, the present method could be adopted to investigate other
turbulent flows modified by external agents, such as boundary layers affected by large-
scale Lorentz or Coriolis forces, by wall transpiration, by large temperature gradients, or
by the addition of bubbles and polymeric solutions.
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M. Fischer, J. Jovanović, and F. Durst. Reynolds number effect in the near-wall region
of turbulent channel flow. Phys. Fluids, 13(6):1755–1767, 2001.

B. Frohnapfel, J. Jovanovic, and A. Delgado. Experimental investigation of turbulent
drag reduction by surface-embedded grooves. J. Fluid Mech., 590:107–116, 2007.

J.J. Gorski, J.M. Wallace, and P.S. Bernard. The enstrophy equation budget of bounded
turbulent shear flows. Phys. Fluids, 6(9):3197–3199, 1994.

J. O. Hinze. Turbulence. McGraw Hill – Second Edition, 1975.

M. Itoh, S. Tamano, K. Yokota, and S. Taniguchi. Drag reduction in a turbulent boundary
layer on a flexible sheet undergoing a spanwise traveling wave motion. J. Turbulence,
7(27):1–17, 2006.

K. Iwamoto, Y. Suzuki, and N. Kasagi. Reynolds number effect on wall turbulence:
toward effective feedback control. Int. J. Heat Fluid Flow, 23:678–689, 2002.

W.J. Jung, N. Mangiavacchi, and R. Akhavan. Suppression of turbulence in wall-bounded
flows by high-frequency spanwise oscillations. Phys. Fluids A, 4 (8):1605–1607, 1992.

N. Kasagi, Y. Hasegawa, and K. Fukagata. Towards cost-effective control of wall turbu-
lence for skin-friction drag reduction. In B. Eckhardt, editor, Advances in Turbulence
XII, Proc. 12th EUROMECH Eur. Turbul. Conf., volume 132. Springer Proceedings
in Physics, 2009a.

N. Kasagi, Y. Suzuki, and K. Fukagata. Microelectromechanical systems-based feedback
control of turbulence for drag reduction. Annu. Rev. Fluid Mech., 41:231–251, 2009b.

J. Kim and T.R. Bewley. A Linear Systems Approach to Flow Control. Annu. Rev. Fluid
Mech., 39:383–417, 2007.

S. J. Kline, W. C. Reynolds, F. A. Schraub, and P. W. Runstadler. The structure of
turbulent boundary layers. J. Fluid Mech., 30:741–773, 1967.



Bibliography 44

F. Laadhari. Reynolds number effect on the dissipation function in wall-bounded flows.
Phys. Fluids, 19(038101), 2007.

F. Laadhari, L. Skandaji, and R. Morel. Turbulence reduction in a boundary layer by a
local spanwise oscillating surface. Phys. Fluids, 6 (10):3218–3220, 1994.

C. Lee and J. Kim. Control of viscous sublayer for drag reduction. Phys. Fluids, 14(7):
2523–2529, 2002.

S. J. Leib, D. W. Wundrow, and M. E. Goldstein. Effect of free-stream turbulence and
other vortical disturbances on a laminar boundary layer. J. Fluid Mech., 380:169–203,
1999.

P. Luchini and M. Quadrio. A low-cost parallel implementation of direct numerical
simulation of wall turbulence. J. Comp. Phys., 211(2):551–571, 2006.

N.N. Mansour, J. Kim, and P. Moin. Near-Wall κ − ǫ Turbulence Modeling. AIAA J.,
27(8):1068–1073, 1989.

T. Min, S.M. Kang, J.L. Speyer, and J. Kim. Sustained sub-laminar drag in a fully
developed channel flow. J. Fluid Mech., 558:309–318, 2006.

Y. Mito and N. Kasagi. DNS study of turbulence modification with streamwise-uniform
sinusoidal wall-oscillation. Int. J. Heat Fluid Flow, 19(5):470–481, 1998.

J. Pang and K.-S. Choi. Turbulent drag reduction by Lorentz force oscillation. Phys.
Fluids, 16(5):L35–L38, 2004.

S.B. Pope. Turbulent Flows. Cambridge University Press, Cambridge, 2000.

M. Quadrio. Drag-reducing characteristics of the generalized spanwise Stokes layer: ex-
periments and numerical simulations. In International Specialist Workshop on Open-
Loop versus Closed-Loop Control of Wall Turbulence. March 17–19, Tokyo (JP), 2010a.

M. Quadrio. Drag reduction in turbulent boundary layers by in-plane wall motion. Royal
Society Phil. Transactions A, 2010b. Invited contribution. In press.

M. Quadrio and P. Ricco. Initial response of a turbulent channel flow to spanwise oscil-
lation of the walls. J. Turbulence, 4(7), 2003.

M. Quadrio and P. Ricco. Critical assessment of turbulent drag reduction through span-
wise wall oscillation. J. Fluid Mech., 521:251–271, 2004.

M. Quadrio and P. Ricco. The laminar generalized Stokes layer and turbulent drag
reduction. Submitted to J. Fluid Mech., 2010.

M. Quadrio and S. Sibilla. Numerical simulation of turbulent flow in a pipe oscillating
around its axis. J. Fluid Mech., 424:217–241, 2000.



Bibliography 45

M. Quadrio, P. Ricco, and C. Viotti. Streamwise-traveling waves of spanwise wall velocity
for turbulent drag reduction. J. Fluid Mech., 627:161–178, 2009.

P. Ricco. Modification of near-wall turbulence due to spanwise wall oscillations. J.
Turbulence, 5(24), 2004.

P. Ricco and M. Quadrio. Wall-oscillation conditions for drag reduction in turbulent
channel flow. Int. J. Heat Fluid Flow, 29:601–612, 2008.

T. Segawa, H. Mizunuma, K. Murakami, F-C. Li, and H. Yoshida. Turbulent drag
reduction by means of alternating suction and blowing jets. Fluid Dyn. Res., 39:552–
568, 2007.

L. Sirovich and S. Karlsson. Turbulent drag reduction by passive mechanisms. Nature,
388:753–755, 1997.

H. Tennekes and J.L. Lumley. A First Course in Turbulence. MIT Press, 1972.

M.J. Walsh. Drag characteristics of v-groove and transverse curvature riblets. In Viscous
Drag reduction (ed. G.R. Hough). American Institute of Aeronautics and Astronautics.,
1980.

S. Xu, S. Dong, M.R. Maxey, and G.E. Karniadakis. Turbulent drag reduction by constant
near-wall forcing. J. Fluid Mech., 582:79–101, 2007.

A. Yakeno, Y. Hasegawa, and N. Kasagi. Spatio-temporally periodic control for turbu-
lent friction drag reduction. In Proc. 6th Int. Symp. on Turbulence and Shear Flow
Phenomena TSFP6, Seoul., 2009.

H. Zhao, J.-Z. Wu, and J.-S. Luo. Turbulent drag reduction by traveling wave of flexible
wall. Fluid Dyn. Res., 34:175–198, 2004.


