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Abstra
tThe aim of the present work is to assess the performan
es of feedba
k 
ontrol appliedto turbulent 
hannel �ow for drag redu
tion by means of wall shear stresses and wallpressure sensors and zero-net-mass-�ux blowing/su
tion MEMS a
tuators at walls.The problem is addressed starting from Navier-Stokes equations, whi
h are manip-ulated in order to obtain a linear time-invariant model of the 
hannel �ow. Su
h modelis then exploited in order to implement a full-information LQR 
ontroller into Dire
tNumeri
al Simulations. The following step 
on
erns the implementation of a morelikely measurement-based 
ontroller. The design pro
edure that has been developed ismainly based on optimal output feedba
k 
ontrol. Results have indi
ated the ne
essityof implementing a state observer.The following part of the work deals with the design of an optimal 
ompensatorbased on wall measurements. This phase is 
arried out leveraging a frequen
y-basedWiener-Hopf 
ontrol te
hnique previously developed to redu
e the drag in a plane
hannel �ow using a single-input single-output approa
h. This strategy has then beenextended to multi-output 
on�guration, where all wall measurements are available.Simulations with di�erent 
ontrol penalties and measurement noise have shown thatperforman
es de
rease, albeit remaining still positive, when an observer is introdu
edand bene�ts arising from multiple measurements information 
on
ern an improvedrobustness with respe
t to measurement noise.These results have suggested that a linear 
ontrol approa
h is su�
ient to su

ess-fully manipulate a turbulent 
hannel �ow, but state estimation must take into a

ountalso nonlinear e�e
ts taking pla
e in the �ow in order to obtain reliable information andfuture e�orts in feedba
k �ow 
ontrol �eld will have to be addressed in this dire
tion.Key words: Turbulen
e, Control, DNS, Plane Channel Flow, LQR, Wiener-Hopf





SommarioObiettivo del presente lavoro di tesi è quello di valutare le prestazioni dell'appli-
azione di un 
ontrollo in feedba
k per ridurre l'attrito a parete in un �usso turbolentoutilizzando sensori di attrito e pressione a parete, 
ombinati 
on attuatori MEMS ainiezione e aspirazione, montati a parete.Il problema è a�rontato partendo dalle equazioni di Navier-Stokes, dalle quali vieneestrapolato un modello lineare tempo-invariante del �usso. Tale modello rappresen-ta il punto di partenza per l'implementazione di un 
ontrollore LQR in simulazioniDNS, supponendo l'intera 
onos
enza dello stato del sistema. Il passo su

essivo hariguardato l'implementazione di un più verisimile 
ontrollore basato es
lusivamentesulle misure a parete. La fase di progettazione è stata 
ondotta basandosi sulla teo-ria della retroazione ottima della misura. I risultati hanno evidenziato la ne
essità diri
ostruire lo stato del sistema attraverso un osservatore.L'ultima parte del lavoro riguarda la progettazione di un 
ompensatore ottimobasato sulle misure a parete. Questa fase è stata 
ondotta sfruttando una te
ni
a di
ontrollo alla Wiener-Hopf nel dominio delle frequenze, pre
edentemente sviluppata perridurre l'attrito in un �usso turbolento usando un appro

io single-input single-output.Questa strategia è stata poi estesa al 
aso multi-output, in 
ui tutte le misure a paretesono disponibili. Simulazioni DNS 
on di�erenti pesi sull'attuazione e sul rumore sullemisure hanno mostrato 
he le prestazioni si ridu
ono, rimanendo pur sempre positive,quando il 
ontrollo LQR las
ia il posto ad un 
ontrollo basato su un osservatore distato e 
he l'utilizzo di più misure garantis
e una maggiore robustezza delle prestazionirispetto al rumore sulla misura.Questi risultati suggeris
ono 
he un appro

io lineare nella progettazione del 
on-trollore è su�
iente per manipolare 
on su

esso un �usso turbolento. Di 
ontro, lastima dello stato deve essere 
ondotta prendendo in 
onsiderazione an
he gli e�etti nonlineari 
he hanno luogo all'interno del �uido, al �ne di ottenere informazioni a�dabilie gli sforzi futuri nel 
ampo del feedba
k �ow 
ontrol dovranno essere rivolti in questadirezione.Parole 
hiave: Turbolenza, Controllo, DNS, Flusso Piano, LQR, Wiener-Hopf





Estratto della TesiLo studio della turbolenza è oggigiorno oggetto di fervido interesse all'interno della
omunità s
ienti�
a, in quanto la 
omprensione del fenomeno �si
o è il primo gradinoverso la predizione e quindi il 
ontrollo del 
omportamento turbolento di un �usso.Rius
ire in questo arduo 
ompito avrebbe impli
azioni e
onomi
he di notevole portata.Basti pensare 
he se si rius
isse a ridurre solo del 15% l'attrito vis
oso sulla super�
iedegli aeroplani, allora l'industria aeronauti
a avrebbe risparmi per più di 15 miliardi didollari l'anno, derivanti dalla riduzione del 
arburante impiegato per vin
ere l'attritodell'aria.Il presente lavoro di tesi a�ronta il problema di de�nire una logi
a di 
ontrollo infeedba
k per la riduzione dell'attrito vis
oso in uno s
enario il più prossimo alla real-izzazione appli
ativa, ovvero 
onsiderando attuatori e sensori montati a parete. Primadi addentrarsi nella questione, sono stati delineati i 
on
etti fondamentali della teoriadella turbolenza, ponendo l'attenzione soprattutto sulle nozioni di strutture 
oerenti edi 
i
lo di parete, veri 
apisaldi attraverso 
ui fondare la 
omprensione dei fenomeniturbolenti 
he avvengono in prossimità di una super�
ie investita da �uido. Di seguito,per illustrare la vastità del panorama, sono state des
ritte le prin
ipali te
ni
he per lariduzione del drag 
he al giorno d'oggi hanno ri
evuto approfondito studio attraversosimulazioni DNS o prove sperimentali.A questo punto è stata de�nita una geometria ideale in 
ui studiare il problema.La s
elta di un dominio rettangolare ha permesso di utilizzare un 
odi
e DNS par-ti
olarmente e�
iente per la risoluzione delle equazioni non lineari 
he governano ladinami
a del �usso turbolento, 
ontrollato e non 
ontrollato. Dopodi
hé, partendo dalleequazioni di Navier-Stokes e sfruttando le spazio-invarianze derivate dalla simmetriadel problema, è stato ottenuto un sistema di equazioni di�erenziali 
he, trasformatonel dominio di Fourier, ha portato alla de�nizioni delle note equazioni di�erenziali diOrr-Sommerfeld e Squire. Tali equazioni sono state poi dis
retizzate lungo la direzionenormale a parete durante l'implementazione numeri
a. In questa fase, due diversiappro

i sono stati 
onsiderati, ovvero le di�erenze �nite e le derivate spettrali. L'ap-pli
azione di queste te
ni
he ad un 
aso test prima ed al 
al
olo degli autovalori di unsistema di equazioni di Orr-Sommerfeld e Squire per una 
oppia di numeri d'onda poi,ha permesso di valutarne 
riti
amente le prestazioni.Ottenuto il modello lineare, è stato 
osì possibile de�nire una logi
a di 
ontrollo inv



vifeedba
k. Si

ome il 
ontrollo a parete risulta agire sul sistema attraverso le 
ondizionial 
ontorno dell'equazione di�erenziale, è stata proposta una te
ni
a di rilevamento al�ne di ottenere la formulazione agli stati del problema. Partendo da questa, è stata poiimplementata una strategia di 
ontrollo ottimo basata sulla retroazione dell'intero statodel sistema. Tuttavia, non essendo possibile inserire il drag nel funzionale del 
ontrolloottimo, in quanto questo permette la sola de�nizione di norme quadrati
he, l'obiettivodi ridurre l'attrito a parete è stato inseguito indirettamente attraverso la de�nizione dinorme dello stato basate su grandezze signi�
ative dal punto di vista della �si
a dellaturbolenza. L'utilizzo di dette norme, 
ombinate 
on s
elte opportune degli ulteriorigradi di libertà 
he tale s
hema di 
ontrollo 
onsente, ha portato alla progettazione didiversi 
ontrollori. I problemi numeri
i dovute al 
attivo 
ondizionamento delle matri
idi stato nell'equazione di Ri

ati del 
ontrollo ottimo sono stati superati utilizzandoalgoritmi ad ho
 basati su fattorizazione e su

essiva risoluzione iterativa. I 
ontrollori
osì ottenuti sono stati poi appli
ati al 
ontrollo di un �usso turbolento per un paio dinumeri di Reynolds largamente studiati in letteratura. Uno dei risultati pià e
latantiè stata la 
ompleta rilaminarizzazione di un �usso turbolento ad un basso numerodi Reynolds, usando un 
ontrollore 
on guadagni tempo-invarianti, an
he modellandol'eventuale saturazione dell'attuatore.Poi, al �ne di ottenere un 
ontrollo maggiormente votato all'implementazione prati-
a, è stato proposta una logi
a di 
ontrollo basata sulla retroazione ottima della misura.Il 
onfronto tra le norme delle funzioni di trasferimento tra disturbo in ingresso e statodel sistema 
ontrollato 
on retroazione della misura e quelle del sistema 
ontrollato 
onretroazione dello stato ha portato alla 
onstatazione dell'esigenza di ri
ostruire lo statoattraverso un osservatore.Il punto di arrivo è stato quindi la de�nizione di una logi
a di 
ontrollo basatasulla de�nizione di un 
ompensatore ottenuto attraverso l'a

oppiamento di 
ontrolloreed osservatore ottimo per la retroazione delle misure disponibili a parete. Per farequesto, è stata sviluppata una logi
a di 
ontrollo nel dominio delle frequenze, detta
ontrollo alla Wiener-Hopf, 
on 
ui è stato possibile progettare in un solo passo sia il
ontrollore 
he l'osservatore. Questo ha 
omportato un notevole risparmio di tempo,in quanto la risoluzione delle due equazioni di Ri

ati per 
ontrollore ed osservatorenel dominio del tempo è stata sostituita dalla risoluzione di un sistema lineare la 
uimatri
e ha una struttura di Toeplitz, se una sola misura è 
onsiderata per la retroazione,mentre ha una struttura di Toeplitz a blo

hi se più misure vengono retroazionate.Sfruttando le simmetrie interne a queste matri
i, è stato sviluppato un algoritmo perottenerne la fattorizzazione in un tempo 
he s
ala 
ol quadrato delle dimensioni dellematri
i. Questo ha rappresentato un notevole miglioramento dal punto di vista del
osto 
omputazionale, in quanto utilizzare le 
onsuete te
ni
he di fattorizzazione 
hes
alano 
ol 
ubo delle dimensioni delle matri
i, avrebbe allungato notevolmente lafase di progettazione del 
ompensatore. I 
ompensatori 
osì ottenuti sono stati poiimplementati in simulazioni DNS 
onsiderando diversi parametri di 
ontrollo e diversilivelli di rumore sulle misure al �ne di indagare gli e�etti sulla riduzione dell'attrito



viia parete. I risultati hanno evidenziato 
he quando viene utilizzato un osservatore distato si ha una signi�
ativa riduzione delle prestazioni, le quali rimangono pur semprepositive. Inoltre, l'utilizzo di misure multiple si è dimostrato avere e�etti bene�
i sullarobustezza della stima rispetto al rumore sulla misura.In�ne sono stati 
onsiderati possibili sviluppi futuri, quali l'adozione di uno stima-tore non lineare in grado di superare i limite dell'osservatore lineare o la stima dellarisposta non lineare del sistema, la quale può poi essere utilizzata all'interno dellateoria del 
ontrollo Wiener-Hopf per progettare un 
ompensatore ottimo per il reale
omportamento del �uido piuttosto 
he per la sua approssimazione lineare.
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Prefa
eThe present thesis addresses the engineering problem of redu
ing the drag in a turbulent
hannel �ow using blowing/su
tion a
tuators and sensors at walls. This resear
h �eldis a very a
tive and re
ent one, moreover it must fa
e the di�
ulty of being at the veryinterse
tion of two widely studied dis
iplines, su
h as theory of turbulen
e and system
ontrol. This work is meant to develop a feedba
k 
ontrol law to be applied in a likelyenvironment by 
onsidering a multidis
iplinary point of view providing for both theseapproa
hes.The work is organized as follows. Chapter 1 introdu
es the reader to turbulen
etheory, by des
ribing many general aspe
ts and the most widely a

epted arguments
on
erning it. In parti
ular, the key 
on
epts of 
oherent stru
tures and near-wall 
y
lewill be outlined.Chapter 2 o�ers an overview of the main approa
hes to �ow 
ontrol for drag re-du
tion, 
onsidering both numeri
al simulations and experimental tests, with a briefdes
ription of the state-of-the-Art sensors and a
tuators already in use.Chapter 3 presents the DNS 
ode used for the numeri
al simulations of the presentwork, then it des
ribes how to obtain a linear model of the 
hannel �ow starting fromNavier-Stokes equations. Di�erent te
hniques, namely �nite di�eren
es and spe
tralderivatives, have been developed to dis
retize the di�erential equations of the linearsystem.Chapter 4 is devoted to the formulation of an optimal state feedba
k 
ontrol. Then,the e�e
t of 
ontrol parameters on drag redu
tion is investigated for di�erent Reynoldsnumbers, in order to �nd the 
on�guration yielding the best performan
es.Chapter 5 proposes an optimal output feedba
k 
ontrol based on the developmentof an algorithm for the solution of the nonlinear equation arising from optimal 
ontrolformulation when only wall-measurements are available for feedba
k. Performan
esare 
ompared to those of state feedba
k relying on some norms of disturban
e-to-statetransfer fun
tions.Chapter 6 develops an alternative approa
h based on state estimation from wall-measurements. The dual problem of 
ontroller and observer design is formulated asa single optimal 
ontrol problem in frequen
y domain, aiming at developing a 
om-pensator for the feedba
k of multiple wall-measures. The e�e
t of di�erent 
ontrolparameters is investigated through DNS in order to evaluate a
tual drag and net dragredu
tion.Finally, Chapter 7 summarizes and dis
usses the main a
hievements of the presentwork and outlines possible future developments. Milan, September 2010Daniele Cavaglieri
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Chapter 1Fundamentals of Turbulen
eTurbulen
e is the last great unsolved problem of 
lassi
al physi
s. By the way, one ofthe greatest modern physi
ists, Ri
hard Feynman, used to tell this fable in order to
larify this 
on
ept. �As he laid dying, the modern physi
ist asked God two questions:Why relativity and why turbulen
e? I really think - said the famed physi
ist, - He mayhave an answer to the �rst question� [19℄. As a matter of fa
t, no one knows how tosolve the well-posed set of partial di�erential equations that govern turbulent �ows.Averaging those highly nonlinear equations to obtain statisti
al quantities always leadsto more unknowns than equations, and an ad ho
 modeling is ne
essary to 
lose theproblem. The struggle to get a full understanding has been long and around withlots of sweat, few vi
tories and mu
h frustration [20℄. This 
hapter is meant to guidethe reader to a deep understanding of this evolving panorama, by dis
ussing the mostwidely a

epted 
on
epts in turbulen
e theory and introdu
ing some of the main issuesthat nowadays are still obje
t of fervent resear
h.Until few de
ades ago, the most a

epted view was that turbulen
e is essentially asto
hasti
 pro
ess having randomly �u
tuating velo
ity �eld superimposed on a well-de�ned mean referen
e �ow. In this view, �u
tuations are 
ompletely random in thesense that there is zero probability for any �ow variable of having a parti
ular value,and there is zero energy in any one parti
ular frequen
y or wavenumber. Now 
ommonopinion has signi�
antly 
hanged, as it has been re
ognized that the behavior of allturbulent shear �ows are dominated by quasi-periodi
 large-s
ale vortex motions. Inorder to give an index or rate of turbulen
e, we use to asso
iate to the �uid dynami
ssystem we are 
onsidering a dimensionless number Re, 
alled Reynolds number, whi
his de�ned as follows:
Re =

ρUL

µ
=

V L

ν
(1.1)where ρ is the density of the �uid, µ the dynami
 vis
osity and ν = µ/ρ the kinemati
vis
osity. U and L are the velo
ity and length s
ales of the �uid dynami
s problemand they represent the typi
al dimensions at whi
h signi�
ant dynami
al phenomenahappen in the system. This dimensionless number gives a measure of the ratio of3



4 Chapter 1. Fundamentals of Turbulen
einertial for
es ρU2L2 to vis
ous for
es µU2L and 
onsequently quanti�es their relativeimportan
e for given �ow 
onditions. Furthermore, Reynolds number plays a key role indes
ribing the velo
ity �eld of a �ow. As a matter of fa
t, if two �uid dynami
s systemshave the same Reynolds number, then their s
aled velo
ity �elds are also the same.Reynolds number also 
hara
terizes di�erent �ow regimes: at low Reynolds numbersvis
ous for
es are dominant and the �ow assumes a smooth, 
onstant motion. In this
ase, the �ow is said to be in a laminar regime, while at high Reynolds numbers the�uid is dominated by inertial for
es, determining 
haoti
 motion. When this happens,the �ow is said to be in a turbulent regime. Furthermore, at intermediate values of Re,the �ow may show a laminar 
ondition but it 
an easily shift to a turbulent state withthe introdu
tion of small disturban
es into the system. This last s
enario representsthe transition regime. As for turbulent regime, a 
onstant energy supply is needed forthis pro
ess to be sustained and this energy is extra
ted from the mean �ow into thelargest, most energeti
 eddies that 
ompose the �ow. Afterwards, energy is transferredinto smaller and smaller s
ales until it is dissipated by vis
ous a
tion in the smallests
ales of the �ow, 
alled Kolmogorov mi
ro-s
ales, in the name of the s
ientist who�rst postulated their existen
e on the basis of physi
al argumentations. In wall �ows,the phenomenon of dissipation through this energy 
as
ade pro
ess takes pla
e in thevery neighborhood of the wall. We 
all this region boundary layer. Furthermore, thethi
kness δ of this layer provides a good measure of the largest eddies in the �ow, whilethe smallest s
ale is 
alled the vis
ous wall unit, whi
h is of the order of Kolmogorovlength s
ale. Sin
e in the near-wall region vis
ous for
es dominate over inertia, the shearstresses τ of the �uid are mainly represented by their vis
ous 
omponent. Furthermore,sin
e no-slip boundary 
ondition imposes null velo
ity at wall, the inertial stresses, also
alled Reynolds stresses, are zero and wall shear stresses are determined as
τw = ρν

∂Ū

∂y

∣∣∣∣
w

−XXXXρu v|w = ρν
∂Ū

∂y

∣∣∣∣
w

(1.2)where Ū is the mean streamwise velo
ity, u and v are streamwise and spanwise �u
tua-tions of velo
ity, respe
tively, and y denotes the wall-normal dire
tion. The observationthat vis
ous stresses dominate the wall region allows to 
hoose a proper vis
ous time-s
ale tν by taking
tν =

(
∂Ū

∂y

∣∣∣∣
w

)−1 (1.3)The vis
ous time-s
ale is then easily derived from dimensional analysis
lν =

√
ν tν =

√√√√
ν

∂Ū
∂y

∣∣∣
w

(1.4)



5The wall velo
ity s
ale follows dire
tly from Equations (1.3) and (1.4)
uτ =

lν
tν

=

√
ν
∂Ū

∂y

∣∣∣∣
w

=

√
τw
ρ

(1.5)So, near-wall �ow 
an be represented using dimensionless wall units, obtained afters
aling �ow variables with the vis
ous s
ales, whi
h are usually indi
ated with super-s
ript +. Hen
e, the nondimensional distan
e from wall is y+ = y/lν = y uτ/ν. Then,depending on y+, di�erent regions, or layers, are de�ned in the near-wall �ow. Wede�ne the vis
ous wall region as the region for 0 < y+ < 50, while the region y+ > 50is 
alled the outer layer. Furthermore, within the vis
ous wall region, we de�ne the vis-
ous subregion as the region for y+ < 5, in whi
h Reynolds shear stresses are negligiblewith respe
t to vis
ous stresses. Finally, the transition region between the vis
osity-dominated and the inertia-dominated part of the �ow, i.e. for 5 < y+ < 30, is 
alledthe bu�er layer.Starting from this well a

epted framework, �uid dynami
ists have long soughtto understand how boundary-layer turbulen
e is generated and dissipated. Sin
eboundary-layer �ows are the te
hni
al driver for so many engineering appli
ations,lots of �nan
ial and human resour
es have been brought to bear on the problem overmany de
ades of study. The progress made, however, has not been 
ommensuratedwith the e�ort expanded, re�e
ting the intrinsi
 
omplexity of turbulen
e phenomenaand the di�
ulty that must be fa
ed when trying to reprodu
e turbulent pre
esses ina 
ontrolled framework. For this reason, most of turbulen
e knowledge has resultedfrom investigation at low Reynolds numbers, where e�e
tive �ow visualizations andDire
t Numeri
al Simulations (DNS) are possible. In this 
ontext, it has been madepossible the identi�
ation of 
oherent motions. Histori
ally, fundamental studies 
anbe found in [71℄ and [66℄ and nowadays, even if with some 
ontroversy, they are quiteuniversally 
onsidered as referen
e works. Despite this, no generally a

epted de�ni-tion of what is meant by 
oherent motion has arisen. A
tually, in physi
s 
oheren
estands for a well-de�ned phase relationship. As for turbulen
e, if we a

ept Robinson'sde�nition �a 
oherent motion is a three dimensional region of the �ow over whi
h atleast one fundamental �ow variable exhibits signi�
ant 
orrelation with itself or withanother variable over a range of spa
e and/or time that is signi�
antly larger than thesmallest lo
al s
ales of the �ow� [64℄. The major motivations for investigating 
oherentmotions in turbulent boundary layers are:
• to aid predi
tive modeling of the gross statisti
s of turbulent �ows
• to understand the dynami
al pro
esses responsible for statisti
al properties inorder to predi
t them through an appropriate modeling
• to guide alteration and 
ontrol of turbulen
e.The third reason, in parti
ular, 
on
erns the main issues addressed in the presentwork. As for the referen
e framework for 
oherent stru
tures analysis, is is usual to
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e
onsider a �at-plate, smooth-wall boundary layer with a two-dimensional mean �ow,without pressure gradient, wall heating, for
e �elds or 
ompressibility e�e
ts. In su
henvironment, the turbulen
e produ
tion pro
ess is dominated by three kinds of quasi-periodi
 eddies: the large outer stru
tures, the intermediate Fal
o eddies and near-walleddies. As for large outer stru
tures, they appear as large three dimensional bulgesthat s
ale with the layer thi
kness δ and extend a
ross the entire boundary layer, asdepi
ted in Figure 1.1. These eddies 
ontrol the dynami
s of the boundary layer in theouter region and appear quasi-periodi
ally in spa
e and time. Fal
o eddies representanother typology of highly 
oherent stru
tures, whi
h are 
hara
terized by having athree-dimensional extension. They usually appear in wakes, jets and boundary layers atan intermediate s
ale of 100 wall units and play a key role in the intera
tion betweenlarge outer stru
tures and near-wall events. In order to highlight these stru
tures,smoke has been used as in Figure 1.2 to �ll the near-wall region of a boundary layer.What appear are roughly 
ir
ular regions devoid of marked �uid, that have been 
alledpo
kets.The third kind of eddies takes pla
e in the wall region, where the most part of theturbulent produ
tion in the entire boundary layer o

urs during intermittent, violentoutward eje
tions of low-speed �uid and during inrushes of high-speed �uid at a shal-low angle toward the wall. This intermittent quasi-
y
li
 sequen
e of intense organizedmotions have been 
olle
tively termed the bursting phenomenon. This pro
ess, whi
his s
hemati
ally outlined in Figure 1.4, begins with elongated 
ounter-rotating stream-wise vorti
es, whi
h indu
e low- and high-speed streaks between them, as illustratedin Figure 1.5. Then, low-speed regions (Figure 1.3) grow downstream, lift up and de-velop instantaneous in�e
tional pro�les. At approximately the same time, the interfa
ebetween low- and high-speed �uid begins to os
illate. Hen
e, the low-speed region liftsup away from the wall as the os
illation amplitude in
reases and then the �ow rapidlybreaks up into a 
ompletely 
haoti
 motion. Virtually all of the net produ
tion of tur-bulent kineti
 energy in the near-wall region o

urs during these bursts. This phase isfollowed by a large-s
ale motion of upstream �uid that emanates from the outer regionand sweeps the wall region of the previously eje
ted �ow. This sweep event seems tohave a stabilizing e�e
t on the bursting site, sin
e it prepares the wall region for a new
y
le, thus determining a self-sustaining regime. The relationship between 
oherentstru
tures in the outer region and near-wall 
y
le is still not 
ompletely understoodeven if strong eviden
e of this intera
tion has been provided in re
ent works, su
h as[29℄ and [54℄.
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Figure 1.1: Side view of a low-Reynolds-number turbulent boundary layer from [22℄.

Figure 1.2: Top view of a low-Reynolds number turbulent boundary layer from [18℄.
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e

Figure 1.3: Top view of a low-Reynolds-number turbulent boundary layer from [22℄.

Figure 1.4: Sequential events arising during the bursting pro
ess. Arrows with questionmark indi
ate relationships that are still obje
t of debate.
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Figure 1.5: Physi
al model of near-wall turbulent 
oherent stru
ture generation.





Chapter 2Flow ControlThe possibility of manipulating a �ow �eld in order to obtain a desired obje
tive is ofimmense te
hnologi
al importan
e and this surely a

ounts for the subje
t being morehotly pursued by s
ientists and engineers than any other topi
 in �uid me
hani
s.It is su�
ient to think that the potential bene�ts arising from the implementation ofe�
ient �ow-
ontrol systems range from saving billion of dollars in annual fuel 
osts forland, air and sea vehi
les to a
hieving more 
ompetitive industrial pro
esses involving�uid �ows. A

ording to a re
ent study by Airbus [67℄, turbulen
e 
ontrol 
ould redu
ethe drag of a 
ivil air
raft up to 15%, as shown in Figure 2.1, resulting in more than 15billion dollars saving per year for shipping industry. In this 
ontext, �ow manipulationmay play a key role in meeting several goals, su
h as redu
ing the drag, as previouslymentioned, or enhan
ing the lift, augmenting the mixing of mass, momentum or energy,suppressing the �ow-indu
ed noise or a 
ombination thereof. To a
hieve these results,transition from laminar to turbulent �ow may have to be either delayed or advan
ed,�ow separation may have to be either prevented or provoked, and �nally turbulen
elevels may have to be either suppressed or enhan
ed. All these engineering goals andtheir 
onne
tion with �ow modi�
ations are s
hemati
ally outlined in Figure 2.2. It isto remark that none of these targets is parti
ularly di�
ult if taken alone, but the aimis to a
hieve the desired obje
tive adopting simple devi
es, inexpensive to build as wellas to operate, so that the expense for �ow manipulation would result in a signi�
ant netpositive saving. Unfortunately, all these goals are not ne
essarily mutually ex
lusive,as depi
ted in Figure 2.3, and potential 
on�i
ts usually arise as one tries to a
hievea parti
ular 
ontrol goal only to a�e
t adversely another goal. Thus, an ideal methodthat is simple, inexpensive to build and operate, and that does not have any trade-o�sdoes not exist and the skilled engineer has often to make 
ompromises.In order to give an exhaustive overview of �ow 
ontrol methods, we have to remarkthat many di�erent 
lassi�
ations are possible. One of these is to 
onsider whetherthe te
hnique is applied at the wall or away from it. In the former 
ase, the �ow maybe altered by modifying in�uent surfa
e parameters, like 
urvature, rigid-wall motion,
omplian
e, temperature and porosity. Even heating and 
ooling of the surfa
e 
an11
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Figure 2.1: Drag break-down of a 
ivil air
raft and potential drag redu
tion.

Figure 2.2: Flow modi�
ations and engineering goals.in�uen
e the �ow through the resulting density gradients. Mass transfer is possible viasu
tion/inje
tion through a porous wall. Di�erent additives, su
h as polymers, sur-fa
tants, mi
ro bubbles, droplets, parti
les 
an also be inje
ted through the surfa
e inwater wall-bounded �ows. As for the latter 
ase, 
ontrol devi
es lo
ated away from thesurfa
e 
an also be bene�
ial. Large-eddy breakup devi
es (LEBU), a
ousti
 waves,magneto- and ele
trohydrodynami
al body for
es are examples of �ow 
ontrol strate-gies applied away from the wall.Another s
heme for 
lassifying �ow 
ontrol methods 
onsiders energy expenditure andthe 
ontrol loop involved. A 
ontrol devi
e 
an be passive, thus requiring no auxil-iary power and no 
ontrol loop, or a
tive, hen
e requiring some energy expenditure,as shown in Figure 2.4. Moreover, a
tive 
ontrol requires a 
ontrol loop and is furtherdivided into predetermined or rea
tive. Predetermined 
ontrol in
ludes the appli
ationof steady or unsteady energy without regard to the parti
ular state of the �ow. In this
ase, the 
ontrol loop is open and no sensors are required. Rea
tive 
ontrol, instead, is
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Figure 2.3: Intera
tion between �ow-
ontrol goals.

Figure 2.4: Classi�
ation of �ow 
ontrol strategies.
a spe
ial 
lass of a
tive 
ontrol where the 
ontrol input is 
ontinuously adjusted basedon measurements of some kind. In rea
tive feedforward 
ontrol, the measured variableand the 
ontrolled variable di�er, while rea
tive feedba
k 
ontrol ne
essitates the 
on-trolled variable to be measured, fed ba
k and 
ompared with a referen
e input. In thefollowing, a brief review of the state-of-the-Art 
ontrol strategies is given a

ording tothe approa
h adopted and after that, an introdu
tory dis
ussion will des
ribe the mostup-to-date sensors and a
tuators whi
h have been used in experimental tests regarding�ow 
ontrol.



14 Chapter 2. Flow Control2.1 Passive 
ontrol2.1.1 Compliant 
oatingsAmong passive te
hniques for boundary layer manipulation, 
ompliant 
oatings surelyrepresent the most simple solution sin
e it does not require slots, du
ts or internalequipment of any kind. Aside from redu
ing drag, other reasons for the strong interestin studying 
ompliant 
oatings are their many other useful appli
ations, for example assound-absorbent materials in noisy �ow-
arrying du
ts in aero-engines and as �exiblesurfa
es to 
oat naval vessels for the purpose of shielding their sonar arrays from thesound generated by the boundary-layer pressure �u
tuations.The idea of adopting 
ompliant 
oatings for drag redu
tion 
ame out from studyingdolphins' surprising swimming skill. As a matter of fa
t, bottlenose dolphins have been
lo
ked swimming at speed ex
eeding 10m/s for periods of over 7 s, but assuming thatthe power output of 
eta
eans is equal to that of other mammals (≈ 35W/kg of bodyweight), then su
h speeds are rea
hed under turbulent �ow 
onditions only if dolphins
an expend several times more power than their mus
les 
an generate. More spe
if-i
ally, it 
an be demonstrated, on the basis of energy 
onsiderations, that dolphins
an not ex
eed a speed of 6m/s for periods greater than 2 hours. The only possibleexplanation is that dolphins have a lower skin-fri
tion drag level than expe
ted due totheir 
omplex epidermis, whi
h a
ts as a 
ompliant 
oating optimized over ea
h por-tion for the appropriate range of lo
al Reynolds number. However, repli
ating Nature'sperfe
tion has represented an arduous task and only after many de
ades of 
ontradi
-tory results, this te
hnique has been proved to a
hieve some results in delaying �owtransition from laminar to turbulent 
ondition 
aused by Tollmien-S
hli
hting insta-bility (TSI). For an exhaustive des
ription of this phenomenon the interested reader isreferred to [65℄.The me
hanism through whi
h 
ompliant 
oatings work is stri
tly related to thehydroelasti
al 
oupling of �uid and solid whi
h 
auses an irreversible energy transferfrom the former to the latter. However, for longtime it has been deemed impra
ti
alto 
learly demonstrate its e�e
tiveness and the �rst signi�
ant results appeared for the�rst time in Lee's wind-tunnel experiments [43℄. The 
oating used for the tests wasmade by a mixing 91% by weight of 100mm2/s sili
on oil with 9% of sili
one elastomer.Results showed that, as 
ompared to the rigid wall, the single layer, isotropi
, vis
o-elasti
 
ompliant 
oating signi�
antly suppressed the root-mean-square (rms) ampli-tude of the arti�
ially generated Tollmien-S
hli
hting waves a
ross the entire boundarylayer for a range of Reynolds numbers (Figure 2.5).2.1.2 Introdu
tion of additivesTurbulent skin-fri
tion drag 
an be redu
ed by the addi
tion of several substan
es,su
h as long-
hain mole
ules and mi
robubbles in liquid �ows. The addition of thesesubstan
es leads to a suppression of the Reynolds stress produ
tion in the bu�er zone.
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Figure 2.5: Comparison of distribution of rms amplitude of the TSI of rigid surfa
e (whitesquares) and 
ompliant surfa
e (bla
k squares) a
ross boundary layer. (a) Re = 1274, (b)
Re = 1105, (
) Re = 1225, (d) Re = 1350.Thus, the turbulent mixing is inhibited and a 
onsequent redu
tion in the vis
ous wallshear stress is a
hieved. Among the possible te
hniques for drag redu
tion, solutionsof mi
romole
ules is perhaps the more mature te
hnology. By the way, it has beenproved that the addition of less than 100 parts per million of polymethyl metha
rylateto a turbulent pipe �ow of mono
hlorobenzene 
an lead to a skin-fri
tion redu
tion upto 80% in both external and internal �ows, even if its appli
ation 
an be very 
ost-e�e
tive: oil 
ompanies, for example, appear to have 
on
luded that the use of polymersfor supertankers is just at the break-even point, e
onomi
ally speaking. A

ording toLumley [50℄ - [51℄, the onset of drag redu
tion is asso
iated with the expansion outsidethe vis
ous sublayer of polymer mole
ules, whi
h at rest are in the form of spheri
alrandom 
oils. This pro
ess 
auses an in
rease in e�e
tive vis
osity whi
h damps onlythe small dissipative eddies, resulting in redu
ed momentum transport, hen
e redu
eddrag.2.1.3 Large-eddy breakup devi
esLarge-eddy breakup devi
es (LEBUs) are designed to alter or break up the large vorti
esfrom the outer edge of a turbulent boundary layer. A typi
al arrangement 
onsists ofone or more splitter plates pla
ed in tandem in the outer part of a turbulent boundarylayer, as illustrated in Figure 2.6. Unfortunately, there is little theoreti
al basis forhow these geometri
al modi�
ations a�e
t the skin-fri
tion and most of the presentknowledge 
omes from experimental eviden
e. Anyway, tests have shown that it is veryeasy to substantially redu
e the skin-fri
tion, while the most di�
ult task is to ensurethat the devi
e's own skin-fri
tion and pressure drag do not ex
eed the saving. Amongthe results a
hieved, a noteworthy net drag redu
tion of 20% has been obtained, thus
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Figure 2.6: Standard arrangement of a LEBUs array.

Figure 2.7: Longitudinal ribbed surfa
es.leading LEBUs to be 
onsidered one of the most performing solution for drag redu
tion.2.1.4 RibletsAnother interesting geometri
al modi�
ation is represented by riblets, whi
h are wallgrooves aligned with the freestream. Small longitudinal striations in the surfa
e in-tera
ting favorably with the near-wall stru
tures in a turbulent boundary layer 
anprodu
e a modest drag redu
tion in spite of the in
rease in wet surfa
e area. A netdrag redu
tion of 8% is obtained using V-groove geometry with sharp peak and eithersharp or rounded valley (Figure 2.7). Moreover, optimum height and spa
ing of thesymmetri
 grooves have been found to be about 15 ν/uτ . Curiously, the fastest sharkshave a surfa
e 
overing of dermal denti
les with �ow-aligned keels having the sameoptimal riblet spa
ing (Figure 2.8). Riblets work by restraining the movement of thenear-wall longitudinal vorti
es and therefore maintain their 
oheren
e. The stabilized

Figure 2.8: Detail of shark skin.
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oherent stru
tures present a barrier to the usual 
as
ade from large to small s
alesand hen
e impede the rate of energy loss with a resulting drag redu
tion despite thein
reased surfa
e area.2.2 A
tive 
ontrol2.2.1 Predetermined 
ontrolPredetermined 
ontrol mainly involves introdu
ing waves into the �ow through a
tu-ations or wall movements. Among the former solutions, an interesting one is thatproposed in [55℄, where blowing/su
tion a
tuation was employed to form a streamwise-traveling wave of wall-normal velo
ity vw, i.e.
vw(x, t) = A sin(αx− ωt) (2.1)where t is time, x the streamwise 
oordinate, A the amplitude of the os
illation, ω =

2π/T the frequen
y of os
illation and α = 2π/λx the streamwise wavenumber where
λx is the wavelength. Another solution is the one reported in [16℄ and [17℄ where thefollowing spanwise-oriented volume for
ing was investigated:

fz(z, t) = Fe−y/∆ sin(βz − ωt) (2.2)where z is the spanwise 
oordinate, ∆ the distan
e up to whi
h the for
ing di�usesfrom the wall and β is the spanwise number. Approximately 30% drag redu
tion wasa
hieved in a turbulent 
hannel �ow at Re = 3500.As for the latter solutions, an interesting way of redu
ing drag is to adopt os
il-lating walls moving sinusoidally in spanwise dire
tion with period T , a

ording to thefollowing law
ww(t) = A sin(ωt) (2.3)where ww denotes spanwise velo
ity 
omponent at wall, while the other quantities arethe same as before. In [63℄ this 
ontrol law has been studied, through parametri
investigation over Dire
t Numeri
al Simulations of turbulent 
hannel �ow, 
on
ludingthat an optimal frequen
y ωopt for drag redu
tion exists and su
h a redu
tion 
an beas high as 34% if the wave amplitude is 
omparable with the �ow 
enterline velo
ity.Furthermore, in [61℄ this te
hnique has been extended for the �rst time in literature to
onsider also streamwise-traveling waves of spanwise wall velo
ity, leading the motionlaw to a

ount also for spatial displa
ement, i.e.

ww(x, t) = A sin(αx − ωt) (2.4)With this motion law, whi
h is graphi
ally represented in Figure 2.9, waves move instreamwise dire
tion with a phase speed c = ω/α. This wall motion law has then been
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Figure 2.9: S
hemati
 representation of the turbulent 
hannel �ow simulated throughDNS.tested through parametri
 DNS for an array of frequen
ies ω and wavenumbers α inorder to �nd the optimum set (ωopt, αopt) a
hieving the maximum drag and net dragredu
tion. Results reported in Figure 2.10 show that, o� the axes, the perturbed �owreveals an unexpe
tedly ri
h behavior. In parti
ular, we 
an noti
e a red region ofhigh drag redu
tion with a peak value of 48% and a 
one-shaped blue region of dragin
rease for 0.35 ≤ c ≤ 0.6, showing a peak value of 23% for a phase speed c = 0.5.Net power saving 
an then be 
omputed by 
onsidering the power saved from dragredu
tion and subtra
ting the power spent to apply the 
ontrol a
tion. Results inFigure 2.11 show that the region of maximum net saving nearly 
oin
ides with theregion of maximum drag redu
tion (DR) and net power saving is positive mainly forslow forward traveling waves, i.e. 0 ≤ c ≤ 0.2. Besides, a peak value of 18% net savingis a
hieved for (ω, α) ≈ (0.15, 1).Although the details of the me
hanism through whi
h su
h waves a
hieve signi�
antdrag redu
tion are still obje
t of further investigation, a deeper view of the phenomenonhas been given in [60℄, where it has been assumed that streamwise-traveling wavesoperate by 
reating a transversal boundary layer in the near-wall region of the 
hannel�ow. When the waves move at a speed 
omparable with the 
onve
tion velo
ity, alo
k-in e�e
t renders the instantaneous turbulent �ow highly three-dimensional, thusprovoking drag in
rease. Instead, when the phase speed is su�
iently di�erent fromthe near-wall turbulent 
onve
tion velo
ity, then the indu
ed spanwise boundary layer
an be viewed as a generalized Stoke layer, whose thi
kness has been proved to linearly
orrelate to drag redu
tion till DR = 35%. Beyond this value, waves are os
illating ona time s
ale larger than the typi
al lifetime of the near-wall turbulen
e, thus de
reasingthe e�e
t of drag redu
tion.
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Figure 2.10: Maps of drag redu
tion DR in the ω−α plane for A = 0.5 and Re = 4760.Solid lines denote positive DR, while dashed lines indi
ate negative DR.

Figure 2.11: Maps of net power saving in the ω − α plane for A = 0.5 and Re = 4760.Solid lines denote positive balan
e, while dashed lines indi
ate negative net drag redu
tion.
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ontrolThe most popular feedforward strategy for 
ontrolling turbulent 
hannel �ows is theopposition 
ontrol strategy �rstly presented in [12℄. With this approa
h, a dete
tionplane for one of the velo
ity 
omponent is introdu
ed in the �ow at a distan
e of
y+ ≈ 10. The dete
ted velo
ity is then applied phased shifted by −π as a boundary
ondition at walls. With this method, dire
t numeri
al simulations have showed a dragredu
tion of around 20% using wall-normal vorti
ity and 30% using spanwise velo
ity.Another meaningful attempt to introdu
e feedforward 
ontrol, using this time a
ontrol law based on an analyti
al model, is the one proposed in [5℄, whi
h 
on
erns theappli
ation of a re
eding-horizon model-predi
tive 
ontrol to redu
e drag in a turbulent
hannel �ow. With this strategy, the evolution of the system is 
onsidered over a �niteinterval and 
ontrol inputs are optimized over this �nite interval using an iterativegradient-based strategy. On
e optimized, 
ontrol inputs are applied to the evolving�ow system, then the pro
edure is repeated on the following time interval. It has beenmade possible thereby to fully relaminarize a turbulent 
hannel �ow at a low Reynoldsnumber, indi
atively Re = 1500.2.2.3 Feedba
k 
ontrolFeedba
k 
ontrol is the bran
h of rea
tive 
ontrol that has re
eived the greatest at-tention due to its solid theoreti
al ba
kground. In this 
ontext, the standard s
enario
onsiders 
hannel �ow with skin fri
tion and pressure sensors at walls to provide sys-tem measurements, while zero-net-mass-�ux blowing/su
tion MEMS a
tuators 
ontin-uously distributed over the walls are used to manipulate the �ow inner stru
ture.One of the �rst approa
hes of this kind, before the introdu
tion of linear systemstheory to �ow 
ontrol, has been presented in [41℄, where a neural network has beenimplemented in order to adaptively �nd a feedba
k law for the lo
al wall shear stress,a
hieving about 20% drag redu
tion. A linear feedba
k based on 
lassi
al 
ontrol theoryhas then appeared in [31℄, in whi
h it was used to stabilize a turbulent wall �ow in a two-dimensional 
hannel using blowing/su
tion at walls 
oordinated with measurements ofwall shear stresses. Afterwards, modern 
ontrol theory has been introdu
ed in [38℄,followed by the extension of the previously developed two dimensional 
ontroller toa three-dimensional one, whi
h has been 
arried out by the same group work in [42℄,where an ad ho
 s
heme was augmented in the third dire
tion. An exhaustive dis
ussionon the appli
ation of linear quadrati
 feedba
k 
ontrol to three-dimensional 
hannel�ows has appeared for the �rst time in [7℄. This strong theoreti
al framework has thenre
eived further re�nements in [3℄ and has been applied in [25℄ for delaying laminar-to-turbulent transition in 
hannel �ows for a 
ouple of Reynolds numbers, namely
Re = 2000 and 3000. Finally, in a re
ent work [52℄, LQR 
ontrol has been tested toa
hieve net drag redu
tion for higher Reynolds numbers. Results showed that morethan 20% net power saving is possible at Re = 1500 and 3500 and up to 15% at
Re = 6500, as outlined in Figure 2.12.
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Figure 2.12: Performan
e of LQR 
ontrol at di�erent Reynolds numbers. △ = Turbulentkineti
 energy, ◦ = Drag redu
tion, � = Net power saving.2.3 Sensors and a
tuators for �ow 
ontrol2.3.1 SensorsUnlike most of 
ommon 
ontrol devi
es, sensors for feedba
k 
ontrol of turbulen
emust meet very hard requirements. First of all, they must have a physi
al size andresponse time small enough 
ompared with the spatial and temporal s
ales of turbulentstru
tures. Experiments 
ondu
ted in laboratory suggested that the appropriate sizeof shear stress/wall pressure sensors should be less than 30 − 40 vis
ous units [35℄.Afterwards, in order to dete
t the near-wall stru
tures, it is ne
essary to build an arrayof sensors, rather than a single sensor, so to 
at
h even lo
al �u
tuations. Clearly,su
h spe
i�
s 
ould be met only by adopting mi
roele
tro-me
hani
al system devi
es(MEMS). Development of su
h sensors for use in �uid s
ien
e has been largely do
u-mented in literature, hen
e for a deeper knowledge of the subje
t, the interested readeris referred to [21℄.The most 
ommon MEMS 
ontrol s
heme 
onsiders an array of sensors to bemounted �ush to the wall. Thus, �u
tuating wall shear stresses in streamwise andspanwise dire
tions, τxw
and τzw , respe
tively, and wall pressure pw are used to dete
tthe �ow state near the wall. Sin
e it is known that the rms value of the wall-shear-stress �u
tuation is τw, rms ≈ 0.4τw and this ratio is quite Reynold-independent, ifwe suppose that the measurement a

ura
y required is 5% of the rms value, then thesensitivity should be at least 2% of the full s
ale of τw, whi
h is not di�
ult to a
hievewith MEMS sensors. The root-mean-square of wall-pressure �u
tuation, instead, isapproximately 3τw for Re ≈ 1000. Thus, the sensitivity of 2% of the full s
ale mustbe about 0.15τw, and owing to this larger magnitude, the pressure �u
tuation seemsbetter suited for 
ontrol.Among the great variety of MEMS sensors, the most mature devi
e for dete
ting
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Figure 2.13: Example of mi
ro hot-�lm wall-shear-stress sensor array with ba
ksideele
tri
al 
onta
t.wall shear stresses is the mi
ro-hot-�lm wall shear stress sensor, whi
h is based ona thermal prin
iple, in that it measures heat transferred from a resistively heatedelement to �owing �uid, thus indire
tly obtaining the wall shear stress. Figure 2.13shows MEMS sensor arrays with a platinum hot �lm deposited on a 1-µm-thi
k SiNxdiaphragm (400 × 250µm2), where eighteen sensors are aligned at a pit
h of 1mm inthe spanwise dire
tion.Another sensor, whi
h instead is not based on a thermal prin
iple, uses a mi
ro-�oating element for the dire
t me
hani
al measurement of shear stress. This elementis free to displa
e laterally against the restoring springs and it is �ush mounted tothe wall. The displa
ement of this element is measured with a 
apa
itive or opti
almethod. Its dimensions range from 120×120µm2 to 500×500µm2 and a �at frequen
yresponse up to 4 kHz, while its noise �oor is as low as 0.0004Pa.2.3.2 A
tuatorsAs for MEMS a
tuators, the following requirements should be met:
• small dimensions
• fast response
• low energy 
onsumption
• large �uid intera
tion
• robustness in hostile environment.Then, a
tuation for
e for �ow 
ontrol 
an be divided in three di�erent 
ategories:ele
tromagnetohydrodynami
 or ele
tri
 body for
e, on-demand jets and surfa
e for
edue to a moving �uid-solid interfa
e. Ele
tromagnetohydrodynami
 for
e has proved tobe e�e
tive for drag redu
tion in 
ondu
tive �uids as seawater [9℄. Furthermore, in [47℄
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Figure 2.14: Array of seasaw-type magneti
 a
tuators.ele
troplated Permalloy has been employed to obtain large out-of-plane displa
ementin response to an external magneti
 �eld, while in [73℄ an elongated Si �ap was usedwith a pair of polymide hinges and a permanent magnet array underneath, as shownin Figure 2.14. Unfortunately, the low e�
ien
y of body for
e in 
ase of poor ele
tri
al
ondu
tivity of the �ow still remains a problemati
 issue.For this reason, syntheti
 jets represent nowadays a preferred 
hoi
e, sin
e they
an bene�t of a broader range of appli
ations. Basi
ally, they are realized through anos
illating diaphragm in a 
avity with an ori�
e whi
h generates a zero-net-mass-�uxabove the ori�
e.2.4 Experimental testsUntil now, few attempts have been made to develop feedba
k 
ontrol systems in physi
alexperiments. As for predetermined 
ontrol, the earliest experimental ver�
ations of theos
illating-wall 
on
ept are those in [39℄ in the geometry of a boundary layer and in[14℄ and [13℄ in the 
ir
ular pipe. Several other studies, most of them mentioned in[34℄, have extended su
h results. It is to remark that all of them are low-Reynoldssetups where the wall os
illation is implemented through me
hani
al vibrating devi
esand the measurements are often obtained through a probe mounted near the movingwall. A notable ex
eption is that in [57℄, where Lorentz body for
e was employed.The same for
ing was implemented in [9℄ in order to experimentally realize spanwise-traveling wall for
ing. Finally, in [59℄ laboratory tests assessing drag-redu
ing e�e
tof streamwise traveling waves have been 
arried out in the geometry of the 
ir
ularpipe, where the naturally periodi
 spanwise dire
tion makes the implementation of
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Flow

tra
ve

lin
g w

av
e

wall velocityFigure 2.15: Graphi
al representation of the traveling-wave 
on
ept. The desired spa
e-time variation of the transverse wall velo
ity is a
hieved through independent alternatemotion of adja
ent pipe slabs.traveling waves easier. The spatio-temporal variations required to enfor
e the wavesare obtained through a time- and spa
e-varying rotational speed of the pipe wall. Whilethe harmoni
 dependen
e on time is easily implemented, the sinusoidal variation alongthe streamwise dire
tion is dis
retized by imposing di�erent rotation rates to di�erentthin longitudinal slabs of the pipe, as shown in Figure 2.15.As for rea
tive feedba
k 
ontrol, in [30℄ a 
ontrol system was set up by using piezo-ele
tri
 �ap a
tuators and hot-�lm sensor arrays lo
ated upstream and downstream ofthe a
tuators. Then, a feedforward/feedba
k 
ontrol s
heme was applied in order tosuppress low- and high-speed streaks indu
ed by vortex tubes in a laminar boundarylayer. In [62℄, a 
ontrol system was realized using two rows of three wall-mountedhot-�lm sensors with a single row of three syntheti
 jet a
tuators in between. A linearfeedba
k 
ontrol s
heme 
oupled with a Wiener �lter was employed to a
hieve a 30%redu
tion of streamwise velo
ity �u
tuations. Re
ently, in [74℄ a prototype system hasbeen developed for the feedba
k 
ontrol of a turbulent air 
hannel �ow (Figure 2.16).This devi
e is 
omposed by an arrayed mi
ro hot-�lm sensors with a spanwise sensingof 1mm for the measurement of streamwise shear-stress �u
tuations, while arrayedmagneti
 a
tuators of 2.4mm in spanwise width were used to introdu
e 
ontrol inputthrough wall deformation. The driving voltage of ea
h a
tuator is determined witha linear weighted sum of the wall shear-stress �u
tuations dete
ted by three sensorslo
ated upstream of ea
h a
tuator and a noise-tolerant geneti
 algorithm optimizes the
ontrol parameters in su
h a way that the drag redu
tion is maximized. With thisstrategy approximately 6% drag redu
tion was a
hieved.
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Figure 2.16: Feedba
k 
ontrol system with arrayed hot-�lm sensors and wall-deformationa
tuators.





Chapter 3Channel Flow ModelChannel �ow at turbulent Reynolds numbers is a framework of parti
ular interest inwhi
h developing and testing proper feedba
k 
ontrol strategy. As a matter of fa
t,the symmetry and simpli
ity o�ered by the geometry of a plane 
hannel �ow lead toe�e
tive implementation in DNS 
ode. What follows is an in-depth des
ription of the
ode used for numeri
al simulations. After that, starting from fully nonlinear Navier-Stokes equations, a linear model of the 
hannel �ow is analyti
ally derived in order toimplement an optimal 
ontrol s
heme.3.1 DNSThe simple geometry of 
hannel �ow allows to set a re
tangular 
omputational domain,as outlined in Figure 3.1: a Cartesian 
oordinate system is introdu
ed, where x, y and zdenote the streamwise, wall-normal and spanwise dire
tions, respe
tively. The velo
ity�eld is 
omposed by the streamwise, wall-normal and spanwise 
omponents u, v and wand the pressure �eld is denoted by p. We 
all Lx the dimension of the 
hannel along

Figure 3.1: S
hemati
 representation of the 
omputation domain used in DNS.27
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x dire
tion and Lz the dimension along z. A proper length s
ale one 
an adopt torepresent su
h �ow 
an be obtained from the 
hannel half-width δ. Hen
e, we de�neReynolds number as

Re =
UBδ

ν
(3.1)where UB is the referen
e bulk velo
ity, whi
h is de�ned by the integral

UB =
1

δ

∫ δ

0

Ūdy (3.2)where Ū is the average velo
ity �eld. For the sake of simpli
ity, we will always take the
hannel half-width equal to the unity. With these de�nitions, the nondimensionalizedNavier-Stokes equations for in
ompressible �ows appear as follows:




∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (3.3a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − ∂p

∂x
+

1

Re
∆u (3.3b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+

1

Re
∆v (3.3
)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+

1

Re
∆w (3.3d)where Equation (3.3a) represents 
ontinuity equation, while Equations (3.3b)-(3.3d)represent the 
onservation of momentum. The problem is 
losed by assigning an initial
ondition for the �ow �eld, no-slip boundary 
onditions at walls and periodi
 boundary
onditions on the unbounded portion of the domain. This s
heme is the starting pointin the implementation of DNS. The 
ode used in the present work is the one developedby Quadrio and Lu
hini, des
ribed in [48℄. The programming language adopted hasbeen written by Paolo Lu
hini and is 
alled CPL, with whi
h it possible to exploit C,C++ and Fortran 
ommands in the same environment.The approa
h to DNS is based on the pioneering work [37℄, whi
h has be
ome astandard te
hnique in numeri
al simulations of turbulent �ows. It 
onsists of repla
ingthe nondimensionalized Navier-Stokes for in
ompressible �ows in Cartesian 
oordinates(3.3) with two s
alar equations, one for the normal 
omponent of the velo
ity v andone for the normal 
omponent of the vorti
ity η, whi
h is de�ned as

η =
∂u

∂z
− ∂w

∂x
(3.4)The equation for wall-normal vorti
ity 
an be easily obtained by taking the y-
omponentof the 
url of (3.3
). Then, after Fourier-transforming, we get

∂η̂

∂t
=

1

Re
[D2(η̂)− k2η̂] + jβĤU − jαĤW (3.5)where Dn(.) is the n-th order derivative operator in y dire
tion and k2 = α2+β2, where
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α and β are wavenumbers in Fourier domain. As for hat sign, it will be 
onsidered here,as in the rest of the work, to indi
ate a variable in Fourier domain. After that, thenonlinear terms whi
h 
ome from Fourier-transforming the 
onve
tive part of Navier-Stokes equations are grouped together in the following de�nitions:

ĤU = jαûu+D1(ûv) + jβûw

ĤV = jαûv +D1(v̂v) + jβv̂w

ĤW = jαûw +D1(v̂w) + jβŵw

(3.6)As for the equation for wall-normal velo
ity, it is determined by summing (3.3b), de-rived two times w.r.t. x and y, and (3.3d), derived w.r.t. y and z, then subtra
ting(3.3
) derived twi
e by x and (3.3
) again derived twi
e by z. After some algebrai
manipulations, we get the following fourth-order equation:
∂

∂t
[D2(v̂)−k2v̂] =

1

Re
[D4(v̂)− 2k2D2(v̂)+k4v̂]−k2ĤV −D1(jαĤU + jβĤW ) (3.7)Sin
e the equations are written in Fourier domain, unknowns v and η are represented inthe form of trun
ated Fourier series in the homogeneous dire
tions x and z, as follows:

v(x, y, z, t) =

Nx/2∑

h=−Nx/2

Nz/2∑

l=−Nz/2

v̂hl(y, t)e
jα0hxejβ0lz (3.8)where Nx and Nz are the higher wavenumbers at whi
h the dis
rete Fourier trans-form has been trun
ated, h and l are integer variables whi
h span Fourier spa
e instreamwise and spanwise dire
tions, respe
tively, while α0 and β0 are the 
orrespond-ing fundamental wavenumbers, de�ned as α0 = 2π/Lx and β0 = 2π/Lz. We 
an easilynoti
e that Equations (3.5) and (3.7) are un
oupled if the nonlinear terms are known,e.g. by treating them expli
itly in time dis
retization. Thus, they 
an be solved sep-arately to advan
e the solution in time. However, in order to 
ompute the nonlinearterms, we need to 
ompute û and ŵ. By 
ombining the equation for vorti
ity η and
ontinuity equation in Fourier spa
e we 
an determine û and ŵ by solving the following

2× 2 algebrai
 system 



û =
1

k2
[jαD1(v̂)− jβη̂]

ŵ =
1

k2
[jβD1(v̂) + jαη̂]

(3.9)The numeri
al evaluation of velo
ity produ
ts would require 
omputationally expensive
onvolutions in wavenumber spa
e, hen
e a more e�
ient way has been proposed, basedon inverse Fourier-transforming the quantities of interest into physi
al domain, where
onvolutions are repla
ed by produ
ts, thus re-transforming into wavenumber spa
e,using Fast-Fourier-Transform (FFT) algorithms in both dire
tions. In order to preservespe
tral a

ura
y, a de-aliasing fa
tor of 3/2 is introdu
ed to expand the number of
ollo
ation points before transforming from wavenumber to physi
al spa
e.
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retizationThe following step involves time integration of Equations (3.5) and (3.7) by adoptinga semi-impli
it method, paying some attention to memory requirements. The moststability-limiting part of the equations, i.e. the vis
ous part, is advan
ed with animpli
it se
ond-order Crank-Ni
olson s
heme. This relieves the 
onstraint on the time-step size ∆t, that is solely determined by the expli
it third-order low-storage Runge-Kutta method used for advan
ing nonlinear terms, whi
h 
an thus bene�t from a higherpre
ision. After time dis
retization, Equations (3.5) and (3.7) appear as follows:
λ

δt
η̂n+1
hl − 1

Re

[
D2(η̂

n+1
hl )− k2η̂n+1

hl

]
=

=
λ

δt
η̂nhl −

1

Re

[
D2(η̂

n
hl)− k2η̂nhl

]
+

+ θ
(
jβ0lĤUhl − jα0hĤWhl

)n
+ ξ

(
jβ0lĤUhl − jα0hĤWhl

)n−1

(3.10)
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n+1
hl )− k2v̂n+1

hl
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− 1

Re
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D4(v̂

n+1
hl )− 2k2D2(v̂

n+1
hl ) + k4v̂n+1

hl

]
=

=
λ

δt

[
D2(v̂

n
hl)− k2v̂nhl

]
− 1

Re

[
D4(v̂

n
hl)− 2k2D2(v̂

n
hl) + k4v̂nhl

]
+

+ θ
[
−k2ĤV hl −D1(jα0hĤUhl + jβ0lĤWhl)

]n
+

+ θ
[
−k2ĤV hl −D1(jα0hĤUhl + jβ0lĤWhl)

]n−1

(3.11)Coe�
ients λ, θ and ξ appearing in the equations, take di�erent values a

ording tothe integration s
heme one 
an 
hoose. In order to a
hieve higher a

ura
y in thesolution, ea
h time-step ∆t is divided into three substeps δti and solved with di�erent
oe�
ients λi, θi and ξi. Hen
e, at ea
h substep the dis
rete equations are solvedby assembling the RHSs 
orresponding to the expli
it part. As previously mentioned,velo
ity produ
ts appearing in nonlinear terms are 
omputed through dire
t/inverseFFT in wall-parallel planes. Then, for ea
h wavenumber pair (α, β), we need to solvea set of two ODEs derived from the impli
it formulation of vis
ous terms. In orderto provide a dis
rete solution of the resulting ODEs, a 
ompa
t �nite di�eren
e dis-
retization has been introdu
ed for wall-normal di�erential operators, so to guaranteespe
tral a

ura
y. Su
h dis
retization produ
es two linear systems with real bandedmatri
es, whose solution gives η̂n+1
hl and v̂n+1

hl , from whi
h we 
an easily re
over theother velo
ity 
omponents ûn+1
hl and ŵn+1

hl from (3.9). Unlike the pro
edure adopted tobuild the RHS, this se
ond step pro
eeds per wall-normal lines, sin
e the simultaneousknowledge of the RHS in all y positions is required.3.1.2 Compa
t �nite di�eren
e s
hemeThe dis
retization of �rst, se
ond and fourth order wall-normal derivatives requiredfor the solution of the problem has been performed using a 
ompa
t �nite di�eren
ess
heme. This is a major di�eren
e with respe
t to [37℄, whi
h instead proposed a
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tral derivatives approa
h that provides spe
tral a

ura
y but su�ers from low par-allelization.The basi
 idea of 
ompa
t di�eren
es s
heme 
onsists of approximating the deriva-tive of a fun
tion at ea
h grid point with a linear 
ombination of the fun
tion evaluatedon a set of nodes in the neighborhood of su
h grid point. For further details, the in-terested reader is referred to the exhaustive work of Lele [44℄. As for the presentimplementation, a �ve grid points sten
il has been used to dis
retize the derivativeoperator in order to a
hieve at least fourth-order a

ura
y. So, for ea
h grid point yj ,the �ve 
oe�
ients Dj
n(i) of the n-th order 
entered derivative operator are determinedas follows:

Dn(f(y))|y=yj
=

2∑

i=−2

Dj
n(i)f(yj+i) (3.12)Usually, the main drawba
k of 
ompa
t di�eren
es s
hemes is their impli
it formulationwhi
h requires the inversion of a linear system for the approximation of every derivativeat ea
h grid point if di�erent spa
ing is applied to the mesh grid. In the present 
ase,however, it is possible to expli
itly pre-determine the 
oe�
ients. This important sim-pli�
ation has been �rstly highlighted in the original Gauss-Ja
kson-Numerov 
ompa
tformulation exploited in his seminal work by Thomas [70℄, 
on
erning the numeri
alsolution of the Orr-Sommerfeld equation. To illustrate Thomas' method let us 
onsidera fourth-order ordinary di�erential equation for a fun
tion f(y) in the form

D4(a4f) +D2(a2f) +D1(a1f) + a0f = g (3.13)where the 
oe�
ients ai(y) are arbitrary fun
tions of the independent variable y and
g(y) is the known RHS. Now suppose that a di�erential operator in frequen
y spa
e, say
D4 for example, is approximated as the ratio of two polynomials D4 and D0 whi
h haveboth a 
ounterpart in physi
al spa
e, namely d4 and d0. Hen
e, if we are able to provethat all the di�erential operators in the di�erential equation admit a representation inwhi
h the polynomial D0 at the denominator remains the same, then Equation (3.13)
an be re
ast into the equivalent form

d4(a4f) + d2(a2f) + d1(a1f) + d0(a0f) = d0(g) (3.14)A
tually, this alternative formulation is possible if in a fourth-order ODE the third-order derivative operator is not present, as in the present 
ase. So, expli
it �nite di�er-en
es s
hemes have been applied in the DNS 
ode with the same order of a

ura
y ofimpli
it 
ompa
t �nite di�eren
es operator. As for boundaries, non-standard s
hemesneeded to be designed for 
omputing derivatives at walls, so non-
entered s
hemes havebeen developed following the same approa
h adopted for interior points, thus preserv-ing by 
onstru
tion the formal a

ura
y of the method. Moreover, a mesh with variablesize has been used to dis
retize the wall-normal dire
tion, in order to keep tra
k of thein
reasingly smaller turbulent length s
ales while approa
hing 
hannel walls. In the
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Figure 3.2: Domain sli
ing s
heme for parallel 
omputation.present 
ode, the stret
hing fun
tion used to generate the mesh is
y =

tanh aȳ

a
(3.15)where a is an adjustable parameter used to modify the mesh deformation and ȳ is amesh grid with 
onstant spa
ing 
oming from lower to upper wall.3.1.3 Parallel strategyThe approa
h previously outlined grants ex
ellent parallelization performan
es, in thata 
ompa
t di�eren
e dis
retization in wall-normal dire
tion allows to distribute thevariables in wall-parallel sli
es and perform dire
t and inverse FFTs lo
ally at ea
hma
hines. Moreover, thanks to the lo
ality of 
ompa
t di�eren
e operators, the 
om-muni
ation required to 
ompute wall-normal derivatives of velo
ity produ
ts is fairlysmall, sin
e data transfer is needed only at the interfa
e between 
ontiguous sli
es.This is a major di�eren
e with respe
t to [37℄, where a fully spe
tral dis
retization wasemployed. Although spe
tral derivatives 
an bene�t from higher a

ura
y, they havethe signi�
ant drawba
k of being de�ned on the whole domain, thus a transpositionof the whole dataset a
ross the 
omputing nodes is needed every time the numeri-
al solution is advan
ed in time. It is worthless saying that this operation requiresa large amount of 
ommuni
ation, hen
e very fast networking hardware is needed toa
hieve good parallel performan
e, thus restri
ting DNS to be 
arried out only on veryexpensive 
omputers only.With 
ompa
t di�eren
es s
heme, transpose of the whole �ow �eld 
an be avoidedif data are distributed in sli
es parallel to the walls and ea
h one of the p ma
hinesrepresenting our parallel system is assigned one of these sli
es. The arrangement iss
hemati
ally represented in Figure 3.2: ea
h ma
hine holds all the streamwise andspanwise wavenumbers for ny/p positions, where ny is the dimension of the meshgridin y dire
tion. In this way, a small amount of 
ommuni
ation is required only at theinterfa
e between two 
ontinuous sli
es for the evaluation of the RHSs. Moreover, eventhis 
ommuni
ation 
an be avoided if two boundary planes on ea
h internal sli
e aredupli
ated on the neighboring sli
e.
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riti
al part of the pro
edure lies in the se
ond part of the time-stepadvan
ement, when we have to solve a set of two linear systems, one for ea
h (h, l) pair,sin
e data appear to be spread over the pma
hines. In this 
ase we 
an avoid to performa global transpose if we adopt a LU de
omposition of the pentadiagonal distributedmatri
es and then apply a subsequent sweep of ba
ksubstitution, whi
h requires thetransmission of only a few 
oe�
ients at the interfa
e between neighboring nodes. Asthe number of linear systems is very high, typi
ally (nx + 1)(nz + 1) ≈ 104 or bigger,the solution of the linear systems 
an be e�
iently pipelined as follows. When the LUde
omposition of the matrix of the system for a given pair (h, l) is performed, there is a�rst loop from the top row of the matrix down to the bottom row, in order to eliminatethe unknowns, then a se
ond loop in the opposite dire
tion. The ma
hine owning the�rst sli
e performs the elimination in the lo
al part of the matrix and then passes theboundary 
oe�
ients to the neighboring ma
hine, whi
h starts the elimination. Insteadof waiting for the elimination in the (h, l) system matri
es to be 
ompleted a
ross thema
hines, the �rst ma
hine 
an start working on the elimination in the matrix of thefollowing system. A syn
hronization is needed only at the end of the elimination phase,then the whole pro
edure 
an be repeated for the ba
ksubstitution phase. This e�e
tivepipelined-linear-system strategy allows a point-to-point 
ommuni
ation, so that ea
h
omputer has to ex
hange information only with adja
ent CPUs, allowing to adoptmass-marketed CPUs instead of dedi
ated servers.This stru
ture has been realized at the University of Salerno and has been used toperform the most expensive simulations appearing in the present work. The system inits present 
on�guration is 
omposed by 150 quad-
ore AMD Athlon and ea
h 
omputeris 
onne
ted to the adja
ent ones by two 100 MBits Fast Ethernet 
ards.3.1.4 Code validationIn order to validate this DNS 
ode the authors have 
ompared the 
al
ulation of somemeaningful statisti
s with results reported in [37℄. In Figure 3.3 we 
an observe aperfe
t overlapping of the mean velo
ity pro�les u+. Good overall results have alsoemerged from 
omputation of auto
orrelation fun
tions Ruu and Rww for streamwiseand spanwise 
omponent velo
ities, evaluated along x-dire
tion at y+ = 10, as shownin Figures 3.4 and 3.5.3.2 Orr-Sommerfeld and Squire linear modelIn order to implement an e�e
tive 
ontrol s
heme based on blowing/su
tion at walls alinear time-invariant (LTI) state spa
e realization of the system is made ne
essary. Inorder to a
hieve this goal, we start by 
onsidering Navier-Stokes equations outlined in(3.3), then we split the velo
ity �eld into a referen
e streamwise velo
ity pro�le U andperturbations around it in streamwise, wall-normal and spanwise dire
tions, namely
u, v and w. We do the same with the pressure �eld, by highlighting perturbation p.
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PSfrag repla
ementsFigure 3.3: Mean velo
ity pro�le u+: 
omparison between the present DNS 
ode (solidline) and the one outlined in [37℄ (dashed line).

Figure 3.4: Auto
orrelation fun
tion Ruu along x 
oordinate at y+ = 10: 
omparisonbetween the present DNS 
ode (solid line) and the one outlined in [37℄ (dashed line).
Hen
e





∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (3.16a)

∂u

∂t
+ U

∂u

∂x
+ U ′v +Hx = − ∂p

∂x
+

1

Re
∆u (3.16b)

∂v

∂t
+ U

∂v

∂x
+Hy = −∂p

∂y
+

1

Re
∆v (3.16
)

∂w

∂t
+ U

∂w

∂x
+Hz = −∂p

∂z
+

1

Re
∆w (3.16d)
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Figure 3.5: Auto
orrelation fun
tion Rww along x 
oordinate at y+ = 10: 
omparisonbetween the present DNS 
ode (solid line) and the one outlined in [37℄ (dashed line).
where supers
ript ′ denotes derivative with respe
t to y dire
tion and Hx, Hy and Hzare the 
onve
tive terms, de�ned as

Hx = u∇u

Hy = u∇v

Hz = u∇w

(3.17)where u represents the �u
tuating velo
ity �eld (u, v, w). Following a pro
edure anal-ogous to the one adopted for the implementation of DNS 
ode, it is possible to redu
ethe number of equations and unknowns to a minimum of two. Firstly, we take thedivergen
e of the ve
torial momentum equation, i.e.
∂

∂t

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
+ U

∂

∂x

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
+

+ 2U ′ ∂v

∂x
+

(
∂Hx

∂x
+

∂Hy

∂y
+

∂Hz

∂z

)
=

= −∆p+
1

Re
∆

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
(3.18)hen
e, by applying 
ontinuity, we get

∆p = −2U ′ ∂v

∂x
−
(
∂Hx

∂x
+

∂Hy

∂y
+

∂Hz

∂z

) (3.19)Now, if we take the Lapla
ian of Equation (3.16
), we have that
(

∂

∂t
+ U

∂

∂x

)
∆v + U ′′ ∂v

∂x
+∆Hy = − ∂

∂y
∆p+

1

Re
∆∆v (3.20)



36 Chapter 3. Channel Flow ModelAfter substitution of (3.19) into (3.20) and reordering, we �nally obtain
[(

∂

∂t
+ U

∂

∂x

)
∆− U ′′ ∂

∂x
− 1

Re
∆∆

]
v = dv (3.21)where with dv we have 
onsidered all the nonlinear terms appearing in the equation,i.e.

dv =

(
∂Hx

∂x
+

∂Hy

∂y
+

∂Hz

∂z

)
−∆Hy (3.22)To obtain the se
ond equation, we have to subtra
t Equation (3.16d), derived withrespe
t to x, to Equation (3.16b), derived with respe
t to z, as follows:

∂

∂t

(
∂u

∂z
− ∂w

∂x

)
+ U

∂

∂x

(
∂u

∂z
− ∂w

∂x

)
+ U ′ ∂v

∂z
+

(
∂Hx

∂z
− ∂Hz

∂x

)
=

= − ∂2p

∂x∂z
+

∂2p

∂x∂z
+

1

Re
∆

(
∂u

∂z
− ∂w

∂x

) (3.23)Now, if we introdu
e the de�nition of wall-normal vorti
ity η (3.4), we �nd
(

∂

∂t
+ U

∂

∂x
− 1

Re
∆

)
η + U ′ ∂v

∂z
= dη (3.24)where dη 
ontains the nonlinear terms, i.e.

dη =

(
∂Hx

∂z
− ∂Hz

∂x

) (3.25)The set of Navier-Stokes equations in v-η formulations now appears as follows:




[(
∂

∂t
+ U

∂

∂x

)
∆− U ′′ ∂

∂x
− 1

Re
∆∆

]
v = dv (3.26a)

(
∂

∂t
+ U

∂

∂x
− 1

Re
∆

)
η + U ′ ∂v

∂z
= dη (3.26b)Now, it is useful to exploit the spatial invarian
e of Equations (3.26) with respe
t totranslation in dire
tions x and z, by Fourier-transforming in these dire
tions. The �eldvariables v and η, in Fourier spa
e be
ome

v(x, y, z, t) =

∞∑

nx=−∞

∞∑

nz=−∞

v̂(nx, y, nz, t)e
j 2πnxx

Lx ej
2πnzz

Lz (3.27)
η(x, y, z, t) =

∞∑

nx=−∞

∞∑

nz=−∞

η̂(nx, y, nz, t)e
j 2πnxx

Lx ej
2πnzz

Lz (3.28)
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oe�
ients are de�ned as follows:
v̂(nx, y, nz, t) =

1

LxLz

∫ Lx

0

∫ Lz

0

v(x, y, z, t) e−j 2πnxx

Lx e−j 2πnzz

Lz dz dx (3.29)
η̂(nx, y, nz, t) =

1

Lx Lz

∫ Lx

0

∫ Lz

0

v(x, y, z, t) e−j 2πnxx

Lx e−j 2πnzz

Lz dz dx (3.30)If we de�ne the streamwise and spanwise wavenumbers α = 2πnx

Lx
and β = 2πnz

Lz
, afterFourier-transforming, we get





∆̂ ˙̂v =

(
−jαU∆̂ + jαU ′′ +

1

Re
∆̂∆̂

)
v̂ + d̂v (3.31a)

˙̂η = (−jβU ′) v̂ +

(
−jαU +

1

Re
∆̂

)
η̂ + d̂η (3.31b)where ∆̂ = D2(.) − k2, with D2(.) = ∂2/∂y2 and k2 = α2 + β2. In order to dis
retizethe derivatives operators in wall-normal dire
tion Di di�erent solutions have been de-veloped, whi
h are outlined in Se
tion 3.3. Then, if we 
onsider just the linear part,Equations (3.31) represent the well-known Orr-Sommerfeld and Squire equations, thatin operator form read

[
∆̂ 0

0 I

][
˙̂v
˙̂η

]
=

[
L̂OS 0

L̂C L̂SQ

] [
v̂

η̂

]

M ˙̂x = Lx̂

˙̂x = M−1Lx̂ = Nx̂

(3.32)Assuming modes with exponential time dependen
e, this system be
omes an eigenvalueproblem with two distin
t solution families, the �rst one of whi
h 
ontains the Orr-Sommerfeld modes, whi
h involve eigensolutions of the equation for wall-normal velo
-ity (3.31a). The least-stable Orr-Sommerfeld mode represents the so-
alled Tollmien-S
hli
hting waves. These two-dimensional waves 
an experiment exponential growth atsub
riti
al Reynolds numbers, i.e. for Re < 5772, subsequently falling into se
ondaryinstability to small-amplitude three-dimensional perturbations, thus 
ausing the �owto rapidly evolve into a fully turbulent state.The se
ond family of solutions 
ontains the Squire modes and has zero wall-normalvelo
ity. Unlike Orr-Sommerfeld modes, Squire modes are always damped. To provethat, we 
onsider Squire equation without the for
ing term in v, i.e.
(

∂

∂t
+ jαU − 1

Re
∆̂

)
η̂ = 0 (3.33)and we impose an exponential solution of the type

η̂(y, t) = η̃(y) e−jαct (3.34)
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omplex phase speed. After substitution of Equation (3.34) into(3.33), we obtain
(U − c)η̃ − 1

jαRe
∆̂η̃ = 0 (3.35)After multipli
ation by 
omplex 
onjugate ¯̃η and integration over the domain y ∈

[−1, 1], we �nd
c

∫ 1

−1

¯̃ηη̃ dy =

∫ 1

−1

U ¯̃ηη̃ dy − j

αRe

∫ 1

−1

¯̃η∆̂η̃ dy (3.36)By taking just the imaginary part of the previous equation, we demonstrate the thesis:
ci

∫ 1

−1

|η̃|2 dy = − 1

αRe

∫ 1

−1

(|Dη̃|2 + |kη̃|2) dy < 0 (3.37)3.3 Dis
retization of derivatives operatorsIn order to dis
retize the derivatives in the wall-normal dire
tion two di�erent ap-proa
hes have been developed and 
ompared: �nite di�eren
es and spe
tral derivatives.What follows is a detailed des
ription of these two s
hemes.3.3.1 Finite di�eren
esFinite di�eren
es (FD) approa
h 
omputes the approximation of the k-th order deriva-tive of the fun
tion f(y) we want to derive at ea
h grid point yj using a Taylor seriesexpansion of the fun
tion f at an arbitrary sten
il n ≥ k+1 of points y1, . . . , yi, . . . , ynin the neighborhood of yj . Now, let us 
onsider for simpli
ity an equally spa
ed grid,then we will provide the generalization to arbitrary grid spa
ing. The key idea is touse a linear 
ombination of Taylor series expansion of the fun
tion at sten
il points
x1f(y1) + x2f(y2) + · · ·+ xnf(yn) in order to a
hieve the approximation of derivative
fk(yj) with the maximum order of a

ura
y. This goal will help us to impose the
onditions to determine the 
oe�
ients x1, x2, . . . , xn. In order to illustrate the keyidea we will provide two di�erent examples.As for the �rst example, we 
onsider the approximation of �rst derivative f ′(y) atpoint yj with a sten
il n = 3 
entered around the point yj on a grid of spa
ing h. Wehave

f ′(yj) = x1f(yj − h) + x2f(yj) + x3f(yj + h) (3.38)Taylor series expansion of ea
h term till order n− 1 leads to
f(yj − h) = fj − hf ′

j +
1

2
h2f ′′

j +O(h3)

f(yj) = fj

f(yj + h) = fj + hf ′
j +

1

2
h2f ′′

j +O(h3)

(3.39)
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retization of derivatives operators 39Substitution of relations (3.39) into (3.38) implies
f ′(yj) = (x1 + x2 + x3)fj + (x3 − x1)h f

′
j + (x3 + x1)

h2

2
f ′′
j +O(h3) (3.40)Hen
e the best approximation of �rst derivative is given by imposing the following
onditions: 




x1 + x2 + x3 = 0

− hx1 + hx3 = 1

h2

2
x1 +

h2

2
x3 = 0

(3.41)These 
onditions 
an be represented through an equivalent linear system



1 1 1

−h 0 h

h2 0 h2






x1

x2

x3


 =



0

1

0


 (3.42)Solution of the system (3.42) leads to

x1 = − 1

2h
, x2 = 0, x3 =

1

2h
(3.43)With this �nite di�eren
es s
heme, the error due to trun
ation of Taylor series isreadily available and its order of magnitude is equal to O(h3). Finally, the 
enteredapproximation of the �rst derivative of fun
tion f(y) dis
retized over an equally spa
edgrid is given by

f ′(yj) =
f(yj + h)− f(yj − h)

2h
(3.44)As for the se
ond example, we want to implement an un
entered �nite di�eren
e s
hemeto 
ompute the approximation of se
ond order derivative. Thus, by following the samesteps of the previous example, we have

f ′′(yj) = x1f(yj) + x2f(yj + h) + x3f(yj + 2h) (3.45)Then, expanding the terms into Taylor series and imposing the 
ondition of approxi-mating the derivative with the minimum trun
ation error lead to the following linearsystem: 



x1 + x2 + x3 = 0

hx2 + 2hx3 = 1

h2

2
x2 + 2h2x3 = 2

(3.46)hen
e 

1 1 1

0 h 2h

0 h2 4h2






x1

x2

x3


 =



0

0

4


 (3.47)
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x2 =

1

h2
, x2 = − 2

h2
, x3 =

1

h2
(3.48)So, the un
entered approximation of the se
ond-order derivative of fun
tion f(y) dis-
retized over an equally spa
ed grid is given by

f ′′(yj) =
f(yj)− 2f(yj + h) + f(yj + 2h)

h2
(3.49)From these examples, we 
an infer that the linear system that has to be solved for deter-mining the interpolant 
oe�
ients x1, . . . , xn that approximate a k-th order derivativewith a sten
il of n is given by a proper partition of the following Vandermonde matrix:




. . . (−2h)0 (−h)0 1 (h)0 (2h)0 . . .

. . . (−2h)1 (−h)1 0 (h)1 (2h)1 . . .

. . . (−2h)2 (−h)2 0 (h)2 (2h)2 . . .

. . . (−2h)3 (−h)3 0 (h)3 (2h)3 . . .... ... ... ... ...



(3.50)The solution of the system is then re
overed by 
onsidering a number of rows and
olumns equal to the sten
il n. The 
hoi
e of whi
h 
olumns we have to take dependson the �nite di�eren
e s
heme: if we 
onsider a 
entered s
heme, then for n odd, wemust take the 
olumns going from −(n − 1)/2 to (n − 1)/2, while if the s
heme isun
entered, then the 
olumns to 
hoose are a shifted version of the previous ones,depending on the degree of de
entralization. Thus, a single linear system is su�
ientto 
ompletely determine the derivatives of all grid points. As a matter of fa
t, if A isthe proper partition of Vandermonde matrix (3.50), the ve
tor of unknown 
oe�
ients
x = [ x1 x2 ... xn ]

T 
an be re
overed as Ax = k! ek+1, where ek+1 is a ve
tor of zeros with
1 in row k+ 1. Unfortunately, Vandermonde matri
es are well-known for being highlyill-
onditioned, so this te
hnique is parti
ularly amenable only for low n. However, it isto remark that this drawba
k a
tually is not a very limiting one, sin
e usually a sten
ilof 5-7 points is su�
ient to dis
retize the system with high a

ura
y.The 
ase of unequally spa
ed grid leads to the de�nition of a Vandermonde matrixfor ea
h grid point yj, with the major di�eren
e that spa
ing h is repla
ed by the a
tualspa
ing yj+1 − yj, in this way:




. . . (yj−2 − yj)
0 (yj−1 − yj)

0 1 (yj+1 − yj)
0 (yj+2 − yj)

0 . . .

. . . (yj−2 − yj)
1 (yj−1 − yj)

1 0 (yj+1 − yj)
1 (yj+2 − yj)

1 . . .

. . . (yj−2 − yj)
2 (yj−1 − yj)

2 0 (yj+1 − yj)
2 (yj+2 − yj)

2 . . .

. . . (yj−2 − yj)
3 (yj−1 − yj)

3 0 (yj+1 − yj)
3 (yj+2 − yj)

3 . . .

. . . (yj−2 − yj)
4 (yj−1 − yj)

4 0 (yj+1 − yj)
4 (yj+2 − yj)

4 . . .... ... ... ... ...



(3.51)



3.3. Dis
retization of derivatives operators 41The pro
edure to extra
t matrix A is the same des
ribed before, the major di�eren
eis that now it is required to solve N linear systems of size n × n, instead of one.Di�erentiation matri
es arising from �nite di�eren
e s
hemes are always band matri
es,whose size of the band 
orresponds to the sten
il n we have 
hosen. For this reason,�nite di�eren
es are parti
ularly amenable to sparse solver algorithms for the solutionof ODEs. As for the order of a

ura
y, it is stri
tly related to the sten
il be
ause thehigher the sten
il, then the lower the trun
ation error 
an be set. So, if we de�ne h̄ asan average mesh grid, then it 
an be proved that there always exists a 
onstant C > 0so that the order of a

ura
y is O(Ch̄n+1).3.3.2 Spe
tral derivativesSpe
tral derivatives (SD) s
hemes have been implemented using the Matlab Di�er-entiation Matrix Suite developed by Weiderman and Reddy and widely des
ribed in[72℄. This approa
h adopts a spe
tral 
ollo
ation method in order to build a weightedinterpolation of the fun
tion to be derived f(y) over a set of nodes {yj}Nj=1, i.e.
f(y) ≈ pN−1(y) =

N∑

j=1

α(y)φj(y)f(yj) (3.52)where α(y) is a weight fun
tion and the set of interpolating fun
tions {φj(yj)}Nj=1satis�es φj(yk) = δjk (the Krone
ker delta). This means that pN−1(y) is an interpolantof f(y) in the sense that the following equivalen
e holds at every node:
f(yj) = pN−1(yj), j = 1, . . . , N (3.53)Spe
tral derivatives are set up from Equation (3.52) by 
onsidering, as shown in [10℄

α(y) = 1 (3.54)
φj(y) =

(−1)j

cj

1− y2

(N − 1)2
T ′
N−1(y)

y − yj
(3.55)

pN−1(y) =
N∑

j=1

φj(y)f(yj) (3.56)where c1 = cN = 2, c2 = · · · = cN−1 = 1 and TN−1(y) is the Chebyshev polynomial ofdegree N − 1, de�ned as
Tj(y) = cos(j arccos y) (3.57)Interpolation points are the well-known Gauss-Lobatto-Chebyshev nodes, whi
h arede�ned as follows:

yj = cos
(k − 1)π

N − 1
k = 1, . . . , N (3.58)
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es are then obtained through derivation of the polynomial inter-polator. For the �rst derivative D1, we get
Dk j

1 =





ck(−1)j+k

cj(yk − yj)
j 6= k

− 1

2

yk
(1− y2k)

j = k 6= 1, N

2(N − 1)2 + 1

6
j = k = 1

− 2(N − 1)2 + 1

6
j = k = N

(3.59)
where Dk j

1 represents the element of matrix D1 with indexes (k, j). Higher orderderivatives are then 
omputed as power of D1, i.e. if l is the order of the derivative,then Dl = (D1)
l. Unlike �nite di�eren
e s
hemes, spe
tral derivatives have the relevantproperty that the dis
retization error 
onverges exponentially upon grid re�nement. Inparti
ular, if N is the number of grid points, then it 
an be proved that there alwaysexists a 
onstant C > 0, so that the order of a

ura
y is O(e−C N ). The pri
e to pay isthat this method generates full matri
es, so faster sparse solvers are no longer available.3.3.3 Ben
hmark problem for the proposed derivation s
hemesIn order to test the performan
es of the above mentioned derivation s
hemes and showhow boundary 
onditions are imposed, we will 
ompare the analyti
al solution of afourth-order inhomogeneous ordinary di�erential equation to its numeri
al solutions.We 
onsider f(y) as the unknown fun
tion de�ned over the domain y ∈ [−1, 1] andthe following di�erential equation

f IV (y) + 10f III(y) + 35f ′′(y) + 50f ′(y) + 24f(y) = 1728y2 (3.60)with Diri
hlet and Neumann 
lamped boundary 
onditions, i.e.
f(−1) = f(1) = f ′(−1) = f ′(1) = 0 (3.61)The analyti
al solution f(y) 
an be obtained by superposition of the solution of theasso
iated homogeneous ODE fh(y) and the parti
ular solution fp(y). As for thehomogeneous equation, we propose a solution of the type

fh(y) = Ceλy (3.62)After subustitution in Equation (3.60), we �nd the asso
iated 
hara
teristi
 equation
λ4 + 10λ3 + 35λ2 + 50λ+ 24 = 0 (3.63)



3.3. Dis
retization of derivatives operators 43whi
h has four distin
t real solutions:
λ1 = −1, λ2 = −2, λ3 = −3, λ4 = −4 (3.64)hen
e
fh(y) = C1e

−1y + C2e
−2y + C3e

−3y + C4e
−4y (3.65)where C1, . . . , C4 are 
onstants to be determined by applying boundary 
onditionsafter having determined the parti
ular solution fp(y), whi
h 
an be found by inspe
tion:

fp(y) = Āy2 + B̄y + C̄ (3.66)Substitution in (3.60) leads to
24Āy2 + (100Ā+ 24B̄)y + (70Ā+ 24B̄ + 24C̄) = 1728y2 (3.67)Equating, term by terms, LHS and RHS, we obtain the following linear system:





24Ā = 1728

100Ā+ 24B̄ = 0

70Ā+ 24B̄ + 24C̄ = 0

(3.68)from whi
h we obtain Ā = 72, B̄ = −300 and C̄ = 415. Hen
e, the full solution of theODE reads
f(y) = C1e

−1y + C2e
−2y + C3e

−3y + C4e
−4y + 72y2 − 300y+ 415 (3.69)By imposing boundary 
onditions, we 
an re
over the values of C1, . . . , C4 from thesolution of the following linear system:




e1 e2 e3 e4

e−1 e−2 e−3 e−4

e1 2e2 3e3 4e4

e−1 2e−2 3e−3 4e−4







C1

C2

C3

C4







−Ā+ B̄ − C̄

−Ā− B̄ − C̄

−2Ā+ B̄

2Ā+ B̄




(3.70)Then, we implement a �nite di�eren
es s
heme by 
hoosing a sten
il n = 5 and de�ninga meshgrid of N+2 nodes y−1, y0, y1, . . . , yN−1, yN , yN+1 with 
onstant width h overthe extended domain y ∈ [−1− h, 1 + h]. Note that the �
titious nodes y−1 = −1− hand yN+1 = 1 + h have been introdu
ed to better a

ount for boundary 
onditions.As a matter of fa
t, we 
an impose Diri
hlet 
ondition by setting y0 = yN = 0. As forNeumann 
onditions, we 
an dis
retize the �rst order derivative through an un
entered
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heme:
D

−1(+)
1 y−1 +D

0(+)
1 y0 +D

1(+)
1 y1 +D

2(+)
1 y2 +D

3(+)
1 y3 = 0

D
−3(−)
1 yN−3 +D

−2(−)
1 yN−2 +D

−1(−)
1 yN−1 +D

0(−)
1 yN +D

1(−)
1 yN+1 = 0

(3.71)After dis
retization of the four derivatives appearing in the LHS, we obtain the dis
retesolution f1, . . . , fN−1 of ODE (3.60) by solving the following linear system:



1

h4




0

0

D4

0

0



+

4

h3




0

0

D3

0

0



+

35

h2




0

0

D2

0

0



+

50

h




0

0

D1

0

0



+ 24




0

0

I

0

0



+

+
1

h



D

−1(+)
1 D

0(+)
1 D

1(+)
1 D

2(+)
1 D

3(+)
1 . . . 0

0 0 0

0 . . . D
−3(−)
1 D

−2(−)
1 D

−1(−)
1 D

0(−)
1 D

1(−)
1


+

+




0 0 0 . . . 0 0 0

0 1 0 . . . 0 0 0

0 0 0

0 0 0 . . . 0 1 0

0 0 0 . . . 0 0 0










f−1

f0

f1...
fN−1

fN

fN+1




=




0

0

1728(−1+ h)2...
1728(1− h)2

0

0




(3.72)
As for spe
tral derivatives approa
h to solve ODE (3.60), it needs to be modi�ed inorder to a

ount for 
lamped boundary 
onditions. For this reason, we must repla
ethe weight fun
tion α(y) = 1 in (3.52) with α̃(y) =

[
(1−y2)2

(1−y2
j
)

]2. Thus, the polynomialof degree N + 1 satisfying N − 2 interpolation 
onditions and boundary 
onditions is
pN+1(y) =

N−2∑

j=1

fj φ̃j(y) with φ̃j(y) = α̃(y) (3.73)After derivation of fun
tions φ̃j(y), we �nally get the di�erentiation matri
es.Results have shown that the best performan
es are a
hieved by using a spe
tral deriva-tives s
heme. As a matter of fa
t, we 
an see from Figure 3.6 that spe
tral derivativeslead to a smaller error with respe
t to �nite di�eren
es in we 
onsider the same numberof grid point. On the other hand, �nite di�eren
es show good 
onvergen
e to analyti
alsolution if further grid re�nement is applied. As for the relative error 
ommitted duringnumeri
al dis
retization of ODE, spe
tral derivatives show fast exponential 
onvergen
ein a double logarithmi
 graph, with good agreement with thereti
al predi
tion. Fur-thermore, it 
an be noti
ed from Figure 3.7 that in this 
ase just 20 grid points aresu�
ient to rea
h ma
hine pre
ision. As for �nite di�eren
es, instead, they appear to
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Figure 3.6: Solutions of the ben
hmark ODE: analyti
al solution (bla
k solid line),numeri
al solution with FD and N = 20 (blue solid line), with FD and N = 40 (green solidline) and numeri
al solution with SD and N = 20 (red dashed line).
onverge more slowly, following a linear trend a

ording to theoreti
al predi
tion, asoutlined in Figure 3.8.3.4 Orr-Sommerfeld and Squire eigenvaluesIn order to test the a

ura
y of the proposed dis
retization te
hniques for di�erentialoperators, we applied these two strategies for the 
omputation of the eigenvalues ofOrr-Sommerfeld and Squire equations (3.32) for a given wavenumber pair. For spe
-tral derivatives a standard Gauss-Lobatto-Chebyshev grid was used, while for �nitedi�eren
e s
heme we adopted an equally spa
ed mesh. Results have then been 
om-pared to referen
e data taken from literature [7℄, where the eigenvalues were 
omputedfor Re = 10000, α = 1 and β = 0 using a Chebyshev 
ollo
ation te
hnique over ameshgrid of N = 140. Results show perfe
t 
orrespondan
e with spe
tral derivativeswith the same number of grid points, while �nite di�eren
es show some mis�t, whi
htends to zero if we in
rease the number of grid points, as 
an be stated from Tables3.1 - 3.2 and root-lo
a in Figures 3.9.
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Figure 3.7: Relative error of spe
tral derivatives s
heme upon grid re�nement: numeri
alresult (blue line) and theoreti
al predi
tion (red line).

Figure 3.8: Relative error of �nite di�eren
es s
heme upon grid re�nement: numeri
alresult (blue line) and theoreti
al predi
tion (red line).



3.4. Orr-Sommerfeld and Squire eigenvalues 47Eigenvalues from [7℄ Eigenvalues withspe
tral derivatives (N = 140)
−0.03516728− 0.96463092 j −0.03516728− 0.96463092 j
−0.03518658− 0.96464251 j −0.03518658− 0.96464251 j
−0.05089873− 0.27720434 j −0.05089872− 0.27720434 j
−0.06320150− 0.93631654 j −0.06320149− 0.93631653 j
−0.06325157− 0.93635178 j −0.06325156− 0.93635178 j
−0.09122274− 0.90798305 j −0.09122273− 0.90798305 j
−0.09131286− 0.90805633 j −0.09131286− 0.90805633 j
−0.11923285− 0.87962729 j −0.11923285− 0.87962729 j
−0.11937073− 0.87975570 j −0.11937073− 0.87975569 j
−0.12450198− 0.34910682 j −0.12450197− 0.34910682 j
−0.13822653− 0.41635102 j −0.13822652− 0.41635101 j
−0.14723393− 0.85124584 j −0.14723392− 0.85124584 j
−0.14742560− 0.85144938 j −0.14742560− 0.85144938 j
−0.17522868− 0.82283504 j −0.17522867− 0.82283503 j
−0.32519719− 0.63610486 j −0.32519705− 0.63610485 j
−0.34373267− 0.67764346 j −0.34373449− 0.67764252 j
−0.66286552− 0.67027520 j −0.66286552− 0.67027520 jTable 3.1: Least stable eigenvalues of Orr-Sommerfeld and Squire matrix for Re = 10000,

α = 1 and β = 0: 
omparison between literature and spe
tral derivatives s
heme.
Eigenvalues with �nite di�eren
es
N = 140 N = 420

−0.03517149− 0.96491989 j −0.03516776− 0.96466336 j
−0.03519049− 0.96493167 j −0.03518704− 0.96467496 j
−0.05567417− 0.27694719 j −0.05146951− 0.27714155 j
−0.06321614− 0.93730086 j −0.06320315− 0.93642700 j
−0.06326420− 0.93733665 j −0.06325302− 0.93646228 j
−0.09125560− 0.91006094 j −0.09122641− 0.90821619 j
−0.09133959− 0.91013498 j −0.09131589− 0.90828951 j
−0.11929327− 0.88319777 j −0.11923958− 0.88002784 j
−0.11941743− 0.88332638 j −0.11937598− 0.88015620 j
−0.13068803− 0.34449294 j −0.12521618− 0.34853458 j
−0.14739614− 0.41177196 j −0.13928940− 0.41576417 j
−0.14733285− 0.85670917 j −0.14724491− 0.85185866 j
−0.14749865− 0.85691061 j −0.14743374− 0.85206189 j
−0.17537852− 0.83059326 j −0.17524524− 0.82370521 j
−0.33462740− 0.67062235 j −0.32771455− 0.63364552 j
−0.34800467− 0.67799967 j −0.34550988− 0.67621392 j
−0.66120126− 0.67332972 j −0.66279600− 0.67042974 jTable 3.2: Least stable eigenvalues of Orr-Sommerfeld and Squire matrix for Re = 10000,

α = 1 and β = 0: 
omparison between �nite di�eren
es s
hemes with di�erent mesh grids.
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(a) N = 140

(b) N = 420Figure 3.9: Eigenvalues of Orr-Sommerfeld and Squire matrix for Re = 10000, α = 1,
β = 0 
al
ulated with �nite di�eren
es (red 
rosses) and spe
tral derivatives (blue 
rosses),
ompared to the ones reported in literature (bla
k squares).



Chapter 4Optimal State Feedba
k ControlAfter having developed a linear model for plane 
hannel �ow, we are now able to de�nea proper optimal 
ontrol law. In the following, we will dis
uss the solution we haveimplemented, then a parametri
 study will be 
arried out to assess the performan
es ofdi�erent 
ontrol solutions applied to a turbulent �ow for a 
ouple of Reynolds numbersthat have been widely investigated in literature through DNS, namely Re = 1500 and
3500.4.1 Derivation of an optimal 
ontrollerIn order to implement an optimal 
ontrol strategy we need �rst to re
ast the Orr-Sommerfeld and Squire model developed in Chapter 3 into state-spa
e formulation.For this purpose, we will 
onsider here and in the following a state-spa
e linear time-invariant (LTI) system de�ned as

{
ẋ = Ax+Bu+ Bnn (4.1a)
y = Cx +Dydd (4.1b)where x ∈ Cn represents the state ve
tor, u ∈ Cm is the 
ontrol ve
tor, y ∈ Cp is themeasurement ve
tor, n the disturban
e a
ting on input, d the noise a�e
ting measures.Besides, A ∈ Cn×n is the state matrix, B ∈ Cn×m the input matrix, C ∈ Cp×n themeasurement matrix and Bn and Dyd are the input matri
es of disturban
es. In orderto obtain a state-spa
e formulation, we adopted the strategy proposed in [25℄. Hen
e,sin
e blowing/su
tion is applied at walls, we de�ne a 
ontrol variable φ̂ whi
h representsthe wall-normal velo
ities at boundaries: φ̂ =

[
v̂+1

v̂−1

]. This parti
ular kind of for
ingis di�
ult to handle in standard linear 
ontrol theory unless we introdu
e a liftingpro
edure with whi
h the inhomogeneous boundary 
onditions at walls are representedby volume for
ing near the wall in a modi�ed system with homogeneous boundary
onditions. Thus, using superposition prin
iple, the solution of the original system x̂49
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k Controlis re
overed by 
ombining the homogeneous solution x̂h with a parti
ular solution x̂p:
x̂ = x̂h + x̂p =

{
v̂ = v̂h + v̂p

η̂ = η̂h + η̂p
(4.2)where parti
ular solution is introdu
ed to relate boundary 
onditions to volume for
ing,as follows:

x̂p =

[
v̂p

η̂p

]
=

[
Zvp, v+1

Zvp, v−1

Zηp, v+1
Zηp, v−1

] [
v̂+1

v̂−1

]
= Zφ̂ (4.3)Matrix Z 
an be determined in di�erent ways. The �rst solution suggests to 
al
ulateboth blo
k-
olumns by solving an appropriate two points boundary value problem, e.g.
onsidering upper wall a
tuation:

{
LOSZvp, v+1

(y) = 0

LCZvp, v+1
(y) + LSQZηp, v+1

(y) = 0
(4.4)with boundary 
onditions

Zvp, v+1
(y = +1) = 1

Zvp, v+1
(y = −1) = 0

Z ′
vp, v+1

(y = ±1) = 0

Zηp, v+1
(y = ±1) = 0

(4.5)An analogous problem must be solved for lower wall a
tuation.The se
ond and more straightforward solution is to 
hoose Z in order to satisfy justboundary 
onditions. This is the approa
h that has been followed in this work and thefun
tions that have been introdu
ed to assemble matrix Z are
Zvp, v+1

=
1

2

{
cos
[π
2
(y − 1)

]
+ 1
}

Zvp, v−1
=

1

2

{
cos
[π
2
(y + 1)

]
+ 1
}

Zηp, v+1
= sin

[π
2
(y − 1)

]

Zηp, v−1
= sin

[π
2
(y + 1)

]

(4.6)
After this step, we �nally obtain a state-spa
e model for ea
h wavenumber pair (α, β):

˙̂xs = Ax̂s +Bûs (4.7)where
A =

[
N NZ

0 0

]
, B =

[
−Z

I

]
, x̂s =

[
x̂h

φ̂

]
, ûs =

∂φ̂

∂t
(4.8)With this model at hand, we apply a 
ontrol law based on state feedba
k, i.e.

ûs = −K̂sx̂s (4.9)



4.1. Derivation of an optimal 
ontroller 51where K̂s is the unknown gain matrix that 
an be determined as the solution of anoptimal 
ontrol problem. Therefore, we de�ne an obje
tive fun
tion 
ombining a statenorm and a weight on 
ontrol e�ort, i.e.
J =

1

2

∫ ∞

0

(x̂TQx̂+ ρûT
s Rûs) dt (4.10)where ρ is a penalty introdu
e to weigh the relative importan
e of 
ontrol e�ort on
ontrol performan
es. However, in this formulation state ve
tor x̂ di�ers from theone we have de�ned to a

ount for boundary 
onditions, so it must be modi�ed by
onsidering that x̂ = [I Z]x̂s. We get

J =
1

2

∫ ∞

0

(x̂T
s Q̂sx̂s + ρûT

s Rûs) dt (4.11)where
Q̂s =

[
Q̂ Q̂Z

ZT Q̂ ZT Q̂Z

] (4.12)A

ording to optimal feedba
k 
ontrol theory, the 
ontrol feedba
k minimizing fun
-tional J in (4.11) is de�ned as
K̂s = ρR−1BTP (4.13)where P is the solution of the following Ri

ati equation:

ATP + PA+ Q̂s − ρPBR−1BTP = 0 (4.14)The 
ontroller arising from these pro
edure is 
alled linear quadrati
 regulator (LQR).Nevertheless, the feedba
k rule we have just de�ned is for the feedba
k of the homoge-neous part only, thus it must be modi�ed a

ordingly before being applied to 
hannel�ow. For this purpose, let us 
onsider the de
omposition
ûs =

[
K̂s,+1, v̂h K̂s,+1, η̂h

K̂s,+1, v̂+1
K̂s,+1, v̂−1

K̂s,−1, v̂h K̂s,−1, η̂h
K̂s,−1, v̂+1

K̂s,−1, v̂−1

]



v̂h

η̂h

v̂+1

v̂−1




(4.15)hen
e, after some trivial manipulations, we obtain
[
˙̂v+1

˙̂v−1

]
=

[
K̂+1, v̂ K̂+1, η̂

K̂−1, v̂ K̂−1, η̂

]
x̂ (4.16)
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k Controlwhere
K̂±1, v̂+1

= K̂s,±1, v̂+1
− K̂s,±1, v̂hZv̂p v̂+1

− K̂s,±1, η̂h
Zη̂p v̂+1

(4.17)
K̂±1, v̂−1

= K̂s,±1, v̂−1
− K̂s,±1, v̂hZv̂p v̂−1

− K̂s,±1, η̂h
Zη̂p v̂−1

(4.18)and
K̂±1, v̂ =

[
K̂±1, v̂−1

K̂±1, v̂h K̂±1, v̂+1

] (4.19)
K̂±1, v̂ =

[
0 K̂±1, η̂h

0
] (4.20)Now, sin
e with this de�nition 
ontrol gains depend on the spatial dis
retization in

y dire
tion, it is ne
essary to s
ale the 
ontrol gains to a grid-independent weightingfun
tion at ea
h wavenumber pair (α, β). After this straightforward transformation,weights K̂ 
an be in
orporated into DNS 
ode by s
aling the 
ontrol gains by the gridstret
hing fun
tion used in the simulation 
ode, in our 
ase the hyperboli
 tangentfun
tion de�ned in (3.15). Feedba
k rules are then 
omputed for an array of wavenum-ber pairs and then inverse Fourier-transformed to physi
al spa
e, where 
ontrol lawappears in the form of a 
onvolution integral, as follows:
v̇(x, y = ±1, z, t) =

∫ Lz

0

∫ +1

−1

∫ Lx

0

[K±1, v(x− x̄, ȳ, z − z̄) v(x̄, ȳ, z̄, t)+

+K±1, η(x− x̄, ȳ, z − z̄) η(x̄, ȳ, z̄, t)] dx̄ dȳ dz̄

(4.21)where K±1, v and K±1, η appear feedba
k 
onvolution kernels in physi
al spa
e.
4.2 Choi
e of referen
e velo
ity pro�leAmong the possible referen
e velo
ity pro�les U(y) that 
an be used to design full state
ontroller, it is parti
ularly useful to 
hoose the analyti
al solution of Poiseuille laminar�ow, whi
h is a rare 
ase in whi
h Navier-Stokes equations admit 
losed-form solution.In fa
ts, Poiseuille 
hannel �ow is based on the assumption of parallel stationary �ow,that leads to the following simpli�ed two-dimensional Navier-Stokes equations:





∂U

∂x
+

∂V

∂y
= 0 (4.22a)

U
∂U

∂x
+ V

∂U

∂y
= −∂P

∂x
+

1

Re
∆U (4.22b)

U
∂V

∂x
+ V

∂V

∂y
= −∂P

∂y
+

1

Re
∆V (4.22
)Now, we sear
h for a solution of the type U = (U(x, y), 0, 0). This assumption redu
esthe 
ontinuity equation to the 
ondition ∂u

∂y = 0. So, all the 
onve
tive terms on the
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tion design 53LHS of the equations are equal to zero, determining




1

Re

d2U

dy2
− ∂P

∂x
= 0 (4.23a)

∂P

∂y
= 0 (4.23b)This leads to a further simpli�
ation:

1

Re

d2U

dy2
− dP

dx
= 0 (4.24)Thus, by imposing no-slip boundary 
ondition at walls and nondimensionalizing thesolution with respe
t to bulk velo
ity, we get

U(y) =
3

2
(1 − y2) (4.25)Another meaningful 
hoi
e for the referen
e velo
ity pro�le 
ould be the meanstreamwise velo
ity pro�le Ū(y) of the turbulent 
hannel �ow, whi
h 
an be re
overedafter averaging the streamwise velo
ity obtained through a DNS performed at the givenReynolds number, i.e.

Ū(y) = lim
T→∞

1

LxLz

1

T

∫ Lx

0

∫ Lz

0

∫ T

0

U(x, y, z, t) dt dz dx (4.26)4.3 Obje
tive fun
tion designThe 
hoi
e of a proper weight on state ve
tor in optimal 
ontrol formulation is for ours
ope a very deli
ate task, sin
e it is not possible to dire
tly target drag through theobje
tive fun
tion, in that standard LQR 
ontrol allows only quadrati
 norms of thestate. For this reason, it is ne
essary to �nd a proper state measure whose minimiza-tion will redu
e turbulent drag. In [5℄ many 
ontrol laws have been investigated in amodel predi
tive 
ontrol framework, in order to state the e�e
tiveness of di�erent 
ostfun
tions. An interesting 
on
lusion that 
ame out is that turbulent kineti
 energy is agood 
andidate for a
hieving drag redu
tion through zero-net-mass-�ux blowing/su
-tion a
tuation at walls in a full-information 
ontrol framework. Furthermore, in [25℄energy norm has been su

essfully introdu
ed to delay transition to turbulen
e at a
riti
al regime. Another quadrati
 performan
e measure investigated in this work is therate of dissipation whi
h has been �rstly introdu
ed in [52℄ applied to a measure-basedWiener-Hopf 
ontrol framework, basing on the physi
al intuition that in statisti
allystationary 
onditions the average skin fra
tion drag in a turbulent 
hannel �ow equalsthe average rate of dissipation of turbulent kineti
 energy. Then, a third measure hasbeen tested to a
hieve drag redu
tion, i.e. enstrophy norm, that is a quantity dire
tlyrelated to the kineti
 energy in the �ow and whi
h 
orresponds to dissipation e�e
ts inthe �uid. Finally, measurements available at walls have been used in order to obtain a
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k Controlquadrati
 norm of the state. These last 
ontrol laws have been applied in a �ow 
ontrolsetting for the �rst time in the present work.Before going into details, we will show how to 
al
ulate the integral over the domain
y ∈ [−1, 1] appearing in state norms, i.e. by de�ning proper methods of numeri
alquadrature depending on the dis
retization te
hniques adopted. Thus, when �nitedi�eren
es s
hemes have been introdu
ed to dis
retize wall-normal derivative operators,we 
hose a Lagrange quadrature s
heme, whose general de�nition is

∫ 1

−1

f(y) dy =
N∑

j=0

αjf(yj) (4.27)where f(y) is the fun
tion we want to integrate and αj are the integration weights.The 
hoi
e of su
h integration weights leads to di�erent quadrature s
hemes. In thepresent work we have de
ided to adopt the trapezoidal rule, whi
h de�nes the weights
{αj}N0 as follows:

αj =





1

2
for j = 0, N

1 otherwise (4.28)As for spe
tral derivatives, instead, we have implemented the strategy suggested in[28℄ and applied for the �rst time in [24℄. We start by approximating the integrandfun
tion f(y) with a Chebyshev expansion
f(y) =

N∑

j=0

ajTj(y) (4.29)where Tj(y) is the Chebyshev polynomial previously de�ned in Se
tion 3.3.2, while
oe�
ients ai are de�ned as
ai =

ci
N

N∑

j=0

bjf(yj)Tj(yj) (4.30)where
bj =





1

2
for j = 0, N

1 otherwise and ci =

{
1 for i = 0, N

2 otherwise (4.31)Then, by 
ombining Equations (4.29) and (4.30), we get
f(y) =

N∑

i=0

ciTi(y)

N∑

j=0

bj
N

f(yj)Ti(yj) (4.32)Substitution of Equation (4.32) into (4.27) leads to
∫ 1

−1

f(y) dy =
1

N

N∑

j=0

bjf(yj)
N∑

i=0

ciTi(yj)

∫ 1

−1

Ti(y) dy (4.33)
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tion design 55Finally, noti
ing that
∫ 1

−1

Ti(y) dy =





0 i odd
2

1− i2
i even (4.34)yields

αj =
bj
N

[
2 +

N∑

i=1

ci
1 + (−1)i

1− i2
cos

(
ijπ

N

)] (4.35)In the following, we will provide an analyti
al derivation of the proposed state norms.4.3.1 Energy normTurbulent kineti
 energy norm is de�ned in physi
al domain as follows:
E =

1

2V

∫

V

(u2 + v2 + w2) dV (4.36)where V is the volume of the 
omputation domain. After Fourier-transforming byreminding relations (3.9), we apply Parseval theorem to obtain:
E(α, β) =

1

8

∫ 1

−1

(|û|2 + |v̂|2 + |ŵ|2) dy =

=
1

8k4

∫ 1

−1

(α2v̂TDT
1 D1v̂ + β2η̂T η̂

XXXXXX−αβv̂TDT
1 η̂

XXXXXX−αβη̂TD1v̂+

+ k4v̂T v̂ + α2η̂T η̂ + β2v̂TDT
1 D1v̂

XXXXXX+αβv̂TDT
1 η̂

XXXXXX+αβη̂TD1v̂) dy =

=
1

8k2

∫ 1

−1

[v̂T (k2I +DT
1 D1)v̂ + η̂T η̂], dy

(4.37)
So, we 
an de�ne energy as a quadrati
 fun
tion of the state ve
tor x:

E(α, β) = xTQE(α, β)x = ‖x‖E (4.38)4.3.2 Dissipation normIf we 
onsider stationary 
onditions, dissipation rate of a turbulent �ow is de�ned as
D =

1

Re

∫

V

∂ui

∂uj

∂ui

∂uj
dV (4.39)After averaging and Fourier-transforming, we obtain

D(α, β) =
1

Re

1

2k2

∫ 1

−1

[v̂T (DT
2 D2 + 2k2DT

1 D1 + k4)v̂+

+ η̂T (k2 +DT
1 D1)η̂] dy

(4.40)
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k ControlSo, we 
an de�ne dissipation as a quadrati
 fun
tion of the state ve
tor x, as donepreviously:
D(α, β) = xTQD(α, β)x = ‖x‖D (4.41)

4.3.3 Enstrophy normEnstrophy is de�ned as the integral of the square of the total vorti
ity:
Ξ =

1

2V

∫

V

(η2x + η2y + η2z) dV (4.42)where
ηx =

∂w

∂y
− ∂v

∂z
⇒ η̂x =

1

k2
(jαD1η̂ + jβD2v̂ − jβk2v̂)

ηy =
∂u

∂z
− ∂w

∂x
⇒ η̂y = η̂

ηz =
∂v

∂x
− ∂u

∂y
⇒ η̂z =

1

k2
(jαk2v̂ − jαD2v̂ + jβD1η̂)

(4.43)Then, through substitution in Equation (4.42), after Fourier-transforming, we obtain
Ξ(α, β) =

1

8

∫ 1

−1

(|η̂x|2 + |η̂y|2 + |η̂z|2) dy =

=
1

8k4

∫ 1

−1

(α2η̂TDTDη̂ + β2v̂DT
2 D2v̂ + β2k4v̂T v̂ + k4η̂T η̂ + α2k4v̂T v̂

+ α2v̂TDT
2 D2v̂ + β2η̂TDTDη̂

hhhhhhhh+2αβη̂TDTD2v̂
hhhhhhh−2αβk2η̂TDT v̂+

− 2β2k2v̂TD2v̂ − 2α2k2v̂TD2v̂ +
hhhhhhhh−2αβη̂TDTD2v̂

hhhhhhh+2αβk2η̂TDT v̂) dy =

=
1

8k2

∫ 1

−1

[η̂T (DTD + k2I)η̂ + v̂T (DT
2 D2 − 2k2D2 + k4I)v̂] dy (4.44)Again, state norm is represented as

Ξ(α, β) = xTQΞ(α, β)x = ‖x‖Ξ (4.45)
4.3.4 Wall-measurement normAs previously mentioned, matrix C is used to relate output measurements to the stateve
tor. Sin
e only wall information is available, the measures we 
an dispose of arespanwise and streamwise wall shear stresses, namely τxw

and τzw , and wall pressure
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pw, for whi
h the following relations hold:

τxw
=

1

Re

∂u

∂y

∣∣∣∣
y±1

(4.46)
τzw =

1

Re

∂w

∂y

∣∣∣∣
y±1

(4.47)
pw = p|y±1 (4.48)Sin
e the 
ontrol s
heme we have derived is applied to a state-spa
e system in Fourierdomain, it is ne
essary to re
ast these relations in wavenumber spa
e. Hen
e, wallshear stresses in Fourier spa
e are determined as

τ̂xw
=

1

Re
D1

∂û

∂y

∣∣∣∣
y=±1

=
j

k2Re

[
αD2w −βD1w

] [v̂
η̂

]∣∣∣∣∣
y=±1

(4.49)
τ̂zw =

1

Re
D1

∂ŵ

∂y

∣∣∣∣
y=±1

=
j

k2Re

[
βD2w αD1w

] [v̂
η̂

]∣∣∣∣∣
y=±1

(4.50)Wall pressure is re
overed by taking the sum of Equation (3.3b), derived with respe
tto x and Equation (3.3d), derived with respe
t to z, and by evaluating it at walls insteady-state 
onditions. We get
∂2p

∂x2

∣∣∣∣
y±1

+
∂2p

∂z2

∣∣∣∣
y=±1

= − 1

Re

∂∆v

∂y

∣∣∣∣
y=±1

(4.51)Then, after Fourier-transforming
p̂w =

1

k2Re
D3v̂|y=±1 (4.52)we �nd the asso
iated output-to-state relation

p̂w =
1

k2Re

[
D3w 0

] [v̂
η̂

]∣∣∣∣∣
y=±1

(4.53)Nevertheless, the lifting te
hnique we have introdu
ed to apply LQR 
ontrol has ledto a modi�ed de�nition of state ve
tor. For this reason, now we have to re
ast theserelations in a 
oherent form. We start by partitioning state ve
tor into homogeneousand inhomogeneous parts:
[
v̂

η̂

]
=




φ̂−1

v̂h + v̂p

φ̂+1

0

η̂h + η̂p

0




=




φ̂−1

v̂h + Zvp, v+1
φ̂+1 + Zvp, v−1

φ̂−1

φ̂+1

0

η̂h + Zηp, v+1
φ̂+1 + Zηp, v−1

φ̂−1

0




(4.54)
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k ControlHen
e, if now we 
onsider for example the streamwise wall shear stress at lower walland we adopt �nite di�eren
es s
hemes in order to dis
retize un
entered derivatives,with some manipulations we get
τ̂xw −1

=
j

k2Re

[
αD0

2w αD1:4
2w 0 . . . 0 0

−βD0
1w βD1:4

1w 0 . . . 0 0

][
v̂

η̂

]
=

=
j

k2Re
{
[
αD1:4

2w 0 . . . 0 −βD1:4
1w 0 . . . 0

] [v̂h
η̂h

]
+

+
[
αD1:4

2w 0 . . . 0 βD1:4
1w 0 . . . 0

]
Z +

[
0 αD0

2w

]
φ̂}

(4.55)
Similarly, for the upper wall we �nd

τ̂xw +1
=

j

k2Re

[
0 0 . . . 0 αDn−4:n−1

2w
αDn

2w

0 0 . . . 0 −βDn−4:n−1
1w

−βDn
1w

][
v̂

η̂

]
=

=
j

k2Re
{
[
0 . . . 0 αDn−4:n−1

2w
0 . . . 0 −βDn−4:n−1

1w

] [v̂h
η̂h

]
+

+
[
0 . . . 0 αDn−4:n−1

2w
0 . . . 0 −βDn−4:n−1

1w

]
Z +

[
αDn

2w 0
]
φ̂}(4.56)For spanwise wall shear stresses and pressure measurements, their output-to-state re-lations 
an be found in a similar manner. Matrix C is then obtained by assembling allthese relations, as follows:

y =



τxw ±1

τxw ±1

pw±1


 =



Cτxw ±1

Cτxw ±1

Cpw ±1






v̂h

η̂h

φ̂


 = Cx̂s (4.57)A quadrati
 norm of the state is then obtained by 
onsidering

yT y = xTCTCx = xTQCx = ‖x‖C (4.58)4.4 Solution of Ri

ati equationRi

ati equation arising from optimal 
ontrol formulation is a nonlinear 
ontinuousalgebrai
 equation (CARE) for whi
h many algorithms have been proposed in the lastde
ades in order to provide a numeri
al solution. All of them 
an be grouped intotwo 
ategories, the �rst one 
onsidering those algorithms whi
h �nd a solution throughmatrix fa
torization, the se
ond involving numeri
al pro
edures whi
h de�ne an itera-tive method 
onverging to the unique solution. Usually, in standard 
ontrol problemsfa
torization methods are well suited sin
e they have a deterministi
 
omputationaltime. On the other hand, if we are dealing with extremely ill-
onditioned matri
es,then fa
torization te
hniques 
an lead to ina

urate solutions, while iterative methods,
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ati equation 59given an initial stabilizing solution, are able to 
onverge to a
tual solution with thedesired degree of pre
ision.Sin
e in the present work a set of Ri

ati equations needed to be solved during kernelgeneration phase and for smaller penalties ρ matri
es be
ame very ill-
onditioned, aniterative solver has been implemented, based on Newton-Kleinman method. In orderto initialize su
h solver, we have used the solution of a fa
torizing te
hnique based onS
hur-Hamilton method. In the following, the two methods adopted in tandem will bebrie�y dis
ussed.4.4.1 S
hur-Hamilton methodStarting by 
onsidering CARE
ATP + PA+Q− PBR−1BTP = 0 (4.59)the key idea is to build the asso
iated Hamiltonian matrix

H =

[
A −S

−Q −AT

] (4.60)where S = BR−1BT . Then, it 
an be proved that a matrix P is a solution of theCARE if and only if the 
olumns of [ IP ] span an n-dimensional invariant subspa
e ofthe Hamiltonian matrix H in (4.60). To prove that, we introdu
e the following matrix
J :

J =

[
0 I

−I 0

] (4.61)then, we assume that a n× n matrix L exists su
h that
H

[
I

P

]
=

[
I

P

]
L (4.62)Multiplying both sides of (4.62) by the inverse of J , we �nd

J−1H

[
I

P

]
= J−1

[
I

P

]
L (4.63)Hen
e, we 
an get further simpli�
ation and write

[
Q AT

A −S

][
I

P

]
=

[
−P

I

]
L (4.64)Finally, by multiplying both sides of (4.64) by [ I P ], we get

PA+ATP +Q− PSP = 0 (4.65)
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k Controlshowing that P satis�es the CARE. To prove the 
onverse, we note that if P is asolution of the CARE, then
H

[
I

P

]
=

[
A− SP

−Q−ATP

]
=

[
A− SP

P (A− SP )

]
=

[
I

P

]
(A− SP ) (4.66)that is, the 
olumns of [ IP ] span an invariant subspa
e of H . As a 
orollary, it 
an bestraightforwardly proved that if the 
olumns of [ P1

P2

] span an n-dimensional invariantsubspa
e of the Hamiltonian matrix H and P1 is invertible, then P2P
−1
1 is a solutionof the CARE. With this in mind, to solve the CARE starting from Hamiltonian matrix

H , we need �rst to transformH into real S
hur form (RSF) by using a QR fa
torizationalgorithm, as des
ribed in [40℄. Now, if UTHU is an ordered real S
hur matrix obtainedthrough transformation matrix U , then we have
UTHU =

[
T11 T12

0 T22

] (4.67)where the eigenvalues of H with negative real parts have been sta
ked in T11 and thosewith positive real parts are sta
ked in T22. Then, if we 
onformably partition U in thesame way
U =

[
U11 U12

U21 U22

] (4.68)after substitution of (4.68) into Equation (4.67), we get
H

[
U11

U21

]
=

[
U11

U21

]
T11 (4.69)Hen
e, the previously mentioned 
orollary asserts that matrix P = U21U

−1
11 is theunique stabilizing solution of the CARE we were sear
hing for.4.4.2 Newton-Kleinman methodThis algorithm 
onsiders an initial stabilizing solution P0 for Ri

ati equation (4.59).Then, sin
e

P = P0 +∆P with ∆P = P −X0 (4.70)we 
an substitute this expression into (4.59) and �nd
Q+ PA+ATP − P0SP0 −∆PS∆P − P0S∆P −∆PSP0 = 0 (4.71)After simpli�
ation, we 
an write

(A− SP0)
TP + P (A− SP0) = −Q− P0SP0 +∆PS∆P (4.72)
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ati equation 61where we 
an negle
t the se
ond-order term ∆PS∆P in the RHS, sin
e we are as-suming ∆P is small. Thus, we obtain the following Lyapunov equation for the nextapproximation P1:
(A− SP0)

TP1 + P1(A− SP0) = −Q− P0SP0 (4.73)The strategy adopted till now may be 
onsidered a sort of Newton's method, even ifupdating rule is not 
ast in the 
anoni
al form. So, let us de�ne the following quantity:
RC(P ) = PA+ATP − PSP +Q (4.74)Then, we 
ompute the �rst derivative of RC(P ), for whi
h it is ne
essary to adopt thede�nition of derivative generalized to Bana
h spa
e, i.e. Fré
het derivative, as follows:

R′
P (Z) = (A− SP )TZ + Z(A− SP ) (4.75)thus, de�ning ∆i = Pi+1 − Pi, Newton's method for RC(P ) = 0 is

R′
Pi
(∆i) +RC(Pi) = 0 (4.76)whi
h is a Lyapunov equation. Hen
e, solution at step i + 1 is determined as Pi+1 =

Pi +∆i. So said, we 
an summarize all the steps in the following algorithm:1. Choose an initial stabilizing solution P02. Compute RC(Pi) = ATPi + PiA+Q− PiSPi3. Solve the Lyapunov equation for ∆i:
(A− SPi)

T∆i +∆i(A− SPi) +RC(Pi) = 0 (4.77)4. Compute Pi+1 = Pi +∆iThis algorithm ends when a prede�ned number of maximum iterations is rea
hed orwhen a �xed toleran
e is a
hieved, i.e.
‖Pi+1 − Pi‖F

‖Pi‖F
≤ ǫ (4.78)where ‖.‖F denotes Frobenius matrix norm, de�ned as

‖Pi‖F =
√
Tr{PT

i Pi} (4.79)Unfortunately, another issue is still pending, sin
e if an ill-
onditioned matrix leadsto ina

urate solution by adopting S
hur-Hamilton method, then we will en
ounternumeri
al di�
ulties in solving Lyapunov equation (4.77) inside Newton-Kleinman
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k Controlmethod using standard fa
torization te
hniques. Then, ina

urate solution of Lya-punov equation will lead to slower rate of 
onvergen
e, thus deteriorating performan
es.Therefore, the same approa
h used for Ri

ati equation has been followed to solveLyapunov equation, i.e. a fa
torization algorithm based on S
hur method has beenimplemented in order to �nd an initial stabilizing solution for an iterative Lyapunovsolver, based on Smith method. What follows is a brief des
ription of the te
hniquesadopted in the present work.4.5 Solution of Lyapunov equation4.5.1 S
hur methodThis method is a
tually the most widely used and 
omputationally e�e
tive approa
h.It was proposed for the �rst time in [2℄ and it starts by 
onsidering the standardalgebrai
 Lyapunov equation:
XA+ATX = C (4.80)Now, we take the RSF of AT , namely R = UTATU of matrix AT , whi
h 
an beobtained through QR fa
torization, as previously mentioned. After this transformation,Lyapunov equation (4.80) is redu
ed to
Y RT +RY = Ĉ (4.81)where Y = UTXU and Ĉ = UTCU . Now let

Y = [y1, . . . , yn], Ĉ = [ĉ1, . . . , ĉn], R = [rij ] (4.82)and assume that 
olumns yi+1 through yn have been 
omputed and 
onsider the fol-lowing two 
ases:
• Case 1: rk,k−1 = 0. Then, yk is determined by solving the quasi-triangularsystem:

(R+ rkkI)yk = ĉk −
n∑

j=k+1

rkjyj (4.83)
• Case 2: rk, k−1 6= 0 for some k. This indi
ates that there is a S
hur bump onthe diagonal. This enables to 
ompute yi−1 and yi simultaneously, by solving thefollowing linear system:

R[yi−1, yi] + [yi−1, yi]

[
ri−1, i−1 ri, i−1

ri−1, i rii

]
=

= [ĉi−1, ĉi]−
n∑

j=i+1

[ri−1, j , rijyj ] = [dk−1, dk]

(4.84)
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edure is repeated until all the 
olumns of Y have been 
omputed.
4.5.2 Smith methodThis te
hnique has been �rstly introdu
ed in [69℄ and has re
eived a lot of attentionin the following de
ades in order to provide this method with faster 
onvergen
e. Thekey idea 
onsists of rewriting Lyapunov equation (4.80) in the following form:

(pI −AT )X(pI −A)− (pI +AT )X(pI +A) = −2pC (4.85)where p is a positive parameter. Premultiplying both sides by (pI −AT )−1 and post-multiplying by (pI −A)−1, we get the following Stein equation:
X − STXS = T (4.86)where S = (pI +A)(pI −A)−1 and T = −2p(pI −AT )−1C(pI −A)−1. Thus, startingfrom an initial 
ondition T0, the solution at ea
h step i+1 is iteratively determined as

Xi+1 = T + STXiS (4.87)For the sake of 
ompleteness we have to mention that a faster 
onverging solution hasbeen introdu
ed by Penzl in [58℄. It exploits the alternate dire
tion impli
it (ADI)method, whi
h de�nes the solution Xi at ea
h step, through two separate substeps, asfollows:
(AT + piI)Xi−1/2 = C −Xi−1(A− piI) (4.88)

(AT + piI)Xi = C −Xi−1/2(A− piI) (4.89)It 
an be proved that Smith's algorithm is a parti
ular 
ase of ADI method, whereparameters pi assume a single 
onstant value. The 
hoi
e of these parameters is ofgreat importan
e, sin
e the rate of 
onvergen
e has been proved to be strongly a�e
ted.In parti
ular, if we de
ide to 
hoose n parameters pi, the optimal 
hoi
e is given bythe solution of the following minimax problem:
{p1, . . . , pn} = argmin max

λi∈σ(A)

∣∣∣∣∣
n∏

i=1

pi − λ

pi + λ

∣∣∣∣∣ (4.90)where σ(A) is the spe
trum of matrix A. Unfortunately, no 
losed form solution existsfor this problem, so suboptimal te
hniques must be developed, based on Ritz approxi-mation of matrix spe
trum, as shown in [15℄.
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(a) Kernel for wall-normal velo
ity v (b) Kernel for wall-normal vorti
ity ηFigure 4.1: Lo
alized 
ontroller gains relating the state x to the 
ontrol for
ing u atwalls: visualized are positive (red) and negative (blue) isosurfa
es at 6% of the peak value.Kernels were 
omputed at Re = 1500 by using energy norm and ρ = 10−4 in the 
ostfun
tion.
(a) Kernel for wall-normal velo
ity v (b) Kernel for wall-normal vorti
ity ηFigure 4.2: Lo
alized 
ontroller gains relating the state x to the 
ontrol for
ing u atwalls: visualized are positive (red) and negative (blue) isosurfa
es at 6% of the peak value.Kernels were 
omputed at Re = 1500 by using dissipation norm and ρ = 10−4 in the 
ostfun
tion.4.6 Parametri
 study on the e�e
tiveness of LQR 
on-trolIn order to assess the performan
es of the 
ontrol laws we have developed, a set ofkernels has been generated 
onsidering di�erent 
ontrol penalties and di�erent statenorms into the 
ost fun
tion (4.11). Then, DNS have been performed applying 
ontrolfeedba
k through boundary 
onditions for a 
ouple of Reynolds numbers that havebeen widely studied in literature, namely Re = 1500 and Re = 3500. In all simula-tions, the dimensions of the 
omputational domain have been Lx = 4π and Lz = 2π. Inparti
ular, for Re = 1500, 
ontrol gains have been 
omputed for an array of wavenum-bers (α, β) 
onsidering 0 ≤ α ≤ 64 and −64 ≤ β ≤ 64. Computation of a singlekernel at this Reynolds number has required about 4 hours of CPU time on a singledual-CPU Intel using Matlab Parallel Computing Toolbox for the solution of CAREfor ea
h wavenumber pair. Convolution kernels 
omputed using this approa
h aredepi
ted in Figures 4.1 - 4.4. What 
an be immediately observed is that althoughdi�erent state norms have been 
onsidered, all kernels for wall-normal velo
ity angleaway from the wall in the upstream dire
tion, while those for vorti
ity appear as an-
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(a) Kernel for wall-normal velo
ity v (b) Kernel for wall-normal vorti
ity ηFigure 4.3: Lo
alized 
ontroller gains relating the state x to the 
ontrol for
ing u atwalls: visualized are positive (red) and negative (blue) isosurfa
es at 6% of the peak value.Kernels were 
omputed at Re = 1500 by using enstrophy norm and ρ = 10−2 in the 
ostfun
tion.
(a) Kernel for wall-normal velo
ity v (b) Kernel for wall-normal vorti
ity ηFigure 4.4: Lo
alized 
ontroller gains relating the state x to the 
ontrol for
ing u atwalls: visualized are positive (red) and negative (blue) isosurfa
es at 6% of the peak value.Kernels were 
omputed at Re = 1500 by using measure-based norm and ρ = 10−2 in the
ost fun
tion.tisymmetri
 bulges more or less �at depending on the state norm used. These shapesare parti
ularly meaningful sin
e they intera
t with turbulent stru
tures by 
ontrastingthe 
onve
tive delay, whi
h requires to anti
ipate �ow perturbations inside the domainby applying wall a
tuation downstream.As for DNS performed at Re = 1500, they have required about 14 days of 
omputa-tional time and they were run on 
luster Zeno, a set of 10 dual-CPU Intel Xeon providedby the Department of Aerospa
e Engineering of Polite
ni
o di Milano. Ea
h simulationwas run 
reating two threads on a single 
omputer in order to exploit the paralleliza-tion performan
es of our DNS 
ode. Approximately more than 2 months of CPU timewas taken. Results have shown that energy norm is an ex
ellent 
hoi
e for targetingdrag. However, the 
hoi
e of the referen
e pro�le U(y) (Figure 4.7) in kernel generationphase has a signi�
ant e�e
t of overall performan
es. As a matter of fa
t, when usinga turbulent referen
e pro�le a maximum drag redu
tion of 18% 
an be a
hieved, andoverall performan
es appear quite independent of 
ontrol penalty, as we 
an noti
e fromFigures 4.5. On the other hand, by using Poiseuille laminar pro�le, the statisti
s ofthe 
ontrolled �ow show improved performan
es and a ri
her behavior (Figure 4.6). Inparti
ular, for ρ = 10−4 a
tual relaminarization has been observed with �ow statisti
s
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(a) Mean Skin Fri
tion

(b) Turbulent kineti
 energy

(
) Dissipation rateFigure 4.5: Main statisti
s of the un
ontrolled (red line) and 
ontrolled �ow at Re = 1500using energy norm, turbulent referen
e pro�le and di�erent 
ontrol penalties ρ, namely 10−2(bla
k line) and 10−4 (blue line) with respe
t to laminar �ow (magenta line).
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(a) Mean Skin Fri
tion

(b) Turbulent kineti
 energy

(
) Dissipation rateFigure 4.6: Main statisti
s of the un
ontrolled (red line) and 
ontrolled �ow at Re = 1500using energy norm, Poiseuille referen
e pro�le and di�erent 
ontrol penalties ρ, namely 10−2(bla
k line), 10−3 (blue line), 10−4 (
yan line) and 10−5 (green line) with respe
t to laminar�ow (magenta line).
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Figure 4.7: Comparison between laminar and turbulent referen
e pro�le U(y) at Re =
1500.slowly evolving towards 
eiling laminar 
ondition, thus determining a maximum dragredu
tion of nearly 53%. Surprisingly, this is the �rst result in �ow 
ontrol literatureof relaminarization at Re = 1500 by adopting a LQR 
ontrol approa
h with 
onstantgains. Before this, a
tual relaminarization has been obtained using a LQR 
ontrol in[26℄ 
ombined with a sort of gain-s
heduling of the referen
e velo
ity pro�le whi
h wasvaried from turbulent to laminar as simulation advan
ed. The possible reasons whythis result has never been attained before are many. First of all, as mentioned before,with small values of 
ontrol penalty ρ standard S
hur-Hamilton Ri

ati solvers havebeen proved to produ
e ina

urate solution. In the present work, Newton-Kleinmaniterative solver has always been used in 
as
ade in order to a
hieve further a

ura
yin the solution. Furthermore, by using Poiseuille referen
e pro�le, skin fri
tion valuesexhibit a prominent overshooting at the very beginning of the simulation. This 
ouldlead to possible numeri
al problems in the evaluation of wall derivatives and has alsoa limiting e�e
t on time-step in the semi-impli
it DNS 
ode, thus slowing down thesimulation. A
tually, relaminarization is the highest possible result in turbulent dragredu
tion, if our aim is to obtain a net power saving by using blowing/su
tion a
tuatorsat wall, as analyti
ally demonstrated by Bewley, whose proof is reported in AppendixA. Moreover, this is 
onsistent with the assertion that turbulen
e in 
hannel �ow isan essentially linear pro
ess [36℄ and a linear 
ontroller is su�
ient to suppress turbu-len
e at least at low Reynolds numbers. Then, this e�e
tive set of 
ontrol parametershas been tested through DNS by 
onsidering a di�erent �ow �eld as initial 
ondition.Results (Figure 4.8) have shown that relaminarization pro
ess is independent of theinitial 
onditions of the �ow. The only drawba
k of this 
ontrol s
heme is that it re-quires high performan
es from blowing/su
tion a
tuators. As a matter of fa
t, when
ontrol is applied at the very beginning of the simulation, wall a
tuation rea
hes upto 70% of bulk velo
ity. For these reason, the e�e
t of a
tuator saturation at 10% ofbulk velo
ity on overall performan
es has been investigated. Results have shown that
ontrol peak values are e�e
tively redu
ed in the transitory whereas no noteworthyperforman
e degradation has been observed, as 
an be stated from Figure 4.9.
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Figure 4.8: Mean skin fri
tion of the un
ontrolled (red line) and 
ontrolled �ow at
Re = 1500 using energy norm, Poiseuille referen
e pro�le and ρ = 10−4. Three di�erentinitial 
onditions have been 
onsidered in DNS (blue, bla
k and green lines).Table 4.1: Drag redu
tion DR and net power saving PSP of feedba
k 
ontrol usingenergy norm and turbulent referen
e pro�le.

ρ DR PNet

1 10−2 28.8% 15%
1 10−4 28.1% 13.6%Visualizing the �ow �eld during relaminarization pro
ess also o�ers a valuable o
-
asion of observing how blowing/su
tion applied at walls a
ts in order to manipulateand destroy turbulent stru
tures. What 
an be inferred from Figures 4.10 - 4.12 isthat su
tion is introdu
ed in the proximity of high-speed streaks, while a blowing a
-tion is introdu
ed under low-speed streaks. The same happens for sweep and inje
tionphenomena that 
hara
terize wall turbulen
e, as outlined in Chapter 1. In parti
ular,su
tion is applied in presen
e of inje
tion events, while blowing o

urs when sweepevents take pla
e. In this way, the 
y
le of near-wall turbulen
e generation is inter-rupted, 
ausing the �ow to fully relaminarize.Now, if we are interested in net power PNet saved thanks to wall feedba
k 
ontrol,we need to 
ompute the power PSP spent for a
tuation. For this purpose, we used theformula proposed in [5℄:

PSP =
1

T

∫

T

∫

A

(
|φ|φ

2

2
+ |φ|(p− p̄)

)
dAdt (4.91)where A is the area 
overed by a
tuators and p̄ is the average wall pressure. Resultsare shown in Tables 4.1 and 4.2.As for the other 
ontrol laws they proved to have limited impa
t on drag redu
tion.As a matter of fa
t, kernels based on measure norm provided a maximum drag redu
-tion of about 15% and net saving of around 12%. In parti
ular weak dependen
e hasbeen observed of 
ontrol penalty ρ on overall performan
es. A possible explanation
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(a) Mean skin fri
tion

(b) Control peak valueFigure 4.9: E�e
t of a
tuator saturation on drag redu
tion at Re = 1500 using energynorm, Poiseuille referen
e pro�le and ρ = 10−4: un
ontrolled �ow (red line), 
ontrolled�ow without (bla
k line) and with saturation (blue line).to this behavior may be found by looking at the shape of the asso
iated 
onvolutionkernels in Figure 4.4. In fa
ts, these kernels, with respe
t to the others, appear tobe 
on�ned to near-wall region, that leads to poor �ow manipulation 
apability. Con-sidering enstrophy norm, instead, a maximum drag redu
tion of nearly 25% has beena
hieved for ρ = 10−4, but simulations have su�ered by strong numeri
al instability,due to the high values of 
ontrol a
tuation. For this reason it is not surprising that,among the possible 
ombinations of 
ontrol penalties and referen
e velo
ity pro�les,none of them has led to positive net drag redu
tion. Then, as far as dissipation normis 
on
erned, it proved to yield a maximum drag redu
tion of about 30% for ρ = 10−3by using Poiseuille referen
e velo
ity, as we 
an see in Figure 4.13. Unfortunately, asfor enstrophy norm, the power spent for a
tuation is very high, and net power savingis very limited, if not negative, as indi
ated in Table 4.3.Finally, 
onvolution kernels have been designed for redu
ing the drag of a turbu-lent 
hannel �ow at a higher Reynold number, namely Re = 3500. This s
enario hasrequired to a

ount for a wider array of wavenumbers (α, β), i.e. 0 ≤ α ≤ 128 and
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(a) Frame at t+ = 7.5 (b) Frame at t+ = 15

(
) Frame at t+ = 75 (d) Frame at t+ = 150Figure 4.10: Three-dimensional view at di�erent time steps of a turbulent 
hannel �owat Re = 1500 
ontrolled by using energy norm and ρ = 10−4: visualized are high- (light)and low- (dark) speed streaks at 30% of bulk velo
ity.Table 4.2: Drag redu
tion DR and net power saving PNet of feedba
k 
ontrol usingenergy norm and Poiseuille referen
e pro�le.
ρ DR PNet

1 10−3 47.5% 39.1%
5 10−4 52.6% 46.1%
1 10−4 52.3% 47.5%
5 10−5 51.2% 44.8%
1 10−5 49.4% 38.7%

−128 ≤ β ≤ 128, during kernel design, due to energeti
 
onsiderations. The 
ompu-tation of the whole set of feedba
k gains has required approximately 40 hours of CPUtime on a dual-
ore Intel using Matlab Parallelization Toolbox for the solution of theCARE asso
iated to ea
h wavenumber pair. Dire
t Numeri
al Simulations have beenrun on the 
luster of University of Salerno, where they took 4 days ea
h using 10 AMDOpteron quad-
ore ma
hines for a total of more than 20 months of CPU time. Resultshave shown that using Poiseuille referen
e pro�le in this 
ase leads to relevant dragin
rease, while things get better if turbulent pro�le is adopted. This happens be
ausethe �ow is very far from laminar 
ondition (Figure 4.14), hen
e Poiseuille pro�le is nolonger representative of �ow �eld. Furthermore, as suggested in [26℄, we introdu
edTable 4.3: Drag redu
tion DR and net power saving PSP of feedba
k 
ontrol usingdissipation norm and Poiseuille referen
e pro�le.
ρ DR PNet

1 10−2 24.9% −30.1%
1 10−3 31.9% 6.6%
1 10−4 30.5% 3.2%
1 10−5 30.1% 3.1%
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(a) Frame at t+ = 7.5

(b) Frame at t+ = 15

(
) Frame at t+ = 40Figure 4.11: Top view at di�erent time steps of the lower half of a turbulent 
hannel�ow at Re = 1500 
ontrolled by using energy norm and ρ = 10−4: visualized are high-(light) and low- (dark) speed streaks at 30% of bulk velo
ity. Control a
tuation at wall isrepresented by 
ontours graduated a

ording to the legend.
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(a) Frame at t+ = 7.5

(b) Frame at t+ = 15

(
) Frame at t+ = 40Figure 4.12: Top view at di�erent time steps of the lower half of a turbulent 
hannel �owat Re = 1500 
ontrolled by using energy norm and ρ = 10−4: visualized are inje
tion (light)and sweep (dark) events.Control a
tuation at wall is represented by 
ontours graduateda

ording to the legend.
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(a) Mean Skin Fri
tion

(b) Turbulent kineti
 energy

(
) Dissipation rateFigure 4.13: Main statisti
s of the un
ontrolled (red line) and 
ontrolled �ow at Re =
1500 using dissipation norm and di�erent 
ontrol penalties ρ, namely 10−2 (bla
k line),
10−3 (blue line), 10−4 (
yan line) and 10−5 (green line) with respe
t to laminar �ow(magenta line).
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Figure 4.14: Comparison between laminar and turbulent referen
e pro�les U(y) at Re =
3500.

(a) Kernel for wall-normal velo
ity v (b) Kernel for wall-normal vorti
ity ηFigure 4.15: Lo
alized 
ontroller gains relating the state x to the 
ontrol for
ing u atwalls: visualized are positive (red) and negative (blue) isosurfa
es at 6% of the peak value.Kernels were 
omputed at Re = 3500 by using energy norm with smoothing fun
tion f(y)and ρ = 10−2 in the 
ost fun
tion.a weight fun
tion f(y) in the integrand of energy norm, whi
h has proved to a
hievethe best performan
es at Re = 1500. Su
h fun
tion is de�ned as f(y) = 1 + Ū ′(y)and the proposed e�e
t is to indire
tly target the 
oupling term LC of Orr-Sommerfeldand Squire operator (3.32). Looking at kernel shape (Figure 4.15), the introdu
tion offun
tion f(y) has led to 
onvolution kernels that are more lo
alized to near-wall partof the �ow �eld.Results in Figure 4.16 have shown that a maximum drag redu
tion of nearly 28%
an be a
hieved with a net saving of about 18%. Moreover, it has been observed thatoverall performan
es are not a�e
ted by the 
hoi
e of 
ontrol penalty ρ, thus suggestingthat an intrinsi
 limit exists in the appli
ation of a linear feedba
k 
ontrol s
heme whennonlinearities be
ome relevant at high Reynold numbers.
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(a) Mean Skin Fri
tion

(b) Turbulent kineti
 energy

(
) Dissipation rateFigure 4.16: Main statisti
s of the un
ontrolled (red line) and 
ontrolled �ow at Re =
3500 using energy norm, turbulent referen
e pro�le and di�erent 
ontrol penalties ρ, namely
10−2 (bla
k line), 10−3 (blue line) and 10−4 (
yan line) with respe
t to laminar �ow(magenta line).



Chapter 5
Optimal Output Feedba
kControl
Optimal state feedba
k 
ontrol has been proved to yield very good performan
es inredu
ing drag in a turbulent 
hannel �ow at the Reynold numbers we have 
onsidered.Unfortunately, in real appli
ations the knowledge of the entire state of the systemis hardly available, sin
e it would require to mount sensors inside the 
hannel �ow,solution that is 
learly unpra
ti
al and 
ould give origin to unsought load e�e
ts. Forthis reason, the present 
hapter address the issue of �nding an optimal 
ontrol law basedsolely on feedba
k of wall-measurement information. What follows is an analyti
alderivation of su
h 
ontrol approa
h. After that, some useful tools will be introdu
edand applied in order to assess the e�e
tiveness of output feedba
k with respe
t to statefeedba
k for the present �ow 
ontrol framework.
5.1 Analyti
al derivationDire
t feedba
k of measurement ve
tor y means 
onsidering a 
ontrol input u = −Kya
ting on the linear time-invariant system 
onsidered in Chapter 4. With these expres-sion, after manipulations of LQR 
ost fun
tion J , we get the following expression:

J =
1

2
Tr
{
PX0 + Λ[(A−BKC)TP + P (A−BKC)+

+Q+ CTKTRKC]
} (5.1)77
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k Controlwhere X0 is the initial state ve
tor at time t = 0. Now, by setting to zero all thederivatives, we �nd




∂J

∂Λ
= (A−BKC)TP + P (A−BKC) +Q+ CTKTRKC = 0 (5.2a)

∂J

∂P
= X0 + (A−BKC)Λ + Λ(A−BKC)T = 0 (5.2b)

∂J

∂K
= RKCΛCT −BTΛCT = 0 (5.2
)hen
e, from Equation (5.2
), we obtain

K = R−1BTΛCT (CΛCT )−1 (5.3)As we 
an see, the system is highly nonlinear and totally 
oupled, so that it is notpossible to obtain the solution from a single Ri

ati equation as in full state approa
h.In order to over
ome this deadlo
k, an iterative pro
edure has been implemented basedon steepest des
ent te
hnique. The algorithm we have developed leverages the seminalwork of Levine appearing in [45℄ and [46℄. It starts by de�ning an initial value F forthe 
ost fun
tion and the toleran
e on the minimum step size αmin. Then, 
onsideringan initial stabilizing solution K, the algorithm involves the following steps:1. Cal
ulate P with Equation (5.2a)2. Cal
ulate Λ with Equation (5.2b)3. Set K0 = K4. Cal
ulate K with Equation (5.3)5. Cal
ulate ∆K = K −K06. Set α = 17. Cal
ulate K = K0 + α∆K8. Cal
ulate P with Equation (5.2a)9. Cal
ulate J = 1
2Tr {PX0}10. Set α = α/211. If the system is stable and J < F , then set F = J , else go to 712. If α < αmin then ends, else go to 2It is to remark, however, that even if the existen
e of a global minimum is assured,possible numeri
al problems may o

ur due to the presen
e of multiple stationarysolutions. For these reasons, optimization has been repeated starting from di�erentinitial solutions, until the 
ost fun
tion F has rea
hed a su�
ient degree of performan
e,that 
ould not 
oin
ide with the global minimum.
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e 795.2 Measures of performan
eIn order to assess the performan
es of output feedba
k 
ontrol with respe
t to LQR
ontrol, we have 
al
ulated the feedba
k gains for a wavenumber pair (αβ), then wehave applied the performan
e measures outlined in [7℄ in order to 
ompare the resultswith full state 
ontrol developed in Chapter 4. A useful tool whi
h has been proved tobe parti
ularly meaningful is the 
on
ept of H2 and H∞ norm of disturban
e-to-statefun
tion. As a matter of fa
t, H2 norm of the transfer fun
tion of a system representsan estimate of the expe
ted rms value of the transfer fun
tion output with a unitaryinput, whereas H∞ norm is a measure of worst 
ase ampli�
ation of the disturban
ea�e
ting the system. More spe
i�
ally, given a transfer fun
tion Tnx(s) in Lapla
edomain, de�ned as
X(s) = Q1/2(sI −A)−1Bn N(s) (5.4)where A is the state matrix of the system, Bn the input disturban
e matrix, Q thestate weight in optimal 
ontrol 
ost fun
tion, N(s) and X(s) the input disturban
e andstate ve
tor in Lapla
e domain, respe
tively. Then the H2 norm of Tnx(s) is de�ned as

‖Tnx‖2 =
1

2π

∫ ∞

−∞

Tr{Tnx(jω)
TTnx(jω)} dω (5.5)However, this formulation is not parti
ularly amenable to numeri
al 
omputation, sowe preferred to 
al
ulate the H2 norm as follows:

‖Tnx‖2 =
√
Tr{BT

nLBn} where ATL+ LA+Q = 0 (5.6)As for H∞ norm, it is de�ned as
‖Tnx‖∞ = sup

ω
σmax[Tnx(jω)] = γ (5.7)where σmax is the maximum singular value. Unfortunately, a 
losed form does not existto 
ompute su
h norm, but it 
an be sought by an iterative sear
h. For this reason, weadopted the software 
vx, an advan
ed 
onvex solver developed by Grant and Boyd ofStanford University and des
ribed in [23℄, to solve an equivalent minimization problem:





min γsubje
t to ℜ
{
eig

[
A 1

γBnB
T
n

−Q −AT

]}
< 0

(5.8)5.3 Output feedba
k performan
e assessmentIn order to understand how output feedba
k behaves with respe
t to full-state 
ontrol,
H2 and H∞ norm of disturban
e-to-state transfer fun
tion have been 
al
ulated at
Re = 1500 for a 
ouple of wavenumbers α = 1 and β = 0, using di�erent 
ontrol
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k ControlTable 5.1: Performan
e of optimal state feedba
k 
ontroller at Re = 1500 for α = 1 and
β = 0 using di�erent state norms and di�erent 
ontrol penalties.State norm ρ ‖Tdx‖2 ‖Tdx‖∞(No 
ontrol) - 453.2 10354Energy 10−2 101.8 2876

10−3 98.2 2469
10−4 89.7 2201
10−5 89.4 2197Dissipation 10−2 121.0 3005
10−3 101.3 2711
10−4 98.5 2555
10−5 97.1 2520Table 5.2: Performan
e of optimal output feedba
k 
ontrol at Re = 3500 for α = 1 and

β = 0 using di�erent state norms and di�erent 
ontrol penalties.State norm ρ ‖Tdx‖2 ‖Tdx‖∞(No 
ontrol) - 453.2 10354Energy 10−2 441.2 9810
10−3 431.3 9788
10−4 401.6 9665
10−5 397.3 9651Dissipation 10−2 442.6 9891
10−3 434.4 9833
10−4 409.8 9677
10−5 399.1 9625penalties ρ and the best performing state norms that have emerged in Chapter 4, i.e.turbulent kineti
 energy and dissipation rate. As for output feedba
k 
ontrol, measuresof shear stresses and pressure at both walls have been 
onsidered, exploiting relationsoutlined in Se
tion 4.3.4. Results are resumed in Tables 5.1 and 5.2.What appears 
lear is that LQR 
ontrol e�e
tively abates H2 norm of disturban
e-to-state transfer fun
tion, redu
ing at the same time H∞ norm. In parti
ular, we
an observe that energy norm always performs slightly better than dissipation. As foroutput feedba
k, instead, results are rather poor. As a matter of fa
t, H2 norm showeda maximum redu
tion of 15% against nearly 80% obtained with full state 
ontrol.Interestingly, dissipation and energy norm have proved to perform more or less thesame when only wall measurement information is available.A possible explanation to this out
ome 
an be found analyzing the dimensions ofsystem matri
es we are dealing with. In fa
ts, optimal 
ontrol design at Re = 1500and 3500 involves state matri
es A whose dimensions are about O(102)×O(102), while
ontrol input matri
es B have size O(102) × O(1). Hen
e, gain matri
es arising fromfull state 
ontrol have size O(1)×O(102). When using output feedba
k 
ontrol, instead,we have to a

ount for measurement matri
es C that, 
onsidering all measurements
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k performan
e assessment 81we 
an dispose of at walls, have size O(1) × O(102). Therefore, in this 
ase gain ma-tri
es obtained through output feedba
k 
ontrol have dimensions O(1)×O(1). Hen
e,it appears 
lear that output feedba
k 
ontrol for the present purpose has mu
h lessauthority than optimal state feedba
k, sin
e its 
apability of modifying the spe
trumof state matri
es is strongly limited by gain size. For this reason, the design of a stateestimator is made ne
essary.





Chapter 6Observer-based ControlAfter having stated the low e�
ien
y of output feedba
k 
ontrol, an a

urate state es-timation is made ne
essary in order to implement a
tive feedba
k 
ontrol in a realisti
framework, where we 
an dispose only of wall measures. The present 
hapter is orga-nized as follows. Firstly, the state of the Art in estimation of wall-bounded �ow will bedes
ribed, then we will introdu
e the standard time-based approa
h to �ow estimation,i.e. Kalman �lter. Afterwards, we will introdu
e frequen
y-based Wiener-Hopf 
ontrolte
hnique, highlighting di�eren
es with respe
t to time-based approa
h. Then, theextension from single-input single-output (SISO) to single-input multi-output (SIMO)will be dis
ussed 
onsidering numeri
al issues involved. Finally, results will be providedof parametri
 DNSs 
arried out in order to assess how 
ontrol parameters a�e
t overallperforman
es.6.1 State-of-the-Art reviewIt is surprising to noti
e that almost all publi
ations that have appeared in literature
on
erning state estimation in wall-bounded �ow adopted Kalman �lter design. Thissolution 
an be found in the �rst approa
h to state estimation in a turbulent 
han-nel �ow, whi
h has appeared in [7℄ and [32℄. In both works a linear Kalman �lterhas been designed leveraging Orr-Sommerfeld and Squire model in wavenumber spa
eand a performan
e analysis has been 
arried out for a 
ouple of wavenumbers. Thisapproa
h has subsequently been extended in a se
ond arti
le [25℄ by 
onsidering anarray of wavenumbers and performing estimation in a sub
riti
al 
hannel �ow. It hasbeen observed that linear models fail to 
apture the multis
ale dynami
s of turbulen
e,but they in
lude the key terms responsible for the produ
tion of energy. As a matterof fa
t, the nonlinear terms in the Navier-Stokes equations s
atter energy but do notdire
tly 
ontribute to energy produ
tion. However, in all these pioneering works, state
ovarian
e matri
es appearing in Ri

ati equation arising from Kalman �lter designhave been modeled with simple identity matri
es, sin
e no preliminary assumptionson state noise were performed. This implies a 
onstant varian
e of disturban
es at83
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h gridpoint and zero 
orrelation of the disturban
es at di�erent gridpoints. Unfor-tunately, this 
ovarian
e model does not 
onverge to a resolved 
ovarian
e distributionupon grid re�nement.In [6℄ a di�erent strategy was investigated, that is model predi
tive estimation. Thisapproa
h is based on iterative state and adjoint 
al
ulations optimizing the estimate ofthe state of the system so that the nonlinear evolution of the system model over a �nitehorizon in time mat
hes the available measurements to the maximum extent possible.The optimization was performed iteratively using gradient information provided by
al
ulation of an appropriately de�ned adjoint �eld driven by measurement mis�ts atthe wall. This te
hnique has provided noteworthy results, sin
e in this framework it hasbeen possible to a

ount for the full nonlinear evolution of the system. However, thisstrategy has proved to be 
omputationally expensive, as it required iterative mar
hesof the state and adjoint �elds over the time horizon of interest in order to obtain thestate estimate. Due to this drawba
k, this approa
h has lost 
onsideration in �ow
ontrol literature sin
e it is not possible to re�ne it in order to adapt it to pra
ti
alimplementation. Hen
e, attention has shifted towards the improvement of Kalman�lter estimation.In [27℄ a physi
al parameterization, whi
h has been proved to 
onverge upon gridre�nement, has been introdu
ed to properly model the external disturban
es, initial
onditions and measurement noises that 
an a�e
t perturbed laminar �ows. Resultshave led to the 
on
lusion that a Kalman �lter with time-varying feedba
k gains isne
essary in order to minimize the initial transient in the estimation error when theestimation is turned on. Moreover, it has been noti
ed that when the �ow perturbationsare large enough to appre
iate signi�
ant nonlinearities a�e
ting the system, then anextended Kalman �lter whi
h in
orporates the system nonlinearities into the estimatormodel outperforms the standard linear Kalman �lter. Besides, in [11℄ Kalman andextended Kalman �lters that were previously developed by the same group work havebeen tested for state estimation in a turbulent 
hannel �ow. A key step in solving theestimation problem has been the measurement of the se
ond-order statisti
s of statenoise through DNS. Then, this information has been used to build state 
ovarian
ematri
es in the estimator design phase, where all three measurements available atwalls were used. As expe
ted, the nonlinear extended Kalman �lter was found tooutperform the linear Kalman �lter. However, it has been found that the estimatedstate in linear Kalman �lter deteriorates more rapidly with the distan
e from thewall, whereas extended Kalman �lter 
aptures better the stru
tures farther into thedomain. Moreover, they observed an approximate 
orresponden
e of the performan
eof the extended Kalman �lter with the model-predi
tive estimator built in [6℄ with afavorable 
omputational time saving. However, in order to implement Kalman �ltertheory, the arti�
ial assumption of white noise was made, thus dis
arding the entiretime stru
ture of the state noise.This limitation has been over
ome only in [52℄, where a frequen
y-domain approa
hhas been suggested based on Wiener �lter. As a matter of fa
t, in this framework it
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ount for the full spa
e-time stru
ture of the state noise bymeasuring it through DNS. Furthermore, it 
an be proved that this �lter is the bestpossible linear time-invariant �lter to adopt for the present estimation problem, sin
eno assumptions other than linearity of the model are introdu
ed. Results have shownthat by using a single wall measurement, Wiener �lter always outperforms Kalman�lter.6.2 Kalman �lter theoryKalman �lter is the most 
ommon approa
h adopted in literature when dealing withstate estimation. For this reason, it is not surprising that it has qui
kly be
ome astandard approa
h also in �ow estimation. Sin
e the knowledge of the a
tual state isunavailable the key idea is to get an estimate of the state x̂ from the measurementsavailable. The problem is stated as follows:
{

ẋ = Ax+Bu+ Bnn (6.1a)
y = Cx +Dydd (6.1b)

{
˙̂x = Ax̂+Bu + L(y − ŷ) (6.2a)
ŷ = Cx̂ (6.2b)where (6.1) are the equations of a LTI dynami
 model, whereas equations (6.2) governthe dynami
s of the state observer. In these 
ontext, matrix L represents the observergain matrix used for the feedba
k of the di�eren
e between a
tual measures y andtheir estimates ŷ. Kalman �lter theory provides tools to determine optimal values forthis matrix. The �rst assumption is that state noise n and measurement noise d areun
orrelated Gaussian noise pro
esses, whi
h 
an be 
ompletely de�ned through their
ovarian
e matri
es Wnn and Wdd, respe
tively. Then, after introdu
ing the estimateerror e = x− x̂, by 
ombining Equations (6.1) and (6.2), we get

ė = (A− LC)e+Bnn− LDydd (6.3)The varian
e error σ2
ee 
an be determined as the solution of the following Lyapunovequation:

(A− LC)σ2
ee + σ2

ee(A− LC)T +BnWnnB
T
n − LDydWddD

T
ydL

T = 0 (6.4)Hen
e, matrix L must be 
hosen in order to minimize the obje
tive fun
tion
J = Tr

{
Weeσ

2
ee

} (6.5)whereWee is a weight matrix introdu
ed to express the relative importan
e between the
omponents of state estimate error. This problem is 
ast in the form of a 
onstrainedminimization, sin
e σ2
ee must satisfy Equation (6.4), so we a

ount for this 
ondition
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ing a proper Lagrange multiplier:
J = Tr

{

Weeσ
2
ee + Λ[(A− LC)σ2

ee + σ
2
ee(A− LC)T +BnWnnB

T
n + LDydWddD

T
ydL

T ]
}(6.6)The global minimum of fun
tional J is obtained by imposing stationary 
onditions toits derivatives:



























∂J

∂Λ
= (A− LC)σ2

ee + σ
2
ee(A− LC)T +BnWnnB

T
n + LDydWddD

T
ydL

T = 0 (6.7a)
∂J

∂σ2
ee

= Λ(A− LC) + (A− LC)TΛ+Wee = 0 (6.7b)
∂J

∂L
= LDydWddD

T
yd − σ

2
eeC

T = 0 (6.7
)Then, from Equation (6.7
) we obtain
L = σ2

eeC
T (DydWddD

T
yd)

−1 (6.8)Furthermore, through some trivial manipulations, it 
an be proved that we 
an deter-mine σ2
ee as the solution of the following Ri

ati equation:

Aσ2
ee + σ2

eeA
T − σ2

eeC
TR−1Cσ2

ee +Q = 0 (6.9)Then, gain matrix L 
an be easily re
overed as L = PCTR−1.Time-based approa
h is parti
ularly appealing be
ause of its solid theoreti
al frame-work, however it has also many drawba
ks. First of all, in real physi
al systems noise
an be rarely modeled as a random pro
ess and often we have to deal with distur-ban
es that may present a ri
h stru
ture in frequen
y domain. Even if it 
an be provedthat Kalman �lter is optimal even for non-Gaussian noise [68℄, 
ovarian
e matri
es arede
isively inadequate and limiting in order to represent a
tual noise spe
trum.Besides, when Kalman �lter is asso
iated to an optimal 
ontroller, linear quadrati
Gaussian (LQG) te
hnique requires the solution of two distin
t Ri

ati equations, onefor the 
ontroller and the other for the observer, a

ording to seperation prin
iple, whi
hguarantees that 
ontroller and observer have independent dynami
s. Then, after havingsolved these two design problems, 
ontroller and observer may be 
ombined to developa dynami
 
ompensator to 
ontrol the �ow system. However, standard Ri

ati solversbased on S
hur-Hamilton de
omposition des
ribed in Chapter 4 have a 
omputationaltime that s
ales with the 
ube of the dimension of state matrix A. Hen
e, this approa
hto 
ompensator design qui
kly be
omes highly time-requiring as the number of statesin
reases, i.e. as the mesh grid gets more and more re�ned.For all these reasons, we implemented a 
ontrol te
hnique in frequen
y domainbased on Youla-Ku
era parameterization [75℄ - [76℄, 
alled Wiener-Hopf 
ontrol. Thisstrategy allows to 
ompute in a single step the 
ompensator transfer fun
tion obtainedafter design of both 
ontroller and observer. This interesting feature represents for ourpurpose an important property, sin
e it 
an provide substantial 
omputational sav-ings. Besides, in Wiener-Hopf 
ontrol many te
hniques are available whi
h s
ale with
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Figure 6.1: Classi
al 
losed-loop 
ontrol s
heme.

Figure 6.2: Alternative representation of 
losed-loop 
ontrol s
heme with transfer fun
-tion modeling mismat
h.the square of matrix dimensions. Moreover, this frequen
y-based approa
h allows todire
tly exploit information 
on
erning exa
t noise spe
tra, thus avoiding the intro-du
tion of expensive noise-shaping �lters, required when using Kalman �lter. Besides,if white noise is a�e
ting the system, then the 
ompensators 
al
ulated using LQG
ontrol approa
h and Wiener-Hopf theory are exa
tly the same. What follows, is ades
ription of Wiener-Hopf 
ontrol theory.6.3 Wiener-Hopf optimal 
ompensator designAmong the possible approa
hes to the problem, the most suitable way to de�ne the
ompensator fun
tion K(s) is the pro
edure des
ribed in [53℄. The system to whi
hwe refer is represented in Figure 6.1, where with H we have indi
ated the input-to-state transfer fun
tion. With some manipulations it is possible to obtain an equivalentrepresentation, as shown in Figure 6.2, where Ĥ represents the model we have realizedof system transfer fun
tion. It 
an be easily shown by inspe
tion that
e = d+ Cn+ C(H − Ĥ)u (6.10)where e represents the di�eren
e between feedba
k measure y and its estimate ŷ. So,if the model perfe
tly mat
hes system dynami
s, feedba
k is represented by noise 
om-
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Figure 6.3: Noise-to-measure blo
k diagram of the 
ontrolled system.

ponents alone. Then, to simplify the blo
k-diagram we 
an noti
e that
u = Ky (6.11)
CĤu = ŷ (6.12)By subtra
tion we get

(I −KCĤ)u = Ke (6.13)If now we introdu
e a new de�nition of 
ontrol input, i.e. u = K∗e and 
onsider perfe
tmat
hing between model Ĥ and a
tual system H , then we obtain the blo
k-diagramshown in Figure 6.3. Compensator transfer fun
tion K 
an be re
overed through thefollowing relation:
K∗ = (I −KCH)−1K (6.14)Afterwards, we will de�ne an obje
tive fun
tion to be minimized, whi
h 
losely remindstime-based LQR/LQG 
ontrol:

J =
1

2

∫ ∞

−∞

(Tr {Qφxx}+ Tr {Rφuu}) df (6.15)where with symbol φ we have indi
ated spe
tral density fun
tion, whereas matri
es Qand R represent state and 
ontrol weights, respe
tively. From inspe
tion, we 
an �ndthe following relationships:
y = (I + CHK∗)(Cn+ d)

x = HK∗d+ (I +HK∗C)n

u = K∗d+K∗Cn

(6.16)Spe
tral density fun
tions φxx and φuu are then straightforwardly determined as
φxx = HK∗φddK

∗HHH + (I +HK∗C)φnn(I +HK∗C)H

φuu = K∗φddK
∗H +KCφnnC

HK∗H
(6.17)
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ompensator design 89where supers
riptH denotes 
onjugate transpose. After substitution of Equation (6.17)into (6.15), we get
J =

1

2

∫

∞

−∞

(

Tr
{

Qφnn +QHK
∗

Cφnn +QφnnC
H
K

∗H
nn H

H +QHK
∗

CφnnC
H
K

∗H
H

H+

+QHK
∗

φddK
∗H

H
H
}

+ Tr
{

RK
∗

φddK
∗H +RK

∗

CφnnC
H
K

∗H
})

df (6.18)However, this formulation leads to the design of a non
ausal 
ompensator, unless weenfor
e 
ausality 
onstraint by introdu
ing an appropriate Lagrange multiplier, as fol-lows:
J =

1

2

∫

∞

−∞

(

Tr
{

Qφnn +QHK
∗

+Cφnn +QφnnC
H
K

∗H
+ H

H +QHK
∗

+CφnnC
H
K

∗H
+ H

H+

+QHK
∗

+φddK
∗H
+ H

H
}

+ Tr
{

RK
∗

+φddK
∗H
+ +RK

∗

+CφnnC
H
K

∗H
+

}

+ 2Tr {Λ−K
∗

+}
)

df(6.19)where subs
ript + indi
ates that only 
ausal part has been 
onsidered. Now, if wederive Equation (6.19) with respe
t to K∗H
+ and impose stationary 
onditions, we 
an�nd a 
losed form solution for 
ompensator transfer fun
tion:

∂J

∂K∗H
+

= HHQφnnC
H +HHQHK∗

+φdd +HHQHK∗
+CφnnC

H+

+RK∗
+φdd +RK∗

+CφnnC
H + Λ− = 0

(6.20)or, in a more elegant fashion:
(HHQH +R)K∗

+(CφnnC
H + φdd) + Λ− = −HHQφnnC

H (6.21)Equation (6.21) is a Wiener-Hopf equation and di�erent approa
hes, both analyti
aland numeri
al, are possible in order to solve it. What follows is a 
omprehensivedes
ription of the di�erent te
hniques developed in literature to solve Wiener-Hopfproblem.6.3.1 Analyti
al solutionMathemati
ally speaking, Wiener-Hopf problem 
onsists of �nding two 
omplex fun
-tions K∗
+(jω) and Λ−(jω) satisfying the following relation on the imaginary axis [56℄:

A(jω)K∗
+(jω) + Λ−(jω) = B(jω) (6.22)where A(jω) and B(jω) are two Lips
hitz-
ontinuous fun
tions. To solve this equation,we need to �nd a fa
torization of A(jω) highlighting 
ausal A+(jω) and non
ausal part

A−(jω), i.e.
A(jω) =

A+(jω)

A−(jω)
(6.23)



90 Chapter 6. Observer-based ControlAfter substitution in Equation (6.22), we get
A+(jω)K

∗
+(jω)︸ ︷︷ ︸

φ+(jω)

+Λ−(jω)A−(jω)︸ ︷︷ ︸
−φ−(jω)

= B(jω)A−(jω)︸ ︷︷ ︸
f(jω)

(6.24)With the introdu
tion of fun
tion φ(jω), Wiener-Hopf problem has been re
ast into astandard Hilbert problem, whi
h 
an be stated as follows: let C be a smooth 
losedboundary, de�ned in 
omplex set C, f(τ) is a fun
tion satisfying Lips
hitz 
ondition on
C. We need to �nd fun
tions φ+(τ) and φ−(τ), regular on C and Lips
hitz 
ontinuous,satisfying

φ+(τ)− φ−(τ) = f(τ), with τ ∈ C (6.25)In order to solve Hilbert problem, Plemelji provided the following formulas:
φ+(τ) = +

1

2
f(τ) +

1

2πj

∫

C

f(ξ)

ξ − τ
dξ

φ−(τ) = −1

2
f(τ) +

1

2πj

∫

C

f(ξ)

ξ − τ
dξ

(6.26)By extending boundary C to in�nity and letting f(τ) → 0 for τ → ∞, it is possible to
onsider the imaginary axis as boundary C.However, Plemelji formulas (6.26) need the 
omputation of a 
omplex Cau
hy inte-gral. Solution of su
h integral is possible through the appli
ation of residue theorem:suppose C is a simply 
onne
ted open subset of the 
omplex plane and a1, . . . , ai, . . . , anare �nitely many points of U and f is a fun
tion whi
h is de�ned and holomorphi
 on
U \ {a1, . . . , ai, . . . , an}. If C is a re
ti�able 
urve in U whi
h bounds ai, but doesnot meet any and whose start point equals its endpoint, then

∫

C

f(z) dz = 2πj

n∑

i=1

Res(f, ai) (6.27)where Res(f, ai) denotes the residue of f at ai. If for ai we 
onsider the poles offun
tion f and we 
all ki the order of ea
h pole, we 
an �nd a 
losed form for theresidues:
Res(f, ai) = lim

z→ao

1

(ki − 1)!

dki−1

dzki−1
(z − ai)

ki f(z) (6.28)To our s
ope, these notions of 
omplex analysis are su�
ient. For further knowledge,the interested reader is referred to [1℄. Then, on
e fun
tion φ+(jω) is determined,
ompensator transfer fun
tion is easily re
overed as
K∗

+(jω) =
φ+(jω)

A+(jω)
(6.29)As mentioned before, this 
ontrol te
hnique leads to the same 
ompensator obtainedthrough LQG 
ontrol design. In order to prove this statement, we will now 
onsider, asan example, an optimal 
ontrol of an industrial rigid servo-system, whi
h is s
hemati-
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Figure 6.4: S
hemati
 representation of an industrial rigid servo-system.


ally illustrated in Figure 6.4. Equations governing its system dynami
s are:




Jmθ̈m +Dmθ̇m = τm − τlm

Jlθ̈l +Dlθ̇ = nτlm − τl

θm = nθl

(6.30)where subs
ripts m and l indi
ate motor and load part, respe
tively, whereas J is rotorinertia, D vis
ous damping, θ angular position, n the gear ratio and τ the torque. Thenwith τlm we have indi
ated torque ex
hanged between load and rotor part through thetransmission. With some trivial manipulations, we 
an represent system dynami
s witha unique equation, i.e.
(
Jm +

Jl
n2

)
θ̈m +

(
Dm +

Dl

n

)
θ̇m = τm − τl

n
(6.31)or, in a more 
ompa
t fashion

Jθ̈ +Dθ̇ = τm − τlr (6.32)In order to a
hieve state spa
e formulation, we 
hoose θ̇ as state variable x, while τmrepresents 
ontrol input u, whereas τlr is 
onsidered as a torque disturban
e n a�e
tingthe system. Finally, we 
hoose to measure angular velo
ity θ̇, whi
h is supposed to bea�e
ted by random noise d. We get:




ẋ = −D

J
x+

1

J
u+

1

J
n

y = x+ d

u = −Kx

(6.33)For feedba
k 
ontroller design, we de�ne the following obje
tive fun
tion:
J =

1

2

∫ ∞

0

(qx2 + ru2) dt (6.34)
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overed from solution of a Ri

ati equation:
ATP + PA+Q− PBR−1BTP = 0

−2
D

J
p+ q − 1

rJ2
p2 = 0

(6.35)We �nd two solutions, we take just the positive one:
p = JDr

(√
q

rD2
+ 1− 1

) (6.36)hen
e
K = R−1BP = D

(√
q

rD2
+ 1− 1

) (6.37)For the observer we have to solve an analogous Ri

ati equation:
AP̃ + P̃A+ Q̃− P̃CT R̃−1CP̃ = 0

−2
D

J
p̃+ q̃ − 1

r̃
p̃2 = 0

(6.38)where q̃ and r̃ represent state and measure noise 
ovarian
es, respe
tively. We get:
p̃ =

Dr̃

J

(√
q̃J2

r̃D2
+ 1− 1

) (6.39)hen
e
L = P̃CT R̃−1 =

D

J

(√
q̃J2

r̃D2
+ 1− 1

) (6.40)Compensator transfer fun
tion in Lapla
e domain L(s) then reads:
F (s) = K(sI −A+BK + LC)−1L (6.41)If now we assume unitary parameters, we �nd:

FLQG(s) = − (
√
2− 1)2

jω + 2
√
2− 1

(6.42)As for Wiener-Hopf approa
h, the asso
iated s
alar equation is obtained by 
onsidering
H = (jω −A)−1B =

1

jω + 1

φnn = Hq̃HH =
1

ω2 + 1

(6.43)We get
(ω2 + 2)2

(ω2 + 1)2
K∗

+(jω) + Λ−(jω) = − 1

−jω + 1

1

ω2 + 1

A(jω)K∗
+(jω) + Λ−(jω) = B(jω)

(6.44)
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torization of A(jω) 
an be straightforwardly re
overed by inspe
tion:
A(jω) =

A+(jω)

A−(jω)
A+(jω) =

(jω +
√
2)2

(jω + 1)2
A−(jω) =

(−jω + 1)2

(−jω +
√
2)2

(6.45)Fun
tion f in Plemelji formulas (6.26) reads
f(jω) = − 1

(jω −
√
2)2(jω + 1)

(6.46)Then, the asso
iated Cau
hy integral is
1

2πj

∫

C

f(z)

z − jω
dz =

1

2πj

∫ +j∞

−j∞

−1

(z − jω)(z + 1)(z −
√
2)

dz (6.47)This 
omplex integrand has a pole of order 2 for z =
√
2 and two poles of order 1 for

z = jω. In order to 
al
ulate the integral on the imaginary axis we need to de�ne ahalf-
ir
le path Γ in the right half of Gauss plane and let its radius go to in�nity. Asfor the pole on the imaginary path, a semi
ir
ular path γ has to be followed in orderto 
ir
umvent it, so:
1

2πj

∫

C

f(z)

z − jω
dz =

1

2πj

∫

Γ

f(z)

z − jω
dz − 1

2πj

∫

γ

f(z)

z − jω
dz (6.48)Then

1

2πj

∫

Γ

f(z)

z − jω
dz = Res(f, jω) +Res(f,

√
2) = − 1

(
√
2 + 1)2(jω + 1)

(6.49)Now, we need to 
ompute the integral over γ. Firstly, we parameterize variable z asfollows:
z = jω + εejθ, −π

2
≤ θ ≤ π

2
(6.50)hen
e

∫

γ

f(z)

z − jω
dz =

∫ π/2

−π/2

f(jω + εejθ)jεejθ

εejθ
dθ =

= j

∫ π/2

−π/2

f(jω + εejθ) dθ

(6.51)Se
ondly, by letting the radius go to zero:
∫

γ→0

f(z)

z − jω
dz = lim

ε→0
j

∫ π/2

−π/2

f(jω + εejθ) dθ =

= j

∫ π/2

−π/2

f(jω) dθ = jπf(jω)

(6.52)
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e
φ+(jω) =

Z
Z

ZZ

1

2
f(jω)− 1

(
√
2 + 1)2(jω + 1)

−
Z
Z
ZZ

1

2
f(jω) = − 1

(
√
2 + 1)2(jω + 1)

(6.53)Thus, from (6.29), we get
K∗

+(jω) = − jω + 1

(jω +
√
2)2(

√
2 + 1)2

(6.54)Finally, 
ompensator transfer fun
tion is re
overed from (6.14):
KWH(jω) = − (

√
2− 1)2

(jω + 2
√
2− 1)

(6.55)As 
an be easily observed, Equations (6.42) and (6.55) 
oin
ide.6.3.2 Numeri
al solutionWe have just seen how analyti
al solution of Wiener-Hopf equation requires long math-emati
al 
omputation. Furthermore, if multiple inputs are 
onsidered, then impulseresponse is not s
alar anymore, while if we 
onsider multiple outputs for feedba
k, itis C that turns into a matrix. In these 
ases Wiener-Hopf equation has matrix 
o-e�
ients, making analyti
al handling impra
ti
able. Fortunately, numeri
al approa
his de
isively more appealing and straightforward. Starting from Wiener-Hopf equa-tion (6.21), we apply inverse Fourier transform, obtaining the following 
onvolutionintegrals:
∫ +∞

0

a(t− τ)k+(τ) dτ = b(t) t ≥ 0 (6.56)
∫ +∞

0

a(t− τ)k+(τ) dτ + λ−(t) = b(t) t < 0 (6.57)After time dis
retization of the integral of (6.56), we obtain
∆t

n∑

p=1

ai−pkp = bi with i = 0, . . . , n (6.58)or, in matrix form
∆t




a0 a−1 a−2 . . . a−n

a1 a0 a−1 . . . a−n+1

a2 a1 a0 . . . a−n+2... ... ... ... ...
an an−1 an−2 . . . a0







k0

k1

k2...
kn



=




b0

b1

b2...
bn




Ak = b

(6.59)
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e, determining the 
ompensator transfer fun
tion simply requires the solutionof a linear system. After that, ve
tor k(t) is Fourier-transformed ba
k in frequen
ydomain, in order to obtain K(jω). It is to noti
e, however, that matrix A arisings afterdis
retization of a SISO system has very pe
uliar properties, sin
e it is always hermitianpositive de�nite (hpd) and all terms on the same diagonal are equal. In parti
ular, ifa matrix has these parti
ular symmetries, it is said to be in Toeplitz-like form. Asfor SIMO and MISO systems, instead, the elements ai in matrix A are represented bymatri
es themselves, hen
e A is said to have a blo
k Toeplitz stru
ture.This statement will be of fundamental importan
e for the solution of the linearsystem arising in Wiener-Hopf 
ontrol design, sin
e standard fa
torization te
hniquesusually adopted to solve a linear system 
ould be avoided. As a matter of fa
t, stan-dard approa
hes to the solution of the linear system requires the fa
torization of LHSinto two matri
es, the �rst lower triangular, the se
ond upper triangular. Solution isthen re
over after a step of forward-substitution and a subsequent step of ba
kward-substitution. Typi
al fa
torization algorithms are mainly based on Gauss eliminationmethod or Cholesky fa
torization, if the matrix is hpd. All these algorithms are ableto handle nonsingular square matri
es, but their 
omputational time s
ales with N3,where N is matrix dimension, whereas Toeplitz and blo
k Toeplitz matri
es, thanksto their symmetries, 
an be fa
torized with sophisti
ated algorithms whi
h s
ale onlywith N2.Su
h algorithms 
an be broadly 
lassi�ed into two 
ategories, namely Levinson-typeand S
hur-type. As for Levinson-type algorithms, they produ
e the fa
torization of theinverse of Toeplitz matrix, while S
hur-type algorithms produ
e the fa
torization ofthe Toeplitz matrix itself. However, Levinson-type algorithms have the main drawba
kthat they are limited to s
alar Toeplitz matri
es, while S
hur-type algorithms, on theother hand, o�er a greater �exibility and higher parallelization. What follows is a
omprehensive des
ription of the algorithms that have been developed in order tofa
torize Toeplitz matri
es arising from Wiener-Hopf 
ontrol theory, i.e. Cholesky andS
hur fa
torizations.
Cholesky fa
torizationWhen a hermitian positive de�nite matrix needs to be fa
torized, the standard approa
his to adopt Cholesky fa
torization. This straightforward algorithm is brie�y outlinedin the following. Let us 
all A the N × N hermitian positive de�nite matrix, aij itselement in row i and 
olumn j and C its fa
torization. We have

A = CHC (6.60)
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ompute c11 =
√
a11. Then for i = 2, . . . , n we 
al
ulate the diagonal term

cii as
cii =

(
aii −

i−1∑

k=1

c2ik

)1/2 (6.61)and o�-diagonal terms are evaluated as
cij =

(
aij −

j−1∑

k=1

cikc
H
jk

)
/cjj for j = 1, . . . , i − 1 (6.62)As previously mentioned, the main drawba
k asso
iated with this algorithm is thehigh 
omputational 
ost, sin
e by inspe
tion it 
an be found that it requires N3/3�ops, hen
e fa
torization time rapidly in
reases for high dimensional matri
es.S
hur fa
torizationThe S
hur fa
torization algorithm that has been developed in the one outlined in [33℄.In order to provide a des
ription of how it works, let us 
onsider a blo
k Toeplitz hpdmatrix A of size mp × mp, where m is the size of ea
h blo
k, while p represents thenumber of blo
ks. The simpler 
ase of s
alar Toeplitz matrix 
an be readily re
overedby 
onsidering m = 1. Now 
onsider the �rst blo
k row [Â1 Â2 . . . Âp

]. Sin
e
Â1 is a hpd matrix, we 
an �nd its Cholesky fa
torization Â1 = C1C

H
1 , where C1 is an

m×m lower triangular matrix. Now, let Aj = C−1
1 Âj . It is easy to see that A1 = CH

1 .Let us de�ne two matri
es G1(A) and G2(A) as follows:
G1(A) =




A1 A2 A3 . . . Ap

0 A1 A2 . . . Ap−1... ... ... ... ...
0 0 . . . A1 A2

0 0 . . . 0 A1




G2(A) =




0 A2 A3 . . . Ap

0 0 A2 . . . Ap−1... ... ... ... ...
0 0 . . . 0 A2

0 0 . . . 0 0




(6.63)
Then,

A =
[
GH

1 (A) GH
2 (A)

] [I 0

0 −I

][
GH

1 (A)

GH
2 (A)

]
= GHWG (6.64)where

G =

[
G1(A)

G2(A)

] and W =

[
I 0

0 −I

] (6.65)
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h for a transformation matrix U that satis�es the property UHWU =

W , so that UG = R, where R is an upper triangular matrix. Then we have:
A = GHWG = GHUHWUG

=
[
RH 0

] [I 0

0 −I

][
R

0

]
=

= RHR

(6.66)that provides the fa
torization of A. Sin
e matrix G 
omprises two upper triangu-lar blo
k Toeplitz matri
es, 
onsiderable 
omputational savings 
an be obtained byworking with a generator matrix de�ned using the �rst blo
k rows of G1 and G2:
Gen =

[
A1 A2 . . . Ap−1 Ap

0 A2 . . . Ap−1 Ap

] (6.67)As for matrix U , due to the properties required, it has to be a hyperboli
 Householdertransformation sin
e it must satisfy UHWU = W , whereW is a diagonal matrix whoseentries are either +1 or −1. If this property is satis�ed, then U is also 
laimed to be a
W -unitary matrix. Furthermore, if x is a 
olumn ve
tor su
h that xHWx 6= 0, then U
an be expressed as follows:

U = W − 2xxH

xHWx
(6.68)In our algorithm, we used hyperboli
 Householder transformations in order to redu
ethe generator matrix Gen to an upper triangular matrix by su

essively zeroing ele-ments below the diagonal of 
olumns of matrix G in (6.66). So, among the possible
hoi
es of x in Equation (6.68), we would like to �nd the one that, given an arbitrary
olumn ve
tor u, satis�es

Uu = −σej (6.69)where ej is a 
olumn ve
tor whose j-th element is 1 and other elements are 0, and σ isa 
onstant value. If we assume that eHj Wej = 1, then by 
hoosing
σ =

uj

|uj |
√
uHWu

x = Wu+ σej

(6.70)we �nd that U is a hyperboli
 Householder transformation mapping u to −σej . Thistransformation will be used several times in the algorithm in order to redu
e matrix
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G, as will be shown later. From Equation (6.66) we obtain

G =




A1 A1 A1 A1 . . . Ap

0 A1 A2 A3 . . . Ap−1

0 0 A1 A2 . . . Ap−2

0 0 0 A1
. . . ...... ... ... ... ... ...

0 A2 A3 A4 . . . Ap

0 0 A2 A3 . . . Ap−1

0 0 0 A2 . . . Ap−2

0 0 0 0
. . . ...... ... ... ... ... ...




(6.71)
Now, sin
e the �rst 
olumn of the generator is already in the right form we 
an usethe generator matrix starting from the se
ond row down. The �rst row of the uppersubmatrix of the generator will represent the �rst blo
k row of the triangular fa
torof the Toeplitz matrix. In order to a
hieve full fa
torization, the �rst step involveseliminating the �rst diagonal in the lower half of the generator matrix. The idea is todo that while preserving Toeplitz stru
ture of the remaining portion of the matrix. Inthis way, we 
an repeat the pro
ess on the smaller generator till we fully triangularize
G. Therefore, we substitute the �rst blo
k row in generator matrix with the se
ondblo
k row of the upper submatrix:

Gen =

[
0 A1 A2 . . . Ap−1

0 A2 A3 . . . Ap

] (6.72)Now let U1 be the blo
k hyperboli
 Householder transformation, obtained as previouslyoutlined using ve
tors that have one nonzero element in their upper half and zeroelements in the lower half. Thus, we 
an eliminate A2 using A1 by applying U1 to Gen.We get
U1Gen =

[
0 Ã1 Ã2 . . . Ãp−1

0 0 Ã3 . . . Ãp

] (6.73)Similarly, all matri
es 
onstru
ted by sta
king the 
orresponding rows in the two halvesof the generator matrix are shifted versions of Gen matrix in (6.72). Hen
e, all thework that was needed to zero out the diagonal row of A2 in the lower submatrix wasdone in the �rst step. At this stage, the generator matrix G has a Toeplitz submatrix
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Figure 6.5: Computational time of Cholesky fa
torization with di�erent values of p and
m.in its upper half and another Toeplitz submatrix in its lower half:

G =




A1 A2 A3 A4 . . . Ap

0 Ã1 Ã2 Ã3 . . . Ãp−1

0 0 Ã1 Ã2 . . . Ãp−2

0 0 0 Ã1 . . .
...... ... ... ... . . . ...

0 0 Â3 Â4 . . . Âp

0 0 0 Â3 . . . Âp−1

0 0 0 0 . . . Âp−2... ... ... ... . . . ...



(6.74)
The se
ond row of the upper submatrix of G is the se
ond blo
k row of the triangularfa
torization of Toeplitz matrix. The pro
ess is then repeated on the two lower rightsubmatri
es of the generator in (6.74). After p − 2 steps the generator is 
ompletelytriangularized.Performan
e assessmentIn order to 
ompare the performan
es of S
hur algorithm with respe
t to standardCholesky fa
torization, we used both of them to fa
torize a N × N blo
k Toeplitzmatrix made of p blo
ks of size m × m on ea
h blo
k row, with di�erent 
hoi
esof parameters m and p. Results in Figures 6.5 - 6.6 indi
ates that for matri
es ofsmall size the 
omputational time is quite the same, whereas the di�eren
e qui
klybe
omes more relevant as parameter p in
reases. Then, fa
torization time has beenmeasured, keeping one parameter 
onstant and varying just the other one. What wehave observed is that Cholesky fa
torization time has 
ubi
 
onvergen
e with respe
tto both parameters m and p (Figure 6.7). As a matter of fa
t, Cholesky algorithm
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Figure 6.6: Computational time of blo
k Toeplitz fa
torization with di�erent values of
p and m.

Figure 6.7: Computational time of Cholesky fa
torization for �xed m = 3, measuredvalues (squares) and theoreti
al predi
tion Cp3 (solid line).
does not take into a

ount the stru
ture of the matrix, hen
e it has a 
ubi
 dependen
eon the whole matrix dimension N = m × p, as mentioned in Se
tion 6.3.2. As forS
hur fa
torization time, quadrati
al dependen
e has been observed on parameter p,as outlined in Figure 6.8, while time has proved to s
ale 
ubi
ally with the blo
k size
m (Figure 6.9). This last observation is not surprising be
ause at the beginning ofS
hur algorithm a Cholesky fa
torization step is required in order to triangularize the�rst blo
k in the �rst blo
k-row. However, this 
an not be 
onsidered a signi�
antdrawba
k sin
e in the present appli
ation the size of blo
k m is always mu
h smallerthan p, typi
ally three orders of magnitude.
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Figure 6.8: Computational time of blo
k Toeplitz fa
torization for �xedm = 3, measuredvalues (squares) and theoreti
al predi
tion Cp2(solid line).

Figure 6.9: Computational time of blo
k Toeplitz fa
torization for �xed p = 2000,measured values (squares) and theoreti
al predi
tion Cm3 (solid line).6.4 Impulse response measureIn order to implement Wiener-Hopf 
ontrol for drag redu
tion in a turbulent 
hannel�ow, we need to determine the input-to-state tensorial impulse response Hv vw wherethe input is represented by a
tuator wall for
ing, whereas the state ve
tor is representedby wall-normal velo
ity and vorti
ity of the �ow �eld. Su
h impulse response hasbeen obtained with the strategy proposed in [49℄. First of all, statisti
ally stationary
onditions have been 
onsidered for the turbulent �ow at the same Reynolds number ofthe problem. Then, this �ow has been perturbed through wall-normal velo
ity for
ing
vw. Su
h perturbations were represented by Gaussian white noise with an amplitude
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orrelation fun
tion reads:
E{vw(x+∆x, z +∆z, t+∆t)vw(x, z, t)} = δ(∆x, ∆y, ∆t) (6.75)where δ is Dira
 impulse fun
tion. Thus, as a 
onsequen
e of su
h perturbation, statevariables of the �ow �eld 
ould be de
omposed as follows:

vTOT = v̄(x, y, z, t) + v(x, y, z, t) (6.76a)
ηTOT = η̄(x, y, z, t) + η(x, y, z, t) (6.76b)where overline indi
ates variables referred to the unperturbed �ow �eld, whereas theothers are related to wall for
ing. Cross-
orrelation between input and output thenreads:

E{vTOT (x+ x
′

, y, z + z
′

, t+ t
′)vHw (x′

, z
′

, t
′)} =

+ E{v̄(x+ x
′

, y, z + z
′

, t+ t
′)vHw (x′

, z
′

, t
′)}+

+ E{v(x+ x
′

, y, z + z
′

, t+ t
′)vHw (x′

, z
′

, t
′)} (6.77a)

E{ηTOT (x+ x
′

, y, z + z
′

, t+ t
′)vHw (x′

, z
′

, t
′)} =

+E{η̄(x+ x
′

, y, z + z
′

, t+ t
′)vHw (x′

, z
′

t
′)}+

+ E{η(x+ x
′

, y, z + z
′

, t+ t
′)vHw (x′

, z
′

, t
′)} (6.77b)Simpli�
ations in (6.77) are possible by 
onsidering that no 
orrelation exists betweenperturbation and unperturbed �ow. Then, it is well known from signal theory thatwhen a white noise is passed through a linear system, the 
ross-
orrelation betweenthe input and output is proportional to the impulse response of the system, so input-to-state impulse response 
ould be re
overed by:

Hx, vw =

{
Hv vw(x, y, z, t) = E{v(x+ x′, y, z + z′, t+ t′)vHw (x′, z′, t′)}
Hη vw(x, y, z, t) = E{η(x+ x′, y, z + z′, t+ t′)vHw (x′, z′, t′)}

(6.78)Finally, leveraging system ergodi
ity led to:
Hv, vw (x, y, z, t) =

=
1

LxLz

∫ Lx

0

∫ Lz

0

1

T

∫ T

0

vTOT (x+ x
′

, y, z + z
′

, t+ t
′)vHw (x′

, z
′

, t
′) dt′ dx′

dz
′ (6.79a)

Hη, vw (x, y, z, t) =

=
1

LxLz

∫ Lx

0

∫ Lz

0

1

T

∫ T

0

ηTOT (x+ x
′
, y, z + z

′
, t+ t

′)vHw (x′
, z

′
, t

′) dt′ dx′
dz

′ (6.79b)With this strategy it was possible to obtain at on
e the whole spa
e-time dependen
e ofthe impulse response. The numeri
al simulation was 
arried out for a turbulent 
hannel�ow at Re = 3500, 
onsidering a 
omputational box having dimensions Lx = 4π,
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Lz = 4π/3, while Fourier series used during FFT and IFFT transformations have beentrun
ated at α = 96 and β = 64 and 128 points have been used for dis
retization inwall-normal dire
tion. As usual a hyperboli
 tangent stret
hing grid was introdu
ed.Correlations have then been measured through averaging over a time of 75000 wall-unit, 
onsidering a time step of 0.75, whi
h is about 5 times the time step of a typi
alDNS at Re = 3500.6.5 Results of Wiener-Hopf 
ontrol for drag redu
tionIn order to implement a Wiener-Hopf 
ompensator for drag redu
tion, impulse responseis not su�
ient. As a matter of fa
t, the knowledge of the fun
tions of 
ross-
orrelationbetween the state noise and wall-measurements is required. Su
h statisti
s have beenpreviously obtained in [52℄ from DNS of a turbulent 
hannel �ow at Re = 3500 
on-sidering the same 
omputational domain used to measure impulse response and thesame resolution for wall-normal dis
retization and trun
ation of Fourier expansions.As for time dis
retization, a resolution of 0.75 and a horizon of 150 wall units havebeen 
onsidered.Afterwards, optimal 
ompensators have been designed for a turbulent 
hannel �owof size Lx = 4π, Lz = 4π/3, at Re = 3500 leveraging streamwise and spanwise wallshear stresses for the feedba
k and dissipation norm in Wiener-Hopf 
ost fun
tion(6.15). These 
hoi
es have been motivated by results a
hieved in [52℄, where a Wiener-Hopf 
ompensator was developed for optimal feedba
k of a single wall measure usingtwo di�erent state norms, namely turbulent kineti
 energy and dissipation rate. Re-sults showed that energy norm, whi
h has proved to be really e�e
tive in full state
ontrol, when applied in an observer-based framework, is totally ine�e
tive in provid-ing drag redu
tion results. Furthermore, it was demonstrated that using wall pressurefor feedba
k is equally ine�e
tive with both state norms.Optimal 
ompensators have then been designed for a set of wavenumbers α ≤ 12

−54 ≤ β ≤ 54. Control a
tion has been 
omputed runtime in DNS by appli
ation ofthe following 
onvolution integral:
v̂w(α, β, t) =

∫ t

0

K̂(α, β, τ)m̂(α, β, t− τ) dτ (6.80)where K̂ is the impulse response of the 
ompensator and m̂ is the history of measure-ments in wavenumber spa
e. Then, su
h integral has been dis
retized using a timeresolution of 0.75 wall unit and trun
ated at time T+ = 18.75. The spatial stru
tureof 
ompensator kernels obtained in this way is reported in Figures 6.10 and 6.11 fordi�erent time lags. What we 
an noti
e is that the kernel for feedba
k of streamwisewall shear stress is symmetri
 with respe
t to both x and z axes, whereas kernel forspanwise skin fri
tion is symmetri
 for x axis and antisymmetri
 for z axis. Anotherinteresting feature is that wall information required for feedba
k is heavily limited to



104 Chapter 6. Observer-based ControlTable 6.1: Drag redu
tion results using SIMO Wiener-Hopf approa
h with di�erent 
on-trol penalties R and measurement noise 
ovarian
es φdd.R
2 10−2 3 10−2 4 10−2

φdd

4 10−2 3.567 3.821 4.322
1 10−1 4.467 4.567 3.891
2 10−1 4.397 3.985 3.177
4 10−1 2.776 3.177 2.716the proximity of the a
tuator. Furthermore, by observing the sequen
e of frames rep-resenting kernels at di�erent time lags, we 
an observe that kernel evolves downwardwith respe
t to the point of appli
ation and this is 
onsistent with the behavior of fullstate 
onvolution kernels dis
ussed in Se
tion 4.6.So said, a parametri
 study has been 
arried out to �nd the best 
hoi
e of 
ontrolpenalty R appearing in Wiener-Hopf formulation and the in�uen
e of measurementnoise φdd. For this purpose, a set of more than 20 DNS have been performed using 10AMD Opteron quad-
ore ma
hines belonging to the 
luster of University of Salerno.Simulations took around 4 days ea
h for a total of 9 years of CPU time. Resultshave then been 
ompared with drag redu
tion obtained by adopting a single-input
ompensator for feedba
k of streamwise skin fri
tion, obtained using the s
alar versionof the proposed S
hur fa
torization algorithm. What has emerged is that a maximumdrag redu
tion of 4.6% 
an be a
hieved for R = 0.03 (Figure 6.12). Furthermore,su
h results have proved to be independent of measurement noise φdd for a rangeof 
ovarian
e 4 10−2 ≤ φdd ≤ 5 10−1, while for outer values performan
es rapidlydeteriorate, as outlined in Table 6.1. As for single-output 
ompensator, instead, adrag redu
tion of nearly 5.5% was observed, but performan
es have been showed tosigni�
antly redu
e outside the range 3 10−2 ≤ φdd ≤ 8 10−2. This allows the 
on
lusionthat state estimation is not improved by the use of multiple measures, but it 
an bene�tsfrom a higher robustness with respe
t to measurement un
ertainty.Finally, in order to appre
iate how optimal Wiener-Hopf 
ompensator works, inFigure 6.13 we have represented time evolution of high- and low-speed streaks. We 
anobserve that 
ontrol e�e
tively redu
es the dimensions of near-wall 
oherent stru
tures.Furthermore, we 
an noti
e from Figure 6.14 that su
tion is applied under high-speedstreaks, whereas blowing 
ontrasts low-speed streaks. However, observer-based 
ontrolreveals unable to signi�
antly a�e
t the regenerative pro
ess. The explanation is relatedto poor performan
es of state estimation. As a matter of fa
t, wall for
ing appears tobe applied also in portions of the �ow �eld where no turbulent stru
tures are present.
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(a) Three-dimensional view at time lag τ+ = 0 (b) Top view at time lag τ+ = 0

(
) Top view at time lag τ+ = 250 (d) Top view at time lag τ+ = 500Figure 6.10: Spatial and temporal evolution of 
onvolution kernel for SIMO streamwisewall shear stress τxw
feedba
k, obtained through Wiener-Hopf 
ontrol design at Re = 3500by using dissipation norm, R = 0.03 and φdd = 0.1.
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(a) Three-dimensional view at time lag τ+ = 0 (b) Top view at time lag τ+ = 0

(
) Top view at time lag τ+ = 250 (d) Top view at time lag τ+ = 500Figure 6.11: Spatial and temporal evolution of 
onvolution kernel for SIMO spanwisewall shear stress τzw feedba
k, obtained through Wiener-Hopf 
ontrol design at Re = 3500by using dissipation norm, R = 0.03 and φdd = 0.1.
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(a) Lower wall skin fri
tion

(b) Higher wall skin fri
tion

(
) Turbulent kineti
 energyFigure 6.12: Main statisti
s of the un
ontrolled (red line) and 
ontrolled �ow at Re =
3500 using dissipation norm for the feedba
k of streamwise wall shear stress (bla
k line)and both stresses(blue line) with the best 
hoi
e of 
ontrol parameters.
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(a) Initial �ow state
(b) Un
ontrolled �ow at t+ = 250 (
) Controlled �ow at t+ = 250

(d) Un
ontrolled �ow at t+ = 750 (e) Controlled �ow at t+ = 750

(f) Un
ontrolled �ow at t+ = 2500 (g) Controlled �ow at t+ = 2500Figure 6.13: Three-dimensional view of a turbulent 
hannel �ow un
ontrolled and 
on-trolled with SIMO Wiener-Hopf 
ompensator at Re = 3500 by using dissipation norm,
R = 0.03 and φdd = 0.1: visualized are high- (light) and low- (dark) speed streaks at 30%of bulk velo
ity.
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(a) Frame at t+ = 250

(b) Frame at t+ = 750

(
) Frame at t+ = 2500Figure 6.14: Top view at di�erent time steps of the lower half of a turbulent 
hannel�ow un
ontrolled and 
ontrolled with SIMO Wiener-Hopf approa
h at Re = 3500 by usingdissipation norm, R = 0.03 and φdd = 0.1: visualized are high- (light) and low- (dark)speed streaks at 30% of bulk velo
ity. At wall 
ontrol a
tuation is represented by 
ontoursgraduated a

ording to the legend.





Chapter 7Con
lusions and FutureDevelopmentsThe present work has addressed the problem of redu
ing the fri
tion drag in a tur-bulent 
hannel �ow, by applying optimal feedba
k 
ontrol through zero-net-mass-�uxblowing/su
tion MEMS a
tuators and sensors at walls. Our results have shown thatwhen knowledge of the whole �ow state is available, optimal 
ontrol leads to very goodperforman
es, provided an optimal set of tuning parameters is adopted. The mostimportant 
on
lusion is that the norm of the state used in the de�nition of optimal
ontrol 
ost fun
tion has a strong impa
t on the overall performan
es, with the normbased on turbulent kineti
 energy yielding the best results. Moreover, Dire
t Numer-i
al Simulations 
arried out at Re = 1500 with feedba
k 
ontrol applied through wallboundary 
onditions have su

eded in a
hieving full relaminarization. As far as weknow, this result has been obtained with a 
onstant-gain LQR 
ontroller for the �rsttime in this work. Furthermore, this out
ome has been demonstrated to be indepen-dent of the initial 
onditions of the �ow �eld and of saturation e�e
ts of the MEMSa
tuators. Then, for a higher Reynolds number, namely Re = 3500, relevant drag andnet drag redu
tion was a
hieved using the same norm in a slightly modi�ed fashion.Besides, results have been proved to be independent of the 
hoi
e of 
ontrol penalty inoptimal 
ontrol 
ost fun
tion, suggesting that for higher Reynolds numbers the e�e
tof nonlinearities strongly limits the performan
es of linear 
ontrollers.Then, we have turned to 
onsidering a 
ontrol s
heme in a more realisti
 s
enario,i.e. where wall-measurement information alone is available. The �rst attempt has
on
erned the design of a 
ompensator based on optimal output feedba
k 
ontrol theory.Results based on H2 and H∞ norms of disturban
e-to-state transfer fun
tions haveshown that the performan
es are quite limited if 
ompared to LQR 
ontrol approa
h.For this reason, the implementation of a state observer was made ne
essary. Therefore,a frequen
y-based Wiener-Hopf approa
h has been followed for the design of a single-input multi-output 
ompensator for the feedba
k of streamwise and spanwise wall shear111



112 Chapter 7. Con
lusions and Future Developmentsstresses using dissipation norm of the state, whi
h has proved to perform better thanenergy norm in an observer-based 
ontrol framework. The approa
h uses a properlyde�ned and measured impulse response of the system as the system model. A fastS
hur solver has been developed in order to e�
iently fa
torize the blo
k Toeplitzmatrix of the linear system arising from time dis
etization of the asso
iated Wiener-Hopf matrix equation. Results have shown that performan
es degrade signi�
antlywith respe
t to full-information 
ontrol. Furthermore, 
omparison with an optimal
ompensator exploiting just streamwise skin fri
tion revealed that SIMO 
ompensatorleads to the same drag redu
tion but it bene�ts from a higher robustness with respe
tto the measurement noise.The limitations of optimal linear 
ontrol theory applied to turbulent drag redu
-tion have been underlined throghout this work. We think that future developmentsare possible only by abandoning linear system theory, e.g. by 
onsidering a feedba
klinearization of the nonlinear terms negle
ted by the linear representation of the �ow.As for the design of a 
ompensator based on wall measurements, performan
es havebeen proved to be strongly a�e
ted by the time span used for the dis
retization of theWiener-Hopf equation. Hen
e, it would be of interest to 
onsider a smaller time step,even though this would result in a signi�
antly higher 
omputational 
ost during thephase of kernel design. Moreover, we suggest that further improvements are possible bya

ounting for the a
tual nonlinear impulse response of the �ow subje
t to wall-for
ing.As a matter of fa
t, in the present work only the linear part has been 
onsidered, whi
h
orresponds in Wiener nonlinear systems theory to the �rst-order 
onvolution kernelrelating system input to system output. Then, knowledge of higher-order Wiener ker-nels 
an be straightforwardly a

ounted for in Wiener-Hopf optimal 
ontrol theory,leading to kernels whi
h are optimal for the a
tual turbulent �ow.



Appendix A
Proof of Bewley Conje
ture
In [3℄ it has been 
onje
tured that the lowest sustainable drag of an in
ompressible
onstant mass-�ux 
hannel �ow, when 
ontrolled via a distribution of zero-net-mass-�ux blowing/su
tion over a no-slip 
hannel walls, is exa
tly that of the laminar �ow.The proof of this 
onje
ture starts with the de�nition of the sustainable drag ([4℄):
〈D〉∞ = lim

T→∞
〈D(t)〉T = lim

T→∞

∫ T

0

1

T

∫ T

0

D(t) dt = lim
T→∞

−µ

T

∫ T

0

∫

Γ±

2

∂u

∂n
dx dt (A.1)where n is the wall-normal, Γ±

2 is the boundary set grouping upper and lower walls.Then, in
ompressible Navier-Stokes equations are 
onsidered, highlighting the meanpressure gradient Px:




∂U

∂t
+ u∇U = ∇P + iPx +∆U (A.2a)

∇U = 0 (A.2b)where i indi
ates unit ve
tor in streamwise dire
tion. The mean pressure gradient inthe streamwise dire
tion is then 
hosen so to maintain a 
onstant bulk velo
ity:
UB =

1

V

∫

Ω

U(x, t) dx = 
onstant (A.3)where Ω is the re
tangular domain of the problem (0, Lx)× (−1, 1)× (0, Lz) and V =

2LxLz is the volume of su
h domain. Then, we 
hoose the laminar Poiseuille solutionfor the referen
e velo
ity pro�le U(y). Blowing/su
tion 
ontrol 
an be analyti
allyrepresented as u(x, t) = −φ(x, t)n. So, by integrating Navier-Stokes equations overspa
e multiplied by velo
ity U , then integrating by parts, applying boundary 
onditionsand �nally taking the time average, we �nd an expression for 〈D〉∞:
〈D〉∞UBV = 〈ν‖∇U‖22〉∞ −

〈∫

Γ±

2

φ(p+ φ2/2) dx

〉

∞

(A.4)113



114 Appendix A. Proof of Bewley Conje
turewhere the quantity 〈∫
Γ±

2

φ(p+ φ2/2) dx
〉
∞

is the time-averaged power input appliedat walls, while the quantity 〈D〉∞UBV represents the time-averaged power requiredto maintain the unsteady 
ontrolled �ow by the bulk pressure gradient. If we now
onsider the laminar drag DL of the 
orresponding laminar 
hannel �ow with the samedimensions, vis
osity and bulk velo
ity, then by integrating the wall-normal derivativeof the laminar velo
ity pro�le, i.e. Ū(y) over Ω, we �nd:
DLUBV = νLxLz

∫ 1

−1

U ′2 dx (A.5)where the quantity DLUBV may be interpreted as the power required to maintainthe laminar �ow by the bulk pressure gradient. Finally, we split the velo
ity �eld inNavier-Stokes equations in its mean and �u
tuating 
omponents, namely Ū and u,then, following the same analyti
al manipulations that led to A.4, we �nd
‖∇U‖22 = LxLz

∫ 1

−1

U ′2dy + ‖u‖22 (A.6)After 
ombining Equations A.4, A.5 and A.6, we 
ome to the fundamental relation,whi
h has appeared for the �rst time in [8℄:
〈∫

Γ±

2

φ(p+ φ2/2)dx

〉

∞

− [DLUBV ] =
〈
∇v

2
2

〉
∞

> 0 (A.7)A qui
k analysis of A.7 allows us to assert that when 〈D〉∞ < DL, i.e. sublaminardrag is a
hieved, then the power of the applied 
ontrol input is always larger thanany possible power saved due to drag redu
tion for any possible 
ontrol distribution
φ(x, t). For this reason relaminarization is the highest result that 
an be a
hievedthrough blowing/su
tion wall a
tuation with a positive net power saving.
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