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AbstratThe aim of the present work is to assess the performanes of feedbak ontrol appliedto turbulent hannel �ow for drag redution by means of wall shear stresses and wallpressure sensors and zero-net-mass-�ux blowing/sution MEMS atuators at walls.The problem is addressed starting from Navier-Stokes equations, whih are manip-ulated in order to obtain a linear time-invariant model of the hannel �ow. Suh modelis then exploited in order to implement a full-information LQR ontroller into DiretNumerial Simulations. The following step onerns the implementation of a morelikely measurement-based ontroller. The design proedure that has been developed ismainly based on optimal output feedbak ontrol. Results have indiated the neessityof implementing a state observer.The following part of the work deals with the design of an optimal ompensatorbased on wall measurements. This phase is arried out leveraging a frequeny-basedWiener-Hopf ontrol tehnique previously developed to redue the drag in a planehannel �ow using a single-input single-output approah. This strategy has then beenextended to multi-output on�guration, where all wall measurements are available.Simulations with di�erent ontrol penalties and measurement noise have shown thatperformanes derease, albeit remaining still positive, when an observer is introduedand bene�ts arising from multiple measurements information onern an improvedrobustness with respet to measurement noise.These results have suggested that a linear ontrol approah is su�ient to suess-fully manipulate a turbulent hannel �ow, but state estimation must take into aountalso nonlinear e�ets taking plae in the �ow in order to obtain reliable information andfuture e�orts in feedbak �ow ontrol �eld will have to be addressed in this diretion.Key words: Turbulene, Control, DNS, Plane Channel Flow, LQR, Wiener-Hopf





SommarioObiettivo del presente lavoro di tesi è quello di valutare le prestazioni dell'appli-azione di un ontrollo in feedbak per ridurre l'attrito a parete in un �usso turbolentoutilizzando sensori di attrito e pressione a parete, ombinati on attuatori MEMS ainiezione e aspirazione, montati a parete.Il problema è a�rontato partendo dalle equazioni di Navier-Stokes, dalle quali vieneestrapolato un modello lineare tempo-invariante del �usso. Tale modello rappresen-ta il punto di partenza per l'implementazione di un ontrollore LQR in simulazioniDNS, supponendo l'intera onosenza dello stato del sistema. Il passo suessivo hariguardato l'implementazione di un più verisimile ontrollore basato eslusivamentesulle misure a parete. La fase di progettazione è stata ondotta basandosi sulla teo-ria della retroazione ottima della misura. I risultati hanno evidenziato la neessità diriostruire lo stato del sistema attraverso un osservatore.L'ultima parte del lavoro riguarda la progettazione di un ompensatore ottimobasato sulle misure a parete. Questa fase è stata ondotta sfruttando una tenia diontrollo alla Wiener-Hopf nel dominio delle frequenze, preedentemente sviluppata perridurre l'attrito in un �usso turbolento usando un approio single-input single-output.Questa strategia è stata poi estesa al aso multi-output, in ui tutte le misure a paretesono disponibili. Simulazioni DNS on di�erenti pesi sull'attuazione e sul rumore sullemisure hanno mostrato he le prestazioni si riduono, rimanendo pur sempre positive,quando il ontrollo LQR lasia il posto ad un ontrollo basato su un osservatore distato e he l'utilizzo di più misure garantise una maggiore robustezza delle prestazionirispetto al rumore sulla misura.Questi risultati suggerisono he un approio lineare nella progettazione del on-trollore è su�iente per manipolare on suesso un �usso turbolento. Di ontro, lastima dello stato deve essere ondotta prendendo in onsiderazione anhe gli e�etti nonlineari he hanno luogo all'interno del �uido, al �ne di ottenere informazioni a�dabilie gli sforzi futuri nel ampo del feedbak �ow ontrol dovranno essere rivolti in questadirezione.Parole hiave: Turbolenza, Controllo, DNS, Flusso Piano, LQR, Wiener-Hopf





Estratto della TesiLo studio della turbolenza è oggigiorno oggetto di fervido interesse all'interno dellaomunità sienti�a, in quanto la omprensione del fenomeno �sio è il primo gradinoverso la predizione e quindi il ontrollo del omportamento turbolento di un �usso.Riusire in questo arduo ompito avrebbe impliazioni eonomihe di notevole portata.Basti pensare he se si riusisse a ridurre solo del 15% l'attrito visoso sulla super�iedegli aeroplani, allora l'industria aeronautia avrebbe risparmi per più di 15 miliardi didollari l'anno, derivanti dalla riduzione del arburante impiegato per vinere l'attritodell'aria.Il presente lavoro di tesi a�ronta il problema di de�nire una logia di ontrollo infeedbak per la riduzione dell'attrito visoso in uno senario il più prossimo alla real-izzazione appliativa, ovvero onsiderando attuatori e sensori montati a parete. Primadi addentrarsi nella questione, sono stati delineati i onetti fondamentali della teoriadella turbolenza, ponendo l'attenzione soprattutto sulle nozioni di strutture oerenti edi ilo di parete, veri apisaldi attraverso ui fondare la omprensione dei fenomeniturbolenti he avvengono in prossimità di una super�ie investita da �uido. Di seguito,per illustrare la vastità del panorama, sono state desritte le prinipali tenihe per lariduzione del drag he al giorno d'oggi hanno rievuto approfondito studio attraversosimulazioni DNS o prove sperimentali.A questo punto è stata de�nita una geometria ideale in ui studiare il problema.La selta di un dominio rettangolare ha permesso di utilizzare un odie DNS par-tiolarmente e�iente per la risoluzione delle equazioni non lineari he governano ladinamia del �usso turbolento, ontrollato e non ontrollato. Dopodihé, partendo dalleequazioni di Navier-Stokes e sfruttando le spazio-invarianze derivate dalla simmetriadel problema, è stato ottenuto un sistema di equazioni di�erenziali he, trasformatonel dominio di Fourier, ha portato alla de�nizioni delle note equazioni di�erenziali diOrr-Sommerfeld e Squire. Tali equazioni sono state poi disretizzate lungo la direzionenormale a parete durante l'implementazione numeria. In questa fase, due diversiapproi sono stati onsiderati, ovvero le di�erenze �nite e le derivate spettrali. L'ap-pliazione di queste tenihe ad un aso test prima ed al alolo degli autovalori di unsistema di equazioni di Orr-Sommerfeld e Squire per una oppia di numeri d'onda poi,ha permesso di valutarne ritiamente le prestazioni.Ottenuto il modello lineare, è stato osì possibile de�nire una logia di ontrollo inv



vifeedbak. Siome il ontrollo a parete risulta agire sul sistema attraverso le ondizionial ontorno dell'equazione di�erenziale, è stata proposta una tenia di rilevamento al�ne di ottenere la formulazione agli stati del problema. Partendo da questa, è stata poiimplementata una strategia di ontrollo ottimo basata sulla retroazione dell'intero statodel sistema. Tuttavia, non essendo possibile inserire il drag nel funzionale del ontrolloottimo, in quanto questo permette la sola de�nizione di norme quadratihe, l'obiettivodi ridurre l'attrito a parete è stato inseguito indirettamente attraverso la de�nizione dinorme dello stato basate su grandezze signi�ative dal punto di vista della �sia dellaturbolenza. L'utilizzo di dette norme, ombinate on selte opportune degli ulteriorigradi di libertà he tale shema di ontrollo onsente, ha portato alla progettazione didiversi ontrollori. I problemi numerii dovute al attivo ondizionamento delle matriidi stato nell'equazione di Riati del ontrollo ottimo sono stati superati utilizzandoalgoritmi ad ho basati su fattorizazione e suessiva risoluzione iterativa. I ontrolloriosì ottenuti sono stati poi appliati al ontrollo di un �usso turbolento per un paio dinumeri di Reynolds largamente studiati in letteratura. Uno dei risultati pià elatantiè stata la ompleta rilaminarizzazione di un �usso turbolento ad un basso numerodi Reynolds, usando un ontrollore on guadagni tempo-invarianti, anhe modellandol'eventuale saturazione dell'attuatore.Poi, al �ne di ottenere un ontrollo maggiormente votato all'implementazione prati-a, è stato proposta una logia di ontrollo basata sulla retroazione ottima della misura.Il onfronto tra le norme delle funzioni di trasferimento tra disturbo in ingresso e statodel sistema ontrollato on retroazione della misura e quelle del sistema ontrollato onretroazione dello stato ha portato alla onstatazione dell'esigenza di riostruire lo statoattraverso un osservatore.Il punto di arrivo è stato quindi la de�nizione di una logia di ontrollo basatasulla de�nizione di un ompensatore ottenuto attraverso l'aoppiamento di ontrolloreed osservatore ottimo per la retroazione delle misure disponibili a parete. Per farequesto, è stata sviluppata una logia di ontrollo nel dominio delle frequenze, dettaontrollo alla Wiener-Hopf, on ui è stato possibile progettare in un solo passo sia ilontrollore he l'osservatore. Questo ha omportato un notevole risparmio di tempo,in quanto la risoluzione delle due equazioni di Riati per ontrollore ed osservatorenel dominio del tempo è stata sostituita dalla risoluzione di un sistema lineare la uimatrie ha una struttura di Toeplitz, se una sola misura è onsiderata per la retroazione,mentre ha una struttura di Toeplitz a blohi se più misure vengono retroazionate.Sfruttando le simmetrie interne a queste matrii, è stato sviluppato un algoritmo perottenerne la fattorizzazione in un tempo he sala ol quadrato delle dimensioni dellematrii. Questo ha rappresentato un notevole miglioramento dal punto di vista delosto omputazionale, in quanto utilizzare le onsuete tenihe di fattorizzazione hesalano ol ubo delle dimensioni delle matrii, avrebbe allungato notevolmente lafase di progettazione del ompensatore. I ompensatori osì ottenuti sono stati poiimplementati in simulazioni DNS onsiderando diversi parametri di ontrollo e diversilivelli di rumore sulle misure al �ne di indagare gli e�etti sulla riduzione dell'attrito



viia parete. I risultati hanno evidenziato he quando viene utilizzato un osservatore distato si ha una signi�ativa riduzione delle prestazioni, le quali rimangono pur semprepositive. Inoltre, l'utilizzo di misure multiple si è dimostrato avere e�etti bene�i sullarobustezza della stima rispetto al rumore sulla misura.In�ne sono stati onsiderati possibili sviluppi futuri, quali l'adozione di uno stima-tore non lineare in grado di superare i limite dell'osservatore lineare o la stima dellarisposta non lineare del sistema, la quale può poi essere utilizzata all'interno dellateoria del ontrollo Wiener-Hopf per progettare un ompensatore ottimo per il realeomportamento del �uido piuttosto he per la sua approssimazione lineare.





Contents
1 Fundamentals of Turbulene 32 Flow Control 112.1 Passive ontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.1.1 Compliant oatings . . . . . . . . . . . . . . . . . . . . . . . . . . 142.1.2 Introdution of additives . . . . . . . . . . . . . . . . . . . . . . . 142.1.3 Large-eddy breakup devies . . . . . . . . . . . . . . . . . . . . . 152.1.4 Riblets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.2 Ative ontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.2.1 Predetermined ontrol . . . . . . . . . . . . . . . . . . . . . . . . 172.2.2 Feedforward ontrol . . . . . . . . . . . . . . . . . . . . . . . . . 202.2.3 Feedbak ontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . 202.3 Sensors and atuators for �ow ontrol . . . . . . . . . . . . . . . . . . . 212.3.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.3.2 Atuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.4 Experimental tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Channel Flow Model 273.1 DNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273.1.1 Time disretization . . . . . . . . . . . . . . . . . . . . . . . . . . 303.1.2 Compat �nite di�erene sheme . . . . . . . . . . . . . . . . . . 303.1.3 Parallel strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 323.1.4 Code validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.2 Orr-Sommerfeld and Squire linear model . . . . . . . . . . . . . . . . . . 333.3 Disretization of derivatives operators . . . . . . . . . . . . . . . . . . . 383.3.1 Finite di�erenes . . . . . . . . . . . . . . . . . . . . . . . . . . . 383.3.2 Spetral derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 413.3.3 Benhmark problem for the proposed derivation shemes . . . . . 423.4 Orr-Sommerfeld and Squire eigenvalues . . . . . . . . . . . . . . . . . . 454 Optimal State Feedbak Control 494.1 Derivation of an optimal ontroller . . . . . . . . . . . . . . . . . . . . . 49ix



x Contents4.2 Choie of referene veloity pro�le . . . . . . . . . . . . . . . . . . . . . 524.3 Objetive funtion design . . . . . . . . . . . . . . . . . . . . . . . . . . 534.3.1 Energy norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554.3.2 Dissipation norm . . . . . . . . . . . . . . . . . . . . . . . . . . . 554.3.3 Enstrophy norm . . . . . . . . . . . . . . . . . . . . . . . . . . . 564.3.4 Wall-measurement norm . . . . . . . . . . . . . . . . . . . . . . . 564.4 Solution of Riati equation . . . . . . . . . . . . . . . . . . . . . . . . . 584.4.1 Shur-Hamilton method . . . . . . . . . . . . . . . . . . . . . . . 594.4.2 Newton-Kleinman method . . . . . . . . . . . . . . . . . . . . . . 604.5 Solution of Lyapunov equation . . . . . . . . . . . . . . . . . . . . . . . 624.5.1 Shur method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624.5.2 Smith method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634.6 Parametri study on the e�etiveness of LQR ontrol . . . . . . . . . . . 645 Optimal Output Feedbak Control 775.1 Analytial derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775.2 Measures of performane . . . . . . . . . . . . . . . . . . . . . . . . . . . 795.3 Output feedbak performane assessment . . . . . . . . . . . . . . . . . 796 Observer-based Control 836.1 State-of-the-Art review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836.2 Kalman �lter theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856.3 Wiener-Hopf optimal ompensator design . . . . . . . . . . . . . . . . . 876.3.1 Analytial solution . . . . . . . . . . . . . . . . . . . . . . . . . . 896.3.2 Numerial solution . . . . . . . . . . . . . . . . . . . . . . . . . . 946.4 Impulse response measure . . . . . . . . . . . . . . . . . . . . . . . . . . 1016.5 Results of Wiener-Hopf ontrol for drag redution . . . . . . . . . . . . 1037 Conlusions and Future Developments 111A Proof of Bewley Conjeture 113



List of Figures
1.1 Side view of a low-Reynolds-number turbulent boundary layer from [22℄. 71.2 Top view of a low-Reynolds number turbulent boundary layer from [18℄. 71.3 Top view of a low-Reynolds-number turbulent boundary layer from [22℄. 81.4 Sequential events arising during the bursting proess . . . . . . . . . . . 81.5 Physial model of near-wall turbulent oherent struture generation. . . 92.1 Drag break-down of a ivil airraft and potential drag redution. . . . . 122.2 Flow modi�ations and engineering goals. . . . . . . . . . . . . . . . . . 122.3 Interation between �ow-ontrol goals. . . . . . . . . . . . . . . . . . . . 132.4 Classi�ation of �ow ontrol strategies. . . . . . . . . . . . . . . . . . . . 132.5 Comparison of distribution of rms amplitude of the TSI of rigid andompliant surfae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.6 Standard arrangement of a LEBUs array. . . . . . . . . . . . . . . . . . 162.7 Longitudinal ribbed surfaes. . . . . . . . . . . . . . . . . . . . . . . . . 162.8 Detail of shark skin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.9 Shemati representation of the turbulent hannel �ow simulated throughDNS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.10 Maps of drag redution in the ω − α plane for A = 0.5 and Re = 4760 . 192.11 Maps of net power saving in the ω − α plane for A = 0.5 and Re = 4760 192.12 Performane of LQR ontrol at di�erent Reynolds numbers . . . . . . . 212.13 Example of miro hot-�lm wall-shear-stress sensor array with baksideeletrial ontat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.14 Array of seasaw-type magneti atuators. . . . . . . . . . . . . . . . . . 232.15 Graphial representation of the traveling-wave onept . . . . . . . . . . 242.16 Feedbak ontrol system with arrayed hot-�lm sensors and wall-deformationatuators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.1 Shemati representation of the omputation domain used in DNS. . . . 273.2 Domain sliing sheme for parallel omputation. . . . . . . . . . . . . . 323.3 Mean veloity pro�le u+ . . . . . . . . . . . . . . . . . . . . . . . . . . . 343.4 Autoorrelation funtion Ruu along x oordinate at y+ = 10 . . . . . . . 343.5 Autoorrelation funtion Rww along x oordinate at y+ = 10 . . . . . . 35xi



xii List of Figures3.6 Comparison between anaytial and numerial solutions of the benhmarkODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453.7 Relative error of spetral derivatives sheme upon grid re�nement . . . . 463.8 Relative error of �nite di�erenes sheme upon grid re�nement . . . . . 463.9 Comparison of eigenvalues of Orr-Sommerfeld and Squire matrix for
Re = 10000 omputed through �nite di�erenes and spetral derivatives 484.1 Controller gains relating the state to the ontrol foring using energy norm 644.2 Controller gains relating the state to the ontrol foring using dissipationnorm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644.3 Controller gains relating the state to the ontrol foring using enstrophynorm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654.4 Controller gains relating the state to the ontrol foring using measure-based norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654.5 Main statistis of the unontrolled and ontrolled �ow at Re = 1500using energy norm and turbulent pro�le . . . . . . . . . . . . . . . . . . 664.6 Main statistis of the unontrolled and ontrolled �ow at Re = 1500using energy norm and laminar pro�le . . . . . . . . . . . . . . . . . . . 674.7 Comparison between laminar and turbulent referene pro�le at Re = 1500 684.8 Mean skin frition of the unontrolled and ontrolled �ow using optimalparameters and onsidering di�erent initial onditions . . . . . . . . . . 694.9 E�et of atuator saturation on drag redution at Re = 1500 usingoptimal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704.10 Three-dimensional view of a turbulent hannel �ow at Re = 1500 on-trolled using optimal parameters . . . . . . . . . . . . . . . . . . . . . . 714.11 Top view of high- and low-speed streaks in a turbulent hannel �ow at
Re = 1500 ontrolled using optimal parameters . . . . . . . . . . . . . . 724.12 Top view of injetion and sweep events in a turbulent hannel �ow at
Re = 1500 ontrolled using optimal parameters . . . . . . . . . . . . . . 734.13 Main statistis of the unontrolled and ontrolled �ow at Re = 1500using dissipation norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744.14 Comparison between laminar and turbulent referene pro�le at Re = 3500 754.15 Controller gains relating the state to the ontrol foring using energynorm with smoothing funtion . . . . . . . . . . . . . . . . . . . . . . . 754.16 Main statistis of the unontrolled and ontrolled �ow at Re = 3500using energy norm and turbulent pro�le . . . . . . . . . . . . . . . . . . 766.1 Classial losed-loop ontrol sheme. . . . . . . . . . . . . . . . . . . . . 876.2 Alternative representation of losed-loop ontrol sheme with transferfuntion modeling mismath. . . . . . . . . . . . . . . . . . . . . . . . . 876.3 Noise-to-measure blok diagram of the ontrolled system. . . . . . . . . 886.4 Shemati representation of an industrial rigid servo-system. . . . . . . . 91



List of Figures xiii6.5 Computational time of Cholesky fatorization . . . . . . . . . . . . . . . 996.6 Computational time of blok Toeplitz fatorization . . . . . . . . . . . . 1006.7 Computational time of Cholesky fatorization for �xed m . . . . . . . . 1006.8 Computational time of blok Toeplitz fatorization for �xed m . . . . . 1016.9 Computational time of blok Toeplitz fatorization for �xed p . . . . . . 1016.10 Convolution kernel for SIMO feedbak of streamwise wall shear stress at
Re = 3500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056.11 Convolution kernel for SIMO feedbak of spanwise wall shear stress at
Re = 3500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066.12 Main statistis of the unontrolled and ontrolled �ow at Re = 3500using dissipation norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076.13 Three-dimensional view of a turbulent hannel �ow ontrolled with SIMOompensator at Re = 3500 using dissipation norm . . . . . . . . . . . . 1086.14 Top view of a high- and low-speed streaks in a turbulent hannel �owontrolled with SIMO Wiener-Hopf ompensator at Re = 3500 usingdissipation norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109





List of Tables
3.1 Least stable eigenvalues of Orr-Sommerfeld and Squire matrix for Re =

10000 omputed through spetral derivatives . . . . . . . . . . . . . . . 473.2 Least stable eigenvalues of Orr-Sommerfeld and Squire matrix for Re =

10000 omputed through �nite di�erenes . . . . . . . . . . . . . . . . . 474.1 Drag redution and net power saving of feedbak ontrol using energynorm and turbulent pro�le . . . . . . . . . . . . . . . . . . . . . . . . . . 694.2 Drag redution and net power saving of feedbak ontrol using energynorm and Poiseuille pro�le . . . . . . . . . . . . . . . . . . . . . . . . . . 714.3 Drag redution and net power saving of feedbak ontrol using dissipa-tion norm and Poiseuille pro�le . . . . . . . . . . . . . . . . . . . . . . . 715.1 Performane of optimal state feedbak ontroller at Re = 1500 . . . . . 805.2 Performane of optimal output feedbak ontroller at Re = 1500 . . . . 806.1 Drag redution results using SIMO Wiener-Hopf approah . . . . . . . . 104

xv





PrefaeThe present thesis addresses the engineering problem of reduing the drag in a turbulenthannel �ow using blowing/sution atuators and sensors at walls. This researh �eldis a very ative and reent one, moreover it must fae the di�ulty of being at the veryintersetion of two widely studied disiplines, suh as theory of turbulene and systemontrol. This work is meant to develop a feedbak ontrol law to be applied in a likelyenvironment by onsidering a multidisiplinary point of view providing for both theseapproahes.The work is organized as follows. Chapter 1 introdues the reader to turbulenetheory, by desribing many general aspets and the most widely aepted argumentsonerning it. In partiular, the key onepts of oherent strutures and near-wall ylewill be outlined.Chapter 2 o�ers an overview of the main approahes to �ow ontrol for drag re-dution, onsidering both numerial simulations and experimental tests, with a briefdesription of the state-of-the-Art sensors and atuators already in use.Chapter 3 presents the DNS ode used for the numerial simulations of the presentwork, then it desribes how to obtain a linear model of the hannel �ow starting fromNavier-Stokes equations. Di�erent tehniques, namely �nite di�erenes and spetralderivatives, have been developed to disretize the di�erential equations of the linearsystem.Chapter 4 is devoted to the formulation of an optimal state feedbak ontrol. Then,the e�et of ontrol parameters on drag redution is investigated for di�erent Reynoldsnumbers, in order to �nd the on�guration yielding the best performanes.Chapter 5 proposes an optimal output feedbak ontrol based on the developmentof an algorithm for the solution of the nonlinear equation arising from optimal ontrolformulation when only wall-measurements are available for feedbak. Performanesare ompared to those of state feedbak relying on some norms of disturbane-to-statetransfer funtions.Chapter 6 develops an alternative approah based on state estimation from wall-measurements. The dual problem of ontroller and observer design is formulated asa single optimal ontrol problem in frequeny domain, aiming at developing a om-pensator for the feedbak of multiple wall-measures. The e�et of di�erent ontrolparameters is investigated through DNS in order to evaluate atual drag and net dragredution.Finally, Chapter 7 summarizes and disusses the main ahievements of the presentwork and outlines possible future developments. Milan, September 2010Daniele Cavaglieri
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Chapter 1Fundamentals of TurbuleneTurbulene is the last great unsolved problem of lassial physis. By the way, one ofthe greatest modern physiists, Rihard Feynman, used to tell this fable in order tolarify this onept. �As he laid dying, the modern physiist asked God two questions:Why relativity and why turbulene? I really think - said the famed physiist, - He mayhave an answer to the �rst question� [19℄. As a matter of fat, no one knows how tosolve the well-posed set of partial di�erential equations that govern turbulent �ows.Averaging those highly nonlinear equations to obtain statistial quantities always leadsto more unknowns than equations, and an ad ho modeling is neessary to lose theproblem. The struggle to get a full understanding has been long and around withlots of sweat, few vitories and muh frustration [20℄. This hapter is meant to guidethe reader to a deep understanding of this evolving panorama, by disussing the mostwidely aepted onepts in turbulene theory and introduing some of the main issuesthat nowadays are still objet of fervent researh.Until few deades ago, the most aepted view was that turbulene is essentially astohasti proess having randomly �utuating veloity �eld superimposed on a well-de�ned mean referene �ow. In this view, �utuations are ompletely random in thesense that there is zero probability for any �ow variable of having a partiular value,and there is zero energy in any one partiular frequeny or wavenumber. Now ommonopinion has signi�antly hanged, as it has been reognized that the behavior of allturbulent shear �ows are dominated by quasi-periodi large-sale vortex motions. Inorder to give an index or rate of turbulene, we use to assoiate to the �uid dynamissystem we are onsidering a dimensionless number Re, alled Reynolds number, whihis de�ned as follows:
Re =

ρUL

µ
=

V L

ν
(1.1)where ρ is the density of the �uid, µ the dynami visosity and ν = µ/ρ the kinemativisosity. U and L are the veloity and length sales of the �uid dynamis problemand they represent the typial dimensions at whih signi�ant dynamial phenomenahappen in the system. This dimensionless number gives a measure of the ratio of3



4 Chapter 1. Fundamentals of Turbuleneinertial fores ρU2L2 to visous fores µU2L and onsequently quanti�es their relativeimportane for given �ow onditions. Furthermore, Reynolds number plays a key role indesribing the veloity �eld of a �ow. As a matter of fat, if two �uid dynamis systemshave the same Reynolds number, then their saled veloity �elds are also the same.Reynolds number also haraterizes di�erent �ow regimes: at low Reynolds numbersvisous fores are dominant and the �ow assumes a smooth, onstant motion. In thisase, the �ow is said to be in a laminar regime, while at high Reynolds numbers the�uid is dominated by inertial fores, determining haoti motion. When this happens,the �ow is said to be in a turbulent regime. Furthermore, at intermediate values of Re,the �ow may show a laminar ondition but it an easily shift to a turbulent state withthe introdution of small disturbanes into the system. This last senario representsthe transition regime. As for turbulent regime, a onstant energy supply is needed forthis proess to be sustained and this energy is extrated from the mean �ow into thelargest, most energeti eddies that ompose the �ow. Afterwards, energy is transferredinto smaller and smaller sales until it is dissipated by visous ation in the smallestsales of the �ow, alled Kolmogorov miro-sales, in the name of the sientist who�rst postulated their existene on the basis of physial argumentations. In wall �ows,the phenomenon of dissipation through this energy asade proess takes plae in thevery neighborhood of the wall. We all this region boundary layer. Furthermore, thethikness δ of this layer provides a good measure of the largest eddies in the �ow, whilethe smallest sale is alled the visous wall unit, whih is of the order of Kolmogorovlength sale. Sine in the near-wall region visous fores dominate over inertia, the shearstresses τ of the �uid are mainly represented by their visous omponent. Furthermore,sine no-slip boundary ondition imposes null veloity at wall, the inertial stresses, alsoalled Reynolds stresses, are zero and wall shear stresses are determined as
τw = ρν
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(1.2)where Ū is the mean streamwise veloity, u and v are streamwise and spanwise �utua-tions of veloity, respetively, and y denotes the wall-normal diretion. The observationthat visous stresses dominate the wall region allows to hoose a proper visous time-sale tν by taking
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)−1 (1.3)The visous time-sale is then easily derived from dimensional analysis
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5The wall veloity sale follows diretly from Equations (1.3) and (1.4)
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∂Ū

∂y

∣∣∣∣
w

=

√
τw
ρ

(1.5)So, near-wall �ow an be represented using dimensionless wall units, obtained aftersaling �ow variables with the visous sales, whih are usually indiated with super-sript +. Hene, the nondimensional distane from wall is y+ = y/lν = y uτ/ν. Then,depending on y+, di�erent regions, or layers, are de�ned in the near-wall �ow. Wede�ne the visous wall region as the region for 0 < y+ < 50, while the region y+ > 50is alled the outer layer. Furthermore, within the visous wall region, we de�ne the vis-ous subregion as the region for y+ < 5, in whih Reynolds shear stresses are negligiblewith respet to visous stresses. Finally, the transition region between the visosity-dominated and the inertia-dominated part of the �ow, i.e. for 5 < y+ < 30, is alledthe bu�er layer.Starting from this well aepted framework, �uid dynamiists have long soughtto understand how boundary-layer turbulene is generated and dissipated. Sineboundary-layer �ows are the tehnial driver for so many engineering appliations,lots of �nanial and human resoures have been brought to bear on the problem overmany deades of study. The progress made, however, has not been ommensuratedwith the e�ort expanded, re�eting the intrinsi omplexity of turbulene phenomenaand the di�ulty that must be faed when trying to reprodue turbulent preesses ina ontrolled framework. For this reason, most of turbulene knowledge has resultedfrom investigation at low Reynolds numbers, where e�etive �ow visualizations andDiret Numerial Simulations (DNS) are possible. In this ontext, it has been madepossible the identi�ation of oherent motions. Historially, fundamental studies anbe found in [71℄ and [66℄ and nowadays, even if with some ontroversy, they are quiteuniversally onsidered as referene works. Despite this, no generally aepted de�ni-tion of what is meant by oherent motion has arisen. Atually, in physis oherenestands for a well-de�ned phase relationship. As for turbulene, if we aept Robinson'sde�nition �a oherent motion is a three dimensional region of the �ow over whih atleast one fundamental �ow variable exhibits signi�ant orrelation with itself or withanother variable over a range of spae and/or time that is signi�antly larger than thesmallest loal sales of the �ow� [64℄. The major motivations for investigating oherentmotions in turbulent boundary layers are:
• to aid preditive modeling of the gross statistis of turbulent �ows
• to understand the dynamial proesses responsible for statistial properties inorder to predit them through an appropriate modeling
• to guide alteration and ontrol of turbulene.The third reason, in partiular, onerns the main issues addressed in the presentwork. As for the referene framework for oherent strutures analysis, is is usual to



6 Chapter 1. Fundamentals of Turbuleneonsider a �at-plate, smooth-wall boundary layer with a two-dimensional mean �ow,without pressure gradient, wall heating, fore �elds or ompressibility e�ets. In suhenvironment, the turbulene prodution proess is dominated by three kinds of quasi-periodi eddies: the large outer strutures, the intermediate Falo eddies and near-walleddies. As for large outer strutures, they appear as large three dimensional bulgesthat sale with the layer thikness δ and extend aross the entire boundary layer, asdepited in Figure 1.1. These eddies ontrol the dynamis of the boundary layer in theouter region and appear quasi-periodially in spae and time. Falo eddies representanother typology of highly oherent strutures, whih are haraterized by having athree-dimensional extension. They usually appear in wakes, jets and boundary layers atan intermediate sale of 100 wall units and play a key role in the interation betweenlarge outer strutures and near-wall events. In order to highlight these strutures,smoke has been used as in Figure 1.2 to �ll the near-wall region of a boundary layer.What appear are roughly irular regions devoid of marked �uid, that have been alledpokets.The third kind of eddies takes plae in the wall region, where the most part of theturbulent prodution in the entire boundary layer ours during intermittent, violentoutward ejetions of low-speed �uid and during inrushes of high-speed �uid at a shal-low angle toward the wall. This intermittent quasi-yli sequene of intense organizedmotions have been olletively termed the bursting phenomenon. This proess, whihis shematially outlined in Figure 1.4, begins with elongated ounter-rotating stream-wise vorties, whih indue low- and high-speed streaks between them, as illustratedin Figure 1.5. Then, low-speed regions (Figure 1.3) grow downstream, lift up and de-velop instantaneous in�etional pro�les. At approximately the same time, the interfaebetween low- and high-speed �uid begins to osillate. Hene, the low-speed region liftsup away from the wall as the osillation amplitude inreases and then the �ow rapidlybreaks up into a ompletely haoti motion. Virtually all of the net prodution of tur-bulent kineti energy in the near-wall region ours during these bursts. This phase isfollowed by a large-sale motion of upstream �uid that emanates from the outer regionand sweeps the wall region of the previously ejeted �ow. This sweep event seems tohave a stabilizing e�et on the bursting site, sine it prepares the wall region for a newyle, thus determining a self-sustaining regime. The relationship between oherentstrutures in the outer region and near-wall yle is still not ompletely understoodeven if strong evidene of this interation has been provided in reent works, suh as[29℄ and [54℄.
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Figure 1.1: Side view of a low-Reynolds-number turbulent boundary layer from [22℄.

Figure 1.2: Top view of a low-Reynolds number turbulent boundary layer from [18℄.
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Figure 1.3: Top view of a low-Reynolds-number turbulent boundary layer from [22℄.

Figure 1.4: Sequential events arising during the bursting proess. Arrows with questionmark indiate relationships that are still objet of debate.
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Figure 1.5: Physial model of near-wall turbulent oherent struture generation.





Chapter 2Flow ControlThe possibility of manipulating a �ow �eld in order to obtain a desired objetive is ofimmense tehnologial importane and this surely aounts for the subjet being morehotly pursued by sientists and engineers than any other topi in �uid mehanis.It is su�ient to think that the potential bene�ts arising from the implementation ofe�ient �ow-ontrol systems range from saving billion of dollars in annual fuel osts forland, air and sea vehiles to ahieving more ompetitive industrial proesses involving�uid �ows. Aording to a reent study by Airbus [67℄, turbulene ontrol ould reduethe drag of a ivil airraft up to 15%, as shown in Figure 2.1, resulting in more than 15billion dollars saving per year for shipping industry. In this ontext, �ow manipulationmay play a key role in meeting several goals, suh as reduing the drag, as previouslymentioned, or enhaning the lift, augmenting the mixing of mass, momentum or energy,suppressing the �ow-indued noise or a ombination thereof. To ahieve these results,transition from laminar to turbulent �ow may have to be either delayed or advaned,�ow separation may have to be either prevented or provoked, and �nally turbulenelevels may have to be either suppressed or enhaned. All these engineering goals andtheir onnetion with �ow modi�ations are shematially outlined in Figure 2.2. It isto remark that none of these targets is partiularly di�ult if taken alone, but the aimis to ahieve the desired objetive adopting simple devies, inexpensive to build as wellas to operate, so that the expense for �ow manipulation would result in a signi�ant netpositive saving. Unfortunately, all these goals are not neessarily mutually exlusive,as depited in Figure 2.3, and potential on�its usually arise as one tries to ahievea partiular ontrol goal only to a�et adversely another goal. Thus, an ideal methodthat is simple, inexpensive to build and operate, and that does not have any trade-o�sdoes not exist and the skilled engineer has often to make ompromises.In order to give an exhaustive overview of �ow ontrol methods, we have to remarkthat many di�erent lassi�ations are possible. One of these is to onsider whetherthe tehnique is applied at the wall or away from it. In the former ase, the �ow maybe altered by modifying in�uent surfae parameters, like urvature, rigid-wall motion,ompliane, temperature and porosity. Even heating and ooling of the surfae an11
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Figure 2.1: Drag break-down of a ivil airraft and potential drag redution.

Figure 2.2: Flow modi�ations and engineering goals.in�uene the �ow through the resulting density gradients. Mass transfer is possible viasution/injetion through a porous wall. Di�erent additives, suh as polymers, sur-fatants, miro bubbles, droplets, partiles an also be injeted through the surfae inwater wall-bounded �ows. As for the latter ase, ontrol devies loated away from thesurfae an also be bene�ial. Large-eddy breakup devies (LEBU), aousti waves,magneto- and eletrohydrodynamial body fores are examples of �ow ontrol strate-gies applied away from the wall.Another sheme for lassifying �ow ontrol methods onsiders energy expenditure andthe ontrol loop involved. A ontrol devie an be passive, thus requiring no auxil-iary power and no ontrol loop, or ative, hene requiring some energy expenditure,as shown in Figure 2.4. Moreover, ative ontrol requires a ontrol loop and is furtherdivided into predetermined or reative. Predetermined ontrol inludes the appliationof steady or unsteady energy without regard to the partiular state of the �ow. In thisase, the ontrol loop is open and no sensors are required. Reative ontrol, instead, is
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Figure 2.3: Interation between �ow-ontrol goals.

Figure 2.4: Classi�ation of �ow ontrol strategies.
a speial lass of ative ontrol where the ontrol input is ontinuously adjusted basedon measurements of some kind. In reative feedforward ontrol, the measured variableand the ontrolled variable di�er, while reative feedbak ontrol neessitates the on-trolled variable to be measured, fed bak and ompared with a referene input. In thefollowing, a brief review of the state-of-the-Art ontrol strategies is given aording tothe approah adopted and after that, an introdutory disussion will desribe the mostup-to-date sensors and atuators whih have been used in experimental tests regarding�ow ontrol.



14 Chapter 2. Flow Control2.1 Passive ontrol2.1.1 Compliant oatingsAmong passive tehniques for boundary layer manipulation, ompliant oatings surelyrepresent the most simple solution sine it does not require slots, duts or internalequipment of any kind. Aside from reduing drag, other reasons for the strong interestin studying ompliant oatings are their many other useful appliations, for example assound-absorbent materials in noisy �ow-arrying duts in aero-engines and as �exiblesurfaes to oat naval vessels for the purpose of shielding their sonar arrays from thesound generated by the boundary-layer pressure �utuations.The idea of adopting ompliant oatings for drag redution ame out from studyingdolphins' surprising swimming skill. As a matter of fat, bottlenose dolphins have beenloked swimming at speed exeeding 10m/s for periods of over 7 s, but assuming thatthe power output of etaeans is equal to that of other mammals (≈ 35W/kg of bodyweight), then suh speeds are reahed under turbulent �ow onditions only if dolphinsan expend several times more power than their musles an generate. More speif-ially, it an be demonstrated, on the basis of energy onsiderations, that dolphinsan not exeed a speed of 6m/s for periods greater than 2 hours. The only possibleexplanation is that dolphins have a lower skin-frition drag level than expeted due totheir omplex epidermis, whih ats as a ompliant oating optimized over eah por-tion for the appropriate range of loal Reynolds number. However, repliating Nature'sperfetion has represented an arduous task and only after many deades of ontradi-tory results, this tehnique has been proved to ahieve some results in delaying �owtransition from laminar to turbulent ondition aused by Tollmien-Shlihting insta-bility (TSI). For an exhaustive desription of this phenomenon the interested reader isreferred to [65℄.The mehanism through whih ompliant oatings work is stritly related to thehydroelastial oupling of �uid and solid whih auses an irreversible energy transferfrom the former to the latter. However, for longtime it has been deemed impratialto learly demonstrate its e�etiveness and the �rst signi�ant results appeared for the�rst time in Lee's wind-tunnel experiments [43℄. The oating used for the tests wasmade by a mixing 91% by weight of 100mm2/s silion oil with 9% of silione elastomer.Results showed that, as ompared to the rigid wall, the single layer, isotropi, viso-elasti ompliant oating signi�antly suppressed the root-mean-square (rms) ampli-tude of the arti�ially generated Tollmien-Shlihting waves aross the entire boundarylayer for a range of Reynolds numbers (Figure 2.5).2.1.2 Introdution of additivesTurbulent skin-frition drag an be redued by the addition of several substanes,suh as long-hain moleules and mirobubbles in liquid �ows. The addition of thesesubstanes leads to a suppression of the Reynolds stress prodution in the bu�er zone.
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Figure 2.5: Comparison of distribution of rms amplitude of the TSI of rigid surfae (whitesquares) and ompliant surfae (blak squares) aross boundary layer. (a) Re = 1274, (b)
Re = 1105, () Re = 1225, (d) Re = 1350.Thus, the turbulent mixing is inhibited and a onsequent redution in the visous wallshear stress is ahieved. Among the possible tehniques for drag redution, solutionsof miromoleules is perhaps the more mature tehnology. By the way, it has beenproved that the addition of less than 100 parts per million of polymethyl metharylateto a turbulent pipe �ow of monohlorobenzene an lead to a skin-frition redution upto 80% in both external and internal �ows, even if its appliation an be very ost-e�etive: oil ompanies, for example, appear to have onluded that the use of polymersfor supertankers is just at the break-even point, eonomially speaking. Aording toLumley [50℄ - [51℄, the onset of drag redution is assoiated with the expansion outsidethe visous sublayer of polymer moleules, whih at rest are in the form of spherialrandom oils. This proess auses an inrease in e�etive visosity whih damps onlythe small dissipative eddies, resulting in redued momentum transport, hene redueddrag.2.1.3 Large-eddy breakup deviesLarge-eddy breakup devies (LEBUs) are designed to alter or break up the large vortiesfrom the outer edge of a turbulent boundary layer. A typial arrangement onsists ofone or more splitter plates plaed in tandem in the outer part of a turbulent boundarylayer, as illustrated in Figure 2.6. Unfortunately, there is little theoretial basis forhow these geometrial modi�ations a�et the skin-frition and most of the presentknowledge omes from experimental evidene. Anyway, tests have shown that it is veryeasy to substantially redue the skin-frition, while the most di�ult task is to ensurethat the devie's own skin-frition and pressure drag do not exeed the saving. Amongthe results ahieved, a noteworthy net drag redution of 20% has been obtained, thus



16 Chapter 2. Flow Control
Figure 2.6: Standard arrangement of a LEBUs array.

Figure 2.7: Longitudinal ribbed surfaes.leading LEBUs to be onsidered one of the most performing solution for drag redution.2.1.4 RibletsAnother interesting geometrial modi�ation is represented by riblets, whih are wallgrooves aligned with the freestream. Small longitudinal striations in the surfae in-terating favorably with the near-wall strutures in a turbulent boundary layer anprodue a modest drag redution in spite of the inrease in wet surfae area. A netdrag redution of 8% is obtained using V-groove geometry with sharp peak and eithersharp or rounded valley (Figure 2.7). Moreover, optimum height and spaing of thesymmetri grooves have been found to be about 15 ν/uτ . Curiously, the fastest sharkshave a surfae overing of dermal dentiles with �ow-aligned keels having the sameoptimal riblet spaing (Figure 2.8). Riblets work by restraining the movement of thenear-wall longitudinal vorties and therefore maintain their oherene. The stabilized

Figure 2.8: Detail of shark skin.



2.2. Ative ontrol 17oherent strutures present a barrier to the usual asade from large to small salesand hene impede the rate of energy loss with a resulting drag redution despite theinreased surfae area.2.2 Ative ontrol2.2.1 Predetermined ontrolPredetermined ontrol mainly involves introduing waves into the �ow through atu-ations or wall movements. Among the former solutions, an interesting one is thatproposed in [55℄, where blowing/sution atuation was employed to form a streamwise-traveling wave of wall-normal veloity vw, i.e.
vw(x, t) = A sin(αx− ωt) (2.1)where t is time, x the streamwise oordinate, A the amplitude of the osillation, ω =

2π/T the frequeny of osillation and α = 2π/λx the streamwise wavenumber where
λx is the wavelength. Another solution is the one reported in [16℄ and [17℄ where thefollowing spanwise-oriented volume foring was investigated:

fz(z, t) = Fe−y/∆ sin(βz − ωt) (2.2)where z is the spanwise oordinate, ∆ the distane up to whih the foring di�usesfrom the wall and β is the spanwise number. Approximately 30% drag redution wasahieved in a turbulent hannel �ow at Re = 3500.As for the latter solutions, an interesting way of reduing drag is to adopt osil-lating walls moving sinusoidally in spanwise diretion with period T , aording to thefollowing law
ww(t) = A sin(ωt) (2.3)where ww denotes spanwise veloity omponent at wall, while the other quantities arethe same as before. In [63℄ this ontrol law has been studied, through parametriinvestigation over Diret Numerial Simulations of turbulent hannel �ow, onludingthat an optimal frequeny ωopt for drag redution exists and suh a redution an beas high as 34% if the wave amplitude is omparable with the �ow enterline veloity.Furthermore, in [61℄ this tehnique has been extended for the �rst time in literature toonsider also streamwise-traveling waves of spanwise wall veloity, leading the motionlaw to aount also for spatial displaement, i.e.

ww(x, t) = A sin(αx − ωt) (2.4)With this motion law, whih is graphially represented in Figure 2.9, waves move instreamwise diretion with a phase speed c = ω/α. This wall motion law has then been
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Figure 2.9: Shemati representation of the turbulent hannel �ow simulated throughDNS.tested through parametri DNS for an array of frequenies ω and wavenumbers α inorder to �nd the optimum set (ωopt, αopt) ahieving the maximum drag and net dragredution. Results reported in Figure 2.10 show that, o� the axes, the perturbed �owreveals an unexpetedly rih behavior. In partiular, we an notie a red region ofhigh drag redution with a peak value of 48% and a one-shaped blue region of draginrease for 0.35 ≤ c ≤ 0.6, showing a peak value of 23% for a phase speed c = 0.5.Net power saving an then be omputed by onsidering the power saved from dragredution and subtrating the power spent to apply the ontrol ation. Results inFigure 2.11 show that the region of maximum net saving nearly oinides with theregion of maximum drag redution (DR) and net power saving is positive mainly forslow forward traveling waves, i.e. 0 ≤ c ≤ 0.2. Besides, a peak value of 18% net savingis ahieved for (ω, α) ≈ (0.15, 1).Although the details of the mehanism through whih suh waves ahieve signi�antdrag redution are still objet of further investigation, a deeper view of the phenomenonhas been given in [60℄, where it has been assumed that streamwise-traveling wavesoperate by reating a transversal boundary layer in the near-wall region of the hannel�ow. When the waves move at a speed omparable with the onvetion veloity, alok-in e�et renders the instantaneous turbulent �ow highly three-dimensional, thusprovoking drag inrease. Instead, when the phase speed is su�iently di�erent fromthe near-wall turbulent onvetion veloity, then the indued spanwise boundary layeran be viewed as a generalized Stoke layer, whose thikness has been proved to linearlyorrelate to drag redution till DR = 35%. Beyond this value, waves are osillating ona time sale larger than the typial lifetime of the near-wall turbulene, thus dereasingthe e�et of drag redution.
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Figure 2.10: Maps of drag redution DR in the ω−α plane for A = 0.5 and Re = 4760.Solid lines denote positive DR, while dashed lines indiate negative DR.

Figure 2.11: Maps of net power saving in the ω − α plane for A = 0.5 and Re = 4760.Solid lines denote positive balane, while dashed lines indiate negative net drag redution.



20 Chapter 2. Flow Control2.2.2 Feedforward ontrolThe most popular feedforward strategy for ontrolling turbulent hannel �ows is theopposition ontrol strategy �rstly presented in [12℄. With this approah, a detetionplane for one of the veloity omponent is introdued in the �ow at a distane of
y+ ≈ 10. The deteted veloity is then applied phased shifted by −π as a boundaryondition at walls. With this method, diret numerial simulations have showed a dragredution of around 20% using wall-normal vortiity and 30% using spanwise veloity.Another meaningful attempt to introdue feedforward ontrol, using this time aontrol law based on an analytial model, is the one proposed in [5℄, whih onerns theappliation of a reeding-horizon model-preditive ontrol to redue drag in a turbulenthannel �ow. With this strategy, the evolution of the system is onsidered over a �niteinterval and ontrol inputs are optimized over this �nite interval using an iterativegradient-based strategy. One optimized, ontrol inputs are applied to the evolving�ow system, then the proedure is repeated on the following time interval. It has beenmade possible thereby to fully relaminarize a turbulent hannel �ow at a low Reynoldsnumber, indiatively Re = 1500.2.2.3 Feedbak ontrolFeedbak ontrol is the branh of reative ontrol that has reeived the greatest at-tention due to its solid theoretial bakground. In this ontext, the standard senarioonsiders hannel �ow with skin frition and pressure sensors at walls to provide sys-tem measurements, while zero-net-mass-�ux blowing/sution MEMS atuators ontin-uously distributed over the walls are used to manipulate the �ow inner struture.One of the �rst approahes of this kind, before the introdution of linear systemstheory to �ow ontrol, has been presented in [41℄, where a neural network has beenimplemented in order to adaptively �nd a feedbak law for the loal wall shear stress,ahieving about 20% drag redution. A linear feedbak based on lassial ontrol theoryhas then appeared in [31℄, in whih it was used to stabilize a turbulent wall �ow in a two-dimensional hannel using blowing/sution at walls oordinated with measurements ofwall shear stresses. Afterwards, modern ontrol theory has been introdued in [38℄,followed by the extension of the previously developed two dimensional ontroller toa three-dimensional one, whih has been arried out by the same group work in [42℄,where an ad ho sheme was augmented in the third diretion. An exhaustive disussionon the appliation of linear quadrati feedbak ontrol to three-dimensional hannel�ows has appeared for the �rst time in [7℄. This strong theoretial framework has thenreeived further re�nements in [3℄ and has been applied in [25℄ for delaying laminar-to-turbulent transition in hannel �ows for a ouple of Reynolds numbers, namely
Re = 2000 and 3000. Finally, in a reent work [52℄, LQR ontrol has been tested toahieve net drag redution for higher Reynolds numbers. Results showed that morethan 20% net power saving is possible at Re = 1500 and 3500 and up to 15% at
Re = 6500, as outlined in Figure 2.12.



2.3. Sensors and atuators for �ow ontrol 21

Figure 2.12: Performane of LQR ontrol at di�erent Reynolds numbers. △ = Turbulentkineti energy, ◦ = Drag redution, � = Net power saving.2.3 Sensors and atuators for �ow ontrol2.3.1 SensorsUnlike most of ommon ontrol devies, sensors for feedbak ontrol of turbulenemust meet very hard requirements. First of all, they must have a physial size andresponse time small enough ompared with the spatial and temporal sales of turbulentstrutures. Experiments onduted in laboratory suggested that the appropriate sizeof shear stress/wall pressure sensors should be less than 30 − 40 visous units [35℄.Afterwards, in order to detet the near-wall strutures, it is neessary to build an arrayof sensors, rather than a single sensor, so to ath even loal �utuations. Clearly,suh spei�s ould be met only by adopting miroeletro-mehanial system devies(MEMS). Development of suh sensors for use in �uid siene has been largely dou-mented in literature, hene for a deeper knowledge of the subjet, the interested readeris referred to [21℄.The most ommon MEMS ontrol sheme onsiders an array of sensors to bemounted �ush to the wall. Thus, �utuating wall shear stresses in streamwise andspanwise diretions, τxw
and τzw , respetively, and wall pressure pw are used to detetthe �ow state near the wall. Sine it is known that the rms value of the wall-shear-stress �utuation is τw, rms ≈ 0.4τw and this ratio is quite Reynold-independent, ifwe suppose that the measurement auray required is 5% of the rms value, then thesensitivity should be at least 2% of the full sale of τw, whih is not di�ult to ahievewith MEMS sensors. The root-mean-square of wall-pressure �utuation, instead, isapproximately 3τw for Re ≈ 1000. Thus, the sensitivity of 2% of the full sale mustbe about 0.15τw, and owing to this larger magnitude, the pressure �utuation seemsbetter suited for ontrol.Among the great variety of MEMS sensors, the most mature devie for deteting
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Figure 2.13: Example of miro hot-�lm wall-shear-stress sensor array with baksideeletrial ontat.wall shear stresses is the miro-hot-�lm wall shear stress sensor, whih is based ona thermal priniple, in that it measures heat transferred from a resistively heatedelement to �owing �uid, thus indiretly obtaining the wall shear stress. Figure 2.13shows MEMS sensor arrays with a platinum hot �lm deposited on a 1-µm-thik SiNxdiaphragm (400 × 250µm2), where eighteen sensors are aligned at a pith of 1mm inthe spanwise diretion.Another sensor, whih instead is not based on a thermal priniple, uses a miro-�oating element for the diret mehanial measurement of shear stress. This elementis free to displae laterally against the restoring springs and it is �ush mounted tothe wall. The displaement of this element is measured with a apaitive or optialmethod. Its dimensions range from 120×120µm2 to 500×500µm2 and a �at frequenyresponse up to 4 kHz, while its noise �oor is as low as 0.0004Pa.2.3.2 AtuatorsAs for MEMS atuators, the following requirements should be met:
• small dimensions
• fast response
• low energy onsumption
• large �uid interation
• robustness in hostile environment.Then, atuation fore for �ow ontrol an be divided in three di�erent ategories:eletromagnetohydrodynami or eletri body fore, on-demand jets and surfae foredue to a moving �uid-solid interfae. Eletromagnetohydrodynami fore has proved tobe e�etive for drag redution in ondutive �uids as seawater [9℄. Furthermore, in [47℄
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Figure 2.14: Array of seasaw-type magneti atuators.eletroplated Permalloy has been employed to obtain large out-of-plane displaementin response to an external magneti �eld, while in [73℄ an elongated Si �ap was usedwith a pair of polymide hinges and a permanent magnet array underneath, as shownin Figure 2.14. Unfortunately, the low e�ieny of body fore in ase of poor eletrialondutivity of the �ow still remains a problemati issue.For this reason, syntheti jets represent nowadays a preferred hoie, sine theyan bene�t of a broader range of appliations. Basially, they are realized through anosillating diaphragm in a avity with an ori�e whih generates a zero-net-mass-�uxabove the ori�e.2.4 Experimental testsUntil now, few attempts have been made to develop feedbak ontrol systems in physialexperiments. As for predetermined ontrol, the earliest experimental ver�ations of theosillating-wall onept are those in [39℄ in the geometry of a boundary layer and in[14℄ and [13℄ in the irular pipe. Several other studies, most of them mentioned in[34℄, have extended suh results. It is to remark that all of them are low-Reynoldssetups where the wall osillation is implemented through mehanial vibrating deviesand the measurements are often obtained through a probe mounted near the movingwall. A notable exeption is that in [57℄, where Lorentz body fore was employed.The same foring was implemented in [9℄ in order to experimentally realize spanwise-traveling wall foring. Finally, in [59℄ laboratory tests assessing drag-reduing e�etof streamwise traveling waves have been arried out in the geometry of the irularpipe, where the naturally periodi spanwise diretion makes the implementation of
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wall velocityFigure 2.15: Graphial representation of the traveling-wave onept. The desired spae-time variation of the transverse wall veloity is ahieved through independent alternatemotion of adjaent pipe slabs.traveling waves easier. The spatio-temporal variations required to enfore the wavesare obtained through a time- and spae-varying rotational speed of the pipe wall. Whilethe harmoni dependene on time is easily implemented, the sinusoidal variation alongthe streamwise diretion is disretized by imposing di�erent rotation rates to di�erentthin longitudinal slabs of the pipe, as shown in Figure 2.15.As for reative feedbak ontrol, in [30℄ a ontrol system was set up by using piezo-eletri �ap atuators and hot-�lm sensor arrays loated upstream and downstream ofthe atuators. Then, a feedforward/feedbak ontrol sheme was applied in order tosuppress low- and high-speed streaks indued by vortex tubes in a laminar boundarylayer. In [62℄, a ontrol system was realized using two rows of three wall-mountedhot-�lm sensors with a single row of three syntheti jet atuators in between. A linearfeedbak ontrol sheme oupled with a Wiener �lter was employed to ahieve a 30%redution of streamwise veloity �utuations. Reently, in [74℄ a prototype system hasbeen developed for the feedbak ontrol of a turbulent air hannel �ow (Figure 2.16).This devie is omposed by an arrayed miro hot-�lm sensors with a spanwise sensingof 1mm for the measurement of streamwise shear-stress �utuations, while arrayedmagneti atuators of 2.4mm in spanwise width were used to introdue ontrol inputthrough wall deformation. The driving voltage of eah atuator is determined witha linear weighted sum of the wall shear-stress �utuations deteted by three sensorsloated upstream of eah atuator and a noise-tolerant geneti algorithm optimizes theontrol parameters in suh a way that the drag redution is maximized. With thisstrategy approximately 6% drag redution was ahieved.
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Figure 2.16: Feedbak ontrol system with arrayed hot-�lm sensors and wall-deformationatuators.





Chapter 3Channel Flow ModelChannel �ow at turbulent Reynolds numbers is a framework of partiular interest inwhih developing and testing proper feedbak ontrol strategy. As a matter of fat,the symmetry and simpliity o�ered by the geometry of a plane hannel �ow lead toe�etive implementation in DNS ode. What follows is an in-depth desription of theode used for numerial simulations. After that, starting from fully nonlinear Navier-Stokes equations, a linear model of the hannel �ow is analytially derived in order toimplement an optimal ontrol sheme.3.1 DNSThe simple geometry of hannel �ow allows to set a retangular omputational domain,as outlined in Figure 3.1: a Cartesian oordinate system is introdued, where x, y and zdenote the streamwise, wall-normal and spanwise diretions, respetively. The veloity�eld is omposed by the streamwise, wall-normal and spanwise omponents u, v and wand the pressure �eld is denoted by p. We all Lx the dimension of the hannel along

Figure 3.1: Shemati representation of the omputation domain used in DNS.27
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x diretion and Lz the dimension along z. A proper length sale one an adopt torepresent suh �ow an be obtained from the hannel half-width δ. Hene, we de�neReynolds number as

Re =
UBδ

ν
(3.1)where UB is the referene bulk veloity, whih is de�ned by the integral

UB =
1

δ

∫ δ

0

Ūdy (3.2)where Ū is the average veloity �eld. For the sake of simpliity, we will always take thehannel half-width equal to the unity. With these de�nitions, the nondimensionalizedNavier-Stokes equations for inompressible �ows appear as follows:
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∆w (3.3d)where Equation (3.3a) represents ontinuity equation, while Equations (3.3b)-(3.3d)represent the onservation of momentum. The problem is losed by assigning an initialondition for the �ow �eld, no-slip boundary onditions at walls and periodi boundaryonditions on the unbounded portion of the domain. This sheme is the starting pointin the implementation of DNS. The ode used in the present work is the one developedby Quadrio and Luhini, desribed in [48℄. The programming language adopted hasbeen written by Paolo Luhini and is alled CPL, with whih it possible to exploit C,C++ and Fortran ommands in the same environment.The approah to DNS is based on the pioneering work [37℄, whih has beome astandard tehnique in numerial simulations of turbulent �ows. It onsists of replaingthe nondimensionalized Navier-Stokes for inompressible �ows in Cartesian oordinates(3.3) with two salar equations, one for the normal omponent of the veloity v andone for the normal omponent of the vortiity η, whih is de�ned as
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(3.4)The equation for wall-normal vortiity an be easily obtained by taking the y-omponentof the url of (3.3). Then, after Fourier-transforming, we get
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[D2(η̂)− k2η̂] + jβĤU − jαĤW (3.5)where Dn(.) is the n-th order derivative operator in y diretion and k2 = α2+β2, where
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α and β are wavenumbers in Fourier domain. As for hat sign, it will be onsidered here,as in the rest of the work, to indiate a variable in Fourier domain. After that, thenonlinear terms whih ome from Fourier-transforming the onvetive part of Navier-Stokes equations are grouped together in the following de�nitions:

ĤU = jαûu+D1(ûv) + jβûw

ĤV = jαûv +D1(v̂v) + jβv̂w

ĤW = jαûw +D1(v̂w) + jβŵw

(3.6)As for the equation for wall-normal veloity, it is determined by summing (3.3b), de-rived two times w.r.t. x and y, and (3.3d), derived w.r.t. y and z, then subtrating(3.3) derived twie by x and (3.3) again derived twie by z. After some algebraimanipulations, we get the following fourth-order equation:
∂

∂t
[D2(v̂)−k2v̂] =

1

Re
[D4(v̂)− 2k2D2(v̂)+k4v̂]−k2ĤV −D1(jαĤU + jβĤW ) (3.7)Sine the equations are written in Fourier domain, unknowns v and η are represented inthe form of trunated Fourier series in the homogeneous diretions x and z, as follows:

v(x, y, z, t) =

Nx/2∑

h=−Nx/2

Nz/2∑

l=−Nz/2

v̂hl(y, t)e
jα0hxejβ0lz (3.8)where Nx and Nz are the higher wavenumbers at whih the disrete Fourier trans-form has been trunated, h and l are integer variables whih span Fourier spae instreamwise and spanwise diretions, respetively, while α0 and β0 are the orrespond-ing fundamental wavenumbers, de�ned as α0 = 2π/Lx and β0 = 2π/Lz. We an easilynotie that Equations (3.5) and (3.7) are unoupled if the nonlinear terms are known,e.g. by treating them expliitly in time disretization. Thus, they an be solved sep-arately to advane the solution in time. However, in order to ompute the nonlinearterms, we need to ompute û and ŵ. By ombining the equation for vortiity η andontinuity equation in Fourier spae we an determine û and ŵ by solving the following

2× 2 algebrai system 
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[jαD1(v̂)− jβη̂]
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[jβD1(v̂) + jαη̂]

(3.9)The numerial evaluation of veloity produts would require omputationally expensiveonvolutions in wavenumber spae, hene a more e�ient way has been proposed, basedon inverse Fourier-transforming the quantities of interest into physial domain, whereonvolutions are replaed by produts, thus re-transforming into wavenumber spae,using Fast-Fourier-Transform (FFT) algorithms in both diretions. In order to preservespetral auray, a de-aliasing fator of 3/2 is introdued to expand the number ofolloation points before transforming from wavenumber to physial spae.



30 Chapter 3. Channel Flow Model3.1.1 Time disretizationThe following step involves time integration of Equations (3.5) and (3.7) by adoptinga semi-impliit method, paying some attention to memory requirements. The moststability-limiting part of the equations, i.e. the visous part, is advaned with animpliit seond-order Crank-Niolson sheme. This relieves the onstraint on the time-step size ∆t, that is solely determined by the expliit third-order low-storage Runge-Kutta method used for advaning nonlinear terms, whih an thus bene�t from a higherpreision. After time disretization, Equations (3.5) and (3.7) appear as follows:
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(3.11)Coe�ients λ, θ and ξ appearing in the equations, take di�erent values aording tothe integration sheme one an hoose. In order to ahieve higher auray in thesolution, eah time-step ∆t is divided into three substeps δti and solved with di�erentoe�ients λi, θi and ξi. Hene, at eah substep the disrete equations are solvedby assembling the RHSs orresponding to the expliit part. As previously mentioned,veloity produts appearing in nonlinear terms are omputed through diret/inverseFFT in wall-parallel planes. Then, for eah wavenumber pair (α, β), we need to solvea set of two ODEs derived from the impliit formulation of visous terms. In orderto provide a disrete solution of the resulting ODEs, a ompat �nite di�erene dis-retization has been introdued for wall-normal di�erential operators, so to guaranteespetral auray. Suh disretization produes two linear systems with real bandedmatries, whose solution gives η̂n+1
hl and v̂n+1

hl , from whih we an easily reover theother veloity omponents ûn+1
hl and ŵn+1

hl from (3.9). Unlike the proedure adopted tobuild the RHS, this seond step proeeds per wall-normal lines, sine the simultaneousknowledge of the RHS in all y positions is required.3.1.2 Compat �nite di�erene shemeThe disretization of �rst, seond and fourth order wall-normal derivatives requiredfor the solution of the problem has been performed using a ompat �nite di�erenessheme. This is a major di�erene with respet to [37℄, whih instead proposed a



3.1. DNS 31spetral derivatives approah that provides spetral auray but su�ers from low par-allelization.The basi idea of ompat di�erenes sheme onsists of approximating the deriva-tive of a funtion at eah grid point with a linear ombination of the funtion evaluatedon a set of nodes in the neighborhood of suh grid point. For further details, the in-terested reader is referred to the exhaustive work of Lele [44℄. As for the presentimplementation, a �ve grid points stenil has been used to disretize the derivativeoperator in order to ahieve at least fourth-order auray. So, for eah grid point yj ,the �ve oe�ients Dj
n(i) of the n-th order entered derivative operator are determinedas follows:

Dn(f(y))|y=yj
=

2∑

i=−2

Dj
n(i)f(yj+i) (3.12)Usually, the main drawbak of ompat di�erenes shemes is their impliit formulationwhih requires the inversion of a linear system for the approximation of every derivativeat eah grid point if di�erent spaing is applied to the mesh grid. In the present ase,however, it is possible to expliitly pre-determine the oe�ients. This important sim-pli�ation has been �rstly highlighted in the original Gauss-Jakson-Numerov ompatformulation exploited in his seminal work by Thomas [70℄, onerning the numerialsolution of the Orr-Sommerfeld equation. To illustrate Thomas' method let us onsidera fourth-order ordinary di�erential equation for a funtion f(y) in the form

D4(a4f) +D2(a2f) +D1(a1f) + a0f = g (3.13)where the oe�ients ai(y) are arbitrary funtions of the independent variable y and
g(y) is the known RHS. Now suppose that a di�erential operator in frequeny spae, say
D4 for example, is approximated as the ratio of two polynomials D4 and D0 whih haveboth a ounterpart in physial spae, namely d4 and d0. Hene, if we are able to provethat all the di�erential operators in the di�erential equation admit a representation inwhih the polynomial D0 at the denominator remains the same, then Equation (3.13)an be reast into the equivalent form

d4(a4f) + d2(a2f) + d1(a1f) + d0(a0f) = d0(g) (3.14)Atually, this alternative formulation is possible if in a fourth-order ODE the third-order derivative operator is not present, as in the present ase. So, expliit �nite di�er-enes shemes have been applied in the DNS ode with the same order of auray ofimpliit ompat �nite di�erenes operator. As for boundaries, non-standard shemesneeded to be designed for omputing derivatives at walls, so non-entered shemes havebeen developed following the same approah adopted for interior points, thus preserv-ing by onstrution the formal auray of the method. Moreover, a mesh with variablesize has been used to disretize the wall-normal diretion, in order to keep trak of theinreasingly smaller turbulent length sales while approahing hannel walls. In the
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Figure 3.2: Domain sliing sheme for parallel omputation.present ode, the strething funtion used to generate the mesh is
y =

tanh aȳ

a
(3.15)where a is an adjustable parameter used to modify the mesh deformation and ȳ is amesh grid with onstant spaing oming from lower to upper wall.3.1.3 Parallel strategyThe approah previously outlined grants exellent parallelization performanes, in thata ompat di�erene disretization in wall-normal diretion allows to distribute thevariables in wall-parallel slies and perform diret and inverse FFTs loally at eahmahines. Moreover, thanks to the loality of ompat di�erene operators, the om-muniation required to ompute wall-normal derivatives of veloity produts is fairlysmall, sine data transfer is needed only at the interfae between ontiguous slies.This is a major di�erene with respet to [37℄, where a fully spetral disretization wasemployed. Although spetral derivatives an bene�t from higher auray, they havethe signi�ant drawbak of being de�ned on the whole domain, thus a transpositionof the whole dataset aross the omputing nodes is needed every time the numeri-al solution is advaned in time. It is worthless saying that this operation requiresa large amount of ommuniation, hene very fast networking hardware is needed toahieve good parallel performane, thus restriting DNS to be arried out only on veryexpensive omputers only.With ompat di�erenes sheme, transpose of the whole �ow �eld an be avoidedif data are distributed in slies parallel to the walls and eah one of the p mahinesrepresenting our parallel system is assigned one of these slies. The arrangement isshematially represented in Figure 3.2: eah mahine holds all the streamwise andspanwise wavenumbers for ny/p positions, where ny is the dimension of the meshgridin y diretion. In this way, a small amount of ommuniation is required only at theinterfae between two ontinuous slies for the evaluation of the RHSs. Moreover, eventhis ommuniation an be avoided if two boundary planes on eah internal slie aredupliated on the neighboring slie.



3.2. Orr-Sommerfeld and Squire linear model 33The most ritial part of the proedure lies in the seond part of the time-stepadvanement, when we have to solve a set of two linear systems, one for eah (h, l) pair,sine data appear to be spread over the pmahines. In this ase we an avoid to performa global transpose if we adopt a LU deomposition of the pentadiagonal distributedmatries and then apply a subsequent sweep of baksubstitution, whih requires thetransmission of only a few oe�ients at the interfae between neighboring nodes. Asthe number of linear systems is very high, typially (nx + 1)(nz + 1) ≈ 104 or bigger,the solution of the linear systems an be e�iently pipelined as follows. When the LUdeomposition of the matrix of the system for a given pair (h, l) is performed, there is a�rst loop from the top row of the matrix down to the bottom row, in order to eliminatethe unknowns, then a seond loop in the opposite diretion. The mahine owning the�rst slie performs the elimination in the loal part of the matrix and then passes theboundary oe�ients to the neighboring mahine, whih starts the elimination. Insteadof waiting for the elimination in the (h, l) system matries to be ompleted aross themahines, the �rst mahine an start working on the elimination in the matrix of thefollowing system. A synhronization is needed only at the end of the elimination phase,then the whole proedure an be repeated for the baksubstitution phase. This e�etivepipelined-linear-system strategy allows a point-to-point ommuniation, so that eahomputer has to exhange information only with adjaent CPUs, allowing to adoptmass-marketed CPUs instead of dediated servers.This struture has been realized at the University of Salerno and has been used toperform the most expensive simulations appearing in the present work. The system inits present on�guration is omposed by 150 quad-ore AMD Athlon and eah omputeris onneted to the adjaent ones by two 100 MBits Fast Ethernet ards.3.1.4 Code validationIn order to validate this DNS ode the authors have ompared the alulation of somemeaningful statistis with results reported in [37℄. In Figure 3.3 we an observe aperfet overlapping of the mean veloity pro�les u+. Good overall results have alsoemerged from omputation of autoorrelation funtions Ruu and Rww for streamwiseand spanwise omponent veloities, evaluated along x-diretion at y+ = 10, as shownin Figures 3.4 and 3.5.3.2 Orr-Sommerfeld and Squire linear modelIn order to implement an e�etive ontrol sheme based on blowing/sution at walls alinear time-invariant (LTI) state spae realization of the system is made neessary. Inorder to ahieve this goal, we start by onsidering Navier-Stokes equations outlined in(3.3), then we split the veloity �eld into a referene streamwise veloity pro�le U andperturbations around it in streamwise, wall-normal and spanwise diretions, namely
u, v and w. We do the same with the pressure �eld, by highlighting perturbation p.
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PSfrag replaementsFigure 3.3: Mean veloity pro�le u+: omparison between the present DNS ode (solidline) and the one outlined in [37℄ (dashed line).

Figure 3.4: Autoorrelation funtion Ruu along x oordinate at y+ = 10: omparisonbetween the present DNS ode (solid line) and the one outlined in [37℄ (dashed line).
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Figure 3.5: Autoorrelation funtion Rww along x oordinate at y+ = 10: omparisonbetween the present DNS ode (solid line) and the one outlined in [37℄ (dashed line).
where supersript ′ denotes derivative with respet to y diretion and Hx, Hy and Hzare the onvetive terms, de�ned as

Hx = u∇u

Hy = u∇v

Hz = u∇w

(3.17)where u represents the �utuating veloity �eld (u, v, w). Following a proedure anal-ogous to the one adopted for the implementation of DNS ode, it is possible to reduethe number of equations and unknowns to a minimum of two. Firstly, we take thedivergene of the vetorial momentum equation, i.e.
∂

∂t

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
+ U

∂

∂x

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
+

+ 2U ′ ∂v

∂x
+

(
∂Hx

∂x
+

∂Hy

∂y
+

∂Hz

∂z

)
=

= −∆p+
1

Re
∆

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
(3.18)hene, by applying ontinuity, we get

∆p = −2U ′ ∂v

∂x
−
(
∂Hx

∂x
+

∂Hy

∂y
+

∂Hz

∂z

) (3.19)Now, if we take the Laplaian of Equation (3.16), we have that
(

∂

∂t
+ U

∂

∂x

)
∆v + U ′′ ∂v

∂x
+∆Hy = − ∂

∂y
∆p+

1

Re
∆∆v (3.20)



36 Chapter 3. Channel Flow ModelAfter substitution of (3.19) into (3.20) and reordering, we �nally obtain
[(

∂

∂t
+ U

∂

∂x

)
∆− U ′′ ∂

∂x
− 1

Re
∆∆

]
v = dv (3.21)where with dv we have onsidered all the nonlinear terms appearing in the equation,i.e.

dv =

(
∂Hx

∂x
+

∂Hy

∂y
+

∂Hz

∂z

)
−∆Hy (3.22)To obtain the seond equation, we have to subtrat Equation (3.16d), derived withrespet to x, to Equation (3.16b), derived with respet to z, as follows:

∂

∂t

(
∂u

∂z
− ∂w

∂x

)
+ U

∂

∂x

(
∂u

∂z
− ∂w

∂x

)
+ U ′ ∂v

∂z
+

(
∂Hx

∂z
− ∂Hz

∂x

)
=

= − ∂2p

∂x∂z
+

∂2p

∂x∂z
+

1

Re
∆

(
∂u

∂z
− ∂w

∂x

) (3.23)Now, if we introdue the de�nition of wall-normal vortiity η (3.4), we �nd
(

∂

∂t
+ U

∂

∂x
− 1

Re
∆

)
η + U ′ ∂v

∂z
= dη (3.24)where dη ontains the nonlinear terms, i.e.

dη =

(
∂Hx

∂z
− ∂Hz

∂x

) (3.25)The set of Navier-Stokes equations in v-η formulations now appears as follows:




[(
∂

∂t
+ U

∂

∂x

)
∆− U ′′ ∂

∂x
− 1

Re
∆∆

]
v = dv (3.26a)

(
∂

∂t
+ U

∂

∂x
− 1

Re
∆

)
η + U ′ ∂v

∂z
= dη (3.26b)Now, it is useful to exploit the spatial invariane of Equations (3.26) with respet totranslation in diretions x and z, by Fourier-transforming in these diretions. The �eldvariables v and η, in Fourier spae beome

v(x, y, z, t) =

∞∑

nx=−∞

∞∑

nz=−∞

v̂(nx, y, nz, t)e
j 2πnxx

Lx ej
2πnzz

Lz (3.27)
η(x, y, z, t) =

∞∑

nx=−∞

∞∑

nz=−∞

η̂(nx, y, nz, t)e
j 2πnxx

Lx ej
2πnzz

Lz (3.28)



3.2. Orr-Sommerfeld and Squire linear model 37where Fourier oe�ients are de�ned as follows:
v̂(nx, y, nz, t) =

1

LxLz

∫ Lx

0

∫ Lz

0

v(x, y, z, t) e−j 2πnxx

Lx e−j 2πnzz

Lz dz dx (3.29)
η̂(nx, y, nz, t) =

1

Lx Lz

∫ Lx

0

∫ Lz

0

v(x, y, z, t) e−j 2πnxx

Lx e−j 2πnzz

Lz dz dx (3.30)If we de�ne the streamwise and spanwise wavenumbers α = 2πnx

Lx
and β = 2πnz

Lz
, afterFourier-transforming, we get





∆̂ ˙̂v =

(
−jαU∆̂ + jαU ′′ +

1

Re
∆̂∆̂

)
v̂ + d̂v (3.31a)

˙̂η = (−jβU ′) v̂ +

(
−jαU +

1

Re
∆̂

)
η̂ + d̂η (3.31b)where ∆̂ = D2(.) − k2, with D2(.) = ∂2/∂y2 and k2 = α2 + β2. In order to disretizethe derivatives operators in wall-normal diretion Di di�erent solutions have been de-veloped, whih are outlined in Setion 3.3. Then, if we onsider just the linear part,Equations (3.31) represent the well-known Orr-Sommerfeld and Squire equations, thatin operator form read

[
∆̂ 0

0 I

][
˙̂v
˙̂η

]
=

[
L̂OS 0

L̂C L̂SQ

] [
v̂

η̂

]

M ˙̂x = Lx̂

˙̂x = M−1Lx̂ = Nx̂

(3.32)Assuming modes with exponential time dependene, this system beomes an eigenvalueproblem with two distint solution families, the �rst one of whih ontains the Orr-Sommerfeld modes, whih involve eigensolutions of the equation for wall-normal velo-ity (3.31a). The least-stable Orr-Sommerfeld mode represents the so-alled Tollmien-Shlihting waves. These two-dimensional waves an experiment exponential growth atsubritial Reynolds numbers, i.e. for Re < 5772, subsequently falling into seondaryinstability to small-amplitude three-dimensional perturbations, thus ausing the �owto rapidly evolve into a fully turbulent state.The seond family of solutions ontains the Squire modes and has zero wall-normalveloity. Unlike Orr-Sommerfeld modes, Squire modes are always damped. To provethat, we onsider Squire equation without the foring term in v, i.e.
(

∂

∂t
+ jαU − 1

Re
∆̂

)
η̂ = 0 (3.33)and we impose an exponential solution of the type

η̂(y, t) = η̃(y) e−jαct (3.34)



38 Chapter 3. Channel Flow Modelwhere c represents omplex phase speed. After substitution of Equation (3.34) into(3.33), we obtain
(U − c)η̃ − 1

jαRe
∆̂η̃ = 0 (3.35)After multipliation by omplex onjugate ¯̃η and integration over the domain y ∈

[−1, 1], we �nd
c

∫ 1

−1

¯̃ηη̃ dy =

∫ 1

−1

U ¯̃ηη̃ dy − j

αRe

∫ 1

−1

¯̃η∆̂η̃ dy (3.36)By taking just the imaginary part of the previous equation, we demonstrate the thesis:
ci

∫ 1

−1

|η̃|2 dy = − 1

αRe

∫ 1

−1

(|Dη̃|2 + |kη̃|2) dy < 0 (3.37)3.3 Disretization of derivatives operatorsIn order to disretize the derivatives in the wall-normal diretion two di�erent ap-proahes have been developed and ompared: �nite di�erenes and spetral derivatives.What follows is a detailed desription of these two shemes.3.3.1 Finite di�erenesFinite di�erenes (FD) approah omputes the approximation of the k-th order deriva-tive of the funtion f(y) we want to derive at eah grid point yj using a Taylor seriesexpansion of the funtion f at an arbitrary stenil n ≥ k+1 of points y1, . . . , yi, . . . , ynin the neighborhood of yj . Now, let us onsider for simpliity an equally spaed grid,then we will provide the generalization to arbitrary grid spaing. The key idea is touse a linear ombination of Taylor series expansion of the funtion at stenil points
x1f(y1) + x2f(y2) + · · ·+ xnf(yn) in order to ahieve the approximation of derivative
fk(yj) with the maximum order of auray. This goal will help us to impose theonditions to determine the oe�ients x1, x2, . . . , xn. In order to illustrate the keyidea we will provide two di�erent examples.As for the �rst example, we onsider the approximation of �rst derivative f ′(y) atpoint yj with a stenil n = 3 entered around the point yj on a grid of spaing h. Wehave

f ′(yj) = x1f(yj − h) + x2f(yj) + x3f(yj + h) (3.38)Taylor series expansion of eah term till order n− 1 leads to
f(yj − h) = fj − hf ′

j +
1

2
h2f ′′

j +O(h3)

f(yj) = fj

f(yj + h) = fj + hf ′
j +

1

2
h2f ′′

j +O(h3)

(3.39)



3.3. Disretization of derivatives operators 39Substitution of relations (3.39) into (3.38) implies
f ′(yj) = (x1 + x2 + x3)fj + (x3 − x1)h f

′
j + (x3 + x1)

h2

2
f ′′
j +O(h3) (3.40)Hene the best approximation of �rst derivative is given by imposing the followingonditions: 




x1 + x2 + x3 = 0

− hx1 + hx3 = 1

h2

2
x1 +

h2

2
x3 = 0

(3.41)These onditions an be represented through an equivalent linear system



1 1 1

−h 0 h

h2 0 h2






x1

x2

x3


 =



0

1

0


 (3.42)Solution of the system (3.42) leads to

x1 = − 1

2h
, x2 = 0, x3 =

1

2h
(3.43)With this �nite di�erenes sheme, the error due to trunation of Taylor series isreadily available and its order of magnitude is equal to O(h3). Finally, the enteredapproximation of the �rst derivative of funtion f(y) disretized over an equally spaedgrid is given by

f ′(yj) =
f(yj + h)− f(yj − h)

2h
(3.44)As for the seond example, we want to implement an unentered �nite di�erene shemeto ompute the approximation of seond order derivative. Thus, by following the samesteps of the previous example, we have

f ′′(yj) = x1f(yj) + x2f(yj + h) + x3f(yj + 2h) (3.45)Then, expanding the terms into Taylor series and imposing the ondition of approxi-mating the derivative with the minimum trunation error lead to the following linearsystem: 



x1 + x2 + x3 = 0

hx2 + 2hx3 = 1

h2

2
x2 + 2h2x3 = 2

(3.46)hene 

1 1 1

0 h 2h

0 h2 4h2






x1

x2

x3


 =



0

0

4


 (3.47)
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x2 =

1

h2
, x2 = − 2

h2
, x3 =

1

h2
(3.48)So, the unentered approximation of the seond-order derivative of funtion f(y) dis-retized over an equally spaed grid is given by

f ′′(yj) =
f(yj)− 2f(yj + h) + f(yj + 2h)

h2
(3.49)From these examples, we an infer that the linear system that has to be solved for deter-mining the interpolant oe�ients x1, . . . , xn that approximate a k-th order derivativewith a stenil of n is given by a proper partition of the following Vandermonde matrix:




. . . (−2h)0 (−h)0 1 (h)0 (2h)0 . . .

. . . (−2h)1 (−h)1 0 (h)1 (2h)1 . . .

. . . (−2h)2 (−h)2 0 (h)2 (2h)2 . . .

. . . (−2h)3 (−h)3 0 (h)3 (2h)3 . . .... ... ... ... ...



(3.50)The solution of the system is then reovered by onsidering a number of rows andolumns equal to the stenil n. The hoie of whih olumns we have to take dependson the �nite di�erene sheme: if we onsider a entered sheme, then for n odd, wemust take the olumns going from −(n − 1)/2 to (n − 1)/2, while if the sheme isunentered, then the olumns to hoose are a shifted version of the previous ones,depending on the degree of deentralization. Thus, a single linear system is su�ientto ompletely determine the derivatives of all grid points. As a matter of fat, if A isthe proper partition of Vandermonde matrix (3.50), the vetor of unknown oe�ients
x = [ x1 x2 ... xn ]

T an be reovered as Ax = k! ek+1, where ek+1 is a vetor of zeros with
1 in row k+ 1. Unfortunately, Vandermonde matries are well-known for being highlyill-onditioned, so this tehnique is partiularly amenable only for low n. However, it isto remark that this drawbak atually is not a very limiting one, sine usually a stenilof 5-7 points is su�ient to disretize the system with high auray.The ase of unequally spaed grid leads to the de�nition of a Vandermonde matrixfor eah grid point yj, with the major di�erene that spaing h is replaed by the atualspaing yj+1 − yj, in this way:




. . . (yj−2 − yj)
0 (yj−1 − yj)

0 1 (yj+1 − yj)
0 (yj+2 − yj)

0 . . .

. . . (yj−2 − yj)
1 (yj−1 − yj)

1 0 (yj+1 − yj)
1 (yj+2 − yj)

1 . . .

. . . (yj−2 − yj)
2 (yj−1 − yj)

2 0 (yj+1 − yj)
2 (yj+2 − yj)

2 . . .

. . . (yj−2 − yj)
3 (yj−1 − yj)

3 0 (yj+1 − yj)
3 (yj+2 − yj)

3 . . .

. . . (yj−2 − yj)
4 (yj−1 − yj)

4 0 (yj+1 − yj)
4 (yj+2 − yj)

4 . . .... ... ... ... ...



(3.51)



3.3. Disretization of derivatives operators 41The proedure to extrat matrix A is the same desribed before, the major di�ereneis that now it is required to solve N linear systems of size n × n, instead of one.Di�erentiation matries arising from �nite di�erene shemes are always band matries,whose size of the band orresponds to the stenil n we have hosen. For this reason,�nite di�erenes are partiularly amenable to sparse solver algorithms for the solutionof ODEs. As for the order of auray, it is stritly related to the stenil beause thehigher the stenil, then the lower the trunation error an be set. So, if we de�ne h̄ asan average mesh grid, then it an be proved that there always exists a onstant C > 0so that the order of auray is O(Ch̄n+1).3.3.2 Spetral derivativesSpetral derivatives (SD) shemes have been implemented using the Matlab Di�er-entiation Matrix Suite developed by Weiderman and Reddy and widely desribed in[72℄. This approah adopts a spetral olloation method in order to build a weightedinterpolation of the funtion to be derived f(y) over a set of nodes {yj}Nj=1, i.e.
f(y) ≈ pN−1(y) =

N∑

j=1

α(y)φj(y)f(yj) (3.52)where α(y) is a weight funtion and the set of interpolating funtions {φj(yj)}Nj=1satis�es φj(yk) = δjk (the Kroneker delta). This means that pN−1(y) is an interpolantof f(y) in the sense that the following equivalene holds at every node:
f(yj) = pN−1(yj), j = 1, . . . , N (3.53)Spetral derivatives are set up from Equation (3.52) by onsidering, as shown in [10℄

α(y) = 1 (3.54)
φj(y) =

(−1)j

cj

1− y2

(N − 1)2
T ′
N−1(y)

y − yj
(3.55)

pN−1(y) =
N∑

j=1

φj(y)f(yj) (3.56)where c1 = cN = 2, c2 = · · · = cN−1 = 1 and TN−1(y) is the Chebyshev polynomial ofdegree N − 1, de�ned as
Tj(y) = cos(j arccos y) (3.57)Interpolation points are the well-known Gauss-Lobatto-Chebyshev nodes, whih arede�ned as follows:

yj = cos
(k − 1)π

N − 1
k = 1, . . . , N (3.58)



42 Chapter 3. Channel Flow ModelDi�erentiation matries are then obtained through derivation of the polynomial inter-polator. For the �rst derivative D1, we get
Dk j

1 =





ck(−1)j+k

cj(yk − yj)
j 6= k

− 1

2

yk
(1− y2k)

j = k 6= 1, N

2(N − 1)2 + 1

6
j = k = 1

− 2(N − 1)2 + 1

6
j = k = N

(3.59)
where Dk j

1 represents the element of matrix D1 with indexes (k, j). Higher orderderivatives are then omputed as power of D1, i.e. if l is the order of the derivative,then Dl = (D1)
l. Unlike �nite di�erene shemes, spetral derivatives have the relevantproperty that the disretization error onverges exponentially upon grid re�nement. Inpartiular, if N is the number of grid points, then it an be proved that there alwaysexists a onstant C > 0, so that the order of auray is O(e−C N ). The prie to pay isthat this method generates full matries, so faster sparse solvers are no longer available.3.3.3 Benhmark problem for the proposed derivation shemesIn order to test the performanes of the above mentioned derivation shemes and showhow boundary onditions are imposed, we will ompare the analytial solution of afourth-order inhomogeneous ordinary di�erential equation to its numerial solutions.We onsider f(y) as the unknown funtion de�ned over the domain y ∈ [−1, 1] andthe following di�erential equation

f IV (y) + 10f III(y) + 35f ′′(y) + 50f ′(y) + 24f(y) = 1728y2 (3.60)with Dirihlet and Neumann lamped boundary onditions, i.e.
f(−1) = f(1) = f ′(−1) = f ′(1) = 0 (3.61)The analytial solution f(y) an be obtained by superposition of the solution of theassoiated homogeneous ODE fh(y) and the partiular solution fp(y). As for thehomogeneous equation, we propose a solution of the type

fh(y) = Ceλy (3.62)After subustitution in Equation (3.60), we �nd the assoiated harateristi equation
λ4 + 10λ3 + 35λ2 + 50λ+ 24 = 0 (3.63)



3.3. Disretization of derivatives operators 43whih has four distint real solutions:
λ1 = −1, λ2 = −2, λ3 = −3, λ4 = −4 (3.64)hene
fh(y) = C1e

−1y + C2e
−2y + C3e

−3y + C4e
−4y (3.65)where C1, . . . , C4 are onstants to be determined by applying boundary onditionsafter having determined the partiular solution fp(y), whih an be found by inspetion:

fp(y) = Āy2 + B̄y + C̄ (3.66)Substitution in (3.60) leads to
24Āy2 + (100Ā+ 24B̄)y + (70Ā+ 24B̄ + 24C̄) = 1728y2 (3.67)Equating, term by terms, LHS and RHS, we obtain the following linear system:





24Ā = 1728

100Ā+ 24B̄ = 0

70Ā+ 24B̄ + 24C̄ = 0

(3.68)from whih we obtain Ā = 72, B̄ = −300 and C̄ = 415. Hene, the full solution of theODE reads
f(y) = C1e

−1y + C2e
−2y + C3e

−3y + C4e
−4y + 72y2 − 300y+ 415 (3.69)By imposing boundary onditions, we an reover the values of C1, . . . , C4 from thesolution of the following linear system:




e1 e2 e3 e4

e−1 e−2 e−3 e−4

e1 2e2 3e3 4e4

e−1 2e−2 3e−3 4e−4







C1

C2

C3

C4







−Ā+ B̄ − C̄

−Ā− B̄ − C̄

−2Ā+ B̄

2Ā+ B̄




(3.70)Then, we implement a �nite di�erenes sheme by hoosing a stenil n = 5 and de�ninga meshgrid of N+2 nodes y−1, y0, y1, . . . , yN−1, yN , yN+1 with onstant width h overthe extended domain y ∈ [−1− h, 1 + h]. Note that the �titious nodes y−1 = −1− hand yN+1 = 1 + h have been introdued to better aount for boundary onditions.As a matter of fat, we an impose Dirihlet ondition by setting y0 = yN = 0. As forNeumann onditions, we an disretize the �rst order derivative through an unentered
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D

−1(+)
1 y−1 +D

0(+)
1 y0 +D

1(+)
1 y1 +D

2(+)
1 y2 +D

3(+)
1 y3 = 0

D
−3(−)
1 yN−3 +D

−2(−)
1 yN−2 +D

−1(−)
1 yN−1 +D

0(−)
1 yN +D

1(−)
1 yN+1 = 0

(3.71)After disretization of the four derivatives appearing in the LHS, we obtain the disretesolution f1, . . . , fN−1 of ODE (3.60) by solving the following linear system:



1

h4




0

0

D4

0

0



+

4

h3




0

0

D3

0

0



+

35

h2




0

0

D2

0

0



+

50

h




0

0

D1

0

0



+ 24




0

0

I

0

0



+

+
1

h



D

−1(+)
1 D
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1 D
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1 D

2(+)
1 D

3(+)
1 . . . 0

0 0 0

0 . . . D
−3(−)
1 D

−2(−)
1 D

−1(−)
1 D

0(−)
1 D

1(−)
1


+

+




0 0 0 . . . 0 0 0

0 1 0 . . . 0 0 0

0 0 0

0 0 0 . . . 0 1 0

0 0 0 . . . 0 0 0










f−1

f0

f1...
fN−1

fN

fN+1




=




0

0

1728(−1+ h)2...
1728(1− h)2

0

0




(3.72)
As for spetral derivatives approah to solve ODE (3.60), it needs to be modi�ed inorder to aount for lamped boundary onditions. For this reason, we must replaethe weight funtion α(y) = 1 in (3.52) with α̃(y) =

[
(1−y2)2

(1−y2
j
)

]2. Thus, the polynomialof degree N + 1 satisfying N − 2 interpolation onditions and boundary onditions is
pN+1(y) =

N−2∑

j=1

fj φ̃j(y) with φ̃j(y) = α̃(y) (3.73)After derivation of funtions φ̃j(y), we �nally get the di�erentiation matries.Results have shown that the best performanes are ahieved by using a spetral deriva-tives sheme. As a matter of fat, we an see from Figure 3.6 that spetral derivativeslead to a smaller error with respet to �nite di�erenes in we onsider the same numberof grid point. On the other hand, �nite di�erenes show good onvergene to analytialsolution if further grid re�nement is applied. As for the relative error ommitted duringnumerial disretization of ODE, spetral derivatives show fast exponential onvergenein a double logarithmi graph, with good agreement with theretial predition. Fur-thermore, it an be notied from Figure 3.7 that in this ase just 20 grid points aresu�ient to reah mahine preision. As for �nite di�erenes, instead, they appear to
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Figure 3.6: Solutions of the benhmark ODE: analytial solution (blak solid line),numerial solution with FD and N = 20 (blue solid line), with FD and N = 40 (green solidline) and numerial solution with SD and N = 20 (red dashed line).onverge more slowly, following a linear trend aording to theoretial predition, asoutlined in Figure 3.8.3.4 Orr-Sommerfeld and Squire eigenvaluesIn order to test the auray of the proposed disretization tehniques for di�erentialoperators, we applied these two strategies for the omputation of the eigenvalues ofOrr-Sommerfeld and Squire equations (3.32) for a given wavenumber pair. For spe-tral derivatives a standard Gauss-Lobatto-Chebyshev grid was used, while for �nitedi�erene sheme we adopted an equally spaed mesh. Results have then been om-pared to referene data taken from literature [7℄, where the eigenvalues were omputedfor Re = 10000, α = 1 and β = 0 using a Chebyshev olloation tehnique over ameshgrid of N = 140. Results show perfet orrespondane with spetral derivativeswith the same number of grid points, while �nite di�erenes show some mis�t, whihtends to zero if we inrease the number of grid points, as an be stated from Tables3.1 - 3.2 and root-loa in Figures 3.9.
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Figure 3.7: Relative error of spetral derivatives sheme upon grid re�nement: numerialresult (blue line) and theoretial predition (red line).

Figure 3.8: Relative error of �nite di�erenes sheme upon grid re�nement: numerialresult (blue line) and theoretial predition (red line).



3.4. Orr-Sommerfeld and Squire eigenvalues 47Eigenvalues from [7℄ Eigenvalues withspetral derivatives (N = 140)
−0.03516728− 0.96463092 j −0.03516728− 0.96463092 j
−0.03518658− 0.96464251 j −0.03518658− 0.96464251 j
−0.05089873− 0.27720434 j −0.05089872− 0.27720434 j
−0.06320150− 0.93631654 j −0.06320149− 0.93631653 j
−0.06325157− 0.93635178 j −0.06325156− 0.93635178 j
−0.09122274− 0.90798305 j −0.09122273− 0.90798305 j
−0.09131286− 0.90805633 j −0.09131286− 0.90805633 j
−0.11923285− 0.87962729 j −0.11923285− 0.87962729 j
−0.11937073− 0.87975570 j −0.11937073− 0.87975569 j
−0.12450198− 0.34910682 j −0.12450197− 0.34910682 j
−0.13822653− 0.41635102 j −0.13822652− 0.41635101 j
−0.14723393− 0.85124584 j −0.14723392− 0.85124584 j
−0.14742560− 0.85144938 j −0.14742560− 0.85144938 j
−0.17522868− 0.82283504 j −0.17522867− 0.82283503 j
−0.32519719− 0.63610486 j −0.32519705− 0.63610485 j
−0.34373267− 0.67764346 j −0.34373449− 0.67764252 j
−0.66286552− 0.67027520 j −0.66286552− 0.67027520 jTable 3.1: Least stable eigenvalues of Orr-Sommerfeld and Squire matrix for Re = 10000,

α = 1 and β = 0: omparison between literature and spetral derivatives sheme.
Eigenvalues with �nite di�erenes
N = 140 N = 420

−0.03517149− 0.96491989 j −0.03516776− 0.96466336 j
−0.03519049− 0.96493167 j −0.03518704− 0.96467496 j
−0.05567417− 0.27694719 j −0.05146951− 0.27714155 j
−0.06321614− 0.93730086 j −0.06320315− 0.93642700 j
−0.06326420− 0.93733665 j −0.06325302− 0.93646228 j
−0.09125560− 0.91006094 j −0.09122641− 0.90821619 j
−0.09133959− 0.91013498 j −0.09131589− 0.90828951 j
−0.11929327− 0.88319777 j −0.11923958− 0.88002784 j
−0.11941743− 0.88332638 j −0.11937598− 0.88015620 j
−0.13068803− 0.34449294 j −0.12521618− 0.34853458 j
−0.14739614− 0.41177196 j −0.13928940− 0.41576417 j
−0.14733285− 0.85670917 j −0.14724491− 0.85185866 j
−0.14749865− 0.85691061 j −0.14743374− 0.85206189 j
−0.17537852− 0.83059326 j −0.17524524− 0.82370521 j
−0.33462740− 0.67062235 j −0.32771455− 0.63364552 j
−0.34800467− 0.67799967 j −0.34550988− 0.67621392 j
−0.66120126− 0.67332972 j −0.66279600− 0.67042974 jTable 3.2: Least stable eigenvalues of Orr-Sommerfeld and Squire matrix for Re = 10000,

α = 1 and β = 0: omparison between �nite di�erenes shemes with di�erent mesh grids.
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(a) N = 140

(b) N = 420Figure 3.9: Eigenvalues of Orr-Sommerfeld and Squire matrix for Re = 10000, α = 1,
β = 0 alulated with �nite di�erenes (red rosses) and spetral derivatives (blue rosses),ompared to the ones reported in literature (blak squares).



Chapter 4Optimal State Feedbak ControlAfter having developed a linear model for plane hannel �ow, we are now able to de�nea proper optimal ontrol law. In the following, we will disuss the solution we haveimplemented, then a parametri study will be arried out to assess the performanes ofdi�erent ontrol solutions applied to a turbulent �ow for a ouple of Reynolds numbersthat have been widely investigated in literature through DNS, namely Re = 1500 and
3500.4.1 Derivation of an optimal ontrollerIn order to implement an optimal ontrol strategy we need �rst to reast the Orr-Sommerfeld and Squire model developed in Chapter 3 into state-spae formulation.For this purpose, we will onsider here and in the following a state-spae linear time-invariant (LTI) system de�ned as

{
ẋ = Ax+Bu+ Bnn (4.1a)
y = Cx +Dydd (4.1b)where x ∈ Cn represents the state vetor, u ∈ Cm is the ontrol vetor, y ∈ Cp is themeasurement vetor, n the disturbane ating on input, d the noise a�eting measures.Besides, A ∈ Cn×n is the state matrix, B ∈ Cn×m the input matrix, C ∈ Cp×n themeasurement matrix and Bn and Dyd are the input matries of disturbanes. In orderto obtain a state-spae formulation, we adopted the strategy proposed in [25℄. Hene,sine blowing/sution is applied at walls, we de�ne a ontrol variable φ̂ whih representsthe wall-normal veloities at boundaries: φ̂ =

[
v̂+1

v̂−1

]. This partiular kind of foringis di�ult to handle in standard linear ontrol theory unless we introdue a liftingproedure with whih the inhomogeneous boundary onditions at walls are representedby volume foring near the wall in a modi�ed system with homogeneous boundaryonditions. Thus, using superposition priniple, the solution of the original system x̂49



50 Chapter 4. Optimal State Feedbak Controlis reovered by ombining the homogeneous solution x̂h with a partiular solution x̂p:
x̂ = x̂h + x̂p =

{
v̂ = v̂h + v̂p

η̂ = η̂h + η̂p
(4.2)where partiular solution is introdued to relate boundary onditions to volume foring,as follows:

x̂p =

[
v̂p

η̂p

]
=

[
Zvp, v+1

Zvp, v−1

Zηp, v+1
Zηp, v−1

] [
v̂+1

v̂−1

]
= Zφ̂ (4.3)Matrix Z an be determined in di�erent ways. The �rst solution suggests to alulateboth blok-olumns by solving an appropriate two points boundary value problem, e.g.onsidering upper wall atuation:

{
LOSZvp, v+1

(y) = 0

LCZvp, v+1
(y) + LSQZηp, v+1

(y) = 0
(4.4)with boundary onditions

Zvp, v+1
(y = +1) = 1

Zvp, v+1
(y = −1) = 0

Z ′
vp, v+1

(y = ±1) = 0

Zηp, v+1
(y = ±1) = 0

(4.5)An analogous problem must be solved for lower wall atuation.The seond and more straightforward solution is to hoose Z in order to satisfy justboundary onditions. This is the approah that has been followed in this work and thefuntions that have been introdued to assemble matrix Z are
Zvp, v+1

=
1

2

{
cos
[π
2
(y − 1)

]
+ 1
}

Zvp, v−1
=

1

2

{
cos
[π
2
(y + 1)

]
+ 1
}

Zηp, v+1
= sin

[π
2
(y − 1)

]

Zηp, v−1
= sin

[π
2
(y + 1)

]

(4.6)
After this step, we �nally obtain a state-spae model for eah wavenumber pair (α, β):

˙̂xs = Ax̂s +Bûs (4.7)where
A =

[
N NZ

0 0

]
, B =

[
−Z

I

]
, x̂s =

[
x̂h

φ̂

]
, ûs =

∂φ̂

∂t
(4.8)With this model at hand, we apply a ontrol law based on state feedbak, i.e.

ûs = −K̂sx̂s (4.9)



4.1. Derivation of an optimal ontroller 51where K̂s is the unknown gain matrix that an be determined as the solution of anoptimal ontrol problem. Therefore, we de�ne an objetive funtion ombining a statenorm and a weight on ontrol e�ort, i.e.
J =

1

2

∫ ∞

0

(x̂TQx̂+ ρûT
s Rûs) dt (4.10)where ρ is a penalty introdue to weigh the relative importane of ontrol e�ort onontrol performanes. However, in this formulation state vetor x̂ di�ers from theone we have de�ned to aount for boundary onditions, so it must be modi�ed byonsidering that x̂ = [I Z]x̂s. We get

J =
1

2

∫ ∞

0

(x̂T
s Q̂sx̂s + ρûT

s Rûs) dt (4.11)where
Q̂s =

[
Q̂ Q̂Z

ZT Q̂ ZT Q̂Z

] (4.12)Aording to optimal feedbak ontrol theory, the ontrol feedbak minimizing fun-tional J in (4.11) is de�ned as
K̂s = ρR−1BTP (4.13)where P is the solution of the following Riati equation:

ATP + PA+ Q̂s − ρPBR−1BTP = 0 (4.14)The ontroller arising from these proedure is alled linear quadrati regulator (LQR).Nevertheless, the feedbak rule we have just de�ned is for the feedbak of the homoge-neous part only, thus it must be modi�ed aordingly before being applied to hannel�ow. For this purpose, let us onsider the deomposition
ûs =

[
K̂s,+1, v̂h K̂s,+1, η̂h

K̂s,+1, v̂+1
K̂s,+1, v̂−1

K̂s,−1, v̂h K̂s,−1, η̂h
K̂s,−1, v̂+1

K̂s,−1, v̂−1

]



v̂h

η̂h

v̂+1

v̂−1




(4.15)hene, after some trivial manipulations, we obtain
[
˙̂v+1

˙̂v−1

]
=

[
K̂+1, v̂ K̂+1, η̂

K̂−1, v̂ K̂−1, η̂

]
x̂ (4.16)



52 Chapter 4. Optimal State Feedbak Controlwhere
K̂±1, v̂+1

= K̂s,±1, v̂+1
− K̂s,±1, v̂hZv̂p v̂+1

− K̂s,±1, η̂h
Zη̂p v̂+1

(4.17)
K̂±1, v̂−1

= K̂s,±1, v̂−1
− K̂s,±1, v̂hZv̂p v̂−1

− K̂s,±1, η̂h
Zη̂p v̂−1

(4.18)and
K̂±1, v̂ =

[
K̂±1, v̂−1

K̂±1, v̂h K̂±1, v̂+1

] (4.19)
K̂±1, v̂ =

[
0 K̂±1, η̂h

0
] (4.20)Now, sine with this de�nition ontrol gains depend on the spatial disretization in

y diretion, it is neessary to sale the ontrol gains to a grid-independent weightingfuntion at eah wavenumber pair (α, β). After this straightforward transformation,weights K̂ an be inorporated into DNS ode by saling the ontrol gains by the gridstrething funtion used in the simulation ode, in our ase the hyperboli tangentfuntion de�ned in (3.15). Feedbak rules are then omputed for an array of wavenum-ber pairs and then inverse Fourier-transformed to physial spae, where ontrol lawappears in the form of a onvolution integral, as follows:
v̇(x, y = ±1, z, t) =

∫ Lz

0

∫ +1

−1

∫ Lx

0

[K±1, v(x− x̄, ȳ, z − z̄) v(x̄, ȳ, z̄, t)+

+K±1, η(x− x̄, ȳ, z − z̄) η(x̄, ȳ, z̄, t)] dx̄ dȳ dz̄

(4.21)where K±1, v and K±1, η appear feedbak onvolution kernels in physial spae.
4.2 Choie of referene veloity pro�leAmong the possible referene veloity pro�les U(y) that an be used to design full stateontroller, it is partiularly useful to hoose the analytial solution of Poiseuille laminar�ow, whih is a rare ase in whih Navier-Stokes equations admit losed-form solution.In fats, Poiseuille hannel �ow is based on the assumption of parallel stationary �ow,that leads to the following simpli�ed two-dimensional Navier-Stokes equations:





∂U

∂x
+

∂V

∂y
= 0 (4.22a)

U
∂U

∂x
+ V

∂U

∂y
= −∂P

∂x
+

1

Re
∆U (4.22b)

U
∂V

∂x
+ V

∂V

∂y
= −∂P

∂y
+

1

Re
∆V (4.22)Now, we searh for a solution of the type U = (U(x, y), 0, 0). This assumption reduesthe ontinuity equation to the ondition ∂u

∂y = 0. So, all the onvetive terms on the



4.3. Objetive funtion design 53LHS of the equations are equal to zero, determining




1

Re

d2U

dy2
− ∂P

∂x
= 0 (4.23a)

∂P

∂y
= 0 (4.23b)This leads to a further simpli�ation:

1

Re

d2U

dy2
− dP

dx
= 0 (4.24)Thus, by imposing no-slip boundary ondition at walls and nondimensionalizing thesolution with respet to bulk veloity, we get

U(y) =
3

2
(1 − y2) (4.25)Another meaningful hoie for the referene veloity pro�le ould be the meanstreamwise veloity pro�le Ū(y) of the turbulent hannel �ow, whih an be reoveredafter averaging the streamwise veloity obtained through a DNS performed at the givenReynolds number, i.e.

Ū(y) = lim
T→∞

1

LxLz

1

T

∫ Lx

0

∫ Lz

0

∫ T

0

U(x, y, z, t) dt dz dx (4.26)4.3 Objetive funtion designThe hoie of a proper weight on state vetor in optimal ontrol formulation is for oursope a very deliate task, sine it is not possible to diretly target drag through theobjetive funtion, in that standard LQR ontrol allows only quadrati norms of thestate. For this reason, it is neessary to �nd a proper state measure whose minimiza-tion will redue turbulent drag. In [5℄ many ontrol laws have been investigated in amodel preditive ontrol framework, in order to state the e�etiveness of di�erent ostfuntions. An interesting onlusion that ame out is that turbulent kineti energy is agood andidate for ahieving drag redution through zero-net-mass-�ux blowing/su-tion atuation at walls in a full-information ontrol framework. Furthermore, in [25℄energy norm has been suessfully introdued to delay transition to turbulene at aritial regime. Another quadrati performane measure investigated in this work is therate of dissipation whih has been �rstly introdued in [52℄ applied to a measure-basedWiener-Hopf ontrol framework, basing on the physial intuition that in statistiallystationary onditions the average skin fration drag in a turbulent hannel �ow equalsthe average rate of dissipation of turbulent kineti energy. Then, a third measure hasbeen tested to ahieve drag redution, i.e. enstrophy norm, that is a quantity diretlyrelated to the kineti energy in the �ow and whih orresponds to dissipation e�ets inthe �uid. Finally, measurements available at walls have been used in order to obtain a



54 Chapter 4. Optimal State Feedbak Controlquadrati norm of the state. These last ontrol laws have been applied in a �ow ontrolsetting for the �rst time in the present work.Before going into details, we will show how to alulate the integral over the domain
y ∈ [−1, 1] appearing in state norms, i.e. by de�ning proper methods of numerialquadrature depending on the disretization tehniques adopted. Thus, when �nitedi�erenes shemes have been introdued to disretize wall-normal derivative operators,we hose a Lagrange quadrature sheme, whose general de�nition is

∫ 1

−1

f(y) dy =
N∑

j=0

αjf(yj) (4.27)where f(y) is the funtion we want to integrate and αj are the integration weights.The hoie of suh integration weights leads to di�erent quadrature shemes. In thepresent work we have deided to adopt the trapezoidal rule, whih de�nes the weights
{αj}N0 as follows:

αj =





1

2
for j = 0, N

1 otherwise (4.28)As for spetral derivatives, instead, we have implemented the strategy suggested in[28℄ and applied for the �rst time in [24℄. We start by approximating the integrandfuntion f(y) with a Chebyshev expansion
f(y) =

N∑

j=0

ajTj(y) (4.29)where Tj(y) is the Chebyshev polynomial previously de�ned in Setion 3.3.2, whileoe�ients ai are de�ned as
ai =

ci
N

N∑

j=0

bjf(yj)Tj(yj) (4.30)where
bj =





1

2
for j = 0, N

1 otherwise and ci =

{
1 for i = 0, N

2 otherwise (4.31)Then, by ombining Equations (4.29) and (4.30), we get
f(y) =

N∑

i=0

ciTi(y)

N∑

j=0

bj
N

f(yj)Ti(yj) (4.32)Substitution of Equation (4.32) into (4.27) leads to
∫ 1

−1

f(y) dy =
1

N

N∑

j=0

bjf(yj)
N∑

i=0

ciTi(yj)

∫ 1

−1

Ti(y) dy (4.33)



4.3. Objetive funtion design 55Finally, notiing that
∫ 1

−1

Ti(y) dy =





0 i odd
2

1− i2
i even (4.34)yields

αj =
bj
N

[
2 +

N∑

i=1

ci
1 + (−1)i

1− i2
cos

(
ijπ

N

)] (4.35)In the following, we will provide an analytial derivation of the proposed state norms.4.3.1 Energy normTurbulent kineti energy norm is de�ned in physial domain as follows:
E =

1

2V

∫

V

(u2 + v2 + w2) dV (4.36)where V is the volume of the omputation domain. After Fourier-transforming byreminding relations (3.9), we apply Parseval theorem to obtain:
E(α, β) =

1

8

∫ 1

−1

(|û|2 + |v̂|2 + |ŵ|2) dy =

=
1

8k4

∫ 1

−1

(α2v̂TDT
1 D1v̂ + β2η̂T η̂

XXXXXX−αβv̂TDT
1 η̂

XXXXXX−αβη̂TD1v̂+

+ k4v̂T v̂ + α2η̂T η̂ + β2v̂TDT
1 D1v̂

XXXXXX+αβv̂TDT
1 η̂

XXXXXX+αβη̂TD1v̂) dy =

=
1

8k2

∫ 1

−1

[v̂T (k2I +DT
1 D1)v̂ + η̂T η̂], dy

(4.37)
So, we an de�ne energy as a quadrati funtion of the state vetor x:

E(α, β) = xTQE(α, β)x = ‖x‖E (4.38)4.3.2 Dissipation normIf we onsider stationary onditions, dissipation rate of a turbulent �ow is de�ned as
D =

1

Re

∫

V

∂ui

∂uj

∂ui

∂uj
dV (4.39)After averaging and Fourier-transforming, we obtain

D(α, β) =
1

Re

1

2k2

∫ 1

−1

[v̂T (DT
2 D2 + 2k2DT

1 D1 + k4)v̂+

+ η̂T (k2 +DT
1 D1)η̂] dy

(4.40)



56 Chapter 4. Optimal State Feedbak ControlSo, we an de�ne dissipation as a quadrati funtion of the state vetor x, as donepreviously:
D(α, β) = xTQD(α, β)x = ‖x‖D (4.41)

4.3.3 Enstrophy normEnstrophy is de�ned as the integral of the square of the total vortiity:
Ξ =

1

2V

∫

V

(η2x + η2y + η2z) dV (4.42)where
ηx =

∂w

∂y
− ∂v

∂z
⇒ η̂x =

1

k2
(jαD1η̂ + jβD2v̂ − jβk2v̂)

ηy =
∂u

∂z
− ∂w

∂x
⇒ η̂y = η̂

ηz =
∂v

∂x
− ∂u

∂y
⇒ η̂z =

1

k2
(jαk2v̂ − jαD2v̂ + jβD1η̂)

(4.43)Then, through substitution in Equation (4.42), after Fourier-transforming, we obtain
Ξ(α, β) =

1

8

∫ 1

−1

(|η̂x|2 + |η̂y|2 + |η̂z|2) dy =

=
1

8k4

∫ 1

−1

(α2η̂TDTDη̂ + β2v̂DT
2 D2v̂ + β2k4v̂T v̂ + k4η̂T η̂ + α2k4v̂T v̂

+ α2v̂TDT
2 D2v̂ + β2η̂TDTDη̂

hhhhhhhh+2αβη̂TDTD2v̂
hhhhhhh−2αβk2η̂TDT v̂+

− 2β2k2v̂TD2v̂ − 2α2k2v̂TD2v̂ +
hhhhhhhh−2αβη̂TDTD2v̂

hhhhhhh+2αβk2η̂TDT v̂) dy =

=
1

8k2

∫ 1

−1

[η̂T (DTD + k2I)η̂ + v̂T (DT
2 D2 − 2k2D2 + k4I)v̂] dy (4.44)Again, state norm is represented as

Ξ(α, β) = xTQΞ(α, β)x = ‖x‖Ξ (4.45)
4.3.4 Wall-measurement normAs previously mentioned, matrix C is used to relate output measurements to the statevetor. Sine only wall information is available, the measures we an dispose of arespanwise and streamwise wall shear stresses, namely τxw

and τzw , and wall pressure
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pw, for whih the following relations hold:

τxw
=

1

Re

∂u

∂y

∣∣∣∣
y±1

(4.46)
τzw =

1

Re

∂w

∂y

∣∣∣∣
y±1

(4.47)
pw = p|y±1 (4.48)Sine the ontrol sheme we have derived is applied to a state-spae system in Fourierdomain, it is neessary to reast these relations in wavenumber spae. Hene, wallshear stresses in Fourier spae are determined as

τ̂xw
=

1

Re
D1

∂û

∂y

∣∣∣∣
y=±1

=
j

k2Re

[
αD2w −βD1w

] [v̂
η̂

]∣∣∣∣∣
y=±1

(4.49)
τ̂zw =

1

Re
D1

∂ŵ

∂y

∣∣∣∣
y=±1

=
j

k2Re

[
βD2w αD1w

] [v̂
η̂

]∣∣∣∣∣
y=±1

(4.50)Wall pressure is reovered by taking the sum of Equation (3.3b), derived with respetto x and Equation (3.3d), derived with respet to z, and by evaluating it at walls insteady-state onditions. We get
∂2p

∂x2

∣∣∣∣
y±1

+
∂2p

∂z2

∣∣∣∣
y=±1

= − 1

Re

∂∆v

∂y

∣∣∣∣
y=±1

(4.51)Then, after Fourier-transforming
p̂w =

1

k2Re
D3v̂|y=±1 (4.52)we �nd the assoiated output-to-state relation

p̂w =
1

k2Re

[
D3w 0

] [v̂
η̂

]∣∣∣∣∣
y=±1

(4.53)Nevertheless, the lifting tehnique we have introdued to apply LQR ontrol has ledto a modi�ed de�nition of state vetor. For this reason, now we have to reast theserelations in a oherent form. We start by partitioning state vetor into homogeneousand inhomogeneous parts:
[
v̂

η̂

]
=




φ̂−1

v̂h + v̂p

φ̂+1

0

η̂h + η̂p

0




=




φ̂−1

v̂h + Zvp, v+1
φ̂+1 + Zvp, v−1

φ̂−1

φ̂+1

0

η̂h + Zηp, v+1
φ̂+1 + Zηp, v−1

φ̂−1

0




(4.54)



58 Chapter 4. Optimal State Feedbak ControlHene, if now we onsider for example the streamwise wall shear stress at lower walland we adopt �nite di�erenes shemes in order to disretize unentered derivatives,with some manipulations we get
τ̂xw −1

=
j

k2Re

[
αD0

2w αD1:4
2w 0 . . . 0 0

−βD0
1w βD1:4

1w 0 . . . 0 0

][
v̂

η̂

]
=

=
j

k2Re
{
[
αD1:4

2w 0 . . . 0 −βD1:4
1w 0 . . . 0

] [v̂h
η̂h

]
+

+
[
αD1:4

2w 0 . . . 0 βD1:4
1w 0 . . . 0

]
Z +

[
0 αD0

2w

]
φ̂}

(4.55)
Similarly, for the upper wall we �nd

τ̂xw +1
=

j

k2Re

[
0 0 . . . 0 αDn−4:n−1

2w
αDn

2w

0 0 . . . 0 −βDn−4:n−1
1w

−βDn
1w

][
v̂

η̂

]
=

=
j

k2Re
{
[
0 . . . 0 αDn−4:n−1

2w
0 . . . 0 −βDn−4:n−1

1w

] [v̂h
η̂h

]
+

+
[
0 . . . 0 αDn−4:n−1

2w
0 . . . 0 −βDn−4:n−1

1w

]
Z +

[
αDn

2w 0
]
φ̂}(4.56)For spanwise wall shear stresses and pressure measurements, their output-to-state re-lations an be found in a similar manner. Matrix C is then obtained by assembling allthese relations, as follows:

y =



τxw ±1

τxw ±1

pw±1


 =



Cτxw ±1

Cτxw ±1

Cpw ±1






v̂h

η̂h

φ̂


 = Cx̂s (4.57)A quadrati norm of the state is then obtained by onsidering

yT y = xTCTCx = xTQCx = ‖x‖C (4.58)4.4 Solution of Riati equationRiati equation arising from optimal ontrol formulation is a nonlinear ontinuousalgebrai equation (CARE) for whih many algorithms have been proposed in the lastdeades in order to provide a numerial solution. All of them an be grouped intotwo ategories, the �rst one onsidering those algorithms whih �nd a solution throughmatrix fatorization, the seond involving numerial proedures whih de�ne an itera-tive method onverging to the unique solution. Usually, in standard ontrol problemsfatorization methods are well suited sine they have a deterministi omputationaltime. On the other hand, if we are dealing with extremely ill-onditioned matries,then fatorization tehniques an lead to inaurate solutions, while iterative methods,



4.4. Solution of Riati equation 59given an initial stabilizing solution, are able to onverge to atual solution with thedesired degree of preision.Sine in the present work a set of Riati equations needed to be solved during kernelgeneration phase and for smaller penalties ρ matries beame very ill-onditioned, aniterative solver has been implemented, based on Newton-Kleinman method. In orderto initialize suh solver, we have used the solution of a fatorizing tehnique based onShur-Hamilton method. In the following, the two methods adopted in tandem will bebrie�y disussed.4.4.1 Shur-Hamilton methodStarting by onsidering CARE
ATP + PA+Q− PBR−1BTP = 0 (4.59)the key idea is to build the assoiated Hamiltonian matrix

H =

[
A −S

−Q −AT

] (4.60)where S = BR−1BT . Then, it an be proved that a matrix P is a solution of theCARE if and only if the olumns of [ IP ] span an n-dimensional invariant subspae ofthe Hamiltonian matrix H in (4.60). To prove that, we introdue the following matrix
J :

J =

[
0 I

−I 0

] (4.61)then, we assume that a n× n matrix L exists suh that
H

[
I

P

]
=

[
I

P

]
L (4.62)Multiplying both sides of (4.62) by the inverse of J , we �nd

J−1H

[
I

P

]
= J−1

[
I

P

]
L (4.63)Hene, we an get further simpli�ation and write

[
Q AT

A −S

][
I

P

]
=

[
−P

I

]
L (4.64)Finally, by multiplying both sides of (4.64) by [ I P ], we get

PA+ATP +Q− PSP = 0 (4.65)



60 Chapter 4. Optimal State Feedbak Controlshowing that P satis�es the CARE. To prove the onverse, we note that if P is asolution of the CARE, then
H

[
I

P

]
=

[
A− SP

−Q−ATP

]
=

[
A− SP

P (A− SP )

]
=

[
I

P

]
(A− SP ) (4.66)that is, the olumns of [ IP ] span an invariant subspae of H . As a orollary, it an bestraightforwardly proved that if the olumns of [ P1

P2

] span an n-dimensional invariantsubspae of the Hamiltonian matrix H and P1 is invertible, then P2P
−1
1 is a solutionof the CARE. With this in mind, to solve the CARE starting from Hamiltonian matrix

H , we need �rst to transformH into real Shur form (RSF) by using a QR fatorizationalgorithm, as desribed in [40℄. Now, if UTHU is an ordered real Shur matrix obtainedthrough transformation matrix U , then we have
UTHU =

[
T11 T12

0 T22

] (4.67)where the eigenvalues of H with negative real parts have been staked in T11 and thosewith positive real parts are staked in T22. Then, if we onformably partition U in thesame way
U =

[
U11 U12

U21 U22

] (4.68)after substitution of (4.68) into Equation (4.67), we get
H

[
U11

U21

]
=

[
U11

U21

]
T11 (4.69)Hene, the previously mentioned orollary asserts that matrix P = U21U

−1
11 is theunique stabilizing solution of the CARE we were searhing for.4.4.2 Newton-Kleinman methodThis algorithm onsiders an initial stabilizing solution P0 for Riati equation (4.59).Then, sine

P = P0 +∆P with ∆P = P −X0 (4.70)we an substitute this expression into (4.59) and �nd
Q+ PA+ATP − P0SP0 −∆PS∆P − P0S∆P −∆PSP0 = 0 (4.71)After simpli�ation, we an write

(A− SP0)
TP + P (A− SP0) = −Q− P0SP0 +∆PS∆P (4.72)



4.4. Solution of Riati equation 61where we an neglet the seond-order term ∆PS∆P in the RHS, sine we are as-suming ∆P is small. Thus, we obtain the following Lyapunov equation for the nextapproximation P1:
(A− SP0)

TP1 + P1(A− SP0) = −Q− P0SP0 (4.73)The strategy adopted till now may be onsidered a sort of Newton's method, even ifupdating rule is not ast in the anonial form. So, let us de�ne the following quantity:
RC(P ) = PA+ATP − PSP +Q (4.74)Then, we ompute the �rst derivative of RC(P ), for whih it is neessary to adopt thede�nition of derivative generalized to Banah spae, i.e. Fréhet derivative, as follows:

R′
P (Z) = (A− SP )TZ + Z(A− SP ) (4.75)thus, de�ning ∆i = Pi+1 − Pi, Newton's method for RC(P ) = 0 is

R′
Pi
(∆i) +RC(Pi) = 0 (4.76)whih is a Lyapunov equation. Hene, solution at step i + 1 is determined as Pi+1 =

Pi +∆i. So said, we an summarize all the steps in the following algorithm:1. Choose an initial stabilizing solution P02. Compute RC(Pi) = ATPi + PiA+Q− PiSPi3. Solve the Lyapunov equation for ∆i:
(A− SPi)

T∆i +∆i(A− SPi) +RC(Pi) = 0 (4.77)4. Compute Pi+1 = Pi +∆iThis algorithm ends when a prede�ned number of maximum iterations is reahed orwhen a �xed tolerane is ahieved, i.e.
‖Pi+1 − Pi‖F

‖Pi‖F
≤ ǫ (4.78)where ‖.‖F denotes Frobenius matrix norm, de�ned as

‖Pi‖F =
√
Tr{PT

i Pi} (4.79)Unfortunately, another issue is still pending, sine if an ill-onditioned matrix leadsto inaurate solution by adopting Shur-Hamilton method, then we will enounternumerial di�ulties in solving Lyapunov equation (4.77) inside Newton-Kleinman



62 Chapter 4. Optimal State Feedbak Controlmethod using standard fatorization tehniques. Then, inaurate solution of Lya-punov equation will lead to slower rate of onvergene, thus deteriorating performanes.Therefore, the same approah used for Riati equation has been followed to solveLyapunov equation, i.e. a fatorization algorithm based on Shur method has beenimplemented in order to �nd an initial stabilizing solution for an iterative Lyapunovsolver, based on Smith method. What follows is a brief desription of the tehniquesadopted in the present work.4.5 Solution of Lyapunov equation4.5.1 Shur methodThis method is atually the most widely used and omputationally e�etive approah.It was proposed for the �rst time in [2℄ and it starts by onsidering the standardalgebrai Lyapunov equation:
XA+ATX = C (4.80)Now, we take the RSF of AT , namely R = UTATU of matrix AT , whih an beobtained through QR fatorization, as previously mentioned. After this transformation,Lyapunov equation (4.80) is redued to
Y RT +RY = Ĉ (4.81)where Y = UTXU and Ĉ = UTCU . Now let

Y = [y1, . . . , yn], Ĉ = [ĉ1, . . . , ĉn], R = [rij ] (4.82)and assume that olumns yi+1 through yn have been omputed and onsider the fol-lowing two ases:
• Case 1: rk,k−1 = 0. Then, yk is determined by solving the quasi-triangularsystem:

(R+ rkkI)yk = ĉk −
n∑

j=k+1

rkjyj (4.83)
• Case 2: rk, k−1 6= 0 for some k. This indiates that there is a Shur bump onthe diagonal. This enables to ompute yi−1 and yi simultaneously, by solving thefollowing linear system:

R[yi−1, yi] + [yi−1, yi]

[
ri−1, i−1 ri, i−1

ri−1, i rii

]
=

= [ĉi−1, ĉi]−
n∑

j=i+1

[ri−1, j , rijyj ] = [dk−1, dk]

(4.84)



4.5. Solution of Lyapunov equation 63This proedure is repeated until all the olumns of Y have been omputed.
4.5.2 Smith methodThis tehnique has been �rstly introdued in [69℄ and has reeived a lot of attentionin the following deades in order to provide this method with faster onvergene. Thekey idea onsists of rewriting Lyapunov equation (4.80) in the following form:

(pI −AT )X(pI −A)− (pI +AT )X(pI +A) = −2pC (4.85)where p is a positive parameter. Premultiplying both sides by (pI −AT )−1 and post-multiplying by (pI −A)−1, we get the following Stein equation:
X − STXS = T (4.86)where S = (pI +A)(pI −A)−1 and T = −2p(pI −AT )−1C(pI −A)−1. Thus, startingfrom an initial ondition T0, the solution at eah step i+1 is iteratively determined as

Xi+1 = T + STXiS (4.87)For the sake of ompleteness we have to mention that a faster onverging solution hasbeen introdued by Penzl in [58℄. It exploits the alternate diretion impliit (ADI)method, whih de�nes the solution Xi at eah step, through two separate substeps, asfollows:
(AT + piI)Xi−1/2 = C −Xi−1(A− piI) (4.88)

(AT + piI)Xi = C −Xi−1/2(A− piI) (4.89)It an be proved that Smith's algorithm is a partiular ase of ADI method, whereparameters pi assume a single onstant value. The hoie of these parameters is ofgreat importane, sine the rate of onvergene has been proved to be strongly a�eted.In partiular, if we deide to hoose n parameters pi, the optimal hoie is given bythe solution of the following minimax problem:
{p1, . . . , pn} = argmin max

λi∈σ(A)

∣∣∣∣∣
n∏

i=1

pi − λ

pi + λ

∣∣∣∣∣ (4.90)where σ(A) is the spetrum of matrix A. Unfortunately, no losed form solution existsfor this problem, so suboptimal tehniques must be developed, based on Ritz approxi-mation of matrix spetrum, as shown in [15℄.
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(a) Kernel for wall-normal veloity v (b) Kernel for wall-normal vortiity ηFigure 4.1: Loalized ontroller gains relating the state x to the ontrol foring u atwalls: visualized are positive (red) and negative (blue) isosurfaes at 6% of the peak value.Kernels were omputed at Re = 1500 by using energy norm and ρ = 10−4 in the ostfuntion.
(a) Kernel for wall-normal veloity v (b) Kernel for wall-normal vortiity ηFigure 4.2: Loalized ontroller gains relating the state x to the ontrol foring u atwalls: visualized are positive (red) and negative (blue) isosurfaes at 6% of the peak value.Kernels were omputed at Re = 1500 by using dissipation norm and ρ = 10−4 in the ostfuntion.4.6 Parametri study on the e�etiveness of LQR on-trolIn order to assess the performanes of the ontrol laws we have developed, a set ofkernels has been generated onsidering di�erent ontrol penalties and di�erent statenorms into the ost funtion (4.11). Then, DNS have been performed applying ontrolfeedbak through boundary onditions for a ouple of Reynolds numbers that havebeen widely studied in literature, namely Re = 1500 and Re = 3500. In all simula-tions, the dimensions of the omputational domain have been Lx = 4π and Lz = 2π. Inpartiular, for Re = 1500, ontrol gains have been omputed for an array of wavenum-bers (α, β) onsidering 0 ≤ α ≤ 64 and −64 ≤ β ≤ 64. Computation of a singlekernel at this Reynolds number has required about 4 hours of CPU time on a singledual-CPU Intel using Matlab Parallel Computing Toolbox for the solution of CAREfor eah wavenumber pair. Convolution kernels omputed using this approah aredepited in Figures 4.1 - 4.4. What an be immediately observed is that althoughdi�erent state norms have been onsidered, all kernels for wall-normal veloity angleaway from the wall in the upstream diretion, while those for vortiity appear as an-
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(a) Kernel for wall-normal veloity v (b) Kernel for wall-normal vortiity ηFigure 4.3: Loalized ontroller gains relating the state x to the ontrol foring u atwalls: visualized are positive (red) and negative (blue) isosurfaes at 6% of the peak value.Kernels were omputed at Re = 1500 by using enstrophy norm and ρ = 10−2 in the ostfuntion.
(a) Kernel for wall-normal veloity v (b) Kernel for wall-normal vortiity ηFigure 4.4: Loalized ontroller gains relating the state x to the ontrol foring u atwalls: visualized are positive (red) and negative (blue) isosurfaes at 6% of the peak value.Kernels were omputed at Re = 1500 by using measure-based norm and ρ = 10−2 in theost funtion.tisymmetri bulges more or less �at depending on the state norm used. These shapesare partiularly meaningful sine they interat with turbulent strutures by ontrastingthe onvetive delay, whih requires to antiipate �ow perturbations inside the domainby applying wall atuation downstream.As for DNS performed at Re = 1500, they have required about 14 days of omputa-tional time and they were run on luster Zeno, a set of 10 dual-CPU Intel Xeon providedby the Department of Aerospae Engineering of Politenio di Milano. Eah simulationwas run reating two threads on a single omputer in order to exploit the paralleliza-tion performanes of our DNS ode. Approximately more than 2 months of CPU timewas taken. Results have shown that energy norm is an exellent hoie for targetingdrag. However, the hoie of the referene pro�le U(y) (Figure 4.7) in kernel generationphase has a signi�ant e�et of overall performanes. As a matter of fat, when usinga turbulent referene pro�le a maximum drag redution of 18% an be ahieved, andoverall performanes appear quite independent of ontrol penalty, as we an notie fromFigures 4.5. On the other hand, by using Poiseuille laminar pro�le, the statistis ofthe ontrolled �ow show improved performanes and a riher behavior (Figure 4.6). Inpartiular, for ρ = 10−4 atual relaminarization has been observed with �ow statistis
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(a) Mean Skin Frition

(b) Turbulent kineti energy

() Dissipation rateFigure 4.5: Main statistis of the unontrolled (red line) and ontrolled �ow at Re = 1500using energy norm, turbulent referene pro�le and di�erent ontrol penalties ρ, namely 10−2(blak line) and 10−4 (blue line) with respet to laminar �ow (magenta line).
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(a) Mean Skin Frition

(b) Turbulent kineti energy

() Dissipation rateFigure 4.6: Main statistis of the unontrolled (red line) and ontrolled �ow at Re = 1500using energy norm, Poiseuille referene pro�le and di�erent ontrol penalties ρ, namely 10−2(blak line), 10−3 (blue line), 10−4 (yan line) and 10−5 (green line) with respet to laminar�ow (magenta line).
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Figure 4.7: Comparison between laminar and turbulent referene pro�le U(y) at Re =
1500.slowly evolving towards eiling laminar ondition, thus determining a maximum dragredution of nearly 53%. Surprisingly, this is the �rst result in �ow ontrol literatureof relaminarization at Re = 1500 by adopting a LQR ontrol approah with onstantgains. Before this, atual relaminarization has been obtained using a LQR ontrol in[26℄ ombined with a sort of gain-sheduling of the referene veloity pro�le whih wasvaried from turbulent to laminar as simulation advaned. The possible reasons whythis result has never been attained before are many. First of all, as mentioned before,with small values of ontrol penalty ρ standard Shur-Hamilton Riati solvers havebeen proved to produe inaurate solution. In the present work, Newton-Kleinmaniterative solver has always been used in asade in order to ahieve further aurayin the solution. Furthermore, by using Poiseuille referene pro�le, skin frition valuesexhibit a prominent overshooting at the very beginning of the simulation. This ouldlead to possible numerial problems in the evaluation of wall derivatives and has alsoa limiting e�et on time-step in the semi-impliit DNS ode, thus slowing down thesimulation. Atually, relaminarization is the highest possible result in turbulent dragredution, if our aim is to obtain a net power saving by using blowing/sution atuatorsat wall, as analytially demonstrated by Bewley, whose proof is reported in AppendixA. Moreover, this is onsistent with the assertion that turbulene in hannel �ow isan essentially linear proess [36℄ and a linear ontroller is su�ient to suppress turbu-lene at least at low Reynolds numbers. Then, this e�etive set of ontrol parametershas been tested through DNS by onsidering a di�erent �ow �eld as initial ondition.Results (Figure 4.8) have shown that relaminarization proess is independent of theinitial onditions of the �ow. The only drawbak of this ontrol sheme is that it re-quires high performanes from blowing/sution atuators. As a matter of fat, whenontrol is applied at the very beginning of the simulation, wall atuation reahes upto 70% of bulk veloity. For these reason, the e�et of atuator saturation at 10% ofbulk veloity on overall performanes has been investigated. Results have shown thatontrol peak values are e�etively redued in the transitory whereas no noteworthyperformane degradation has been observed, as an be stated from Figure 4.9.
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Figure 4.8: Mean skin frition of the unontrolled (red line) and ontrolled �ow at
Re = 1500 using energy norm, Poiseuille referene pro�le and ρ = 10−4. Three di�erentinitial onditions have been onsidered in DNS (blue, blak and green lines).Table 4.1: Drag redution DR and net power saving PSP of feedbak ontrol usingenergy norm and turbulent referene pro�le.

ρ DR PNet

1 10−2 28.8% 15%
1 10−4 28.1% 13.6%Visualizing the �ow �eld during relaminarization proess also o�ers a valuable o-asion of observing how blowing/sution applied at walls ats in order to manipulateand destroy turbulent strutures. What an be inferred from Figures 4.10 - 4.12 isthat sution is introdued in the proximity of high-speed streaks, while a blowing a-tion is introdued under low-speed streaks. The same happens for sweep and injetionphenomena that haraterize wall turbulene, as outlined in Chapter 1. In partiular,sution is applied in presene of injetion events, while blowing ours when sweepevents take plae. In this way, the yle of near-wall turbulene generation is inter-rupted, ausing the �ow to fully relaminarize.Now, if we are interested in net power PNet saved thanks to wall feedbak ontrol,we need to ompute the power PSP spent for atuation. For this purpose, we used theformula proposed in [5℄:

PSP =
1

T

∫

T

∫

A

(
|φ|φ

2

2
+ |φ|(p− p̄)

)
dAdt (4.91)where A is the area overed by atuators and p̄ is the average wall pressure. Resultsare shown in Tables 4.1 and 4.2.As for the other ontrol laws they proved to have limited impat on drag redution.As a matter of fat, kernels based on measure norm provided a maximum drag redu-tion of about 15% and net saving of around 12%. In partiular weak dependene hasbeen observed of ontrol penalty ρ on overall performanes. A possible explanation



70 Chapter 4. Optimal State Feedbak Control

(a) Mean skin frition

(b) Control peak valueFigure 4.9: E�et of atuator saturation on drag redution at Re = 1500 using energynorm, Poiseuille referene pro�le and ρ = 10−4: unontrolled �ow (red line), ontrolled�ow without (blak line) and with saturation (blue line).to this behavior may be found by looking at the shape of the assoiated onvolutionkernels in Figure 4.4. In fats, these kernels, with respet to the others, appear tobe on�ned to near-wall region, that leads to poor �ow manipulation apability. Con-sidering enstrophy norm, instead, a maximum drag redution of nearly 25% has beenahieved for ρ = 10−4, but simulations have su�ered by strong numerial instability,due to the high values of ontrol atuation. For this reason it is not surprising that,among the possible ombinations of ontrol penalties and referene veloity pro�les,none of them has led to positive net drag redution. Then, as far as dissipation normis onerned, it proved to yield a maximum drag redution of about 30% for ρ = 10−3by using Poiseuille referene veloity, as we an see in Figure 4.13. Unfortunately, asfor enstrophy norm, the power spent for atuation is very high, and net power savingis very limited, if not negative, as indiated in Table 4.3.Finally, onvolution kernels have been designed for reduing the drag of a turbu-lent hannel �ow at a higher Reynold number, namely Re = 3500. This senario hasrequired to aount for a wider array of wavenumbers (α, β), i.e. 0 ≤ α ≤ 128 and
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(a) Frame at t+ = 7.5 (b) Frame at t+ = 15

() Frame at t+ = 75 (d) Frame at t+ = 150Figure 4.10: Three-dimensional view at di�erent time steps of a turbulent hannel �owat Re = 1500 ontrolled by using energy norm and ρ = 10−4: visualized are high- (light)and low- (dark) speed streaks at 30% of bulk veloity.Table 4.2: Drag redution DR and net power saving PNet of feedbak ontrol usingenergy norm and Poiseuille referene pro�le.
ρ DR PNet

1 10−3 47.5% 39.1%
5 10−4 52.6% 46.1%
1 10−4 52.3% 47.5%
5 10−5 51.2% 44.8%
1 10−5 49.4% 38.7%

−128 ≤ β ≤ 128, during kernel design, due to energeti onsiderations. The ompu-tation of the whole set of feedbak gains has required approximately 40 hours of CPUtime on a dual-ore Intel using Matlab Parallelization Toolbox for the solution of theCARE assoiated to eah wavenumber pair. Diret Numerial Simulations have beenrun on the luster of University of Salerno, where they took 4 days eah using 10 AMDOpteron quad-ore mahines for a total of more than 20 months of CPU time. Resultshave shown that using Poiseuille referene pro�le in this ase leads to relevant draginrease, while things get better if turbulent pro�le is adopted. This happens beausethe �ow is very far from laminar ondition (Figure 4.14), hene Poiseuille pro�le is nolonger representative of �ow �eld. Furthermore, as suggested in [26℄, we introduedTable 4.3: Drag redution DR and net power saving PSP of feedbak ontrol usingdissipation norm and Poiseuille referene pro�le.
ρ DR PNet

1 10−2 24.9% −30.1%
1 10−3 31.9% 6.6%
1 10−4 30.5% 3.2%
1 10−5 30.1% 3.1%
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(a) Frame at t+ = 7.5

(b) Frame at t+ = 15

() Frame at t+ = 40Figure 4.11: Top view at di�erent time steps of the lower half of a turbulent hannel�ow at Re = 1500 ontrolled by using energy norm and ρ = 10−4: visualized are high-(light) and low- (dark) speed streaks at 30% of bulk veloity. Control atuation at wall isrepresented by ontours graduated aording to the legend.
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(a) Frame at t+ = 7.5

(b) Frame at t+ = 15

() Frame at t+ = 40Figure 4.12: Top view at di�erent time steps of the lower half of a turbulent hannel �owat Re = 1500 ontrolled by using energy norm and ρ = 10−4: visualized are injetion (light)and sweep (dark) events.Control atuation at wall is represented by ontours graduatedaording to the legend.
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(a) Mean Skin Frition

(b) Turbulent kineti energy

() Dissipation rateFigure 4.13: Main statistis of the unontrolled (red line) and ontrolled �ow at Re =
1500 using dissipation norm and di�erent ontrol penalties ρ, namely 10−2 (blak line),
10−3 (blue line), 10−4 (yan line) and 10−5 (green line) with respet to laminar �ow(magenta line).
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Figure 4.14: Comparison between laminar and turbulent referene pro�les U(y) at Re =
3500.

(a) Kernel for wall-normal veloity v (b) Kernel for wall-normal vortiity ηFigure 4.15: Loalized ontroller gains relating the state x to the ontrol foring u atwalls: visualized are positive (red) and negative (blue) isosurfaes at 6% of the peak value.Kernels were omputed at Re = 3500 by using energy norm with smoothing funtion f(y)and ρ = 10−2 in the ost funtion.a weight funtion f(y) in the integrand of energy norm, whih has proved to ahievethe best performanes at Re = 1500. Suh funtion is de�ned as f(y) = 1 + Ū ′(y)and the proposed e�et is to indiretly target the oupling term LC of Orr-Sommerfeldand Squire operator (3.32). Looking at kernel shape (Figure 4.15), the introdution offuntion f(y) has led to onvolution kernels that are more loalized to near-wall partof the �ow �eld.Results in Figure 4.16 have shown that a maximum drag redution of nearly 28%an be ahieved with a net saving of about 18%. Moreover, it has been observed thatoverall performanes are not a�eted by the hoie of ontrol penalty ρ, thus suggestingthat an intrinsi limit exists in the appliation of a linear feedbak ontrol sheme whennonlinearities beome relevant at high Reynold numbers.
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(a) Mean Skin Frition

(b) Turbulent kineti energy

() Dissipation rateFigure 4.16: Main statistis of the unontrolled (red line) and ontrolled �ow at Re =
3500 using energy norm, turbulent referene pro�le and di�erent ontrol penalties ρ, namely
10−2 (blak line), 10−3 (blue line) and 10−4 (yan line) with respet to laminar �ow(magenta line).



Chapter 5
Optimal Output FeedbakControl
Optimal state feedbak ontrol has been proved to yield very good performanes inreduing drag in a turbulent hannel �ow at the Reynold numbers we have onsidered.Unfortunately, in real appliations the knowledge of the entire state of the systemis hardly available, sine it would require to mount sensors inside the hannel �ow,solution that is learly unpratial and ould give origin to unsought load e�ets. Forthis reason, the present hapter address the issue of �nding an optimal ontrol law basedsolely on feedbak of wall-measurement information. What follows is an analytialderivation of suh ontrol approah. After that, some useful tools will be introduedand applied in order to assess the e�etiveness of output feedbak with respet to statefeedbak for the present �ow ontrol framework.
5.1 Analytial derivationDiret feedbak of measurement vetor y means onsidering a ontrol input u = −Kyating on the linear time-invariant system onsidered in Chapter 4. With these expres-sion, after manipulations of LQR ost funtion J , we get the following expression:

J =
1

2
Tr
{
PX0 + Λ[(A−BKC)TP + P (A−BKC)+

+Q+ CTKTRKC]
} (5.1)77



78 Chapter 5. Optimal Output Feedbak Controlwhere X0 is the initial state vetor at time t = 0. Now, by setting to zero all thederivatives, we �nd




∂J

∂Λ
= (A−BKC)TP + P (A−BKC) +Q+ CTKTRKC = 0 (5.2a)

∂J

∂P
= X0 + (A−BKC)Λ + Λ(A−BKC)T = 0 (5.2b)

∂J

∂K
= RKCΛCT −BTΛCT = 0 (5.2)hene, from Equation (5.2), we obtain

K = R−1BTΛCT (CΛCT )−1 (5.3)As we an see, the system is highly nonlinear and totally oupled, so that it is notpossible to obtain the solution from a single Riati equation as in full state approah.In order to overome this deadlok, an iterative proedure has been implemented basedon steepest desent tehnique. The algorithm we have developed leverages the seminalwork of Levine appearing in [45℄ and [46℄. It starts by de�ning an initial value F forthe ost funtion and the tolerane on the minimum step size αmin. Then, onsideringan initial stabilizing solution K, the algorithm involves the following steps:1. Calulate P with Equation (5.2a)2. Calulate Λ with Equation (5.2b)3. Set K0 = K4. Calulate K with Equation (5.3)5. Calulate ∆K = K −K06. Set α = 17. Calulate K = K0 + α∆K8. Calulate P with Equation (5.2a)9. Calulate J = 1
2Tr {PX0}10. Set α = α/211. If the system is stable and J < F , then set F = J , else go to 712. If α < αmin then ends, else go to 2It is to remark, however, that even if the existene of a global minimum is assured,possible numerial problems may our due to the presene of multiple stationarysolutions. For these reasons, optimization has been repeated starting from di�erentinitial solutions, until the ost funtion F has reahed a su�ient degree of performane,that ould not oinide with the global minimum.



5.2. Measures of performane 795.2 Measures of performaneIn order to assess the performanes of output feedbak ontrol with respet to LQRontrol, we have alulated the feedbak gains for a wavenumber pair (αβ), then wehave applied the performane measures outlined in [7℄ in order to ompare the resultswith full state ontrol developed in Chapter 4. A useful tool whih has been proved tobe partiularly meaningful is the onept of H2 and H∞ norm of disturbane-to-statefuntion. As a matter of fat, H2 norm of the transfer funtion of a system representsan estimate of the expeted rms value of the transfer funtion output with a unitaryinput, whereas H∞ norm is a measure of worst ase ampli�ation of the disturbanea�eting the system. More spei�ally, given a transfer funtion Tnx(s) in Laplaedomain, de�ned as
X(s) = Q1/2(sI −A)−1Bn N(s) (5.4)where A is the state matrix of the system, Bn the input disturbane matrix, Q thestate weight in optimal ontrol ost funtion, N(s) and X(s) the input disturbane andstate vetor in Laplae domain, respetively. Then the H2 norm of Tnx(s) is de�ned as

‖Tnx‖2 =
1

2π

∫ ∞

−∞

Tr{Tnx(jω)
TTnx(jω)} dω (5.5)However, this formulation is not partiularly amenable to numerial omputation, sowe preferred to alulate the H2 norm as follows:

‖Tnx‖2 =
√
Tr{BT

nLBn} where ATL+ LA+Q = 0 (5.6)As for H∞ norm, it is de�ned as
‖Tnx‖∞ = sup

ω
σmax[Tnx(jω)] = γ (5.7)where σmax is the maximum singular value. Unfortunately, a losed form does not existto ompute suh norm, but it an be sought by an iterative searh. For this reason, weadopted the software vx, an advaned onvex solver developed by Grant and Boyd ofStanford University and desribed in [23℄, to solve an equivalent minimization problem:





min γsubjet to ℜ
{
eig

[
A 1

γBnB
T
n

−Q −AT

]}
< 0

(5.8)5.3 Output feedbak performane assessmentIn order to understand how output feedbak behaves with respet to full-state ontrol,
H2 and H∞ norm of disturbane-to-state transfer funtion have been alulated at
Re = 1500 for a ouple of wavenumbers α = 1 and β = 0, using di�erent ontrol



80 Chapter 5. Optimal Output Feedbak ControlTable 5.1: Performane of optimal state feedbak ontroller at Re = 1500 for α = 1 and
β = 0 using di�erent state norms and di�erent ontrol penalties.State norm ρ ‖Tdx‖2 ‖Tdx‖∞(No ontrol) - 453.2 10354Energy 10−2 101.8 2876

10−3 98.2 2469
10−4 89.7 2201
10−5 89.4 2197Dissipation 10−2 121.0 3005
10−3 101.3 2711
10−4 98.5 2555
10−5 97.1 2520Table 5.2: Performane of optimal output feedbak ontrol at Re = 3500 for α = 1 and

β = 0 using di�erent state norms and di�erent ontrol penalties.State norm ρ ‖Tdx‖2 ‖Tdx‖∞(No ontrol) - 453.2 10354Energy 10−2 441.2 9810
10−3 431.3 9788
10−4 401.6 9665
10−5 397.3 9651Dissipation 10−2 442.6 9891
10−3 434.4 9833
10−4 409.8 9677
10−5 399.1 9625penalties ρ and the best performing state norms that have emerged in Chapter 4, i.e.turbulent kineti energy and dissipation rate. As for output feedbak ontrol, measuresof shear stresses and pressure at both walls have been onsidered, exploiting relationsoutlined in Setion 4.3.4. Results are resumed in Tables 5.1 and 5.2.What appears lear is that LQR ontrol e�etively abates H2 norm of disturbane-to-state transfer funtion, reduing at the same time H∞ norm. In partiular, wean observe that energy norm always performs slightly better than dissipation. As foroutput feedbak, instead, results are rather poor. As a matter of fat, H2 norm showeda maximum redution of 15% against nearly 80% obtained with full state ontrol.Interestingly, dissipation and energy norm have proved to perform more or less thesame when only wall measurement information is available.A possible explanation to this outome an be found analyzing the dimensions ofsystem matries we are dealing with. In fats, optimal ontrol design at Re = 1500and 3500 involves state matries A whose dimensions are about O(102)×O(102), whileontrol input matries B have size O(102) × O(1). Hene, gain matries arising fromfull state ontrol have size O(1)×O(102). When using output feedbak ontrol, instead,we have to aount for measurement matries C that, onsidering all measurements



5.3. Output feedbak performane assessment 81we an dispose of at walls, have size O(1) × O(102). Therefore, in this ase gain ma-tries obtained through output feedbak ontrol have dimensions O(1)×O(1). Hene,it appears lear that output feedbak ontrol for the present purpose has muh lessauthority than optimal state feedbak, sine its apability of modifying the spetrumof state matries is strongly limited by gain size. For this reason, the design of a stateestimator is made neessary.





Chapter 6Observer-based ControlAfter having stated the low e�ieny of output feedbak ontrol, an aurate state es-timation is made neessary in order to implement ative feedbak ontrol in a realistiframework, where we an dispose only of wall measures. The present hapter is orga-nized as follows. Firstly, the state of the Art in estimation of wall-bounded �ow will bedesribed, then we will introdue the standard time-based approah to �ow estimation,i.e. Kalman �lter. Afterwards, we will introdue frequeny-based Wiener-Hopf ontroltehnique, highlighting di�erenes with respet to time-based approah. Then, theextension from single-input single-output (SISO) to single-input multi-output (SIMO)will be disussed onsidering numerial issues involved. Finally, results will be providedof parametri DNSs arried out in order to assess how ontrol parameters a�et overallperformanes.6.1 State-of-the-Art reviewIt is surprising to notie that almost all publiations that have appeared in literatureonerning state estimation in wall-bounded �ow adopted Kalman �lter design. Thissolution an be found in the �rst approah to state estimation in a turbulent han-nel �ow, whih has appeared in [7℄ and [32℄. In both works a linear Kalman �lterhas been designed leveraging Orr-Sommerfeld and Squire model in wavenumber spaeand a performane analysis has been arried out for a ouple of wavenumbers. Thisapproah has subsequently been extended in a seond artile [25℄ by onsidering anarray of wavenumbers and performing estimation in a subritial hannel �ow. It hasbeen observed that linear models fail to apture the multisale dynamis of turbulene,but they inlude the key terms responsible for the prodution of energy. As a matterof fat, the nonlinear terms in the Navier-Stokes equations satter energy but do notdiretly ontribute to energy prodution. However, in all these pioneering works, stateovariane matries appearing in Riati equation arising from Kalman �lter designhave been modeled with simple identity matries, sine no preliminary assumptionson state noise were performed. This implies a onstant variane of disturbanes at83



84 Chapter 6. Observer-based Controleah gridpoint and zero orrelation of the disturbanes at di�erent gridpoints. Unfor-tunately, this ovariane model does not onverge to a resolved ovariane distributionupon grid re�nement.In [6℄ a di�erent strategy was investigated, that is model preditive estimation. Thisapproah is based on iterative state and adjoint alulations optimizing the estimate ofthe state of the system so that the nonlinear evolution of the system model over a �nitehorizon in time mathes the available measurements to the maximum extent possible.The optimization was performed iteratively using gradient information provided byalulation of an appropriately de�ned adjoint �eld driven by measurement mis�ts atthe wall. This tehnique has provided noteworthy results, sine in this framework it hasbeen possible to aount for the full nonlinear evolution of the system. However, thisstrategy has proved to be omputationally expensive, as it required iterative marhesof the state and adjoint �elds over the time horizon of interest in order to obtain thestate estimate. Due to this drawbak, this approah has lost onsideration in �owontrol literature sine it is not possible to re�ne it in order to adapt it to pratialimplementation. Hene, attention has shifted towards the improvement of Kalman�lter estimation.In [27℄ a physial parameterization, whih has been proved to onverge upon gridre�nement, has been introdued to properly model the external disturbanes, initialonditions and measurement noises that an a�et perturbed laminar �ows. Resultshave led to the onlusion that a Kalman �lter with time-varying feedbak gains isneessary in order to minimize the initial transient in the estimation error when theestimation is turned on. Moreover, it has been notied that when the �ow perturbationsare large enough to appreiate signi�ant nonlinearities a�eting the system, then anextended Kalman �lter whih inorporates the system nonlinearities into the estimatormodel outperforms the standard linear Kalman �lter. Besides, in [11℄ Kalman andextended Kalman �lters that were previously developed by the same group work havebeen tested for state estimation in a turbulent hannel �ow. A key step in solving theestimation problem has been the measurement of the seond-order statistis of statenoise through DNS. Then, this information has been used to build state ovarianematries in the estimator design phase, where all three measurements available atwalls were used. As expeted, the nonlinear extended Kalman �lter was found tooutperform the linear Kalman �lter. However, it has been found that the estimatedstate in linear Kalman �lter deteriorates more rapidly with the distane from thewall, whereas extended Kalman �lter aptures better the strutures farther into thedomain. Moreover, they observed an approximate orrespondene of the performaneof the extended Kalman �lter with the model-preditive estimator built in [6℄ with afavorable omputational time saving. However, in order to implement Kalman �ltertheory, the arti�ial assumption of white noise was made, thus disarding the entiretime struture of the state noise.This limitation has been overome only in [52℄, where a frequeny-domain approahhas been suggested based on Wiener �lter. As a matter of fat, in this framework it



6.2. Kalman �lter theory 85is possible to properly aount for the full spae-time struture of the state noise bymeasuring it through DNS. Furthermore, it an be proved that this �lter is the bestpossible linear time-invariant �lter to adopt for the present estimation problem, sineno assumptions other than linearity of the model are introdued. Results have shownthat by using a single wall measurement, Wiener �lter always outperforms Kalman�lter.6.2 Kalman �lter theoryKalman �lter is the most ommon approah adopted in literature when dealing withstate estimation. For this reason, it is not surprising that it has quikly beome astandard approah also in �ow estimation. Sine the knowledge of the atual state isunavailable the key idea is to get an estimate of the state x̂ from the measurementsavailable. The problem is stated as follows:
{

ẋ = Ax+Bu+ Bnn (6.1a)
y = Cx +Dydd (6.1b)

{
˙̂x = Ax̂+Bu + L(y − ŷ) (6.2a)
ŷ = Cx̂ (6.2b)where (6.1) are the equations of a LTI dynami model, whereas equations (6.2) governthe dynamis of the state observer. In these ontext, matrix L represents the observergain matrix used for the feedbak of the di�erene between atual measures y andtheir estimates ŷ. Kalman �lter theory provides tools to determine optimal values forthis matrix. The �rst assumption is that state noise n and measurement noise d areunorrelated Gaussian noise proesses, whih an be ompletely de�ned through theirovariane matries Wnn and Wdd, respetively. Then, after introduing the estimateerror e = x− x̂, by ombining Equations (6.1) and (6.2), we get

ė = (A− LC)e+Bnn− LDydd (6.3)The variane error σ2
ee an be determined as the solution of the following Lyapunovequation:

(A− LC)σ2
ee + σ2

ee(A− LC)T +BnWnnB
T
n − LDydWddD

T
ydL

T = 0 (6.4)Hene, matrix L must be hosen in order to minimize the objetive funtion
J = Tr

{
Weeσ

2
ee

} (6.5)whereWee is a weight matrix introdued to express the relative importane between theomponents of state estimate error. This problem is ast in the form of a onstrainedminimization, sine σ2
ee must satisfy Equation (6.4), so we aount for this ondition



86 Chapter 6. Observer-based Controlby introduing a proper Lagrange multiplier:
J = Tr

{

Weeσ
2
ee + Λ[(A− LC)σ2

ee + σ
2
ee(A− LC)T +BnWnnB

T
n + LDydWddD

T
ydL

T ]
}(6.6)The global minimum of funtional J is obtained by imposing stationary onditions toits derivatives:



























∂J

∂Λ
= (A− LC)σ2

ee + σ
2
ee(A− LC)T +BnWnnB

T
n + LDydWddD

T
ydL

T = 0 (6.7a)
∂J

∂σ2
ee

= Λ(A− LC) + (A− LC)TΛ+Wee = 0 (6.7b)
∂J

∂L
= LDydWddD

T
yd − σ

2
eeC

T = 0 (6.7)Then, from Equation (6.7) we obtain
L = σ2

eeC
T (DydWddD

T
yd)

−1 (6.8)Furthermore, through some trivial manipulations, it an be proved that we an deter-mine σ2
ee as the solution of the following Riati equation:

Aσ2
ee + σ2

eeA
T − σ2

eeC
TR−1Cσ2

ee +Q = 0 (6.9)Then, gain matrix L an be easily reovered as L = PCTR−1.Time-based approah is partiularly appealing beause of its solid theoretial frame-work, however it has also many drawbaks. First of all, in real physial systems noisean be rarely modeled as a random proess and often we have to deal with distur-banes that may present a rih struture in frequeny domain. Even if it an be provedthat Kalman �lter is optimal even for non-Gaussian noise [68℄, ovariane matries aredeisively inadequate and limiting in order to represent atual noise spetrum.Besides, when Kalman �lter is assoiated to an optimal ontroller, linear quadratiGaussian (LQG) tehnique requires the solution of two distint Riati equations, onefor the ontroller and the other for the observer, aording to seperation priniple, whihguarantees that ontroller and observer have independent dynamis. Then, after havingsolved these two design problems, ontroller and observer may be ombined to developa dynami ompensator to ontrol the �ow system. However, standard Riati solversbased on Shur-Hamilton deomposition desribed in Chapter 4 have a omputationaltime that sales with the ube of the dimension of state matrix A. Hene, this approahto ompensator design quikly beomes highly time-requiring as the number of statesinreases, i.e. as the mesh grid gets more and more re�ned.For all these reasons, we implemented a ontrol tehnique in frequeny domainbased on Youla-Kuera parameterization [75℄ - [76℄, alled Wiener-Hopf ontrol. Thisstrategy allows to ompute in a single step the ompensator transfer funtion obtainedafter design of both ontroller and observer. This interesting feature represents for ourpurpose an important property, sine it an provide substantial omputational sav-ings. Besides, in Wiener-Hopf ontrol many tehniques are available whih sale with
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Figure 6.1: Classial losed-loop ontrol sheme.

Figure 6.2: Alternative representation of losed-loop ontrol sheme with transfer fun-tion modeling mismath.the square of matrix dimensions. Moreover, this frequeny-based approah allows todiretly exploit information onerning exat noise spetra, thus avoiding the intro-dution of expensive noise-shaping �lters, required when using Kalman �lter. Besides,if white noise is a�eting the system, then the ompensators alulated using LQGontrol approah and Wiener-Hopf theory are exatly the same. What follows, is adesription of Wiener-Hopf ontrol theory.6.3 Wiener-Hopf optimal ompensator designAmong the possible approahes to the problem, the most suitable way to de�ne theompensator funtion K(s) is the proedure desribed in [53℄. The system to whihwe refer is represented in Figure 6.1, where with H we have indiated the input-to-state transfer funtion. With some manipulations it is possible to obtain an equivalentrepresentation, as shown in Figure 6.2, where Ĥ represents the model we have realizedof system transfer funtion. It an be easily shown by inspetion that
e = d+ Cn+ C(H − Ĥ)u (6.10)where e represents the di�erene between feedbak measure y and its estimate ŷ. So,if the model perfetly mathes system dynamis, feedbak is represented by noise om-
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Figure 6.3: Noise-to-measure blok diagram of the ontrolled system.

ponents alone. Then, to simplify the blok-diagram we an notie that
u = Ky (6.11)
CĤu = ŷ (6.12)By subtration we get

(I −KCĤ)u = Ke (6.13)If now we introdue a new de�nition of ontrol input, i.e. u = K∗e and onsider perfetmathing between model Ĥ and atual system H , then we obtain the blok-diagramshown in Figure 6.3. Compensator transfer funtion K an be reovered through thefollowing relation:
K∗ = (I −KCH)−1K (6.14)Afterwards, we will de�ne an objetive funtion to be minimized, whih losely remindstime-based LQR/LQG ontrol:

J =
1

2

∫ ∞

−∞

(Tr {Qφxx}+ Tr {Rφuu}) df (6.15)where with symbol φ we have indiated spetral density funtion, whereas matries Qand R represent state and ontrol weights, respetively. From inspetion, we an �ndthe following relationships:
y = (I + CHK∗)(Cn+ d)

x = HK∗d+ (I +HK∗C)n

u = K∗d+K∗Cn

(6.16)Spetral density funtions φxx and φuu are then straightforwardly determined as
φxx = HK∗φddK

∗HHH + (I +HK∗C)φnn(I +HK∗C)H

φuu = K∗φddK
∗H +KCφnnC

HK∗H
(6.17)



6.3. Wiener-Hopf optimal ompensator design 89where supersriptH denotes onjugate transpose. After substitution of Equation (6.17)into (6.15), we get
J =

1

2

∫

∞

−∞

(

Tr
{

Qφnn +QHK
∗

Cφnn +QφnnC
H
K

∗H
nn H

H +QHK
∗

CφnnC
H
K

∗H
H

H+

+QHK
∗

φddK
∗H

H
H
}

+ Tr
{

RK
∗

φddK
∗H +RK

∗

CφnnC
H
K

∗H
})

df (6.18)However, this formulation leads to the design of a nonausal ompensator, unless weenfore ausality onstraint by introduing an appropriate Lagrange multiplier, as fol-lows:
J =

1

2

∫

∞

−∞

(

Tr
{

Qφnn +QHK
∗

+Cφnn +QφnnC
H
K

∗H
+ H

H +QHK
∗

+CφnnC
H
K

∗H
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H+

+QHK
∗

+φddK
∗H
+ H

H
}

+ Tr
{

RK
∗

+φddK
∗H
+ +RK

∗

+CφnnC
H
K

∗H
+

}

+ 2Tr {Λ−K
∗

+}
)

df(6.19)where subsript + indiates that only ausal part has been onsidered. Now, if wederive Equation (6.19) with respet to K∗H
+ and impose stationary onditions, we an�nd a losed form solution for ompensator transfer funtion:

∂J

∂K∗H
+

= HHQφnnC
H +HHQHK∗

+φdd +HHQHK∗
+CφnnC

H+

+RK∗
+φdd +RK∗

+CφnnC
H + Λ− = 0

(6.20)or, in a more elegant fashion:
(HHQH +R)K∗

+(CφnnC
H + φdd) + Λ− = −HHQφnnC

H (6.21)Equation (6.21) is a Wiener-Hopf equation and di�erent approahes, both analytialand numerial, are possible in order to solve it. What follows is a omprehensivedesription of the di�erent tehniques developed in literature to solve Wiener-Hopfproblem.6.3.1 Analytial solutionMathematially speaking, Wiener-Hopf problem onsists of �nding two omplex fun-tions K∗
+(jω) and Λ−(jω) satisfying the following relation on the imaginary axis [56℄:

A(jω)K∗
+(jω) + Λ−(jω) = B(jω) (6.22)where A(jω) and B(jω) are two Lipshitz-ontinuous funtions. To solve this equation,we need to �nd a fatorization of A(jω) highlighting ausal A+(jω) and nonausal part

A−(jω), i.e.
A(jω) =

A+(jω)

A−(jω)
(6.23)



90 Chapter 6. Observer-based ControlAfter substitution in Equation (6.22), we get
A+(jω)K

∗
+(jω)︸ ︷︷ ︸

φ+(jω)

+Λ−(jω)A−(jω)︸ ︷︷ ︸
−φ−(jω)

= B(jω)A−(jω)︸ ︷︷ ︸
f(jω)

(6.24)With the introdution of funtion φ(jω), Wiener-Hopf problem has been reast into astandard Hilbert problem, whih an be stated as follows: let C be a smooth losedboundary, de�ned in omplex set C, f(τ) is a funtion satisfying Lipshitz ondition on
C. We need to �nd funtions φ+(τ) and φ−(τ), regular on C and Lipshitz ontinuous,satisfying

φ+(τ)− φ−(τ) = f(τ), with τ ∈ C (6.25)In order to solve Hilbert problem, Plemelji provided the following formulas:
φ+(τ) = +

1

2
f(τ) +

1

2πj

∫

C

f(ξ)

ξ − τ
dξ

φ−(τ) = −1

2
f(τ) +

1

2πj

∫

C

f(ξ)

ξ − τ
dξ

(6.26)By extending boundary C to in�nity and letting f(τ) → 0 for τ → ∞, it is possible toonsider the imaginary axis as boundary C.However, Plemelji formulas (6.26) need the omputation of a omplex Cauhy inte-gral. Solution of suh integral is possible through the appliation of residue theorem:suppose C is a simply onneted open subset of the omplex plane and a1, . . . , ai, . . . , anare �nitely many points of U and f is a funtion whih is de�ned and holomorphi on
U \ {a1, . . . , ai, . . . , an}. If C is a reti�able urve in U whih bounds ai, but doesnot meet any and whose start point equals its endpoint, then

∫

C

f(z) dz = 2πj

n∑

i=1

Res(f, ai) (6.27)where Res(f, ai) denotes the residue of f at ai. If for ai we onsider the poles offuntion f and we all ki the order of eah pole, we an �nd a losed form for theresidues:
Res(f, ai) = lim

z→ao

1

(ki − 1)!

dki−1

dzki−1
(z − ai)

ki f(z) (6.28)To our sope, these notions of omplex analysis are su�ient. For further knowledge,the interested reader is referred to [1℄. Then, one funtion φ+(jω) is determined,ompensator transfer funtion is easily reovered as
K∗

+(jω) =
φ+(jω)

A+(jω)
(6.29)As mentioned before, this ontrol tehnique leads to the same ompensator obtainedthrough LQG ontrol design. In order to prove this statement, we will now onsider, asan example, an optimal ontrol of an industrial rigid servo-system, whih is shemati-
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Figure 6.4: Shemati representation of an industrial rigid servo-system.

ally illustrated in Figure 6.4. Equations governing its system dynamis are:




Jmθ̈m +Dmθ̇m = τm − τlm

Jlθ̈l +Dlθ̇ = nτlm − τl

θm = nθl

(6.30)where subsripts m and l indiate motor and load part, respetively, whereas J is rotorinertia, D visous damping, θ angular position, n the gear ratio and τ the torque. Thenwith τlm we have indiated torque exhanged between load and rotor part through thetransmission. With some trivial manipulations, we an represent system dynamis witha unique equation, i.e.
(
Jm +

Jl
n2

)
θ̈m +

(
Dm +

Dl

n

)
θ̇m = τm − τl

n
(6.31)or, in a more ompat fashion

Jθ̈ +Dθ̇ = τm − τlr (6.32)In order to ahieve state spae formulation, we hoose θ̇ as state variable x, while τmrepresents ontrol input u, whereas τlr is onsidered as a torque disturbane n a�etingthe system. Finally, we hoose to measure angular veloity θ̇, whih is supposed to bea�eted by random noise d. We get:




ẋ = −D

J
x+

1

J
u+

1

J
n

y = x+ d

u = −Kx

(6.33)For feedbak ontroller design, we de�ne the following objetive funtion:
J =

1

2

∫ ∞

0

(qx2 + ru2) dt (6.34)



92 Chapter 6. Observer-based ControlOptimal gain K is reovered from solution of a Riati equation:
ATP + PA+Q− PBR−1BTP = 0

−2
D

J
p+ q − 1

rJ2
p2 = 0

(6.35)We �nd two solutions, we take just the positive one:
p = JDr

(√
q

rD2
+ 1− 1

) (6.36)hene
K = R−1BP = D

(√
q

rD2
+ 1− 1

) (6.37)For the observer we have to solve an analogous Riati equation:
AP̃ + P̃A+ Q̃− P̃CT R̃−1CP̃ = 0

−2
D

J
p̃+ q̃ − 1

r̃
p̃2 = 0

(6.38)where q̃ and r̃ represent state and measure noise ovarianes, respetively. We get:
p̃ =

Dr̃

J

(√
q̃J2

r̃D2
+ 1− 1

) (6.39)hene
L = P̃CT R̃−1 =

D

J

(√
q̃J2

r̃D2
+ 1− 1

) (6.40)Compensator transfer funtion in Laplae domain L(s) then reads:
F (s) = K(sI −A+BK + LC)−1L (6.41)If now we assume unitary parameters, we �nd:

FLQG(s) = − (
√
2− 1)2

jω + 2
√
2− 1

(6.42)As for Wiener-Hopf approah, the assoiated salar equation is obtained by onsidering
H = (jω −A)−1B =

1

jω + 1

φnn = Hq̃HH =
1

ω2 + 1

(6.43)We get
(ω2 + 2)2

(ω2 + 1)2
K∗

+(jω) + Λ−(jω) = − 1

−jω + 1

1

ω2 + 1

A(jω)K∗
+(jω) + Λ−(jω) = B(jω)

(6.44)



6.3. Wiener-Hopf optimal ompensator design 93Fatorization of A(jω) an be straightforwardly reovered by inspetion:
A(jω) =

A+(jω)

A−(jω)
A+(jω) =

(jω +
√
2)2

(jω + 1)2
A−(jω) =

(−jω + 1)2

(−jω +
√
2)2

(6.45)Funtion f in Plemelji formulas (6.26) reads
f(jω) = − 1

(jω −
√
2)2(jω + 1)

(6.46)Then, the assoiated Cauhy integral is
1

2πj

∫

C

f(z)

z − jω
dz =

1

2πj

∫ +j∞

−j∞

−1

(z − jω)(z + 1)(z −
√
2)

dz (6.47)This omplex integrand has a pole of order 2 for z =
√
2 and two poles of order 1 for

z = jω. In order to alulate the integral on the imaginary axis we need to de�ne ahalf-irle path Γ in the right half of Gauss plane and let its radius go to in�nity. Asfor the pole on the imaginary path, a semiirular path γ has to be followed in orderto irumvent it, so:
1

2πj

∫

C

f(z)

z − jω
dz =

1

2πj

∫

Γ

f(z)

z − jω
dz − 1

2πj

∫

γ

f(z)

z − jω
dz (6.48)Then

1

2πj

∫

Γ

f(z)

z − jω
dz = Res(f, jω) +Res(f,

√
2) = − 1

(
√
2 + 1)2(jω + 1)

(6.49)Now, we need to ompute the integral over γ. Firstly, we parameterize variable z asfollows:
z = jω + εejθ, −π

2
≤ θ ≤ π

2
(6.50)hene

∫

γ

f(z)

z − jω
dz =

∫ π/2

−π/2

f(jω + εejθ)jεejθ

εejθ
dθ =

= j

∫ π/2

−π/2

f(jω + εejθ) dθ

(6.51)Seondly, by letting the radius go to zero:
∫

γ→0

f(z)

z − jω
dz = lim

ε→0
j

∫ π/2

−π/2

f(jω + εejθ) dθ =

= j

∫ π/2

−π/2

f(jω) dθ = jπf(jω)

(6.52)
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φ+(jω) =

Z
Z

ZZ

1

2
f(jω)− 1

(
√
2 + 1)2(jω + 1)

−
Z
Z
ZZ

1

2
f(jω) = − 1

(
√
2 + 1)2(jω + 1)

(6.53)Thus, from (6.29), we get
K∗

+(jω) = − jω + 1

(jω +
√
2)2(

√
2 + 1)2

(6.54)Finally, ompensator transfer funtion is reovered from (6.14):
KWH(jω) = − (

√
2− 1)2

(jω + 2
√
2− 1)

(6.55)As an be easily observed, Equations (6.42) and (6.55) oinide.6.3.2 Numerial solutionWe have just seen how analytial solution of Wiener-Hopf equation requires long math-ematial omputation. Furthermore, if multiple inputs are onsidered, then impulseresponse is not salar anymore, while if we onsider multiple outputs for feedbak, itis C that turns into a matrix. In these ases Wiener-Hopf equation has matrix o-e�ients, making analytial handling impratiable. Fortunately, numerial approahis deisively more appealing and straightforward. Starting from Wiener-Hopf equa-tion (6.21), we apply inverse Fourier transform, obtaining the following onvolutionintegrals:
∫ +∞

0

a(t− τ)k+(τ) dτ = b(t) t ≥ 0 (6.56)
∫ +∞

0

a(t− τ)k+(τ) dτ + λ−(t) = b(t) t < 0 (6.57)After time disretization of the integral of (6.56), we obtain
∆t

n∑

p=1

ai−pkp = bi with i = 0, . . . , n (6.58)or, in matrix form
∆t




a0 a−1 a−2 . . . a−n

a1 a0 a−1 . . . a−n+1

a2 a1 a0 . . . a−n+2... ... ... ... ...
an an−1 an−2 . . . a0







k0

k1

k2...
kn



=




b0

b1

b2...
bn




Ak = b

(6.59)



6.3. Wiener-Hopf optimal ompensator design 95Hene, determining the ompensator transfer funtion simply requires the solutionof a linear system. After that, vetor k(t) is Fourier-transformed bak in frequenydomain, in order to obtain K(jω). It is to notie, however, that matrix A arisings afterdisretization of a SISO system has very peuliar properties, sine it is always hermitianpositive de�nite (hpd) and all terms on the same diagonal are equal. In partiular, ifa matrix has these partiular symmetries, it is said to be in Toeplitz-like form. Asfor SIMO and MISO systems, instead, the elements ai in matrix A are represented bymatries themselves, hene A is said to have a blok Toeplitz struture.This statement will be of fundamental importane for the solution of the linearsystem arising in Wiener-Hopf ontrol design, sine standard fatorization tehniquesusually adopted to solve a linear system ould be avoided. As a matter of fat, stan-dard approahes to the solution of the linear system requires the fatorization of LHSinto two matries, the �rst lower triangular, the seond upper triangular. Solution isthen reover after a step of forward-substitution and a subsequent step of bakward-substitution. Typial fatorization algorithms are mainly based on Gauss eliminationmethod or Cholesky fatorization, if the matrix is hpd. All these algorithms are ableto handle nonsingular square matries, but their omputational time sales with N3,where N is matrix dimension, whereas Toeplitz and blok Toeplitz matries, thanksto their symmetries, an be fatorized with sophistiated algorithms whih sale onlywith N2.Suh algorithms an be broadly lassi�ed into two ategories, namely Levinson-typeand Shur-type. As for Levinson-type algorithms, they produe the fatorization of theinverse of Toeplitz matrix, while Shur-type algorithms produe the fatorization ofthe Toeplitz matrix itself. However, Levinson-type algorithms have the main drawbakthat they are limited to salar Toeplitz matries, while Shur-type algorithms, on theother hand, o�er a greater �exibility and higher parallelization. What follows is aomprehensive desription of the algorithms that have been developed in order tofatorize Toeplitz matries arising from Wiener-Hopf ontrol theory, i.e. Cholesky andShur fatorizations.
Cholesky fatorizationWhen a hermitian positive de�nite matrix needs to be fatorized, the standard approahis to adopt Cholesky fatorization. This straightforward algorithm is brie�y outlinedin the following. Let us all A the N × N hermitian positive de�nite matrix, aij itselement in row i and olumn j and C its fatorization. We have

A = CHC (6.60)
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√
a11. Then for i = 2, . . . , n we alulate the diagonal term

cii as
cii =

(
aii −

i−1∑

k=1

c2ik

)1/2 (6.61)and o�-diagonal terms are evaluated as
cij =

(
aij −

j−1∑

k=1

cikc
H
jk

)
/cjj for j = 1, . . . , i − 1 (6.62)As previously mentioned, the main drawbak assoiated with this algorithm is thehigh omputational ost, sine by inspetion it an be found that it requires N3/3�ops, hene fatorization time rapidly inreases for high dimensional matries.Shur fatorizationThe Shur fatorization algorithm that has been developed in the one outlined in [33℄.In order to provide a desription of how it works, let us onsider a blok Toeplitz hpdmatrix A of size mp × mp, where m is the size of eah blok, while p represents thenumber of bloks. The simpler ase of salar Toeplitz matrix an be readily reoveredby onsidering m = 1. Now onsider the �rst blok row [Â1 Â2 . . . Âp

]. Sine
Â1 is a hpd matrix, we an �nd its Cholesky fatorization Â1 = C1C

H
1 , where C1 is an

m×m lower triangular matrix. Now, let Aj = C−1
1 Âj . It is easy to see that A1 = CH

1 .Let us de�ne two matries G1(A) and G2(A) as follows:
G1(A) =




A1 A2 A3 . . . Ap

0 A1 A2 . . . Ap−1... ... ... ... ...
0 0 . . . A1 A2

0 0 . . . 0 A1




G2(A) =




0 A2 A3 . . . Ap

0 0 A2 . . . Ap−1... ... ... ... ...
0 0 . . . 0 A2

0 0 . . . 0 0




(6.63)
Then,

A =
[
GH

1 (A) GH
2 (A)

] [I 0

0 −I

][
GH

1 (A)

GH
2 (A)

]
= GHWG (6.64)where

G =

[
G1(A)

G2(A)

] and W =

[
I 0

0 −I

] (6.65)



6.3. Wiener-Hopf optimal ompensator design 97Now we must searh for a transformation matrix U that satis�es the property UHWU =

W , so that UG = R, where R is an upper triangular matrix. Then we have:
A = GHWG = GHUHWUG

=
[
RH 0

] [I 0

0 −I

][
R

0

]
=

= RHR

(6.66)that provides the fatorization of A. Sine matrix G omprises two upper triangu-lar blok Toeplitz matries, onsiderable omputational savings an be obtained byworking with a generator matrix de�ned using the �rst blok rows of G1 and G2:
Gen =

[
A1 A2 . . . Ap−1 Ap

0 A2 . . . Ap−1 Ap

] (6.67)As for matrix U , due to the properties required, it has to be a hyperboli Householdertransformation sine it must satisfy UHWU = W , whereW is a diagonal matrix whoseentries are either +1 or −1. If this property is satis�ed, then U is also laimed to be a
W -unitary matrix. Furthermore, if x is a olumn vetor suh that xHWx 6= 0, then Uan be expressed as follows:

U = W − 2xxH

xHWx
(6.68)In our algorithm, we used hyperboli Householder transformations in order to reduethe generator matrix Gen to an upper triangular matrix by suessively zeroing ele-ments below the diagonal of olumns of matrix G in (6.66). So, among the possiblehoies of x in Equation (6.68), we would like to �nd the one that, given an arbitraryolumn vetor u, satis�es

Uu = −σej (6.69)where ej is a olumn vetor whose j-th element is 1 and other elements are 0, and σ isa onstant value. If we assume that eHj Wej = 1, then by hoosing
σ =

uj

|uj |
√
uHWu

x = Wu+ σej

(6.70)we �nd that U is a hyperboli Householder transformation mapping u to −σej . Thistransformation will be used several times in the algorithm in order to redue matrix
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G, as will be shown later. From Equation (6.66) we obtain

G =




A1 A1 A1 A1 . . . Ap

0 A1 A2 A3 . . . Ap−1

0 0 A1 A2 . . . Ap−2

0 0 0 A1
. . . ...... ... ... ... ... ...

0 A2 A3 A4 . . . Ap

0 0 A2 A3 . . . Ap−1

0 0 0 A2 . . . Ap−2

0 0 0 0
. . . ...... ... ... ... ... ...




(6.71)
Now, sine the �rst olumn of the generator is already in the right form we an usethe generator matrix starting from the seond row down. The �rst row of the uppersubmatrix of the generator will represent the �rst blok row of the triangular fatorof the Toeplitz matrix. In order to ahieve full fatorization, the �rst step involveseliminating the �rst diagonal in the lower half of the generator matrix. The idea is todo that while preserving Toeplitz struture of the remaining portion of the matrix. Inthis way, we an repeat the proess on the smaller generator till we fully triangularize
G. Therefore, we substitute the �rst blok row in generator matrix with the seondblok row of the upper submatrix:

Gen =

[
0 A1 A2 . . . Ap−1

0 A2 A3 . . . Ap

] (6.72)Now let U1 be the blok hyperboli Householder transformation, obtained as previouslyoutlined using vetors that have one nonzero element in their upper half and zeroelements in the lower half. Thus, we an eliminate A2 using A1 by applying U1 to Gen.We get
U1Gen =

[
0 Ã1 Ã2 . . . Ãp−1

0 0 Ã3 . . . Ãp

] (6.73)Similarly, all matries onstruted by staking the orresponding rows in the two halvesof the generator matrix are shifted versions of Gen matrix in (6.72). Hene, all thework that was needed to zero out the diagonal row of A2 in the lower submatrix wasdone in the �rst step. At this stage, the generator matrix G has a Toeplitz submatrix
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Figure 6.5: Computational time of Cholesky fatorization with di�erent values of p and
m.in its upper half and another Toeplitz submatrix in its lower half:

G =




A1 A2 A3 A4 . . . Ap

0 Ã1 Ã2 Ã3 . . . Ãp−1

0 0 Ã1 Ã2 . . . Ãp−2

0 0 0 Ã1 . . .
...... ... ... ... . . . ...

0 0 Â3 Â4 . . . Âp

0 0 0 Â3 . . . Âp−1

0 0 0 0 . . . Âp−2... ... ... ... . . . ...



(6.74)
The seond row of the upper submatrix of G is the seond blok row of the triangularfatorization of Toeplitz matrix. The proess is then repeated on the two lower rightsubmatries of the generator in (6.74). After p − 2 steps the generator is ompletelytriangularized.Performane assessmentIn order to ompare the performanes of Shur algorithm with respet to standardCholesky fatorization, we used both of them to fatorize a N × N blok Toeplitzmatrix made of p bloks of size m × m on eah blok row, with di�erent hoiesof parameters m and p. Results in Figures 6.5 - 6.6 indiates that for matries ofsmall size the omputational time is quite the same, whereas the di�erene quiklybeomes more relevant as parameter p inreases. Then, fatorization time has beenmeasured, keeping one parameter onstant and varying just the other one. What wehave observed is that Cholesky fatorization time has ubi onvergene with respetto both parameters m and p (Figure 6.7). As a matter of fat, Cholesky algorithm
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Figure 6.6: Computational time of blok Toeplitz fatorization with di�erent values of
p and m.

Figure 6.7: Computational time of Cholesky fatorization for �xed m = 3, measuredvalues (squares) and theoretial predition Cp3 (solid line).
does not take into aount the struture of the matrix, hene it has a ubi dependeneon the whole matrix dimension N = m × p, as mentioned in Setion 6.3.2. As forShur fatorization time, quadratial dependene has been observed on parameter p,as outlined in Figure 6.8, while time has proved to sale ubially with the blok size
m (Figure 6.9). This last observation is not surprising beause at the beginning ofShur algorithm a Cholesky fatorization step is required in order to triangularize the�rst blok in the �rst blok-row. However, this an not be onsidered a signi�antdrawbak sine in the present appliation the size of blok m is always muh smallerthan p, typially three orders of magnitude.
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Figure 6.8: Computational time of blok Toeplitz fatorization for �xedm = 3, measuredvalues (squares) and theoretial predition Cp2(solid line).

Figure 6.9: Computational time of blok Toeplitz fatorization for �xed p = 2000,measured values (squares) and theoretial predition Cm3 (solid line).6.4 Impulse response measureIn order to implement Wiener-Hopf ontrol for drag redution in a turbulent hannel�ow, we need to determine the input-to-state tensorial impulse response Hv vw wherethe input is represented by atuator wall foring, whereas the state vetor is representedby wall-normal veloity and vortiity of the �ow �eld. Suh impulse response hasbeen obtained with the strategy proposed in [49℄. First of all, statistially stationaryonditions have been onsidered for the turbulent �ow at the same Reynolds number ofthe problem. Then, this �ow has been perturbed through wall-normal veloity foring
vw. Suh perturbations were represented by Gaussian white noise with an amplitude



102 Chapter 6. Observer-based Controlof 0.000125, whose autoorrelation funtion reads:
E{vw(x+∆x, z +∆z, t+∆t)vw(x, z, t)} = δ(∆x, ∆y, ∆t) (6.75)where δ is Dira impulse funtion. Thus, as a onsequene of suh perturbation, statevariables of the �ow �eld ould be deomposed as follows:

vTOT = v̄(x, y, z, t) + v(x, y, z, t) (6.76a)
ηTOT = η̄(x, y, z, t) + η(x, y, z, t) (6.76b)where overline indiates variables referred to the unperturbed �ow �eld, whereas theothers are related to wall foring. Cross-orrelation between input and output thenreads:

E{vTOT (x+ x
′

, y, z + z
′

, t+ t
′)vHw (x′

, z
′

, t
′)} =

+ E{v̄(x+ x
′

, y, z + z
′

, t+ t
′)vHw (x′

, z
′

, t
′)}+

+ E{v(x+ x
′

, y, z + z
′

, t+ t
′)vHw (x′

, z
′

, t
′)} (6.77a)

E{ηTOT (x+ x
′

, y, z + z
′

, t+ t
′)vHw (x′

, z
′

, t
′)} =

+E{η̄(x+ x
′

, y, z + z
′

, t+ t
′)vHw (x′

, z
′

t
′)}+

+ E{η(x+ x
′

, y, z + z
′

, t+ t
′)vHw (x′

, z
′

, t
′)} (6.77b)Simpli�ations in (6.77) are possible by onsidering that no orrelation exists betweenperturbation and unperturbed �ow. Then, it is well known from signal theory thatwhen a white noise is passed through a linear system, the ross-orrelation betweenthe input and output is proportional to the impulse response of the system, so input-to-state impulse response ould be reovered by:

Hx, vw =

{
Hv vw(x, y, z, t) = E{v(x+ x′, y, z + z′, t+ t′)vHw (x′, z′, t′)}
Hη vw(x, y, z, t) = E{η(x+ x′, y, z + z′, t+ t′)vHw (x′, z′, t′)}

(6.78)Finally, leveraging system ergodiity led to:
Hv, vw (x, y, z, t) =

=
1

LxLz

∫ Lx

0

∫ Lz

0

1

T

∫ T

0

vTOT (x+ x
′

, y, z + z
′

, t+ t
′)vHw (x′

, z
′

, t
′) dt′ dx′

dz
′ (6.79a)

Hη, vw (x, y, z, t) =

=
1

LxLz

∫ Lx

0

∫ Lz

0

1

T

∫ T

0

ηTOT (x+ x
′
, y, z + z

′
, t+ t

′)vHw (x′
, z

′
, t

′) dt′ dx′
dz

′ (6.79b)With this strategy it was possible to obtain at one the whole spae-time dependene ofthe impulse response. The numerial simulation was arried out for a turbulent hannel�ow at Re = 3500, onsidering a omputational box having dimensions Lx = 4π,
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Lz = 4π/3, while Fourier series used during FFT and IFFT transformations have beentrunated at α = 96 and β = 64 and 128 points have been used for disretization inwall-normal diretion. As usual a hyperboli tangent strething grid was introdued.Correlations have then been measured through averaging over a time of 75000 wall-unit, onsidering a time step of 0.75, whih is about 5 times the time step of a typialDNS at Re = 3500.6.5 Results of Wiener-Hopf ontrol for drag redutionIn order to implement a Wiener-Hopf ompensator for drag redution, impulse responseis not su�ient. As a matter of fat, the knowledge of the funtions of ross-orrelationbetween the state noise and wall-measurements is required. Suh statistis have beenpreviously obtained in [52℄ from DNS of a turbulent hannel �ow at Re = 3500 on-sidering the same omputational domain used to measure impulse response and thesame resolution for wall-normal disretization and trunation of Fourier expansions.As for time disretization, a resolution of 0.75 and a horizon of 150 wall units havebeen onsidered.Afterwards, optimal ompensators have been designed for a turbulent hannel �owof size Lx = 4π, Lz = 4π/3, at Re = 3500 leveraging streamwise and spanwise wallshear stresses for the feedbak and dissipation norm in Wiener-Hopf ost funtion(6.15). These hoies have been motivated by results ahieved in [52℄, where a Wiener-Hopf ompensator was developed for optimal feedbak of a single wall measure usingtwo di�erent state norms, namely turbulent kineti energy and dissipation rate. Re-sults showed that energy norm, whih has proved to be really e�etive in full stateontrol, when applied in an observer-based framework, is totally ine�etive in provid-ing drag redution results. Furthermore, it was demonstrated that using wall pressurefor feedbak is equally ine�etive with both state norms.Optimal ompensators have then been designed for a set of wavenumbers α ≤ 12

−54 ≤ β ≤ 54. Control ation has been omputed runtime in DNS by appliation ofthe following onvolution integral:
v̂w(α, β, t) =

∫ t

0

K̂(α, β, τ)m̂(α, β, t− τ) dτ (6.80)where K̂ is the impulse response of the ompensator and m̂ is the history of measure-ments in wavenumber spae. Then, suh integral has been disretized using a timeresolution of 0.75 wall unit and trunated at time T+ = 18.75. The spatial strutureof ompensator kernels obtained in this way is reported in Figures 6.10 and 6.11 fordi�erent time lags. What we an notie is that the kernel for feedbak of streamwisewall shear stress is symmetri with respet to both x and z axes, whereas kernel forspanwise skin frition is symmetri for x axis and antisymmetri for z axis. Anotherinteresting feature is that wall information required for feedbak is heavily limited to



104 Chapter 6. Observer-based ControlTable 6.1: Drag redution results using SIMO Wiener-Hopf approah with di�erent on-trol penalties R and measurement noise ovarianes φdd.R
2 10−2 3 10−2 4 10−2

φdd

4 10−2 3.567 3.821 4.322
1 10−1 4.467 4.567 3.891
2 10−1 4.397 3.985 3.177
4 10−1 2.776 3.177 2.716the proximity of the atuator. Furthermore, by observing the sequene of frames rep-resenting kernels at di�erent time lags, we an observe that kernel evolves downwardwith respet to the point of appliation and this is onsistent with the behavior of fullstate onvolution kernels disussed in Setion 4.6.So said, a parametri study has been arried out to �nd the best hoie of ontrolpenalty R appearing in Wiener-Hopf formulation and the in�uene of measurementnoise φdd. For this purpose, a set of more than 20 DNS have been performed using 10AMD Opteron quad-ore mahines belonging to the luster of University of Salerno.Simulations took around 4 days eah for a total of 9 years of CPU time. Resultshave then been ompared with drag redution obtained by adopting a single-inputompensator for feedbak of streamwise skin frition, obtained using the salar versionof the proposed Shur fatorization algorithm. What has emerged is that a maximumdrag redution of 4.6% an be ahieved for R = 0.03 (Figure 6.12). Furthermore,suh results have proved to be independent of measurement noise φdd for a rangeof ovariane 4 10−2 ≤ φdd ≤ 5 10−1, while for outer values performanes rapidlydeteriorate, as outlined in Table 6.1. As for single-output ompensator, instead, adrag redution of nearly 5.5% was observed, but performanes have been showed tosigni�antly redue outside the range 3 10−2 ≤ φdd ≤ 8 10−2. This allows the onlusionthat state estimation is not improved by the use of multiple measures, but it an bene�tsfrom a higher robustness with respet to measurement unertainty.Finally, in order to appreiate how optimal Wiener-Hopf ompensator works, inFigure 6.13 we have represented time evolution of high- and low-speed streaks. We anobserve that ontrol e�etively redues the dimensions of near-wall oherent strutures.Furthermore, we an notie from Figure 6.14 that sution is applied under high-speedstreaks, whereas blowing ontrasts low-speed streaks. However, observer-based ontrolreveals unable to signi�antly a�et the regenerative proess. The explanation is relatedto poor performanes of state estimation. As a matter of fat, wall foring appears tobe applied also in portions of the �ow �eld where no turbulent strutures are present.
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(a) Three-dimensional view at time lag τ+ = 0 (b) Top view at time lag τ+ = 0

() Top view at time lag τ+ = 250 (d) Top view at time lag τ+ = 500Figure 6.10: Spatial and temporal evolution of onvolution kernel for SIMO streamwisewall shear stress τxw
feedbak, obtained through Wiener-Hopf ontrol design at Re = 3500by using dissipation norm, R = 0.03 and φdd = 0.1.
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(a) Three-dimensional view at time lag τ+ = 0 (b) Top view at time lag τ+ = 0

() Top view at time lag τ+ = 250 (d) Top view at time lag τ+ = 500Figure 6.11: Spatial and temporal evolution of onvolution kernel for SIMO spanwisewall shear stress τzw feedbak, obtained through Wiener-Hopf ontrol design at Re = 3500by using dissipation norm, R = 0.03 and φdd = 0.1.
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(a) Lower wall skin frition

(b) Higher wall skin frition

() Turbulent kineti energyFigure 6.12: Main statistis of the unontrolled (red line) and ontrolled �ow at Re =
3500 using dissipation norm for the feedbak of streamwise wall shear stress (blak line)and both stresses(blue line) with the best hoie of ontrol parameters.
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(a) Initial �ow state
(b) Unontrolled �ow at t+ = 250 () Controlled �ow at t+ = 250

(d) Unontrolled �ow at t+ = 750 (e) Controlled �ow at t+ = 750

(f) Unontrolled �ow at t+ = 2500 (g) Controlled �ow at t+ = 2500Figure 6.13: Three-dimensional view of a turbulent hannel �ow unontrolled and on-trolled with SIMO Wiener-Hopf ompensator at Re = 3500 by using dissipation norm,
R = 0.03 and φdd = 0.1: visualized are high- (light) and low- (dark) speed streaks at 30%of bulk veloity.
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(a) Frame at t+ = 250

(b) Frame at t+ = 750

() Frame at t+ = 2500Figure 6.14: Top view at di�erent time steps of the lower half of a turbulent hannel�ow unontrolled and ontrolled with SIMO Wiener-Hopf approah at Re = 3500 by usingdissipation norm, R = 0.03 and φdd = 0.1: visualized are high- (light) and low- (dark)speed streaks at 30% of bulk veloity. At wall ontrol atuation is represented by ontoursgraduated aording to the legend.





Chapter 7Conlusions and FutureDevelopmentsThe present work has addressed the problem of reduing the frition drag in a tur-bulent hannel �ow, by applying optimal feedbak ontrol through zero-net-mass-�uxblowing/sution MEMS atuators and sensors at walls. Our results have shown thatwhen knowledge of the whole �ow state is available, optimal ontrol leads to very goodperformanes, provided an optimal set of tuning parameters is adopted. The mostimportant onlusion is that the norm of the state used in the de�nition of optimalontrol ost funtion has a strong impat on the overall performanes, with the normbased on turbulent kineti energy yielding the best results. Moreover, Diret Numer-ial Simulations arried out at Re = 1500 with feedbak ontrol applied through wallboundary onditions have sueded in ahieving full relaminarization. As far as weknow, this result has been obtained with a onstant-gain LQR ontroller for the �rsttime in this work. Furthermore, this outome has been demonstrated to be indepen-dent of the initial onditions of the �ow �eld and of saturation e�ets of the MEMSatuators. Then, for a higher Reynolds number, namely Re = 3500, relevant drag andnet drag redution was ahieved using the same norm in a slightly modi�ed fashion.Besides, results have been proved to be independent of the hoie of ontrol penalty inoptimal ontrol ost funtion, suggesting that for higher Reynolds numbers the e�etof nonlinearities strongly limits the performanes of linear ontrollers.Then, we have turned to onsidering a ontrol sheme in a more realisti senario,i.e. where wall-measurement information alone is available. The �rst attempt hasonerned the design of a ompensator based on optimal output feedbak ontrol theory.Results based on H2 and H∞ norms of disturbane-to-state transfer funtions haveshown that the performanes are quite limited if ompared to LQR ontrol approah.For this reason, the implementation of a state observer was made neessary. Therefore,a frequeny-based Wiener-Hopf approah has been followed for the design of a single-input multi-output ompensator for the feedbak of streamwise and spanwise wall shear111



112 Chapter 7. Conlusions and Future Developmentsstresses using dissipation norm of the state, whih has proved to perform better thanenergy norm in an observer-based ontrol framework. The approah uses a properlyde�ned and measured impulse response of the system as the system model. A fastShur solver has been developed in order to e�iently fatorize the blok Toeplitzmatrix of the linear system arising from time disetization of the assoiated Wiener-Hopf matrix equation. Results have shown that performanes degrade signi�antlywith respet to full-information ontrol. Furthermore, omparison with an optimalompensator exploiting just streamwise skin frition revealed that SIMO ompensatorleads to the same drag redution but it bene�ts from a higher robustness with respetto the measurement noise.The limitations of optimal linear ontrol theory applied to turbulent drag redu-tion have been underlined throghout this work. We think that future developmentsare possible only by abandoning linear system theory, e.g. by onsidering a feedbaklinearization of the nonlinear terms negleted by the linear representation of the �ow.As for the design of a ompensator based on wall measurements, performanes havebeen proved to be strongly a�eted by the time span used for the disretization of theWiener-Hopf equation. Hene, it would be of interest to onsider a smaller time step,even though this would result in a signi�antly higher omputational ost during thephase of kernel design. Moreover, we suggest that further improvements are possible byaounting for the atual nonlinear impulse response of the �ow subjet to wall-foring.As a matter of fat, in the present work only the linear part has been onsidered, whihorresponds in Wiener nonlinear systems theory to the �rst-order onvolution kernelrelating system input to system output. Then, knowledge of higher-order Wiener ker-nels an be straightforwardly aounted for in Wiener-Hopf optimal ontrol theory,leading to kernels whih are optimal for the atual turbulent �ow.



Appendix A
Proof of Bewley Conjeture
In [3℄ it has been onjetured that the lowest sustainable drag of an inompressibleonstant mass-�ux hannel �ow, when ontrolled via a distribution of zero-net-mass-�ux blowing/sution over a no-slip hannel walls, is exatly that of the laminar �ow.The proof of this onjeture starts with the de�nition of the sustainable drag ([4℄):
〈D〉∞ = lim

T→∞
〈D(t)〉T = lim
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dx dt (A.1)where n is the wall-normal, Γ±

2 is the boundary set grouping upper and lower walls.Then, inompressible Navier-Stokes equations are onsidered, highlighting the meanpressure gradient Px:
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+ u∇U = ∇P + iPx +∆U (A.2a)

∇U = 0 (A.2b)where i indiates unit vetor in streamwise diretion. The mean pressure gradient inthe streamwise diretion is then hosen so to maintain a onstant bulk veloity:
UB =

1

V

∫
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U(x, t) dx = onstant (A.3)where Ω is the retangular domain of the problem (0, Lx)× (−1, 1)× (0, Lz) and V =

2LxLz is the volume of suh domain. Then, we hoose the laminar Poiseuille solutionfor the referene veloity pro�le U(y). Blowing/sution ontrol an be analytiallyrepresented as u(x, t) = −φ(x, t)n. So, by integrating Navier-Stokes equations overspae multiplied by veloity U , then integrating by parts, applying boundary onditionsand �nally taking the time average, we �nd an expression for 〈D〉∞:
〈D〉∞UBV = 〈ν‖∇U‖22〉∞ −
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Γ±

2

φ(p+ φ2/2) dx
〉
∞

is the time-averaged power input appliedat walls, while the quantity 〈D〉∞UBV represents the time-averaged power requiredto maintain the unsteady ontrolled �ow by the bulk pressure gradient. If we nowonsider the laminar drag DL of the orresponding laminar hannel �ow with the samedimensions, visosity and bulk veloity, then by integrating the wall-normal derivativeof the laminar veloity pro�le, i.e. Ū(y) over Ω, we �nd:
DLUBV = νLxLz

∫ 1

−1

U ′2 dx (A.5)where the quantity DLUBV may be interpreted as the power required to maintainthe laminar �ow by the bulk pressure gradient. Finally, we split the veloity �eld inNavier-Stokes equations in its mean and �utuating omponents, namely Ū and u,then, following the same analytial manipulations that led to A.4, we �nd
‖∇U‖22 = LxLz

∫ 1

−1

U ′2dy + ‖u‖22 (A.6)After ombining Equations A.4, A.5 and A.6, we ome to the fundamental relation,whih has appeared for the �rst time in [8℄:
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> 0 (A.7)A quik analysis of A.7 allows us to assert that when 〈D〉∞ < DL, i.e. sublaminardrag is ahieved, then the power of the applied ontrol input is always larger thanany possible power saved due to drag redution for any possible ontrol distribution
φ(x, t). For this reason relaminarization is the highest result that an be ahievedthrough blowing/sution wall atuation with a positive net power saving.
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