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Abstract

The aim of the present work is to assess the performances of feedback control applied
to turbulent channel flow for drag reduction by means of wall shear stresses and wall
pressure sensors and zero-net-mass-flux blowing/suction MEMS actuators at walls.

The problem is addressed starting from Navier-Stokes equations, which are manip-
ulated in order to obtain a linear time-invariant model of the channel flow. Such model
is then exploited in order to implement a full-information LQR controller into Direct
Numerical Simulations. The following step concerns the implementation of a more
likely measurement-based controller. The design procedure that has been developed is
mainly based on optimal output feedback control. Results have indicated the necessity
of implementing a state observer.

The following part of the work deals with the design of an optimal compensator
based on wall measurements. This phase is carried out leveraging a frequency-based
Wiener-Hopf control technique previously developed to reduce the drag in a plane
channel flow using a single-input single-output approach. This strategy has then been
extended to multi-output configuration, where all wall measurements are available.
Simulations with different control penalties and measurement noise have shown that
performances decrease, albeit remaining still positive, when an observer is introduced
and benefits arising from multiple measurements information concern an improved
robustness with respect to measurement noise.

These results have suggested that a linear control approach is sufficient to success-
fully manipulate a turbulent channel flow, but state estimation must take into account
also nonlinear effects taking place in the flow in order to obtain reliable information and
future efforts in feedback flow control field will have to be addressed in this direction.
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Sommario

Obiettivo del presente lavoro di tesi & quello di valutare le prestazioni dell’appli-
cazione di un controllo in feedback per ridurre I'attrito a parete in un flusso turbolento
utilizzando sensori di attrito e pressione a parete, combinati con attuatori MEMS a
iniezione e aspirazione, montati a parete.

Il problema ¢ affrontato partendo dalle equazioni di Navier-Stokes, dalle quali viene
estrapolato un modello lineare tempo-invariante del flusso. Tale modello rappresen-
ta il punto di partenza per I'implementazione di un controllore LQR in simulazioni
DNS, supponendo 'intera conoscenza dello stato del sistema. Il passo successivo ha
riguardato 'implementazione di un pitt verisimile controllore basato esclusivamente
sulle misure a parete. La fase di progettazione é stata condotta basandosi sulla teo-
ria della retroazione ottima della misura. I risultati hanno evidenziato la necessita di
ricostruire lo stato del sistema attraverso un osservatore.

L’ultima parte del lavoro riguarda la progettazione di un compensatore ottimo
basato sulle misure a parete. Questa fase ¢ stata condotta sfruttando una tecnica di
controllo alla Wiener-Hopf nel dominio delle frequenze, precedentemente sviluppata per
ridurre attrito in un flusso turbolento usando un approccio single-input single-output.
Questa strategia é stata poi estesa al caso multi-output, in cui tutte le misure a parete
sono disponibili. Simulazioni DNS con differenti pesi sull’attuazione e sul rumore sulle
misure hanno mostrato che le prestazioni si riducono, rimanendo pur sempre positive,
quando il controllo LQR lascia il posto ad un controllo basato su un osservatore di
stato e che I'utilizzo di piti misure garantisce una maggiore robustezza delle prestazioni
rispetto al rumore sulla misura.

Questi risultati suggeriscono che un approccio lineare nella progettazione del con-
trollore é sufficiente per manipolare con successo un flusso turbolento. Di contro, la
stima dello stato deve essere condotta prendendo in considerazione anche gli effetti non
lineari che hanno luogo all’interno del fluido, al fine di ottenere informazioni affidabili
e gli sforzi futuri nel campo del feedback flow control dovranno essere rivolti in questa

direzione.
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Estratto della Tesi

Lo studio della turbolenza é oggigiorno oggetto di fervido interesse all’interno della
comunitd scientifica, in quanto la comprensione del fenomeno fisico ¢ il primo gradino
verso la predizione e quindi il controllo del comportamento turbolento di un flusso.
Riuscire in questo arduo compito avrebbe implicazioni economiche di notevole portata.
Basti pensare che se si riuscisse a ridurre solo del 15% ’attrito viscoso sulla superficie
degli aeroplani, allora I'industria aeronautica avrebbe risparmi per pitt di 15 miliardi di
dollari I’anno, derivanti dalla riduzione del carburante impiegato per vincere ’attrito
dell’aria.

Il presente lavoro di tesi affronta il problema di definire una logica di controllo in
feedback per la riduzione dell’attrito viscoso in uno scenario il pit prossimo alla real-
izzazione applicativa, ovvero considerando attuatori e sensori montati a parete. Prima
di addentrarsi nella questione, sono stati delineati i concetti fondamentali della teoria
della turbolenza, ponendo ’attenzione soprattutto sulle nozioni di strutture coerenti e
di ciclo di parete, veri capisaldi attraverso cui fondare la comprensione dei fenomeni
turbolenti che avvengono in prossimita di una superficie investita da fluido. Di seguito,
per illustrare la vastitd del panorama, sono state descritte le principali tecniche per la
riduzione del drag che al giorno d’oggi hanno ricevuto approfondito studio attraverso
simulazioni DNS o prove sperimentali.

A questo punto ¢ stata definita una geometria ideale in cui studiare il problema.
La scelta di un dominio rettangolare ha permesso di utilizzare un codice DNS par-
ticolarmente efficiente per la risoluzione delle equazioni non lineari che governano la
dinamica del flusso turbolento, controllato e non controllato. Dopodiché, partendo dalle
equazioni di Navier-Stokes e sfruttando le spazio-invarianze derivate dalla simmetria
del problema, é stato ottenuto un sistema di equazioni differenziali che, trasformato
nel dominio di Fourier, ha portato alla definizioni delle note equazioni differenziali di
Orr-Sommerfeld e Squire. Tali equazioni sono state poi discretizzate lungo la direzione
normale a parete durante l'implementazione numerica. In questa fase, due diversi
approcci sono stati considerati, ovvero le differenze finite e le derivate spettrali. L’ap-
plicazione di queste tecniche ad un caso test prima ed al calcolo degli autovalori di un
sistema di equazioni di Orr-Sommerfeld e Squire per una coppia di numeri d’onda poi,

ha permesso di valutarne criticamente le prestazioni.

Ottenuto il modello lineare, & stato cosi possibile definire una logica di controllo in
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feedback. Siccome il controllo a parete risulta agire sul sistema attraverso le condizioni
al contorno dell’equazione differenziale, é stata proposta una tecnica di rilevamento al
fine di ottenere la formulazione agli stati del problema. Partendo da questa, é stata poi
implementata una strategia di controllo ottimo basata sulla retroazione dell’intero stato
del sistema. Tuttavia, non essendo possibile inserire il drag nel funzionale del controllo
ottimo, in quanto questo permette la sola definizione di norme quadratiche, I’obiettivo
di ridurre attrito a parete é stato inseguito indirettamente attraverso la definizione di
norme dello stato basate su grandezze significative dal punto di vista della fisica della
turbolenza. L’utilizzo di dette norme, combinate con scelte opportune degli ulteriori
gradi di liberta che tale schema di controllo consente, ha portato alla progettazione di
diversi controllori. I problemi numerici dovute al cattivo condizionamento delle matrici
di stato nell’equazione di Riccati del controllo ottimo sono stati superati utilizzando
algoritmi ad hoc basati su fattorizazione e successiva risoluzione iterativa. I controllori
cosi ottenuti sono stati poi applicati al controllo di un flusso turbolento per un paio di
numeri di Reynolds largamente studiati in letteratura. Uno dei risultati pia eclatanti
é stata la completa rilaminarizzazione di un flusso turbolento ad un basso numero
di Reynolds, usando un controllore con guadagni tempo-invarianti, anche modellando
I’eventuale saturazione dell’attuatore.

Poi, al fine di ottenere un controllo maggiormente votato all’implementazione prati-
ca, é stato proposta una logica di controllo basata sulla retroazione ottima della misura.
1l confronto tra le norme delle funzioni di trasferimento tra disturbo in ingresso e stato
del sistema, controllato con retroazione della misura e quelle del sistema. controllato con
retroazione dello stato ha portato alla constatazione dell’esigenza di ricostruire lo stato
attraverso un osservatore.

Il punto di arrivo é stato quindi la definizione di una logica di controllo basata
sulla definizione di un compensatore ottenuto attraverso I’accoppiamento di controllore
ed osservatore ottimo per la retroazione delle misure disponibili a parete. Per fare
questo, & stata sviluppata una logica di controllo nel dominio delle frequenze, detta
controllo alla Wiener-Hopf, con cui é stato possibile progettare in un solo passo sia il
controllore che I'osservatore. Questo ha comportato un notevole risparmio di tempo,
in quanto la risoluzione delle due equazioni di Riccati per controllore ed osservatore
nel dominio del tempo é stata sostituita dalla risoluzione di un sistema lineare la cui
matrice ha una struttura di Toeplitz, se una sola misura é considerata per la retroazione,
mentre ha una struttura di Toeplitz a blocchi se piti misure vengono retroazionate.
Sfruttando le simmetrie interne a queste matrici, é stato sviluppato un algoritmo per
ottenerne la fattorizzazione in un tempo che scala col quadrato delle dimensioni delle
matrici. Questo ha rappresentato un notevole miglioramento dal punto di vista del
costo computazionale, in quanto utilizzare le consuete tecniche di fattorizzazione che
scalano col cubo delle dimensioni delle matrici, avrebbe allungato notevolmente la
fase di progettazione del compensatore. I compensatori cosi ottenuti sono stati poi
implementati in simulazioni DNS considerando diversi parametri di controllo e diversi

livelli di rumore sulle misure al fine di indagare gli effetti sulla riduzione dell’attrito
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a parete. I risultati hanno evidenziato che quando viene utilizzato un osservatore di
stato si ha una significativa riduzione delle prestazioni, le quali rimangono pur sempre
positive. Inoltre, I'utilizzo di misure multiple si & dimostrato avere effetti benefici sulla
robustezza della stima rispetto al rumore sulla misura.

Infine sono stati considerati possibili sviluppi futuri, quali I’adozione di uno stima-
tore non lineare in grado di superare i limite dell’osservatore lineare o la stima della
risposta non lineare del sistema, la quale pud poi essere utilizzata all’interno della
teoria del controllo Wiener-Hopf per progettare un compensatore ottimo per il reale

comportamento del fluido piuttosto che per la sua approssimazione lineare.
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Preface

The present thesis addresses the engineering problem of reducing the drag in a turbulent
channel flow using blowing/suction actuators and sensors at walls. This research field
is a very active and recent one, moreover it must face the difficulty of being at the very
intersection of two widely studied disciplines, such as theory of turbulence and system
control. This work is meant to develop a feedback control law to be applied in a likely
environment by considering a multidisciplinary point of view providing for both these
approaches.

The work is organized as follows. Chapter 1 introduces the reader to turbulence
theory, by describing many general aspects and the most widely accepted arguments
concerning it. In particular, the key concepts of coherent structures and near-wall cycle
will be outlined.

Chapter 2 offers an overview of the main approaches to flow control for drag re-
duction, considering both numerical simulations and experimental tests, with a brief
description of the state-of-the-Art sensors and actuators already in use.

Chapter 3 presents the DNS code used for the numerical simulations of the present
work, then it describes how to obtain a linear model of the channel flow starting from
Navier-Stokes equations. Different techniques, namely finite differences and spectral
derivatives, have been developed to discretize the differential equations of the linear
system.

Chapter 4 is devoted to the formulation of an optimal state feedback control. Then,
the effect of control parameters on drag reduction is investigated for different Reynolds
numbers, in order to find the configuration yielding the best performances.

Chapter 5 proposes an optimal output feedback control based on the development
of an algorithm for the solution of the nonlinear equation arising from optimal control
formulation when only wall-measurements are available for feedback. Performances
are compared to those of state feedback relying on some norms of disturbance-to-state
transfer functions.

Chapter 6 develops an alternative approach based on state estimation from wall-
measurements. The dual problem of controller and observer design is formulated as
a single optimal control problem in frequency domain, aiming at developing a com-
pensator for the feedback of multiple wall-measures. The effect of different control
parameters is investigated through DNS in order to evaluate actual drag and net drag
reduction.

Finally, Chapter 7 summarizes and discusses the main achievements of the present
work and outlines possible future developments.

Milan, September 2010
Daniele Cavaglieri






Chapter 1

Fundamentals of Turbulence

Turbulence is the last great unsolved problem of classical physics. By the way, one of
the greatest modern physicists, Richard Feynman, used to tell this fable in order to
clarify this concept. “As he laid dying, the modern physicist asked God two questions:
Why relativity and why turbulence? I really think - said the famed physicist, - He may
have an answer to the first question” [19]. As a matter of fact, no one knows how to
solve the well-posed set of partial differential equations that govern turbulent flows.
Averaging those highly nonlinear equations to obtain statistical quantities always leads
to more unknowns than equations, and an ad hoc modeling is necessary to close the
problem. The struggle to get a full understanding has been long and around with
lots of sweat, few victories and much frustration [20]. This chapter is meant to guide
the reader to a deep understanding of this evolving panorama, by discussing the most
widely accepted concepts in turbulence theory and introducing some of the main issues

that nowadays are still object of fervent research.

Until few decades ago, the most accepted view was that turbulence is essentially a
stochastic process having randomly fluctuating velocity field superimposed on a well-
defined mean reference flow. In this view, fluctuations are completely random in the
sense that there is zero probability for any flow variable of having a particular value,
and there is zero energy in any one particular frequency or wavenumber. Now common
opinion has significantly changed, as it has been recognized that the behavior of all
turbulent shear flows are dominated by quasi-periodic large-scale vortex motions. In
order to give an index or rate of turbulence, we use to associate to the fluid dynamics
system we are considering a dimensionless number Re, called Reynolds number, which

is defined as follows:
pUL _ VL

I v
where p is the density of the fluid, p the dynamic viscosity and v = p/p the kinematic

Re = (1.1)

viscosity. U and L are the velocity and length scales of the fluid dynamics problem
and they represent the typical dimensions at which significant dynamical phenomena
happen in the system. This dimensionless number gives a measure of the ratio of

3



4 Chapter 1. Fundamentals of Turbulence

inertial forces pU2L? to viscous forces pU?L and consequently quantifies their relative
importance for given flow conditions. Furthermore, Reynolds number plays a key role in
describing the velocity field of a flow. As a matter of fact, if two fluid dynamics systems
have the same Reynolds number, then their scaled velocity fields are also the same.
Reynolds number also characterizes different flow regimes: at low Reynolds numbers
viscous forces are dominant and the flow assumes a smooth, constant motion. In this
case, the flow is said to be in a laminar regime, while at high Reynolds numbers the
fluid is dominated by inertial forces, determining chaotic motion. When this happens,
the flow is said to be in a turbulent regime. Furthermore, at intermediate values of Re,
the flow may show a laminar condition but it can easily shift to a turbulent state with
the introduction of small disturbances into the system. This last scenario represents
the transition regime. As for turbulent regime, a constant energy supply is needed for
this process to be sustained and this energy is extracted from the mean flow into the
largest, most energetic eddies that compose the flow. Afterwards, energy is transferred
into smaller and smaller scales until it is dissipated by viscous action in the smallest
scales of the flow, called Kolmogorov micro-scales, in the name of the scientist who
first postulated their existence on the basis of physical argumentations. In wall flows,
the phenomenon of dissipation through this energy cascade process takes place in the
very neighborhood of the wall. We call this region boundary layer. Furthermore, the
thickness ¢ of this layer provides a good measure of the largest eddies in the flow, while
the smallest scale is called the viscous wall unit, which is of the order of Kolmogorov
length scale. Since in the near-wall region viscous forces dominate over inertia, the shear
stresses 7 of the fluid are mainly represented by their viscous component. Furthermore,
since no-slip boundary condition imposes null velocity at wall, the inertial stresses, also
called Reynolds stresses, are zero and wall shear stresses are determined as

__ ou
y _M_ pya_y

(1.2)

Tw = PV —

w

where U is the mean streamwise velocity, « and v are streamwise and spanwise fluctua-
tions of velocity, respectively, and y denotes the wall-normal direction. The observation
that viscous stresses dominate the wall region allows to choose a proper viscous time-

The viscous time-scale is then easily derived from dimensional analysis

scale ¢, by taking

(1.4)




The wall velocity scale follows directly from Equations (1.3) and (1.4)

l, oU Tw
_ | - |w 1.
i ty Vay w p (15)

So, near-wall flow can be represented using dimensionless wall units, obtained after

scaling flow variables with the viscous scales, which are usually indicated with super-
script +. Hence, the nondimensional distance from wall is y* = y/l, = yu,/v. Then,
depending on 37, different regions, or layers, are defined in the near-wall flow. We
define the viscous wall region as the region for 0 < y* < 50, while the region y™ > 50
is called the outer layer. Furthermore, within the viscous wall region, we define the wvis-
cous subregion as the region for y™ < 5, in which Reynolds shear stresses are negligible
with respect to viscous stresses. Finally, the transition region between the viscosity-
dominated and the inertia-dominated part of the flow, i.e. for 5 < y* < 30, is called
the buffer layer.

Starting from this well accepted framework, fluid dynamicists have long sought
to understand how boundary-layer turbulence is generated and dissipated. Since
boundary-layer flows are the technical driver for so many engineering applications,
lots of financial and human resources have been brought to bear on the problem over
many decades of study. The progress made, however, has not been commensurated
with the effort expanded, reflecting the intrinsic complexity of turbulence phenomena
and the difficulty that must be faced when trying to reproduce turbulent precesses in
a controlled framework. For this reason, most of turbulence knowledge has resulted
from investigation at low Reynolds numbers, where effective flow visualizations and
Direct Numerical Simulations (DNS) are possible. In this context, it has been made
possible the identification of coherent motions. Historically, fundamental studies can
be found in [71] and [66] and nowadays, even if with some controversy, they are quite
universally considered as reference works. Despite this, no generally accepted defini-
tion of what is meant by coherent motion has arisen. Actually, in physics coherence
stands for a well-defined phase relationship. As for turbulence, if we accept Robinson’s
definition “a coherent motion is a three dimensional region of the flow over which at
least one fundamental flow variable exhibits significant correlation with itself or with
another variable over a range of space and/or time that is significantly larger than the
smallest local scales of the flow” [64]. The major motivations for investigating coherent

motions in turbulent boundary layers are:

e to aid predictive modeling of the gross statistics of turbulent flows

e to understand the dynamical processes responsible for statistical properties in

order to predict them through an appropriate modeling
e to guide alteration and control of turbulence.

The third reason, in particular, concerns the main issues addressed in the present
work. As for the reference framework for coherent structures analysis, is is usual to
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consider a flat-plate, smooth-wall boundary layer with a two-dimensional mean flow,
without pressure gradient, wall heating, force fields or compressibility effects. In such
environment, the turbulence production process is dominated by three kinds of quasi-
periodic eddies: the large outer structures, the intermediate Falco eddies and near-wall
eddies. As for large outer structures, they appear as large three dimensional bulges
that scale with the layer thickness  and extend across the entire boundary layer, as
depicted in Figure 1.1. These eddies control the dynamics of the boundary layer in the
outer region and appear quasi-periodically in space and time. Falco eddies represent
another typology of highly coherent structures, which are characterized by having a
three-dimensional extension. They usually appear in wakes, jets and boundary layers at
an intermediate scale of 100 wall units and play a key role in the interaction between
large outer structures and near-wall events. In order to highlight these structures,
smoke has been used as in Figure 1.2 to fill the near-wall region of a boundary layer.
What appear are roughly circular regions devoid of marked fluid, that have been called
pockets.

The third kind of eddies takes place in the wall region, where the most part of the
turbulent production in the entire boundary layer occurs during intermittent, violent
outward ejections of low-speed fluid and during inrushes of high-speed fluid at a shal-
low angle toward the wall. This intermittent quasi-cyclic sequence of intense organized
motions have been collectively termed the bursting phenomenon. This process, which
is schematically outlined in Figure 1.4, begins with elongated counter-rotating stream-
wise vortices, which induce low- and high-speed streaks between them, as illustrated
in Figure 1.5. Then, low-speed regions (Figure 1.3) grow downstream, lift up and de-
velop instantaneous inflectional profiles. At approximately the same time, the interface
between low- and high-speed fluid begins to oscillate. Hence, the low-speed region lifts
up away from the wall as the oscillation amplitude increases and then the flow rapidly
breaks up into a completely chaotic motion. Virtually all of the net production of tur-
bulent kinetic energy in the near-wall region occurs during these bursts. This phase is
followed by a large-scale motion of upstream fluid that emanates from the outer region
and sweeps the wall region of the previously ejected flow. This sweep event seems to
have a stabilizing effect on the bursting site, since it prepares the wall region for a new
cycle, thus determining a self-sustaining regime. The relationship between coherent
structures in the outer region and near-wall cycle is still not completely understood
even if strong evidence of this interaction has been provided in recent works, such as
[29] and [54].



Figure 1.1: Side view of a low-Reynolds-number turbulent boundary layer from [22].
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Figure 1.2: Top view of a low-Reynolds number turbulent boundary layer from [18].
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Figure 1.3: Top view of a low-Reynolds-number turbulent boundary layer from [22].
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Figure 1.4: Sequential events arising during the bursting process. Arrows with question
mark indicate relationships that are still object of debate.




Figure 1.5: Physical model of near-wall turbulent coherent structure generation.






Chapter 2

Flow Control

The possibility of manipulating a flow field in order to obtain a desired objective is of
immense technological importance and this surely accounts for the subject being more
hotly pursued by scientists and engineers than any other topic in fluid mechanics.
It is sufficient to think that the potential benefits arising from the implementation of
efficient flow-control systems range from saving billion of dollars in annual fuel costs for
land, air and sea vehicles to achieving more competitive industrial processes involving
fluid flows. According to a recent study by Airbus [67], turbulence control could reduce
the drag of a civil aircraft up to 15%, as shown in Figure 2.1, resulting in more than 15
billion dollars saving per year for shipping industry. In this context, low manipulation
may play a key role in meeting several goals, such as reducing the drag, as previously
mentioned, or enhancing the lift, augmenting the mixing of mass, momentum or energy,
suppressing the flow-induced noise or a combination thereof. To achieve these results,
transition from laminar to turbulent flow may have to be either delayed or advanced,
flow separation may have to be either prevented or provoked, and finally turbulence
levels may have to be either suppressed or enhanced. All these engineering goals and
their connection with flow modifications are schematically outlined in Figure 2.2. It is
to remark that none of these targets is particularly difficult if taken alone, but the aim
is to achieve the desired objective adopting simple devices, inexpensive to build as well
as to operate, so that the expense for flow manipulation would result in a significant net
positive saving. Unfortunately, all these goals are not necessarily mutually exclusive,
as depicted in Figure 2.3, and potential conflicts usually arise as one tries to achieve
a particular control goal only to affect adversely another goal. Thus, an ideal method
that is simple, inexpensive to build and operate, and that does not have any trade-offs
does not exist and the skilled engineer has often to make compromises.

In order to give an exhaustive overview of flow control methods, we have to remark
that many different classifications are possible. One of these is to consider whether
the technique is applied at the wall or away from it. In the former case, the flow may
be altered by modifying influent surface parameters, like curvature, rigid-wall motion,
compliance, temperature and porosity. Even heating and cooling of the surface can

11
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Figure 2.1: Drag break-down of a civil aircraft and potential drag reduction.
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Figure 2.2: Flow modifications and engineering goals.

influence the flow through the resulting density gradients. Mass transfer is possible via
suction/injection through a porous wall. Different additives, such as polymers, sur-
factants, micro bubbles, droplets, particles can also be injected through the surface in
water wall-bounded flows. As for the latter case, control devices located away from the
surface can also be beneficial. Large-eddy breakup devices (LEBU), acoustic waves,
magneto- and electrohydrodynamical body forces are examples of flow control strate-
gies applied away from the wall.

Another scheme for classifying flow control methods considers energy expenditure and
the control loop involved. A control device can be passive, thus requiring no auxil-
iary power and no control loop, or active, hence requiring some energy expenditure,
as shown in Figure 2.4. Moreover, active control requires a control loop and is further
divided into predetermined or reactive. Predetermined control includes the application
of steady or unsteady energy without regard to the particular state of the flow. In this

case, the control loop is open and no sensors are required. Reactive control, instead, is
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Figure 2.4: Classification of flow control strategies.

a special class of active control where the control input is continuously adjusted based
on measurements of some kind. In reactive feedforward control, the measured variable
and the controlled variable differ, while reactive feedback control necessitates the con-
trolled variable to be measured, fed back and compared with a reference input. In the
following, a brief review of the state-of-the-Art control strategies is given according to
the approach adopted and after that, an introductory discussion will describe the most
up-to-date sensors and actuators which have been used in experimental tests regarding
flow control.
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2.1 Passive control

2.1.1 Compliant coatings

Among passive techniques for boundary layer manipulation, compliant coatings surely
represent the most simple solution since it does not require slots, ducts or internal
equipment of any kind. Aside from reducing drag, other reasons for the strong interest
in studying compliant coatings are their many other useful applications, for example as
sound-absorbent materials in noisy flow-carrying ducts in aero-engines and as flexible
surfaces to coat naval vessels for the purpose of shielding their sonar arrays from the
sound generated by the boundary-layer pressure fluctuations.

The idea of adopting compliant coatings for drag reduction came out from studying
dolphins’ surprising swimming skill. As a matter of fact, bottlenose dolphins have been
clocked swimming at speed exceeding 10 m/s for periods of over 7 s, but assuming that
the power output of cetaceans is equal to that of other mammals (=~ 35 W/kg of body
weight), then such speeds are reached under turbulent flow conditions only if dolphins
can expend several times more power than their muscles can generate. More specif-
ically, it can be demonstrated, on the basis of energy considerations, that dolphins
can not exceed a speed of 6 m/s for periods greater than 2 hours. The only possible
explanation is that dolphins have a lower skin-friction drag level than expected due to
their complex epidermis, which acts as a compliant coating optimized over each por-
tion for the appropriate range of local Reynolds number. However, replicating Nature’s
perfection has represented an arduous task and only after many decades of contradic-
tory results, this technique has been proved to achieve some results in delaying flow
transition from laminar to turbulent condition caused by Tollmien-Schlichting insta-
bility (TSI). For an exhaustive description of this phenomenon the interested reader is
referred to [65].

The mechanism through which compliant coatings work is strictly related to the
hydroelastical coupling of fluid and solid which causes an irreversible energy transfer
from the former to the latter. However, for longtime it has been deemed impractical
to clearly demonstrate its effectiveness and the first significant results appeared for the
first time in Lee’s wind-tunnel experiments [43]. The coating used for the tests was
made by a mixing 91% by weight of 100 mm? /s silicon oil with 9% of silicone elastomer.
Results showed that, as compared to the rigid wall, the single layer, isotropic, visco-
elastic compliant coating significantly suppressed the root-mean-square (rms) ampli-
tude of the artificially generated Tollmien-Schlichting waves across the entire boundary

layer for a range of Reynolds numbers (Figure 2.5).

2.1.2 Introduction of additives

Turbulent skin-friction drag can be reduced by the addiction of several substances,
such as long-chain molecules and microbubbles in liquid flows. The addition of these

substances leads to a suppression of the Reynolds stress production in the buffer zone.
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Figure 2.5: Comparison of distribution of rms amplitude of the TSI of rigid surface (white

squares) and compliant surface (black squares) across boundary layer. (a) Re = 1274, (b)

Re = 1105, (c) Re = 1225, (d) Re = 1350.

Thus, the turbulent mixing is inhibited and a consequent reduction in the viscous wall
shear stress is achieved. Among the possible techniques for drag reduction, solutions
of micromolecules is perhaps the more mature technology. By the way, it has been
proved that the addition of less than 100 parts per million of polymethyl methacrylate
to a turbulent pipe flow of monochlorobenzene can lead to a skin-friction reduction up
to 80% in both external and internal flows, even if its application can be very cost-
effective: oil companies, for example, appear to have concluded that the use of polymers
for supertankers is just at the break-even point, economically speaking. According to
Lumley [50] - [51], the onset of drag reduction is associated with the expansion outside
the viscous sublayer of polymer molecules, which at rest are in the form of spherical
random coils. This process causes an increase in effective viscosity which damps only
the small dissipative eddies, resulting in reduced momentum transport, hence reduced

drag.

2.1.3 Large-eddy breakup devices

Large-eddy breakup devices (LEBUs) are designed to alter or break up the large vortices
from the outer edge of a turbulent boundary layer. A typical arrangement, consists of
one or more splitter plates placed in tandem in the outer part of a turbulent boundary
layer, as illustrated in Figure 2.6. Unfortunately, there is little theoretical basis for
how these geometrical modifications affect the skin-friction and most of the present
knowledge comes from experimental evidence. Anyway, tests have shown that it is very
easy to substantially reduce the skin-friction, while the most difficult task is to ensure
that the device’s own skin-friction and pressure drag do not exceed the saving. Among
the results achieved, a noteworthy net drag reduction of 20% has been obtained, thus
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Figure 2.6: Standard arrangement of a LEBUs array.
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leading LEBUs to be considered one of the most performing solution for drag reduction.

2.1.4 Riblets

Another interesting geometrical modification is represented by riblets, which are wall
grooves aligned with the freestream. Small longitudinal striations in the surface in-
teracting favorably with the near-wall structures in a turbulent boundary layer can
produce a modest drag reduction in spite of the increase in wet surface area. A net
drag reduction of 8% is obtained using V-groove geometry with sharp peak and either
sharp or rounded valley (Figure 2.7). Moreover, optimum height and spacing of the
symmetric grooves have been found to be about 15 v /u,. Curiously, the fastest sharks
have a surface covering of dermal denticles with flow-aligned keels having the same
optimal riblet spacing (Figure 2.8). Riblets work by restraining the movement of the
near-wall longitudinal vortices and therefore maintain their coherence. The stabilized

Figure 2.8: Detail of shark skin.
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coherent structures present a barrier to the usual cascade from large to small scales
and hence impede the rate of energy loss with a resulting drag reduction despite the

increased surface area.

2.2 Active control

2.2.1 Predetermined control

Predetermined control mainly involves introducing waves into the flow through actu-
ations or wall movements. Among the former solutions, an interesting one is that
proposed in [55], where blowing/suction actuation was employed to form a streamwise-

traveling wave of wall-normal velocity v,,, i.e.
Uy (z, t) = Asin(ax — wt) (2.1)

where ¢ is time, z the streamwise coordinate, A the amplitude of the oscillation, w =
27 /T the frequency of oscillation and o = 27/), the streamwise wavenumber where
Az is the wavelength. Another solution is the one reported in [16] and [17] where the

following spanwise-oriented volume forcing was investigated:
f(z, t) = Fe™¥/Asin(8z — wt) (2.2)

where z is the spanwise coordinate, A the distance up to which the forcing diffuses
from the wall and 3 is the spanwise number. Approximately 30% drag reduction was
achieved in a turbulent channel flow at Re = 3500.

As for the latter solutions, an interesting way of reducing drag is to adopt oscil-
lating walls moving sinusoidally in spanwise direction with period T, according to the
following law

Wy (t) = Asin(wt) (2.3)

where w,, denotes spanwise velocity component at wall, while the other quantities are
the same as before. In [63] this control law has been studied, through parametric
investigation over Direct Numerical Simulations of turbulent channel flow, concluding
that an optimal frequency wgy; for drag reduction exists and such a reduction can be
as high as 34% if the wave amplitude is comparable with the flow centerline velocity.
Furthermore, in [61] this technique has been extended for the first time in literature to
consider also streamwise-traveling waves of spanwise wall velocity, leading the motion

law to account also for spatial displacement, i.e.
Wy (2, t) = Asin(az — wt) (2.4)

With this motion law, which is graphically represented in Figure 2.9, waves move in
streamwise direction with a phase speed ¢ = w/«. This wall motion law has then been



18 Chapter 2. Flow Control

w = A sin(k x — wt)

Mean streamwise flow

Figure 2.9: Schematic representation of the turbulent channel flow simulated through
DNS.

tested through parametric DNS for an array of frequencies w and wavenumbers « in
order to find the optimum set (wopt, Qopt) achieving the maximum drag and net drag
reduction. Results reported in Figure 2.10 show that, off the axes, the perturbed flow
reveals an unexpectedly rich behavior. In particular, we can notice a red region of
high drag reduction with a peak value of 48% and a cone-shaped blue region of drag
increase for 0.35 < ¢ < 0.6, showing a peak value of 23% for a phase speed ¢ = 0.5.
Net power saving can then be computed by considering the power saved from drag
reduction and subtracting the power spent to apply the control action. Results in
Figure 2.11 show that the region of maximum net saving nearly coincides with the
region of maximum drag reduction (DR) and net power saving is positive mainly for
slow forward traveling waves, i.e. 0 < ¢ < 0.2. Besides, a peak value of 18% net saving
is achieved for (w, a) =~ (0.15,1).

Although the details of the mechanism through which such waves achieve significant
drag reduction are still object of further investigation, a deeper view of the phenomenon
has been given in [60], where it has been assumed that streamwise-traveling waves
operate by creating a transversal boundary layer in the near-wall region of the channel
flow. When the waves move at a speed comparable with the convection velocity, a
lock-in effect renders the instantaneous turbulent flow highly three-dimensional, thus
provoking drag increase. Instead, when the phase speed is sufficiently different from
the near-wall turbulent convection velocity, then the induced spanwise boundary layer
can be viewed as a generalized Stoke layer, whose thickness has been proved to linearly
correlate to drag reduction till DR = 35%. Beyond this value, waves are oscillating on
a time scale larger than the typical lifetime of the near-wall turbulence, thus decreasing
the effect of drag reduction.
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Figure 2.10: Maps of drag reduction DR in the w— « plane for A = 0.5 and Re = 4760.
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Figure 2.11: Maps of net power saving in the w — « plane for A = 0.5 and Re = 4760.
Solid lines denote positive balance, while dashed lines indicate negative net drag reduction.
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2.2.2 Feedforward control

The most popular feedforward strategy for controlling turbulent channel flows is the
opposition control strategy firstly presented in [12]. With this approach, a detection
plane for one of the velocity component is introduced in the flow at a distance of
yT ~ 10. The detected velocity is then applied phased shifted by —7 as a boundary
condition at walls. With this method, direct numerical simulations have showed a drag
reduction of around 20% using wall-normal vorticity and 30% using spanwise velocity.

Another meaningful attempt to introduce feedforward control, using this time a
control law based on an analytical model, is the one proposed in [5], which concerns the
application of a receding-horizon model-predictive control to reduce drag in a turbulent
channel flow. With this strategy, the evolution of the system is considered over a finite
interval and control inputs are optimized over this finite interval using an iterative
gradient-based strategy. Once optimized, control inputs are applied to the evolving
flow system, then the procedure is repeated on the following time interval. It has been
made possible thereby to fully relaminarize a turbulent channel flow at a low Reynolds

number, indicatively Re = 1500.

2.2.3 Feedback control

Feedback control is the branch of reactive control that has received the greatest at-
tention due to its solid theoretical background. In this context, the standard scenario
considers channel flow with skin friction and pressure sensors at walls to provide sys-
tem measurements, while zero-net-mass-flux blowing/suction MEMS actuators contin-
uously distributed over the walls are used to manipulate the flow inner structure.

One of the first approaches of this kind, before the introduction of linear systems
theory to flow control, has been presented in [41], where a neural network has been
implemented in order to adaptively find a feedback law for the local wall shear stress,
achieving about 20% drag reduction. A linear feedback based on classical control theory
has then appeared in [31], in which it was used to stabilize a turbulent wall flow in a two-
dimensional channel using blowing/suction at walls coordinated with measurements of
wall shear stresses. Afterwards, modern control theory has been introduced in [3§],
followed by the extension of the previously developed two dimensional controller to
a three-dimensional one, which has been carried out by the same group work in [42],
where an ad hoc scheme was augmented in the third direction. An exhaustive discussion
on the application of linear quadratic feedback control to three-dimensional channel
flows has appeared for the first time in [7]. This strong theoretical framework has then
received further refinements in [3] and has been applied in [25] for delaying laminar-
to-turbulent transition in channel flows for a couple of Reynolds numbers, namely
Re = 2000 and 3000. Finally, in a recent work [52], LQR control has been tested to
achieve net drag reduction for higher Reynolds numbers. Results showed that more
than 20% net power saving is possible at Re = 1500 and 3500 and up to 15% at
Re = 6500, as outlined in Figure 2.12.
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Figure 2.12: Performance of LQR control at different Reynolds numbers. A = Turbulent
kinetic energy, o = Drag reduction, [J = Net power saving.

2.3 Sensors and actuators for flow control

2.3.1 Sensors

Unlike most of common control devices, sensors for feedback control of turbulence
must meet very hard requirements. First of all, they must have a physical size and
response time small enough compared with the spatial and temporal scales of turbulent
structures. Experiments conducted in laboratory suggested that the appropriate size
of shear stress/wall pressure sensors should be less than 30 — 40 viscous units [35].
Afterwards, in order to detect the near-wall structures, it is necessary to build an array
of sensors, rather than a single sensor, so to catch even local fluctuations. Clearly,
such specifics could be met only by adopting microelectro-mechanical system devices
(MEMS). Development of such sensors for use in fluid science has been largely docu-
mented in literature, hence for a deeper knowledge of the subject, the interested reader
is referred to [21].

The most common MEMS control scheme considers an array of sensors to be
mounted flush to the wall. Thus, fluctuating wall shear stresses in streamwise and
spanwise directions, 7., and 7., respectively, and wall pressure p,, are used to detect
the flow state near the wall. Since it is known that the rms value of the wall-shear-
stress fluctuation is 7, rms =~ 0.47, and this ratio is quite Reynold-independent, if
we suppose that the measurement accuracy required is 5% of the rms value, then the
sensitivity should be at least 2% of the full scale of 7, which is not difficult to achieve
with MEMS sensors. The root-mean-square of wall-pressure fluctuation, instead, is
approximately 37, for Re ~ 1000. Thus, the sensitivity of 2% of the full scale must
be about 0.157,, and owing to this larger magnitude, the pressure fluctuation seems
better suited for control.

Among the great variety of MEMS sensors, the most mature device for detecting
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Figure 2.13: Example of micro hot-film wall-shear-stress sensor array with backside
electrical contact.

wall shear stresses is the micro-hot-film wall shear stress sensor, which is based on
a thermal principle, in that it measures heat transferred from a resistively heated
element to flowing fluid, thus indirectly obtaining the wall shear stress. Figure 2.13
shows MEMS sensor arrays with a platinum hot film deposited on a 1-um-thick SiN,
diaphragm (400 x 250 um?), where eighteen sensors are aligned at a pitch of 1mm in
the spanwise direction.

Another sensor, which instead is not based on a thermal principle, uses a micro-
floating element for the direct mechanical measurement of shear stress. This element,
is free to displace laterally against the restoring springs and it is flush mounted to
the wall. The displacement of this element is measured with a capacitive or optical
method. Its dimensions range from 120 x 120 um? to 500 x 500 um? and a flat frequency

response up to 4 kH z, while its noise floor is as low as 0.0004 Pa.

2.3.2 Actuators

As for MEMS actuators, the following requirements should be met:
e small dimensions
e fast response
e low energy consumption
e large fluid interaction
e robustness in hostile environment.

Then, actuation force for flow control can be divided in three different categories:
electromagnetohydrodynamic or electric body force, on-demand jets and surface force
due to a moving fluid-solid interface. Electromagnetohydrodynamic force has proved to

be effective for drag reduction in conductive fluids as seawater [9]. Furthermore, in [47]
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electroplated Permalloy has been employed to obtain large out-of-plane displacement
in response to an external magnetic field, while in [73] an elongated Si flap was used
with a pair of polymide hinges and a permanent magnet array underneath, as shown
in Figure 2.14. Unfortunately, the low efficiency of body force in case of poor electrical
conductivity of the flow still remains a problematic issue.

For this reason, synthetic jets represent nowadays a preferred choice, since they
can benefit of a broader range of applications. Basically, they are realized through an
oscillating diaphragm in a cavity with an orifice which generates a zero-net-mass-flux
above the orifice.

2.4 Experimental tests

Until now, few attempts have been made to develop feedback control systems in physical
experiments. As for predetermined control, the earliest experimental verfications of the
oscillating-wall concept are those in [39] in the geometry of a boundary layer and in
[14] and [13] in the circular pipe. Several other studies, most of them mentioned in
[34], have extended such results. It is to remark that all of them are low-Reynolds
setups where the wall oscillation is implemented through mechanical vibrating devices
and the measurements are often obtained through a probe mounted near the moving
wall. A notable exception is that in [57], where Lorentz body force was employed.
The same forcing was implemented in [9] in order to experimentally realize spanwise-
traveling wall forcing. Finally, in [59] laboratory tests assessing drag-reducing effect
of streamwise traveling waves have been carried out in the geometry of the circular
pipe, where the naturally periodic spanwise direction makes the implementation of
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Figure 2.15: Graphical representation of the traveling-wave concept. The desired space-
time variation of the transverse wall velocity is achieved through independent alternate
motion of adjacent pipe slabs.

traveling waves easier. The spatio-temporal variations required to enforce the waves
are obtained through a time- and space-varying rotational speed of the pipe wall. While
the harmonic dependence on time is easily implemented, the sinusoidal variation along
the streamwise direction is discretized by imposing different rotation rates to different
thin longitudinal slabs of the pipe, as shown in Figure 2.15.

As for reactive feedback control, in [30] a control system was set up by using piezo-
electric flap actuators and hot-film sensor arrays located upstream and downstream of
the actuators. Then, a feedforward/feedback control scheme was applied in order to
suppress low- and high-speed streaks induced by vortex tubes in a laminar boundary
layer. In [62], a control system was realized using two rows of three wall-mounted
hot-film sensors with a single row of three synthetic jet actuators in between. A linear
feedback control scheme coupled with a Wiener filter was employed to achieve a 30%
reduction of streamwise velocity fluctuations. Recently, in [74] a prototype system has
been developed for the feedback control of a turbulent air channel flow (Figure 2.16).
This device is composed by an arrayed micro hot-film sensors with a spanwise sensing
of 1 mm for the measurement of streamwise shear-stress fluctuations, while arrayed
magnetic actuators of 2.4mm in spanwise width were used to introduce control input
through wall deformation. The driving voltage of each actuator is determined with
a linear weighted sum of the wall shear-stress fluctuations detected by three sensors
located upstream of each actuator and a noise-tolerant genetic algorithm optimizes the
control parameters in such a way that the drag reduction is maximized. With this

strategy approximately 6% drag reduction was achieved.
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Chapter 3

Channel Flow Model

Channel flow at turbulent Reynolds numbers is a framework of particular interest in
which developing and testing proper feedback control strategy. As a matter of fact,
the symmetry and simplicity offered by the geometry of a plane channel flow lead to
effective implementation in DNS code. What follows is an in-depth description of the
code used for numerical simulations. After that, starting from fully nonlinear Navier-
Stokes equations, a linear model of the channel flow is analytically derived in order to

implement an optimal control scheme.

3.1 DNS

The simple geometry of channel flow allows to set a rectangular computational domain,
as outlined in Figure 3.1: a Cartesian coordinate system is introduced, where x, y and z
denote the streamwise, wall-normal and spanwise directions, respectively. The velocity
field is composed by the streamwise, wall-normal and spanwise components u, v and w
and the pressure field is denoted by p. We call L, the dimension of the channel along

28

xu
A

Figure 3.1: Schematic representation of the computation domain used in DNS.
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x direction and L, the dimension along z. A proper length scale one can adopt to
represent such flow can be obtained from the channel half-width 6. Hence, we define

Reynolds number as

Ugé
Re = =22 (3.1)
v
where Up is the reference bulk velocity, which is defined by the integral
1[0
Up = —/ Udy (3.2)
5 Jo

where U is the average velocity field. For the sake of simplicity, we will always take the
channel half-width equal to the unity. With these definitions, the nondimensionalized

Navier-Stokes equations for incompressible flows appear as follows:

ou Ov Ow

o "oy T o (3:5)
1

au—i—u@—l—v@ —i—w@:—@—l——Au (3.3b)

ot ox oy 0z 0r ' Re

v v v v dp 1
—_ —_ —_— _— = — — —A .
ot +u8:c+v<9y+w8,z 8y+ Re ™" (3:3¢)

ow ow ow ow dp 1
EJFU%JFUa_y +wa—*£+§Aw (3.3d)

where Equation (3.3a) represents continuity equation, while Equations (3.3b)-(3.3d)
represent the conservation of momentum. The problem is closed by assigning an initial
condition for the flow field, no-slip boundary conditions at walls and periodic boundary
conditions on the unbounded portion of the domain. This scheme is the starting point
in the implementation of DNS. The code used in the present work is the one developed
by Quadrio and Luchini, described in [48]. The programming language adopted has
been written by Paolo Luchini and is called CPL, with which it possible to exploit C,

C++ and Fortran commands in the same environment.

The approach to DNS is based on the pioneering work [37], which has become a
standard technique in numerical simulations of turbulent flows. It consists of replacing
the nondimensionalized Navier-Stokes for incompressible flows in Cartesian coordinates
(3.3) with two scalar equations, one for the normal component of the velocity v and

one for the normal component of the vorticity 7, which is defined as

_Ou Ow

_ g Zr 4
g 0z Ox (3-4)

The equation for wall-normal vorticity can be easily obtained by taking the y-component

of the curl of (3.3c). Then, after Fourier-transforming, we get

a/\ 1 ~ ~ . —_— . —
S5 = = [Da(i) — K] + jBHU — jaHW (3.5)

where D,,(.) is the n-th order derivative operator in y direction and k? = o+ 3%, where
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« and f are wavenumbers in Fourier domain. As for hat sign, it will be considered here,
as in the rest of the work, to indicate a variable in Fourier domain. After that, the
nonlinear terms which come from Fourier-transforming the convective part of Navier-

Stokes equations are grouped together in the following definitions:

HU = joi + Dy(uv) + jBuaw
HV = jauwv + Dy (00) + jBow (3.6)
HW = jaww + Dy (00) + jSww

As for the equation for wall-normal velocity, it is determined by summing (3.3b), de-
rived two times w.r.t. = and y, and (3.3d), derived w.r.t. y and z, then subtracting
(3.3c) derived twice by x and (3.3c) again derived twice by z. After some algebraic
manipulations, we get the following fourth-order equation:

%[DQ(@) — k20) = é[m(@) — 2k2Dy(8) + k*0) — k2HV — D1 (joHU + jBHW) (3.7)

Since the equations are written in Fourier domain, unknowns v and 7 are represented in

the form of truncated Fourier series in the homogeneous directions x and z, as follows:

N./2 N./2
’U((E, Y, 2, t) = Z Z ﬁhl(y, t)ejaohxejﬂolz (38)
h=—N,/2 I=—N, /2

where N, and N, are the higher wavenumbers at which the discrete Fourier trans-
form has been truncated, h and [ are integer variables which span Fourier space in
streamwise and spanwise directions, respectively, while o and [, are the correspond-
ing fundamental wavenumbers, defined as oy = 27/L, and Sy = 27/L.. We can easily
notice that Equations (3.5) and (3.7) are uncoupled if the nonlinear terms are known,
e.g. by treating them explicitly in time discretization. Thus, they can be solved sep-
arately to advance the solution in time. However, in order to compute the nonlinear
terms, we need to compute @ and @. By combining the equation for vorticity n and
continuity equation in Fourier space we can determine @ and @ by solving the following

2 x 2 algebraic system

(3.9)

The numerical evaluation of velocity products would require computationally expensive
convolutions in wavenumber space, hence a more efficient way has been proposed, based
on inverse Fourier-transforming the quantities of interest into physical domain, where
convolutions are replaced by products, thus re-transforming into wavenumber space,
using Fast-Fourier-Transform (FFT) algorithms in both directions. In order to preserve
spectral accuracy, a de-aliasing factor of 3/2 is introduced to expand the number of

collocation points before transforming from wavenumber to physical space.
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3.1.1 Time discretization

The following step involves time integration of Equations (3.5) and (3.7) by adopting
a semi-implicit method, paying some attention to memory requirements. The most
stability-limiting part of the equations, i.e. the viscous part, is advanced with an
implicit second-order Crank-Nicolson scheme. This relieves the constraint on the time-
step size At, that is solely determined by the explicit third-order low-storage Runge-
Kutta method used for advancing nonlinear terms, which can thus benefit from a higher

precision. After time discretization, Equations (3.5) and (3.7) appear as follows:

)\ AT 1 ~n AT

Enh;rl ~ e [Da (it = k2] =
A N 1 AT AT

= E’nhl " Re [D2(77hl) - k/’thl} + (3.10)

— — n — — n—1
+6 (jﬂolHUhl - jOéohHth) +¢ (jﬂolHUhl - jaohHWhl)

A 1

5 (Da(t™) = Ko ™) — Te [Da(0ph) = 2k Do (077) + Koy ] =
A " n 1 0 o n
= — [Da(0fy) — K*07y] — 5= [Da(0h;) — 2k° Da(07) + k*0p ] +
ot Re (3.11)

40 [#ﬁx\/hl — Di(jaohHUp + jﬂozﬁﬁ/hl)} +
— — — n—1
y [kathl — D1(jaohHUp + jﬂOZHWM)}

Coeflicients A, 6 and £ appearing in the equations, take different values according to
the integration scheme one can choose. In order to achieve higher accuracy in the
solution, each time-step At is divided into three substeps dt; and solved with different
coefficients \;, 0; and &. Hence, at each substep the discrete equations are solved
by assembling the RHSs corresponding to the explicit part. As previously mentioned,
velocity products appearing in nonlinear terms are computed through direct/inverse
FFT in wall-parallel planes. Then, for each wavenumber pair (a, /3), we need to solve
a set of two ODEs derived from the implicit formulation of viscous terms. In order
to provide a discrete solution of the resulting ODEs, a compact finite difference dis-
cretization has been introduced for wall-normal differential operators, so to guarantee
spectral accuracy. Such discretization produces two linear systems with real banded
matrices, whose solution gives ﬁ,’;fL ! and f)ZlJr L from which we can easily recover the
other velocity components ﬂ’,zlﬂ and le'H from (3.9). Unlike the procedure adopted to
build the RHS, this second step proceeds per wall-normal lines, since the simultaneous
knowledge of the RHS in all y positions is required.

3.1.2 Compact finite difference scheme

The discretization of first, second and fourth order wall-normal derivatives required
for the solution of the problem has been performed using a compact finite differences
scheme. This is a major difference with respect to [37], which instead proposed a
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spectral derivatives approach that provides spectral accuracy but suffers from low par-

allelization.

The basic idea of compact differences scheme consists of approximating the deriva-
tive of a function at each grid point with a linear combination of the function evaluated
on a set of nodes in the neighborhood of such grid point. For further details, the in-
terested reader is referred to the exhaustive work of Lele [44]. As for the present
implementation, a five grid points stencil has been used to discretize the derivative
operator in order to achieve at least fourth-order accuracy. So, for each grid point y;,
the five coefficients D7 (i) of the n-th order centered derivative operator are determined
as follows:

2
Do(f@)ly=y; = D DhE)S (y+:) (3.12)
i=—2

Usually, the main drawback of compact differences schemes is their implicit formulation
which requires the inversion of a linear system for the approximation of every derivative
at each grid point if different spacing is applied to the mesh grid. In the present case,
however, it is possible to explicitly pre-determine the coefficients. This important sim-
plification has been firstly highlighted in the original Gauss-Jackson-Numerov compact
formulation exploited in his seminal work by Thomas [70], concerning the numerical
solution of the Orr-Sommerfeld equation. To illustrate Thomas’ method let us consider

a fourth-order ordinary differential equation for a function f(y) in the form
Da(aaf) + Da(azf) + Di(arf) +aof =g (3.13)

where the coefficients a;(y) are arbitrary functions of the independent variable y and
g(y) is the known RHS. Now suppose that a differential operator in frequency space, say
D, for example, is approximated as the ratio of two polynomials D4 and Dy which have
both a counterpart in physical space, namely ds and dy. Hence, if we are able to prove
that all the differential operators in the differential equation admit a representation in
which the polynomial Dy at the denominator remains the same, then Equation (3.13)

can be recast into the equivalent form

dy(asf) +da(azf) +di(arf) +do(aof) = do(g) (3.14)

Actually, this alternative formulation is possible if in a fourth-order ODE the third-
order derivative operator is not present, as in the present case. So, explicit finite differ-
ences schemes have been applied in the DNS code with the same order of accuracy of
implicit compact finite differences operator. As for boundaries, non-standard schemes
needed to be designed for computing derivatives at walls, so non-centered schemes have
been developed following the same approach adopted for interior points, thus preserv-
ing by construction the formal accuracy of the method. Moreover, a mesh with variable
size has been used to discretize the wall-normal direction, in order to keep track of the
increasingly smaller turbulent length scales while approaching channel walls. In the
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Figure 3.2: Domain slicing scheme for parallel computation.

present, code, the stretching function used to generate the mesh is

tanh ay
y = 2219y (3.15)

a

where a is an adjustable parameter used to modify the mesh deformation and ¥ is a

mesh grid with constant spacing coming from lower to upper wall.

3.1.3 Parallel strategy

The approach previously outlined grants excellent parallelization performances, in that
a compact difference discretization in wall-normal direction allows to distribute the
variables in wall-parallel slices and perform direct and inverse FFTs locally at each
machines. Moreover, thanks to the locality of compact difference operators, the com-
munication required to compute wall-normal derivatives of velocity products is fairly
small, since data transfer is needed only at the interface between contiguous slices.
This is a major difference with respect to [37], where a fully spectral discretization was
employed. Although spectral derivatives can benefit from higher accuracy, they have
the significant drawback of being defined on the whole domain, thus a transposition
of the whole dataset across the computing nodes is needed every time the numeri-
cal solution is advanced in time. It is worthless saying that this operation requires
a large amount of communication, hence very fast networking hardware is needed to
achieve good parallel performance, thus restricting DNS to be carried out only on very
expensive computers only.

With compact differences scheme, transpose of the whole flow field can be avoided
if data are distributed in slices parallel to the walls and each one of the p machines
representing our parallel system is assigned one of these slices. The arrangement is
schematically represented in Figure 3.2: each machine holds all the streamwise and
spanwise wavenumbers for n, /p positions, where n, is the dimension of the meshgrid
in y direction. In this way, a small amount of communication is required only at the
interface between two continuous slices for the evaluation of the RHSs. Moreover, even
this communication can be avoided if two boundary planes on each internal slice are
duplicated on the neighboring slice.
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The most critical part of the procedure lies in the second part of the time-step
advancement, when we have to solve a set of two linear systems, one for each (h, [) pair,
since data appear to be spread over the p machines. In this case we can avoid to perform
a global transpose if we adopt a LU decomposition of the pentadiagonal distributed
matrices and then apply a subsequent sweep of backsubstitution, which requires the
transmission of only a few coefficients at the interface between neighboring nodes. As
the number of linear systems is very high, typically (n, + 1)(n. + 1) ~ 10* or bigger,
the solution of the linear systems can be efficiently pipelined as follows. When the LU
decomposition of the matrix of the system for a given pair (h, [) is performed, there is a
first loop from the top row of the matrix down to the bottom row, in order to eliminate
the unknowns, then a second loop in the opposite direction. The machine owning the
first slice performs the elimination in the local part of the matrix and then passes the
boundary coefficients to the neighboring machine, which starts the elimination. Instead
of waiting for the elimination in the (h, I) system matrices to be completed across the
machines, the first machine can start working on the elimination in the matrix of the
following system. A synchronization is needed only at the end of the elimination phase,
then the whole procedure can be repeated for the backsubstitution phase. This effective
pipelined-linear-system strategy allows a point-to-point communication, so that each
computer has to exchange information only with adjacent CPUs, allowing to adopt
mass-marketed CPUs instead of dedicated servers.

This structure has been realized at the University of Salerno and has been used to
perform the most expensive simulations appearing in the present work. The system in
its present configuration is composed by 150 quad-core AMD Athlon and each computer

is connected to the adjacent ones by two 100 MBits Fast Ethernet cards.

3.1.4 Code validation

In order to validate this DNS code the authors have compared the calculation of some
meaningful statistics with results reported in [37]. In Figure 3.3 we can observe a
perfect overlapping of the mean velocity profiles u™. Good overall results have also
emerged from computation of autocorrelation functions Ry, and R, for streamwise
and spanwise component velocities, evaluated along z-direction at y™ = 10, as shown
in Figures 3.4 and 3.5.

3.2 Orr-Sommerfeld and Squire linear model

In order to implement an effective control scheme based on blowing/suction at walls a
linear time-invariant (LTI) state space realization of the system is made necessary. In
order to achieve this goal, we start by considering Navier-Stokes equations outlined in
(3.3), then we split the velocity field into a reference streamwise velocity profile U and
perturbations around it in streamwise, wall-normal and spanwise directions, namely

u, v and w. We do the same with the pressure field, by highlighting perturbation p.
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Figure 3.3: Mean velocity profile u™: comparison between the present DNS code (solid
line) and the one outlined in [37] (dashed line).
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Figure 3.4: Autocorrelation function R, along x coordinate at y© = 10: comparison
between the present DNS code (solid line) and the one outlined in [37] (dashed line).

Hence
Ju Ov Ow
or Tay T a0 (3.16a)
ou ou , ~op 1
or TUgy T =m0 oAU (3.16b)
v v dp 1
= — 4+ H,=—2X 4+ —A .1
8t+U6:c+ y 8y+Re v (3.16¢)
ow ow dp 1
E+U%+HZ—*&+§AW (3.16d)
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Figure 3.5: Autocorrelation function R, along z coordinate at y ™ = 10: comparison
between the present DNS code (solid line) and the one outlined in [37] (dashed line).

where superscript / denotes derivative with respect to y direction and H,, H, and H,

are the convective terms, defined as

H, =uVu
H, =uVv (3.17)
H, =uVw

where u represents the fluctuating velocity field (u, v, w). Following a procedure anal-
ogous to the one adopted for the implementation of DNS code, it is possible to reduce
the number of equations and unknowns to a minimum of two. Firstly, we take the

divergence of the vectorial momentum equation, i.e.

8<8u ov 8w) 8<8u ov 8w>
2L L +

9t \oz "oy 02) "oz \ox Ty "oz
Ov 0H. 0H, O0H
2U'— - - =) = 1
+U61:+<61: 6y+82) (3:18)
1 ou Ov Ow
=—-Ap+—A(—+—+—
p+Re (8x+8y+82)
hence, by applying continuity, we get
ov 0H. 0H, O0H
Ap=—2U'— — - v z 1
P U@x (61: dy + 6,2) (3:19)

Now, if we take the Laplacian of Equation (3.16¢), we have that

0 0 v 0 1
— — A "—+AH, = ——Ap+ —AA 2
<6t+U(’)x) v+U 8:c+ y 3y p+Re v (3.20)
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After substitution of (3.19) into (3.20) and reordering, we finally obtain

a a //a 1 —

where with d, we have considered all the nonlinear terms appearing in the equation,

i.e.

" <8Hm | 9H,  OH.

5% "o > — AH, (3.22)

To obtain the second equation, we have to subtract Equation (3.16d), derived with

respect to z, to Equation (3.16b), derived with respect to z, as follows:

O (B Du\ L0 (0w 0w\, .00, (OH, OH) _
ot \ 0z Ox Ox \ 0z Oz 0z 0z or |

3.23
Oy Fp L, (ou w 52
020z  0x0z Re dz Oz
Now, if we introduce the definition of wall-normal vorticity 7 (3.4), we find
0 0 1 v
9yl LA Uy 24
<8t+U8:E Re )n+U8z " (3:24)
where d,, contains the nonlinear terms, i.e.
0OH, O0H,
_ _ 2
0= (% %) @29
The set of Navier-Stokes equations in v-n formulations now appears as follows:
0 0 , 0 1 B
0 0 1 ov
el — _ —A '— =d .26b
<8t+U8x Re >U+U8z " (3.26b)

Now, it is useful to exploit the spatial invariance of Equations (3.26) with respect to
translation in directions x and z, by Fourier-transforming in these directions. The field

variables v and 7, in Fourier space become

o0 oo
v gz )= DD ey, TSI (3am)
Ng=—00 N=—00
o0 oo B 5
77(507 Y, =, t) = Z Z ﬁ(nfbv Y, Nz, t)ej L;’: ej Lzz (328)
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where Fourier coefficients are defined as follows:

1 Lo pls dmnge  _2mnus
O(ng, y, nz, ) = T 1 / / v(z, y, 2, t) eI eIV 1y dye (3.29)
abz Jo  Jo

1 La L. 2mngx L 27nz
N(ng, Y, Nz, t) = / / v(x, y, z, t) eI eIV pdr (3.30)
o Jo

L, L,
If we define the streamwise and spanwise wavenumbers o = % and 8 = %, after
Fourier-transforming, we get
Ab = (— jaUA + jaU" + éAA) o+d, (3.31a)
i = (—jBU") b + (jaU + éA) W+d, (3.31b)

where A = Dy(.) — k2, with Dy(.) = 82/8y2 and k2 = o® + 2. In order to discretize
the derivatives operators in wall-normal direction D; different solutions have been de-
veloped, which are outlined in Section 3.3. Then, if we consider just the linear part,
Equations (3.31) represent the well-known Orr-Sommerfeld and Squire equations, that

in operator form read

A ol [o] [Los 0 |0
0 I| |7 Lo Lsol| |7
. (3.32)
Mi = L3

Agsuming modes with exponential time dependence, this system becomes an eigenvalue
problem with two distinct solution families, the first one of which contains the Orr-
Sommerfeld modes, which involve eigensolutions of the equation for wall-normal veloc-
ity (3.31a). The least-stable Orr-Sommerfeld mode represents the so-called Tollmien-
Schlichting waves. These two-dimensional waves can experiment exponential growth at
subcritical Reynolds numbers, i.e. for Re < 5772, subsequently falling into secondary
instability to small-amplitude three-dimensional perturbations, thus causing the flow

to rapidly evolve into a fully turbulent state.

The second family of solutions contains the Squire modes and has zero wall-normal
velocity. Unlike Orr-Sommerfeld modes, Squire modes are always damped. To prove

that, we consider Squire equation without the forcing term in v, i.e.
0 1 4
—+jalU ——A)n=0 3.33
<8t ta Re ) 1 ( )

and we impose an exponential solution of the type

Ay, t) =qi(y) e 7> (3.34)
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where ¢ represents complex phase speed. After substitution of Equation (3.34) into
(3.33), we obtain

1 .
U — — An=0 3.35
(U = c)ij Fare M (3.35)
After multiplication by complex conjugate 7 and integration over the domain y €
[—1, 1], we find
1 1 j 1
[ dnay= [ vindy- 2 [ 7aqdy (3.36)
—1 1 OéRe 1

By taking just the imaginary part of the previous equation, we demonstrate the thesis:

1 1
1
~12 ~12 ~12
S dy = ——— D ki|2) dy < 0 3.37
0/1|77| y aRe/_1(| = + |kn|*) dy (3.37)

3.3 Discretization of derivatives operators

In order to discretize the derivatives in the wall-normal direction two different ap-
proaches have been developed and compared: finite differences and spectral derivatives.

What follows is a detailed description of these two schemes.

3.3.1 Finite differences

Finite differences (FD) approach computes the approximation of the k-th order deriva-
tive of the function f(y) we want to derive at each grid point y; using a Taylor series
expansion of the function f at an arbitrary stencil n > k+1 of points y1, ..., ¥i, ---, Un
in the neighborhood of y;. Now, let us consider for simplicity an equally spaced grid,
then we will provide the generalization to arbitrary grid spacing. The key idea is to
use a linear combination of Taylor series expansion of the function at stencil points
x1f(y1) + 22f(y2) + - - + 2 f(yn) in order to achieve the approximation of derivative
f*(y;) with the maximum order of accuracy. This goal will help us to impose the
conditions to determine the coefficients 1, x2, ..., z,. In order to illustrate the key

idea we will provide two different examples.

As for the first example, we consider the approximation of first derivative f’(y) at
point y; with a stencil n = 3 centered around the point y; on a grid of spacing h. We
have

F'(yj) =21 f(y; — h) +22f (y;) + 23 f(y; + 1) (3.38)

Taylor series expansion of each term till order n — 1 leads to

Flyy —h) = Iy = hfj + 512 F) + O(K)
fly;) = 1 (3.39)
Flyg + 1) = 5+ hf} + 52 F + ()
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Substitution of relations (3.39) into (3.38) implies

2
f/(yj> = (;L'l + x2 + :Cg)fj —+ (563 — SCl)h f_; 4+ (563 + xl)%f;’ + O(hg) (340)

Hence the best approximation of first derivative is given by imposing the following

conditions:
1+ 22 +23=0

— h:L'l + h:L'g =1 (341)
h? h?
?1'1 + 3563 =0

These conditions can be represented through an equivalent linear system

1 1 1 T1 0
—h 0 h| || =1 (3.42)
h2 0 h2 T3 0
Solution of the system (3.42) leads to
1 1
T = — T = 0, T3 = — (343)

%7
With this finite differences scheme, the error due to truncation of Taylor series is
readily available and its order of magnitude is equal to O(h?). Finally, the centered

approximation of the first derivative of function f(y) discretized over an equally spaced

grid is given by
Cp) — _h
f/(yj) _ fly; + )th(yj )

As for the second example, we want to implement an uncentered finite difference scheme

(3.44)

to compute the approximation of second order derivative. Thus, by following the same

steps of the previous example, we have

" (yj) = o1 f(yj) + 22 f(y; + h) + 23 f(y; + 2h) (3.45)

Then, expanding the terms into Taylor series and imposing the condition of approxi-
mating the derivative with the minimum truncation error lead to the following linear
system:

1 +x0+23=0

hxo + 2hxs =1 (346)
h? 9
?l‘g + 2h%x3 =2

hence

0
ho 2h| |a2| = |0 (3.47)
h2 4h%| |as 4



40 Chapter 3. Channel Flow Model

The solution of the system is

1 2 1
=52 T2 = =35 T3 = 15 (3.48)

So, the uncentered approximation of the second-order derivative of function f(y) dis-

cretized over an equally spaced grid is given by

Fly) = fys) = 21 (y; J;;) + f(y; +2h) (3.49)

From these examples, we can infer that the linear system that has to be solved for deter-
mining the interpolant coefficients x1, ..., x, that approximate a k-th order derivative

with a stencil of n is given by a proper partition of the following Vandermonde matrix:

(=20)% (=Rh)® 1 (h)° (2h)°

(—2h)' (=h)' 0 (R)' (2n)' ...

(=2n)* (=h)* 0 (R)*> (2h)* ... (3.50)
(—2h)® (=h)®> 0 (h)® (2h)® ...

The solution of the system is then recovered by considering a number of rows and
columns equal to the stencil n. The choice of which columns we have to take depends
on the finite difference scheme: if we consider a centered scheme, then for n odd, we
must take the columns going from —(n — 1)/2 to (n — 1)/2, while if the scheme is
uncentered, then the columns to choose are a shifted version of the previous ones,
depending on the degree of decentralization. Thus, a single linear system is sufficient
to completely determine the derivatives of all grid points. As a matter of fact, if A is
the proper partition of Vandermonde matrix (3.50), the vector of unknown coefficients
x=[z122 ... zn ]T can be recovered as Ax = k! ej11, where ey 1 is a vector of zeros with
1in row k + 1. Unfortunately, Vandermonde matrices are well-known for being highly
ill-conditioned, so this technique is particularly amenable only for low n. However, it is
to remark that this drawback actually is not a very limiting one, since usually a stencil

of 5-7 points is sufficient to discretize the system with high accuracy.

The case of unequally spaced grid leads to the definition of a Vandermonde matrix
for each grid point y;, with the major difference that spacing h is replaced by the actual

spacing y;+1 — ¥;, in this way:

i Wi—2 =) Wi-1—%)° 1 (1 — %) (Y2 —y;)° |
Wi—2 =)' (Wi—1 =)' 0 (vt —y)' (yir2 —uy)'
Wi—2 —v;)* (-1 —9)* 0 (yj+1 —4;)* (Yr2 —w)? .-
Wis— ) W1 —9)° 0 (yor—w)® (e - .| OOV
Wi—2—y)" W1 —y)" 0 (e —y)' (g2 —y)*
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The procedure to extract matrix A is the same described before, the major difference
is that now it is required to solve N linear systems of size n x n, instead of one.
Differentiation matrices arising from finite difference schemes are always band matrices,
whose size of the band corresponds to the stencil n we have chosen. For this reason,
finite differences are particularly amenable to sparse solver algorithms for the solution
of ODEs. As for the order of accuracy, it is strictly related to the stencil because the
higher the stencil, then the lower the truncation error can be set. So, if we define h as
an average mesh grid, then it can be proved that there always exists a constant C' > 0
so that the order of accuracy is O(Ch"+1).

3.3.2 Spectral derivatives

Spectral derivatives (SD) schemes have been implemented using the Matlab Differ-
entiation Matrix Suite developed by Weiderman and Reddy and widely described in

[72]. This approach adopts a spectral collocation method in order to build a weighted

N

interpolation of the function to be derived f(y) over a set of nodes {y;};-,, i.e.

N
fy) ~pn_1(y) = Z a(y)o;(y) f(y;) (3.52)

where a(y) is a weight function and the set of interpolating functions {¢;(y;)},

satisfies ¢; (yx) = d;x (the Kronecker delta). This means that py_1(y) is an interpolant

of f(y) in the sense that the following equivalence holds at every node:

f(yj):pN—l(yj)a Jj=1..., N (353)

Spectral derivatives are set up from Equation (3.52) by considering, as shown in [10]

aly) =1 (3.54)
(=17 1-y* Ty ,(y)
. = 3.55
N
PN (W) =Y bi() f(y)) (3.56)
j=1
where ¢ = ¢y =2, 0=+ =cy-1 =1 and Ty_1(y) is the Chebyshev polynomial of
degree N — 1, defined as
T;(y) = cos(j arccosy) (3.57)

Interpolation points are the well-known Gauss-Lobatto-Chebyshev nodes, which are

defined as follows:
(k—1Dm

k=1,...,N 3.58
N-1 R (3.58)

1Yj = COs
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Differentiation matrices are then obtained through derivation of the polynomial inter-

polator. For the first derivative Dy, we get

ck(—l)j"‘k
ci(yr — vj)
N
) — 5
pri—) 20 ka) (3.59)
2N —1)2 +1

where D’fj represents the element of matrix D; with indexes (k, j). Higher order
derivatives are then computed as power of Dy, i.e. if [ is the order of the derivative,
then D; = (D;)!. Unlike finite difference schemes, spectral derivatives have the relevant
property that the discretization error converges exponentially upon grid refinement. In
particular, if N is the number of grid points, then it can be proved that there always
exists a constant C' > 0, so that the order of accuracy is O(e~¢ ). The price to pay is

that this method generates full matrices, so faster sparse solvers are no longer available.

3.3.3 Benchmark problem for the proposed derivation schemes

In order to test the performances of the above mentioned derivation schemes and show
how boundary conditions are imposed, we will compare the analytical solution of a
fourth-order inhomogeneous ordinary differential equation to its numerical solutions.
We consider f(y) as the unknown function defined over the domain y € [—1, 1] and

the following differential equation
PV () + 107 (y) + 351" (y) + 501 (y) + 24f (y) = 1728y° (3.60)
with Dirichlet and Neumann clamped boundary conditions, i.e.
fE) =) =f(-1)=f1)=0 (3.61)

The analytical solution f(y) can be obtained by superposition of the solution of the
associated homogeneous ODE fj,(y) and the particular solution f,(y). As for the
homogeneous equation, we propose a solution of the type

Inly) = Ce™ (3.62)
After subustitution in Equation (3.60), we find the associated characteristic equation

M 1003 4+ 3502 + 500 +24 =0 (3.63)
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which has four distinct real solutions:

AM=-1, X=-2, N=-3 M=-4 (3.64)

hence
frly) = Cre W 4+ Che™2 4 Cie Y + Cye™ (3.65)
where (1, ..., Cy are constants to be determined by applying boundary conditions

after having determined the particular solution f,(y), which can be found by inspection:
fo(y) = Ay> + By + C (3.66)
Substitution in (3.60) leads to
24 Ay? + (100A + 24B)y + (T0A 4 24B + 24C) = 1728y> (3.67)
Equating, term by terms, LHS and RHS, we obtain the following linear system:

24A = 1728
1004+ 24B =0 (3.68)
T0A+24B+24C =0

from which we obtain A = 72, B = —300 and C = 415. Hence, the full solution of the
ODE reads

fly) = Cre ™ + Coe Y + C3e™% + Cye™™ + 72y% — 300y + 415 (3.69)

By imposing boundary conditions, we can recover the values of C1, ..., C4 from the

solution of the following linear system:

el e? €3 et & —A+B-C
-1 -2 -3 —4 C A-B_-0O
e e e e 5 B— (3.70)
el 2e? 3e? 4et Cs —2A+ B
el 2e72 3e7? de | |Cy 24+ B

Then, we implement a finite differences scheme by choosing a stencil n = 5 and defining
a meshgrid of N+2 nodes y_1, yo, ¥1, ---, YN—-1, YN, YnN+1 With constant width h over
the extended domain y € [-1 — h, 1+ h]. Note that the fictitious nodes y_1 = —1—h
and yy+1 = 1 + h have been introduced to better account for boundary conditions.
As a matter of fact, we can impose Dirichlet condition by setting yo = yn = 0. As for

Neumann conditions, we can discretize the first order derivative through an uncentered
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differentiation scheme:

Dy My s 4+ DY yo + DIy + DIy + DIy = 0
~3(-) ~2() ~1(0) 0(-) 1) (871)
D, yn-3+ Dy yn—2 + Dy yn—1+ Dy ‘yn + Dy Cyny1 =0

After discretization of the four derivatives appearing in the LHS, we obtain the discrete

solution f1, ..., fx—1 of ODE (3.60) by solving the following linear system:
0 0 0 0 0
0 0 0 0 0
1 4 35 50
T Dy +ﬁ D3 Jrﬁ Do +F Di| +24 |1+
0 0 0 0 0
0 0 0 0 0
. D;l(Jr) D(l)(Jr) D%(Jr) D?(Jr) D?(Jr) o 0
+ 7 0 0 0 +
D) prA) pri) ) pic) (3.72)
FEREI 0 |
0 0 00 0 fo 0
0 00 0 S 1728(—1+ h)?
+ 10 0 0 S = :
0 0 L 0p [ 1fna 1728(1 — h)?
0 0 00 Iy 0
ve] L 0 |

As for spectral derivatives approach to solve ODE (3.60), it needs to be modified in
order to account for clamped boundary conditions. For this reason, we must replace

242 2
the weight function a(y) =1 in (3.52) with a(y) = [((11:7’1/2)) ] . Thus, the polynomial

of degree N + 1 satisfying N — 2 interpolation conditions and boundary conditions is

pua) = 3 fid) with G) =) .73

After derivation of functions ¢~)j (y), we finally get the differentiation matrices.

Results have shown that the best performances are achieved by using a spectral deriva-
tives scheme. As a matter of fact, we can see from Figure 3.6 that spectral derivatives
lead to a smaller error with respect to finite differences in we consider the same number
of grid point. On the other hand, finite differences show good convergence to analytical
solution if further grid refinement is applied. As for the relative error committed during
numerical discretization of ODE, spectral derivatives show fast exponential convergence
in a double logarithmic graph, with good agreement with theretical prediction. Fur-
thermore, it can be noticed from Figure 3.7 that in this case just 20 grid points are

sufficient to reach machine precision. As for finite differences, instead, they appear to
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Figure 3.6: Solutions of the benchmark ODE: analytical solution (black solid line),
numerical solution with FD and N = 20 (blue solid line), with FD and N = 40 (green solid
line) and numerical solution with SD and N = 20 (red dashed line).

converge more slowly, following a linear trend according to theoretical prediction, as
outlined in Figure 3.8.

3.4 Orr-Sommerfeld and Squire eigenvalues

In order to test the accuracy of the proposed discretization techniques for differential
operators, we applied these two strategies for the computation of the eigenvalues of
Orr-Sommerfeld and Squire equations (3.32) for a given wavenumber pair. For spec-
tral derivatives a standard Gauss-Lobatto-Chebyshev grid was used, while for finite
difference scheme we adopted an equally spaced mesh. Results have then been com-
pared to reference data taken from literature [7], where the eigenvalues were computed
for Re = 10000, & = 1 and g = 0 using a Chebyshev collocation technique over a
meshgrid of N = 140. Results show perfect correspondance with spectral derivatives
with the same number of grid points, while finite differences show some misfit, which
tends to zero if we increase the number of grid points, as can be stated from Tables

3.1 - 3.2 and root-loca in Figures 3.9.
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% Error

10 .
! 10" 10'® 10

10
Ginid Points
Figure 3.7: Relative error of spectral derivatives scheme upon grid refinement: numerical
result (blue line) and theoretical prediction (red line).

% Error

107° : —_— -
10

Grid Points
Figure 3.8: Relative error of finite differences scheme upon grid refinement:

result (blue line) and theoretical prediction (red line).

numerical
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Eigenvalues with

Eigenvalues from [7] spectral derivatives (N = 140)

—0.03516728 — 0.96463092 j —0.03516728 — 0.96463092 5
—0.03518658 — 0.96464251 j —0.03518658 — 0.96464251 j
—0.05089873 — 0.27720434 j —0.05089872 — 0.27720434 j
—0.06320150 — 0.93631654 j —0.06320149 — 0.93631653 j
—0.06325157 — 0.93635178 j —0.06325156 — 0.93635178 j
—0.09122274 — 0.90798305 j —0.09122273 — 0.90798305 j
—0.09131286 — 0.90805633 j —0.09131286 — 0.90805633 j
—0.11923285 — 0.87962729 j —0.11923285 — 0.87962729 j
—0.11937073 — 0.87975570 5 —0.11937073 — 0.87975569 j
—0.12450198 — 0.34910682 j —0.12450197 — 0.34910682 5
—0.13822653 — 0.41635102 5 —0.13822652 — 0.41635101 5
—0.14723393 — 0.85124584 j —0.14723392 — 0.85124584 5
—0.14742560 — 0.85144938 j —0.14742560 — 0.85144938 j
—0.17522868 — 0.82283504 j —0.17522867 — 0.82283503 j
—0.32519719 — 0.63610486 j —0.32519705 — 0.63610485 5
—0.34373267 — 0.67764346 j —0.34373449 — 0.67764252 5
—0.66286552 — 0.67027520 j —0.66286552 — 0.67027520 5

Table 3.1: Least stable eigenvalues of Orr-Sommerfeld and Squire matrix for Re = 10000,
a =1 and 8 = 0: comparison between literature and spectral derivatives scheme.

Eigenvalues with finite differences
N =140 N =420

—0.03517149 — 0.96491989 7 —0.03516776 — 0.96466336 j
—0.03519049 — 0.96493167 7 —0.03518704 — 0.96467496 j
—0.05567417 — 0.27694719 5 —0.05146951 — 0.27714155 5
—0.06321614 — 0.937300865 —0.06320315 — 0.93642700 5
—0.06326420 — 0.937336655 —0.06325302 — 0.93646228 j
—0.09125560 — 0.91006094 5  —0.09122641 — 0.90821619 5
—0.09133959 — 0.91013498 ;. —0.09131589 — 0.90828951 j
—0.11929327 — 0.88319777 7 —0.11923958 — 0.88002784 5
—0.11941743 — 0.88332638 5 —0.11937598 — 0.88015620 35
—0.13068803 — 0.34449294 5 —0.12521618 — 0.34853458 j
—0.14739614 — 0.411771965 —0.13928940 — 0.41576417 35
—0.14733285 — 0.85670917 7 —0.14724491 — 0.85185866 j
—0.14749865 — 0.85691061 5 —0.14743374 — 0.85206189 5
—0.17537852 — 0.83059326 5 —0.17524524 — 0.82370521 j
—0.33462740 — 0.670622355 —0.32771455 — 0.63364552 j
—0.34800467 — 0.67799967 5 —0.34550988 — 0.67621392 j
—0.66120126 — 0.67332972 5 —0.66279600 — 0.67042974 5

Table 3.2: Least stable eigenvalues of Orr-Sommerfeld and Squire matrix for Re = 10000,
a = 1and 3 = 0: comparison between finite differences schemes with different mesh grids.
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(b) N =420

Figure 3.9: Eigenvalues of Orr-Sommerfeld and Squire matrix for Re = 10000, o = 1,
B = 0 calculated with finite differences (red crosses) and spectral derivatives (blue crosses),
compared to the ones reported in literature (black squares).



Chapter 4

Optimal State Feedback Control

After having developed a linear model for plane channel flow, we are now able to define
a proper optimal control law. In the following, we will discuss the solution we have
implemented, then a parametric study will be carried out to assess the performances of
different control solutions applied to a turbulent flow for a couple of Reynolds numbers
that have been widely investigated in literature through DNS, namely Re = 1500 and
3500.

4.1 Derivation of an optimal controller

In order to implement an optimal control strategy we need first to recast the Orr-
Sommerfeld and Squire model developed in Chapter 3 into state-space formulation.
For this purpose, we will consider here and in the following a state-space linear time-

invariant (LTT) system defined as

&= Ax+ Bu+ B,n (4.1a)
y = Cx + Dyqd (4.1b)

where x € C™ represents the state vector, v € C™ is the control vector, y € CP is the
measurement vector, n the disturbance acting on input, d the noise affecting measures.
Besides, A € C"*" is the state matrix, B € C™*™ the input matrix, C' € CP*™ the
measurement matrix and B,, and D4 are the input matrices of disturbances. In order
to obtain a state-space formulation, we adopted the strategy proposed in [25]. Hence,
since blowing/suction is applied at walls, we define a control variable qg which represents
the wall-normal velocities at boundaries: ¢ = [:}’i } This particular kind of forcing
is difficult to handle in standard linear control theory unless we introduce a lifting
procedure with which the inhomogeneous boundary conditions at walls are represented
by volume forcing near the wall in a modified system with homogeneous boundary

conditions. Thus, using superposition principle, the solution of the original system z

49
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is recovered by combining the homogeneous solution &5 with a particular solution ,:
(4.2)
where particular solution is introduced to relate boundary conditions to volume forcing,

D
=17
"lp

Matrix Z can be determined in different ways. The first solution suggests to calculate

as follows:

. . =74 (4.3)

Tlps V1 Mp> V-1

ZUan+1 ZUp1U1‘| |:O+1

both block-columns by solving an appropriate two points boundary value problem, e.g.

considering upper wall actuation:

LosZy, v 4 =0
{ OS Ly, vy (?/) (4.4)
LCZ”pvvﬂ (y) + LSQZW;NUH (y) =0
with boundary conditions
ZUP1U+1 (y = +1) =1
Zyyva(y=-1)=0
oo ) (4.5)
ZLP1U+1(y =+1)=0
Zp, v (y==%1)=0

An analogous problem must be solved for lower wall actuation.
The second and more straightforward solution is to choose Z in order to satisfy just
boundary conditions. This is the approach that has been followed in this work and the

functions that have been introduced to assemble matrix Z are

1 s
Zyy vy = 3 {cos [§(y — 1)} + 1}
1
Zyy vy = 3 {cos [g(y + 1)} + 1}
Zy,, vpy = Si0 [g(y — 1)}

(y + 1)}

(4.6)

™

Znproy =sin |5

After this step, we finally obtain a state-space model for each wavenumber pair («, f3):

iy = A, + Bi, (4.7)
where .
N NZ A 7
A= : - S O IR (4.8)
0 0 I ) ot
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where K is the unknown gain matrix that can be determined as the solution of an
optimal control problem. Therefore, we define an objective function combining a state

norm and a weight on control effort, i.e.

1 o0
J=3 / (27 Q# + pul Ray) dt (4.10)

0
where p is a penalty introduce to weigh the relative importance of control effort on
control performances. However, in this formulation state vector & differs from the
one we have defined to account for boundary conditions, so it must be modified by

considering that & = [I  Z]&,. We get

1 [ A
7=1 / (37 Quts + pill Rity) dt (4.11)
0
where . N
R Q QZ
0.=| 9 9 (4.12)
7°Q Z'QZ

According to optimal feedback control theory, the control feedback minimizing func-
tional J in (4.11) is defined as

K,=pR'BTP (4.13)
where P is the solution of the following Riccati equation:
ATP+PA+Q,— pPBR'BTP =0 (4.14)

The controller arising from these procedure is called linear quadratic regulator (LQR).
Nevertheless, the feedback rule we have just defined is for the feedback of the homoge-
neous part only, thus it must be modified accordingly before being applied to channel

flow. For this purpose, let us consider the decomposition

Us = (4.15)

. Ko 11,0, Ko v1,0, Ksv1,00, Ks 1,00 | O
Ky, 1,5, Ksa_laﬁh K87—17ﬁ+1 Ks 1,0,

hence, after some trivial manipulations, we obtain

b1 _ Kiio King 4 (4.16)
0 K_ 13 K_i4
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where
Kil,ﬁ+1 = Ks,il,ﬁ+1 — ks,ﬂ:l,v}hzﬁp b1 — f(s,ﬂ,ﬁhzﬁp D1 (4.17)
Kito =Kz, — Ko 11,60Z0,0 1 — K 41,0 Ziy 04 (4.18)
and
Ky o= [ffﬂ,ﬁ,l Kii,0, Kil,ﬁ+1 (4.19)
Kiy = [0 K114, 0} (4.20)

Now, since with this definition control gains depend on the spatial discretization in
y direction, it is necessary to scale the control gains to a grid-independent weighting
function at each wavenumber pair («, 8). After this straightforward transformation,
weights K can be incorporated into DNS code by scaling the control gains by the grid
stretching function used in the simulation code, in our case the hyperbolic tangent
function defined in (3.15). Feedback rules are then computed for an array of wavenum-
ber pairs and then inverse Fourier-transformed to physical space, where control law

appears in the form of a convolution integral, as follows:

L, p+1 pLy
o(x, y ==+1, 2, t) = /0 /1 /0 [Ki1,0(x—2, 9, 2— 2)v(T, §, 2, t)+

+K:t1,77(1' - jv ga 2 2) 77(5%7 gv 25 t)] di‘dgdz

(4.21)

where K41 , and K41 , appear feedback convolution kernels in physical space.

4.2 Choice of reference velocity profile

Among the possible reference velocity profiles U(y) that can be used to design full state
controller, it is particularly useful to choose the analytical solution of Poiseuille laminar
flow, which is a rare case in which Navier-Stokes equations admit closed-form solution.
In facts, Poiseuille channel flow is based on the assumption of parallel stationary flow,
that leads to the following simplified two-dimensional Navier-Stokes equations:

ou oV

— + — = 4.22

Ox + dy 0 (4.222)
P 1

Ua—U + Va—U = 0 + —AU (4.22b)

ox oy 9z Re
oV oV oP 1

Now, we search for a solution of the type U = (U(x,y), 0, 0). This assumption reduces

the continuity equation to the condition g—; = 0. So, all the convective terms on the
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LHS of the equations are equal to zero, determining

1 U 0P
=0

—_—— — 4.2
Re dy?  Ox (4.232)
oP
— =0 4.23b
5 (1230)
This leads to a further simplification:
1 d?U dP
—_—— — — = 4.24
Re dy?  dzx 0 (4.24)

Thus, by imposing no-slip boundary condition at walls and nondimensionalizing the

solution with respect to bulk velocity, we get

3

Uly) = 5(1-97) (4.25)

Another meaningful choice for the reference velocity profile could be the mean
streamwise velocity profile U(y) of the turbulent channel flow, which can be recovered
after averaging the streamwise velocity obtained through a DNS performed at the given

Reynolds number, i.e.

~ . 1 1 fLe pLe (T
Uly) = Tlgxéo L T/o /0 /0 Uz, y, z, t)dt dz dx (4.26)

4.3 Objective function design

The choice of a proper weight on state vector in optimal control formulation is for our
scope a very delicate task, since it is not possible to directly target drag through the
objective function, in that standard LQR control allows only quadratic norms of the
state. For this reason, it is necessary to find a proper state measure whose minimiza-
tion will reduce turbulent drag. In [5] many control laws have been investigated in a
model predictive control framework, in order to state the effectiveness of different cost
functions. An interesting conclusion that came out is that turbulent kinetic energy is a
good candidate for achieving drag reduction through zero-net-mass-flux blowing/suc-
tion actuation at walls in a full-information control framework. Furthermore, in [25]
energy norm has been successfully introduced to delay transition to turbulence at a
critical regime. Another quadratic performance measure investigated in this work is the
rate of dissipation which has been firstly introduced in [52] applied to a measure-based
Wiener-Hopf control framework, basing on the physical intuition that in statistically
stationary conditions the average skin fraction drag in a turbulent channel flow equals
the average rate of dissipation of turbulent kinetic energy. Then, a third measure has
been tested to achieve drag reduction, i.e. enstrophy norm, that is a quantity directly
related to the kinetic energy in the flow and which corresponds to dissipation effects in
the fluid. Finally, measurements available at walls have been used in order to obtain a
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quadratic norm of the state. These last control laws have been applied in a flow control
setting for the first time in the present work.

Before going into details, we will show how to calculate the integral over the domain
y € [—1, 1] appearing in state norms, i.e. by defining proper methods of numerical
quadrature depending on the discretization techniques adopted. Thus, when finite
differences schemes have been introduced to discretize wall-normal derivative operators,

we chose a Lagrange quadrature scheme, whose general definition is

1 N
[ f@ay=3"asrw) (4.27)

where f(y) is the function we want to integrate and «; are the integration weights.
The choice of such integration weights leads to different quadrature schemes. In the
present work we have decided to adopt the trapezoidal rule, which defines the weights

{a;}} as follows:

1
5 for j = O, N

a; = (4.28)
1

otherwise

As for spectral derivatives, instead, we have implemented the strategy suggested in
[28] and applied for the first time in [24]. We start by approximating the integrand
function f(y) with a Chebyshev expansion

fly) = Z a;T;(y) (4.29)

where T)(y) is the Chebyshev polynomial previously defined in Section 3.3.2, while

coefficients a; are defined as

N
Cq
ai = 37 > b ()T (y)) (4.30)
3=0
where .
— for 7=0,N 1 for i=0, N
bj =14 2 and ¢; = (4.31)
1  otherwise 2 otherwise
Then, by combining Equations (4.29) and (4.30), we get
N Ny
F)=2_aTiy) Y+ fw)Tiy;) (4.32)

i=0 3=0
Substitution of Equation (4.32) into (4.27) leads to

N N 1

b)Y etitw) [ T dy (4.33)

=0 i=0 -1

[ swa=
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Finally, noticing that

1 0 ¢ odd
/ Ti(y) dy = 2 (4.34)
-1 — i even
1—142
yields
b, Y14 (=1 (ijn
19 L S ~ 4.
@ = +;CZ T COS(N)‘| (4.35)

In the following, we will provide an analytical derivation of the proposed state norms.

4.3.1 Energy norm
Turbulent kinetic energy norm is defined in physical domain as follows:
1 2 2 2
E=— [ (u"+v°+w")dV (4.36)
2V )y

where V' is the volume of the computation domain. After Fourier-transforming by

reminding relations (3.9), we apply Parseval theorem to obtain:
Tt X X
Blo.B) =5 [ (il +[oF +af*) dy =

1 1
= g | (@07 DI Do+ T —apet Rl -apntDio+
-1

(4.37)
+ k970 + o7 q + 5% DT Dyo+apelDl f+apilDio) dy =
Tt o
=z (0" (K*I + DY D1)o + 7" i), dy
-1
So, we can define energy as a quadratic function of the state vector a:
E(a, B) = 2" Qp(a, Bz = || & (4.38)

4.3.2 Dissipation norm

If we consider stationary conditions, dissipation rate of a turbulent flow is defined as

D=— dv 4.39
Re 1% 8uj au]' ( )

After averaging and Fourier-transforming, we obtain

11 ! T T 2T 4
—_—— 0 (D5 Do + 2k Dy Dy + k7)0
Toe 252 71[1} (D3 Dy + 1 D1+ E%)o+ (4.40)

+4" (k* + D{ D1)i] dy

D(aa ﬁ) =
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So, we can define dissipation as a quadratic function of the state vector z, as done

previously:
D(, B) = 2" Qp(a, Bz = ||z||p (4.41)

4.3.3 Enstrophy norm

Enstrophy is defined as the integral of the square of the total vorticity:

— 1 2 2 2
2= d 4.42
57 V(nz+ny+nz) 4 (4.42)
where 5 5 )
w U
p = —— — — = Ny = — (jaD1A) + j8D20 — j Bk
= Gr g, 1z (JaDii + jBD20 — jOk0)
ou Ow
U _ oW L 4 4.43
Ny =52~ 5o =y =) (4.43)
_Ov Ou oA 1
e oy Tk
Then, through substitution in Equation (4.42), after Fourier-transforming, we obtain
1 1
E(a, B) = g / 1(Iﬁml2 + |y + |7:]%) dy =
1 1
T 1(a2ﬁTDTDﬁ + B20DI Dy + B2K 0T 0 + KT + o2k 0T o

+ 20" DY Dot + 827" DT DA+ 2087 BL Dyt —2a8k* L DT i+
— 262k%07 Dyt — 202k*07 Dot + —2ap7-PL Do i+ 2apk24L DT 0) dy =

1/
=@ 1[77T(DTD + E20)i + 07 (DT Dy — 2k Dy + K1) 0] dy
(4.44)
Again, state norm is represented as
E(o, B) = 27 Q=(a, Bl = |||z (4.45)

4.3.4 Wall-measurement norm

As previously mentioned, matrix C'is used to relate output measurements to the state
vector. Since only wall information is available, the measures we can dispose of are

spanwise and streamwise wall shear stresses, namely 7., and 7,,, and wall pressure
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Pw, for which the following relations hold:

1 Ou

Tow = = —— 4.46
Re Oy g1 ( )
1 ow

Toy = = —— 4.47
Re 0Oy g1 ( )

Pw = Pl (4.48)

Since the control scheme we have derived is applied to a state-space system in Fourier
domain, it is necessary to recast these relations in wavenumber space. Hence, wall

shear stresses in Fourier space are determined as

1 oa j 0

fon = =-Dige| = e [aDs, D] | 4.49
Re 1 ay — ]C2R€ 2 ﬂ 1 |j’]] e ( )
1 oW j B

Tow = - D17— = —— |8Ds, aDi,||. 4.50
Re oy y=+1 FK*Re [ﬁ 2 ! } ln . (4.50)

Wall pressure is recovered by taking the sum of Equation (3.3b), derived with respect
to x and Equation (3.3d), derived with respect to z, and by evaluating it at walls in

steady-state conditions. We get

0? 0? 1 0A
b °r =2 (4.51)
Ox?|, L 027, _y Re 9y |,_.4
Then, after Fourier-transforming
. 1 .
Pw = @Dg’vb:il (452)
we find the associated output-to-state relation
1 0
Py = —5—— 4.53
O ) M (4.33)
y==+1

Nevertheless, the lifting technique we have introduced to apply LQR control has led
to a modified definition of state vector. For this reason, now we have to recast these
relations in a coherent form. We start by partitioning state vector into homogeneous
and inhomogeneous parts:

o ] $-1 ]
ﬁh + ’Op ’Oh + ZUP,U+1¢+1 + va,'u,l ¢—1
1j _ P41 _ P41 (4.54)
Ui 0 0
ﬁh + ﬁp ﬁh + an,v+1 ¢+1 + an,'u,l ¢—1
0 0
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Hence, if now we consider for example the streamwise wall shear stress at lower wall
and we adopt finite differences schemes in order to discretize uncentered derivatives,

with some manipulations we get

. j aDY  aDF* 0 ... 0 0f [0
Tow_ 1 = _ =
" kRe |-pDY  BDY* 0 ... 0 Of|hH
__J [ 1:4 _apld } Un (4.55)
kQRe{ aD;* 0 ... 0 =Dy 0 ... 0 i +
+lapi 0 .. 0 BDE* 0 . 0[Z+ |0 oDy, |é}
Similarly, for the upper wall we find
. _ d |00 .0 aDy "™t aDg | |0 _
Tw +1 k/,QRe 0O 0 ... 0 7ﬂD;Lw—4:n—1 7/3D711w ﬁ
— j |: n—4:n—1 o n—4:n—1:| ’Dh
k:QRe{ 0 ... 0 aDy] 0 ... 0 —-BDY] " +
+lo .0 apgtnt 0 0 —ppptt 2+ ey, 0] 6}
(4.56)

For spanwise wall shear stresses and pressure measurements, their output-to-state re-
lations can be found in a similar manner. Matrix C is then obtained by assembling all

these relations, as follows:

C

le +1 Ty +1 ?A}h
Y= Ty | = Cmeil ﬁh = Ci‘s (457)
Pw +1 pr +1 o)

A quadratic norm of the state is then obtained by considering

y'y=2"C"Cr = 2" Qox = ||z/|c (4.58)

4.4 Solution of Riccati equation

Riccati equation arising from optimal control formulation is a nonlinear continuous
algebraic equation (CARE) for which many algorithms have been proposed in the last
decades in order to provide a numerical solution. All of them can be grouped into
two categories, the first one considering those algorithms which find a solution through
matrix factorization, the second involving numerical procedures which define an itera-
tive method converging to the unique solution. Usually, in standard control problems
factorization methods are well suited since they have a deterministic computational
time. On the other hand, if we are dealing with extremely ill-conditioned matrices,
then factorization techniques can lead to inaccurate solutions, while iterative methods,
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given an initial stabilizing solution, are able to converge to actual solution with the
desired degree of precision.

Since in the present work a set of Riccati equations needed to be solved during kernel
generation phase and for smaller penalties p matrices became very ill-conditioned, an
iterative solver has been implemented, based on Newton-Kleinman method. In order
to initialize such solver, we have used the solution of a factorizing technique based on
Schur-Hamilton method. In the following, the two methods adopted in tandem will be
briefly discussed.

4.4.1 Schur-Hamilton method
Starting by considering CARE

ATP+PA+Q—-PBR'BTP=0 (4.59)
the key idea is to build the associated Hamiltonian matrix

A =S

H =
—Q -—AT

(4.60)

where S = BR™'B”. Then, it can be proved that a matrix P is a solution of the
CARE if and only if the columns of [ ] span an n-dimensional invariant subspace of
the Hamiltonian matrix H in (4.60). To prove that, we introduce the following matrix

J:
0 I
J = (4.61)
-1 0
then, we assume that a n x n matrix L exists such that
1 1
= L (4.62)
P P

Multiplying both sides of (4.62) by the inverse of J, we find

1 1
J'H =J ! L (4.63)
P P
Hence, we can get further simplification and write
AT || T -P
@ = L (4.64)
A -S| |P 1

Finally, by multiplying both sides of (4.64) by [1 P], we get

PA+ATP+Q—-PSP=0 (4.65)
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showing that P satisfies the CARE. To prove the converse, we note that if P is a
solution of the CARE, then

1
P

A-SP
—Q - ATP

A-SP
P(A— SP)

1
P

ol = - = |@A-sp) (4.66)

that is, the columns of [ 1] span an invariant subspace of H. As a corollary, it can be
straightforwardly proved that if the columns of [ 7! | span an n-dimensional invariant
subspace of the Hamiltonian matrix H and P, is invertible, then PP, 1is a solution
of the CARE. With this in mind, to solve the CARE starting from Hamiltonian matrix
H, we need first to transform H into real Schur form (RSF) by using a QR factorization
algorithm, as described in [40]. Now, if UT HU is an ordered real Schur matrix obtained

through transformation matrix U, then we have

Ty Tio
Too

UTHU = (4.67)

where the eigenvalues of H with negative real parts have been stacked in 777 and those

with positive real parts are stacked in Tb3. Then, if we conformably partition U in the

same way
U U
_|Un Ui (4.68)
Us1 Uz
after substitution of (4.68) into Equation (4.67), we get
U U
g M =7 (4.69)
Ua Ua

Hence, the previously mentioned corollary asserts that matrix P = U21U1_11 is the

unique stabilizing solution of the CARE we were searching for.

4.4.2 Newton-Kleinman method

This algorithm considers an initial stabilizing solution P, for Riccati equation (4.59).
Then, since
P=PFP + AP with AP =P - X (4.70)

we can substitute this expression into (4.59) and find
Q+ PA+ ATP— P,SPy — APSAP — P,SAP — APSP, =0 (4.71)
After simplification, we can write

(A—SP)'P+ P(A—SPy)) = —Q — PySPy + APSAP (4.72)
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where we can neglect the second-order term APSAP in the RHS, since we are as-
suming AP is small. Thus, we obtain the following Lyapunov equation for the next

approximation P;:
(A—SP)'P, + P(A—SP)) = —Q — PSP, (4.73)

The strategy adopted till now may be considered a sort of Newton’s method, even if

updating rule is not cast in the canonical form. So, let us define the following quantity:
Rc(P)=PA+ ATP - PSP+ Q (4.74)

Then, we compute the first derivative of Ro(P), for which it is necessary to adopt the
definition of derivative generalized to Banach space, i.e. Fréchet derivative, as follows:

Rp(Z)=(A—SP)'Z+ Z(A—- SP) (4.75)
thus, defining A; = P,y1 — P;, Newton’s method for R (P) =0 is
Rlp, (Ai) + Re(P;) =0 (4.76)

which is a Lyapunov equation. Hence, solution at step ¢ + 1 is determined as P =

P; 4+ A,;. So said, we can summarize all the steps in the following algorithm:
1. Choose an initial stabilizing solution Py
2. Compute Ro(P;) = ATP, + P,A+Q — PSP,
3. Solve the Lyapunov equation for A;:

(A= SP)"A;+ Ai(A—SP) + Ro(P) =0 (4.77)

4. Compute Py = P, + A,

This algorithm ends when a predefined number of maximum iterations is reached or

when a fixed tolerance is achieved, i.e.

| Pis1 — PillF

<e (4.78)
I[Pl

where ||.||r denotes Frobenius matrix norm, defined as

1Pillr =/ Tr{Pl P} (4.79)

Unfortunately, another issue is still pending, since if an ill-conditioned matrix leads
to inaccurate solution by adopting Schur-Hamilton method, then we will encounter
numerical difficulties in solving Lyapunov equation (4.77) inside Newton-Kleinman
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method using standard factorization techniques. Then, inaccurate solution of Lya-
punov equation will lead to slower rate of convergence, thus deteriorating performances.
Therefore, the same approach used for Riccati equation has been followed to solve
Lyapunov equation, i.e. a factorization algorithm based on Schur method has been
implemented in order to find an initial stabilizing solution for an iterative Lyapunov
solver, based on Smith method. What follows is a brief description of the techniques

adopted in the present work.

4.5 Solution of Lyapunov equation

4.5.1 Schur method

This method is actually the most widely used and computationally effective approach.
It was proposed for the first time in [2] and it starts by considering the standard

algebraic Lyapunov equation:
XA+ ATX =0 (4.80)

Now, we take the RSF of AT, namely R = UTATU of matrix AT, which can be
obtained through QR factorization, as previously mentioned. After this transformation,

Lyapunov equation (4.80) is reduced to
YRT + RY =C (4.81)

where Y = UTXU and C = UTCU. Now let

~

Y:[yl, ...,yn], C:[él, ...,én], R:[Tij] (482)

and assume that columns y; 41 through y, have been computed and consider the fol-

lowing two cases:

o Case 1: 14 ,—1 = 0. Then, y; is determined by solving the quasi-triangular
system:
(R 4+ Tkkl)yk =L — Z TkiYj (483)
j=k+1

o (Case 2: ry, -1 # 0 for some k. This indicates that there is a Schur bump on
the diagonal. This enables to compute y;—; and y; simultaneously, by solving the

following linear system:

Ti—1,i—1 Ti,il] o

Ti—1,4 Tii

Rlyi—1, yi] + [Yi-1, vi] l
(4.84)

n

= [¢i—1, &) — Z (11,4, Tijy;] = [dr—1, di]
=il
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This procedure is repeated until all the columns of Y have been computed.

4.5.2 Smith method

This technique has been firstly introduced in [69] and has received a lot of attention
in the following decades in order to provide this method with faster convergence. The

key idea consists of rewriting Lyapunov equation (4.80) in the following form:
(pI — AT)X (pI — A) — (pI + AT)X (pI + A) = —2pC (4.85)

where p is a positive parameter. Premultiplying both sides by (pI — AT)~! and post-
multiplying by (pI — A)~!, we get the following Stein equation:

X-8TXS=rT (4.86)

where S = (pI + A)(pI — A)~! and T = —2p(pl — AT)~1C(pI — A)~!. Thus, starting

from an initial condition Tp, the solution at each step ¢ + 1 is iteratively determined as
X =T+57X;8 (4.87)

For the sake of completeness we have to mention that a faster converging solution has
been introduced by Penzl in [58]. It exploits the alternate direction implicit (ADI)
method, which defines the solution X; at each step, through two separate substeps, as

follows:

(AT +piD)X; 1y =C — X;—1(A - piI) (4.88)
(AT +p)X; =C — Xi_1/2(A —pil) (4.89)

It can be proved that Smith’s algorithm is a particular case of ADI method, where
parameters p; assume a single constant value. The choice of these parameters is of
great importance, since the rate of convergence has been proved to be strongly affected.
In particular, if we decide to choose n parameters p;, the optimal choice is given by

the solution of the following minimax problem:

{p1, ..., pn} = argmin max (4.90)

Ni€o(A)

pi— A
Hpi-l—)\

=1

where o(A) is the spectrum of matrix A. Unfortunately, no closed form solution exists
for this problem, so suboptimal techniques must be developed, based on Ritz approxi-

mation of matrix spectrum, as shown in [15].



64 Chapter 4. Optimal State Feedback Control

Kemel eta
Kernel v 0000
10000

£80000
-40000
0
=-40000
=-80000
-120000
-150000
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Figure 4.1: Localized controller gains relating the state x to the control forcing u at
walls: visualized are positive (red) and negative (blue) isosurfaces at 6% of the peak value.
Kernels were computed at Re = 1500 by using energy norm and p = 10~* in the cost
function.
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(a) Kernel for wall-normal velocity v (b) Kernel for wall-normal vorticity n

Figure 4.2: Localized controller gains relating the state x to the control forcing u at
walls: visualized are positive (red) and negative (blue) isosurfaces at 6% of the peak value.
Kernels were computed at Re = 1500 by using dissipation norm and p = 10~ in the cost
function.

4.6 Parametric study on the effectiveness of LQR con-

trol

In order to assess the performances of the control laws we have developed, a set of
kernels has been generated considering different control penalties and different state
norms into the cost function (4.11). Then, DNS have been performed applying control
feedback through boundary conditions for a couple of Reynolds numbers that have
been widely studied in literature, namely Re = 1500 and Re = 3500. In all simula-
tions, the dimensions of the computational domain have been L, = 47 and L, = 2. In
particular, for Re = 1500, control gains have been computed for an array of wavenum-
bers («, §) considering 0 < o < 64 and —64 < § < 64. Computation of a single
kernel at this Reynolds number has required about 4 hours of CPU time on a single
dual-CPU Intel using Matlab Parallel Computing Toolbox for the solution of CARE
for each wavenumber pair. Convolution kernels computed using this approach are
depicted in Figures 4.1 - 4.4. What can be immediately observed is that although
different state norms have been considered, all kernels for wall-normal velocity angle

away from the wall in the upstream direction, while those for vorticity appear as an-
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Figure 4.3: Localized controller gains relating the state x to the control forcing u at
walls: visualized are positive (red) and negative (blue) isosurfaces at 6% of the peak value.
Kernels were computed at Re = 1500 by using enstrophy norm and p = 1072 in the cost
function.
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(a) Kernel for wall-normal velocity v (b) Kernel for wall-normal vorticity n

Figure 4.4: Localized controller gains relating the state x to the control forcing u at
walls: visualized are positive (red) and negative (blue) isosurfaces at 6% of the peak value.
Kernels were computed at Re = 1500 by using measure-based norm and p = 1072 in the
cost function.

tisymmetric bulges more or less flat depending on the state norm used. These shapes
are particularly meaningful since they interact with turbulent structures by contrasting
the convective delay, which requires to anticipate flow perturbations inside the domain
by applying wall actuation downstream.

Asg for DNS performed at Re = 1500, they have required about 14 days of computa-
tional time and they were run on cluster Zeno, a set of 10 dual-CPU Intel Xeon provided
by the Department of Aerospace Engineering of Politecnico di Milano. Each simulation
was run creating two threads on a single computer in order to exploit the paralleliza-
tion performances of our DNS code. Approximately more than 2 months of CPU time
was taken. Results have shown that energy norm is an excellent choice for targeting
drag. However, the choice of the reference profile U(y) (Figure 4.7) in kernel generation
phase has a significant effect of overall performances. As a matter of fact, when using
a turbulent reference profile a maximum drag reduction of 18% can be achieved, and
overall performances appear quite independent of control penalty, as we can notice from
Figures 4.5. On the other hand, by using Poiseuille laminar profile, the statistics of
the controlled flow show improved performances and a richer behavior (Figure 4.6). In
particular, for p = 10™* actual relaminarization has been observed with flow statistics
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Figure 4.5: Main statistics of the uncontrolled (red line) and controlled flow at Re = 1500

using energy norm, turbulent reference profile and different control penalties p, namely 102

(black line) and 10~ (blue line) with respect to laminar flow (magenta line).
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Figure 4.6: Main statistics of the uncontrolled (red line) and controlled flow at Re = 1500
using energy norm, Poiseuille reference profile and different control penalties p, namely 102
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Figure 4.7: Comparison between laminar and turbulent reference profile U(y) at Re =
1500.

slowly evolving towards ceiling laminar condition, thus determining a maximum drag
reduction of nearly 53%. Surprisingly, this is the first result in flow control literature
of relaminarization at Re = 1500 by adopting a LQR control approach with constant
gains. Before this, actual relaminarization has been obtained using a LQR control in
[26] combined with a sort of gain-scheduling of the reference velocity profile which was
varied from turbulent to laminar as simulation advanced. The possible reasons why
this result has never been attained before are many. First of all, as mentioned before,
with small values of control penalty p standard Schur-Hamilton Riccati solvers have
been proved to produce inaccurate solution. In the present work, Newton-Kleinman
iterative solver has always been used in cascade in order to achieve further accuracy
in the solution. Furthermore, by using Poiseuille reference profile, skin friction values
exhibit a prominent overshooting at the very beginning of the simulation. This could
lead to possible numerical problems in the evaluation of wall derivatives and has also
a limiting effect on time-step in the semi-implicit DNS code, thus slowing down the
simulation. Actually, relaminarization is the highest possible result in turbulent drag
reduction, if our aim is to obtain a net power saving by using blowing/suction actuators
at wall, as analytically demonstrated by Bewley, whose proof is reported in Appendix
A. Moreover, this is consistent with the assertion that turbulence in channel flow is
an essentially linear process [36] and a linear controller is sufficient to suppress turbu-
lence at least at low Reynolds numbers. Then, this effective set of control parameters
has been tested through DNS by considering a different flow field as initial condition.
Results (Figure 4.8) have shown that relaminarization process is independent of the
initial conditions of the flow. The only drawback of this control scheme is that it re-
quires high performances from blowing/suction actuators. As a matter of fact, when
control is applied at the very beginning of the simulation, wall actuation reaches up
to 70% of bulk velocity. For these reason, the effect of actuator saturation at 10% of
bulk velocity on overall performances has been investigated. Results have shown that
control peak values are effectively reduced in the transitory whereas no noteworthy
performance degradation has been observed, as can be stated from Figure 4.9.
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Figure 4.8: Mean skin friction of the uncontrolled (red line) and controlled flow at
Re = 1500 using energy norm, Poiseuille reference profile and p = 107*. Three different
initial conditions have been considered in DNS (blue, black and green lines).

Table 4.1: Drag reduction DR and net power saving Psp of feedback control using
energy norm and turbulent reference profile.

P DR Pnu

11072 28.8% 15%
1107* 28.1% 13.6%

Visualizing the flow field during relaminarization process also offers a valuable oc-
casion of observing how blowing/suction applied at walls acts in order to manipulate
and destroy turbulent structures. What can be inferred from Figures 4.10 - 4.12 is
that suction is introduced in the proximity of high-speed streaks, while a blowing ac-
tion is introduced under low-speed streaks. The same happens for sweep and injection
phenomena that characterize wall turbulence, as outlined in Chapter 1. In particular,
suction is applied in presence of injection events, while blowing occurs when sweep
events take place. In this way, the cycle of near-wall turbulence generation is inter-
rupted, causing the flow to fully relaminarize.

Now, if we are interested in net power Py¢; saved thanks to wall feedback control,
we need to compute the power Psp spent for actuation. For this purpose, we used the

formula proposed in [5]:

Per =1 [ [ (0% +16l0-p) aaa (191)

where A is the area covered by actuators and p is the average wall pressure. Results
are shown in Tables 4.1 and 4.2.

As for the other control laws they proved to have limited impact on drag reduction.
As a matter of fact, kernels based on measure norm provided a maximum drag reduc-
tion of about 15% and net saving of around 12%. In particular weak dependence has
been observed of control penalty p on overall performances. A possible explanation
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Figure 4.9: Effect of actuator saturation on drag reduction at Re = 1500 using energy
norm, Poiseuille reference profile and p = 10=*: uncontrolled flow (red line), controlled
flow without (black line) and with saturation (blue line).

to this behavior may be found by looking at the shape of the associated convolution
kernels in Figure 4.4. In facts, these kernels, with respect to the others, appear to
be confined to near-wall region, that leads to poor flow manipulation capability. Con-
sidering enstrophy norm, instead, a maximum drag reduction of nearly 25% has been
achieved for p = 107%, but simulations have suffered by strong numerical instability,
due to the high values of control actuation. For this reason it is not surprising that,
among the possible combinations of control penalties and reference velocity profiles,
none of them has led to positive net drag reduction. Then, as far as dissipation norm
is concerned, it proved to yield a maximum drag reduction of about 30% for p = 1073
by using Poiseuille reference velocity, as we can see in Figure 4.13. Unfortunately, as
for enstrophy norm, the power spent for actuation is very high, and net power saving
is very limited, if not negative, as indicated in Table 4.3.

Finally, convolution kernels have been designed for reducing the drag of a turbu-
lent channel flow at a higher Reynold number, namely Re = 3500. This scenario has

required to account for a wider array of wavenumbers («a, 3), i.e. 0 < o < 128 and
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(c) Frame attt =75 (d) Frame attt = 150

Figure 4.10: Three-dimensional view at different time steps of a turbulent channel flow
at Re = 1500 controlled by using energy norm and p = 10~*: visualized are high- (light)
and low- (dark) speed streaks at 30% of bulk velocity.

Table 4.2: Drag reduction DR and net power saving Py of feedback control using
energy norm and Poiseuille reference profile.

P DR PNet

11072 47.5% 39.1%
510~* 52.6% 46.1%
1107% 52.3% 47.5%
5107° 51.2% 44.8%
11075 49.4% 38.7%

—128 < B < 128, during kernel design, due to energetic considerations. The compu-
tation of the whole set of feedback gains has required approximately 40 hours of CPU
time on a dual-core Intel using Matlab Parallelization Toolbox for the solution of the
CARE associated to each wavenumber pair. Direct Numerical Simulations have been
run on the cluster of University of Salerno, where they took 4 days each using 10 AMD
Opteron quad-core machines for a total of more than 20 months of CPU time. Results
have shown that using Poiseuille reference profile in this case leads to relevant drag
increase, while things get better if turbulent profile is adopted. This happens because
the flow is very far from laminar condition (Figure 4.14), hence Poiseuille profile is no

longer representative of flow field. Furthermore, as suggested in [26], we introduced

Table 4.3: Drag reduction DR and net power saving Psp of feedback control using
dissipation norm and Poiseuille reference profile.

P DR PNet

11072 24.9% —30.1%
11072 31.9% 6.6%
1107* 30.5% 3.2%
1107° 30.1% 3.1%
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Figure 4.11: Top view at different time steps of the lower half of a turbulent channel
flow at Re = 1500 controlled by using energy norm and p = 10~%: visualized are high-
(light) and low- (dark) speed streaks at 30% of bulk velocity. Control actuation at wall is
represented by contours graduated according to the legend.
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Figure 4.12: Top view at different time steps of the lower half of a turbulent channel flow
at Re = 1500 controlled by using energy norm and p = 10~%: visualized are injection (light)

and sweep (dark) events.Control actuation at wall is represented by contours graduated
according to the legend.
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Figure 4.13: Main statistics of the uncontrolled (red line) and controlled flow at Re =
1500 using dissipation norm and different control penalties p, namely 10~2 (black line),
1073 (blue line), 10=* (cyan line) and 107> (green line) with respect to laminar flow
(magenta line).
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Figure 4.14:
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Figure 4.15: Localized controller gains relating the state = to the control forcing u at
walls: visualized are positive (red) and negative (blue) isosurfaces at 6% of the peak value.
Kernels were computed at Re = 3500 by using energy norm with smoothing function f(y)
and p = 1072 in the cost function.

a weight function f(y) in the integrand of energy norm, which has proved to achieve
the best performances at Re = 1500. Such function is defined as f(y) = 1+ U’(y)
and the proposed effect is to indirectly target the coupling term Lo of Orr-Sommerfeld
and Squire operator (3.32). Looking at kernel shape (Figure 4.15), the introduction of
function f(y) has led to convolution kernels that are more localized to near-wall part
of the flow field.

Results in Figure 4.16 have shown that a maximum drag reduction of nearly 28%
can be achieved with a net saving of about 18%. Moreover, it has been observed that
overall performances are not affected by the choice of control penalty p, thus suggesting
that an intrinsic limit exists in the application of a linear feedback control scheme when

nonlinearities become relevant at high Reynold numbers.
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Figure 4.16: Main statistics of the uncontrolled (red line) and controlled flow at Re =
turbulent reference profile and different control penalties p, namely
10~2 (black line), 10~2 (blue line) and 10~* (cyan line) with respect to laminar flow
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Chapter 5

Optimal Output Feedback

Control

Optimal state feedback control has been proved to yield very good performances in
reducing drag in a turbulent channel flow at the Reynold numbers we have considered.
Unfortunately, in real applications the knowledge of the entire state of the system
is hardly available, since it would require to mount sensors inside the channel flow,
solution that is clearly unpractical and could give origin to unsought load effects. For
this reason, the present chapter address the issue of finding an optimal control law based
solely on feedback of wall-measurement information. What follows is an analytical
derivation of such control approach. After that, some useful tools will be introduced
and applied in order to assess the effectiveness of output feedback with respect to state

feedback for the present flow control framework.

5.1 Analytical derivation

Direct feedback of measurement vector y means considering a control input u = — Ky
acting on the linear time-invariant system considered in Chapter 4. With these expres-

sion, after manipulations of LQR cost function J, we get the following expression:

J= %Tr {PXo+ A(A— BKC)TP + P(A— BKC)+ -

+Q+ CTKTRKC|}

7
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where X is the initial state vector at time ¢ = 0. Now, by setting to zero all the

derivatives, we find

g—i =(A-BKO)"P+P(A-BKC)+Q+CTK"RKC =0  (5.2a)
2—; = Xo+ (A—BKC)A+A(A—-BKC)' =0 (5.2b)
% = RKCACT — BTACT =0 (5.2¢)

hence, from Equation (5.2c), we obtain
K =R 'BT"ACT(CACT) ™! (5.3)

As we can see, the system is highly nonlinear and totally coupled, so that it is not
possible to obtain the solution from a single Riccati equation as in full state approach.
In order to overcome this deadlock, an iterative procedure has been implemented based
on steepest descent technique. The algorithm we have developed leverages the seminal
work of Levine appearing in [45] and [46]. It starts by defining an initial value F' for
the cost function and the tolerance on the minimum step size au,;,. Then, considering

an initial stabilizing solution K, the algorithm involves the following steps:
1. Calculate P with Equation (5.2a)
2. Calculate A with Equation (5.2b)
3. Set Ko = K
4. Calculate K with Equation (5.3)
5. Calculate AK = K — K
6. Set a =1
7. Calculate K = Ko + aAK
8. Calculate P with Equation (5.2a)
9. Calculate J = $Tr {PXo}
10. Set o = /2
11. If the system is stable and J < F, then set F' = J, else go to 7
12. If o < aymin then ends, else go to 2

It is to remark, however, that even if the existence of a global minimum is assured,
possible numerical problems may occur due to the presence of multiple stationary
solutions. For these reasons, optimization has been repeated starting from different
initial solutions, until the cost function F' has reached a sufficient degree of performance,
that could not coincide with the global minimum.
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5.2 Measures of performance

In order to assess the performances of output feedback control with respect to LQR
control, we have calculated the feedback gains for a wavenumber pair (« 3), then we
have applied the performance measures outlined in [7] in order to compare the results
with full state control developed in Chapter 4. A useful tool which has been proved to
be particularly meaningful is the concept of Hs and H, norm of disturbance-to-state
function. As a matter of fact, Ho norm of the transfer function of a system represents
an estimate of the expected rms value of the transfer function output with a unitary
input, whereas H,, norm is a measure of worst case amplification of the disturbance
affecting the system. More specifically, given a transfer function T).(s) in Laplace
domain, defined as

X(s) = QY?*(sI — A)7'B,, N(s) (5.4)

where A is the state matrix of the system, B, the input disturbance matrix, @) the
state weight in optimal control cost function, N(s) and X (s) the input disturbance and

state vector in Laplace domain, respectively. Then the Hs norm of T),,(s) is defined as

1 T]l2 = % /oo Tr{Tne(w) Tpa(jw)} dw (5.5)

— 00

However, this formulation is not particularly amenable to numerical computation, so

we preferred to calculate the Hs norm as follows:
| Thell2 = \/Tr{BLLB,} where ATL+LA+Q=0 (5.6)
As for H,, norm, it is defined as
[Thalloo = SUD Timas [Tha(jw)] = (5.7)

where 0,4, is the maximum singular value. Unfortunately, a closed form does not exist
to compute such norm, but it can be sought by an iterative search. For this reason, we
adopted the software cvz, an advanced convex solver developed by Grant and Boyd of
Stanford University and described in [23], to solve an equivalent minimization problem:

} (5.8)
<0

5.3 Output feedback performance assessment

min vy
A %BHBE

subject to R < ei
ubj {ezg 0 Y

In order to understand how output feedback behaves with respect to full-state control,
Hs and H,, norm of disturbance-to-state transfer function have been calculated at

Re = 1500 for a couple of wavenumbers o« = 1 and S = 0, using different control
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Table 5.1: Performance of optimal state feedback controller at Re = 1500 for « = 1 and
B = 0 using different state norms and different control penalties.

State norm P 1Tazlle 1 Tdzllco
(No control) - 453.2 10354
1072 101.8 2876

Ener 1073 98.2 2469
&Y 10~ 89.7 2201
1075 89.4 2197

1072 121.0 3005

Dissivation 1073 101.3 2711
p 1074 985 2555
1075 97.1 2520

Table 5.2: Performance of optimal output feedback control at Re = 3500 for o = 1 and
B = 0 using different state norms and different control penalties.

State norm P 1Tazlle 1 Tdzllco
(No control) - 453.2 10354
1072 441.2 9810

Bner 1073 431.3 9788
&Y 10-%  401.6 9665
10-°  397.3 9651

1072 4426 9891

Dissination | 107° 4344 9833
p 1074 409.8 9677
10-°  399.1 9625

penalties p and the best performing state norms that have emerged in Chapter 4, i.e.
turbulent kinetic energy and dissipation rate. As for output feedback control, measures
of shear stresses and pressure at both walls have been considered, exploiting relations
outlined in Section 4.3.4. Results are resumed in Tables 5.1 and 5.2.

What appears clear is that LQR control effectively abates Hy norm of disturbance-
to-state transfer function, reducing at the same time H., norm. In particular, we
can observe that energy norm always performs slightly better than dissipation. As for
output feedback, instead, results are rather poor. As a matter of fact, Ho norm showed
a maximum reduction of 15% against nearly 80% obtained with full state control.
Interestingly, dissipation and energy norm have proved to perform more or less the
same when only wall measurement information is available.

A possible explanation to this outcome can be found analyzing the dimensions of
system matrices we are dealing with. In facts, optimal control design at Re = 1500
and 3500 involves state matrices A whose dimensions are about O(10%) x O(10?), while
control input matrices B have size O(10%) x O(1). Hence, gain matrices arising from
full state control have size O(1) x O(10?). When using output feedback control, instead,

we have to account for measurement matrices C' that, considering all measurements
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we can dispose of at walls, have size O(1) x O(10%). Therefore, in this case gain ma-
trices obtained through output feedback control have dimensions O(1) x O(1). Hence,
it appears clear that output feedback control for the present purpose has much less
authority than optimal state feedback, since its capability of modifying the spectrum
of state matrices is strongly limited by gain size. For this reason, the design of a state

estimator is made necessary.






Chapter 6

Observer-based Control

After having stated the low efficiency of output feedback control, an accurate state es-
timation is made necessary in order to implement active feedback control in a realistic
framework, where we can dispose only of wall measures. The present chapter is orga-
nized as follows. Firstly, the state of the Art in estimation of wall-bounded flow will be
described, then we will introduce the standard time-based approach to flow estimation,
i.e. Kalman filter. Afterwards, we will introduce frequency-based Wiener-Hopf control
technique, highlighting differences with respect to time-based approach. Then, the
extension from single-input single-output (SISO) to single-input multi-output (SIMO)
will be discussed considering numerical issues involved. Finally, results will be provided
of parametric DNSs carried out in order to assess how control parameters affect overall

performances.

6.1 State-of-the-Art review

It is surprising to notice that almost all publications that have appeared in literature
concerning state estimation in wall-bounded flow adopted Kalman filter design. This
solution can be found in the first approach to state estimation in a turbulent chan-
nel flow, which has appeared in [7] and [32]. In both works a linear Kalman filter
has been designed leveraging Orr-Sommerfeld and Squire model in wavenumber space
and a performance analysis has been carried out for a couple of wavenumbers. This
approach has subsequently been extended in a second article [25] by considering an
array of wavenumbers and performing estimation in a subcritical channel flow. It has
been observed that linear models fail to capture the multiscale dynamics of turbulence,
but they include the key terms responsible for the production of energy. As a matter
of fact, the nonlinear terms in the Navier-Stokes equations scatter energy but do not
directly contribute to energy production. However, in all these pioneering works, state
covariance matrices appearing in Riccati equation arising from Kalman filter design
have been modeled with simple identity matrices, since no preliminary assumptions

on state noise were performed. This implies a constant variance of disturbances at

83
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each gridpoint and zero correlation of the disturbances at different gridpoints. Unfor-
tunately, this covariance model does not converge to a resolved covariance distribution
upon grid refinement.

In [6] a different strategy was investigated, that is model predictive estimation. This
approach is based on iterative state and adjoint calculations optimizing the estimate of
the state of the system so that the nonlinear evolution of the system model over a finite
horizon in time matches the available measurements to the maximum extent possible.
The optimization was performed iteratively using gradient information provided by
calculation of an appropriately defined adjoint field driven by measurement misfits at
the wall. This technique has provided noteworthy results, since in this framework it has
been possible to account for the full nonlinear evolution of the system. However, this
strategy has proved to be computationally expensive, as it required iterative marches
of the state and adjoint fields over the time horizon of interest in order to obtain the
state estimate. Due to this drawback, this approach has lost consideration in flow
control literature since it is not possible to refine it in order to adapt it to practical
implementation. Hence, attention has shifted towards the improvement of Kalman
filter estimation.

In [27] a physical parameterization, which has been proved to converge upon grid
refinement, has been introduced to properly model the external disturbances, initial
conditions and measurement noises that can affect perturbed laminar flows. Results
have led to the conclusion that a Kalman filter with time-varying feedback gains is
necessary in order to minimize the initial transient in the estimation error when the
estimation is turned on. Moreover, it has been noticed that when the flow perturbations
are large enough to appreciate significant nonlinearities affecting the system, then an
extended Kalman filter which incorporates the system nonlinearities into the estimator
model outperforms the standard linear Kalman filter. Besides, in [11] Kalman and
extended Kalman filters that were previously developed by the same group work have
been tested for state estimation in a turbulent channel flow. A key step in solving the
estimation problem has been the measurement of the second-order statistics of state
noise through DNS. Then, this information has been used to build state covariance
matrices in the estimator design phase, where all three measurements available at
walls were used. As expected, the nonlinear extended Kalman filter was found to
outperform the linear Kalman filter. However, it has been found that the estimated
state in linear Kalman filter deteriorates more rapidly with the distance from the
wall, whereas extended Kalman filter captures better the structures farther into the
domain. Moreover, they observed an approximate correspondence of the performance
of the extended Kalman filter with the model-predictive estimator built in [6] with a
favorable computational time saving. However, in order to implement Kalman filter
theory, the artificial assumption of white noise was made, thus discarding the entire
time structure of the state noise.

This limitation has been overcome only in [52], where a frequency-domain approach
has been suggested based on Wiener filter. As a matter of fact, in this framework it
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is possible to properly account for the full space-time structure of the state noise by
measuring it through DNS. Furthermore, it can be proved that this filter is the best
possible linear time-invariant filter to adopt for the present estimation problem, since
no assumptions other than linearity of the model are introduced. Results have shown
that by using a single wall measurement, Wiener filter always outperforms Kalman
filter.

6.2 Kalman filter theory

Kalman filter is the most common approach adopted in literature when dealing with
state estimation. For this reason, it is not surprising that it has quickly become a
standard approach also in flow estimation. Since the knowledge of the actual state is
unavailable the key idea is to get an estimate of the state & from the measurements

available. The problem is stated as follows:

&= Ax+ Bu+ Byn (6.1a)
y = Cx+ Dyqd (6.1b)
& =Aé+ Bu+ Ly — ) (6.2a)
g=Cx (6.2b)

where (6.1) are the equations of a LTI dynamic model, whereas equations (6.2) govern
the dynamics of the state observer. In these context, matrix L represents the observer
gain matrix used for the feedback of the difference between actual measures y and
their estimates . Kalman filter theory provides tools to determine optimal values for
this matrix. The first assumption is that state noise n and measurement noise d are
uncorrelated Gaussian noise processes, which can be completely defined through their
covariance matrices W,,,, and Wy, respectively. Then, after introducing the estimate

error ¢ = x — £, by combining Equations (6.1) and (6.2), we get
¢ =(A—LC)e + Byn — LDyad (6.3)

The variance error o2, can be determined as the solution of the following Lyapunov

equation:
(A= LC)o2, + 02, (A= LC)" + B,Wyn By — LDyaWaaDJ,LT =0 (6.4)
Hence, matrix L must be chosen in order to minimize the objective function
J=Tr{We.o?, (6.5)
where W, is a weight matrix introduced to express the relative importance between the

components of state estimate error. This problem is cast in the form of a constrained
minimization, since o2, must satisfy Equation (6.4), so we account for this condition
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by introducing a proper Lagrange multiplier:

J="Tr {Weeage +A[(A— LC)o?2 + 02.(A— LC)" + B,W,,BY + LDydedDdeLT]}
(6.6)
The global minimum of functional J is obtained by imposing stationary conditions to
its derivatives:

g_i = (A= LO)o2% + 02 (A — LO)T + BuWan BY + LDyaWaaDI, LT =0 (6.72)
a?;i =AA-LC)+ (A= LO)"A+ Wee =0 (6.7b)
g—i = LDydedDde —02.CT =0 (6.7¢)

Then, from Equation (6.7¢) we obtain

L =02,C"(DygWaaDy) ™" (6.8)
Furthermore, through some trivial manipulations, it can be proved that we can deter-
mine o2, as the solution of the following Riccati equation:

Aaze + UgeAT — UgeCTR_lcage +Q=0 (6.9)

Then, gain matrix L can be easily recovered as L = PCTR™.

Time-based approach is particularly appealing because of its solid theoretical frame-
work, however it has also many drawbacks. First of all, in real physical systems noise
can be rarely modeled as a random process and often we have to deal with distur-
bances that may present a rich structure in frequency domain. Even if it can be proved
that Kalman filter is optimal even for non-Gaussian noise [68], covariance matrices are
decisively inadequate and limiting in order to represent actual noise spectrum.

Besides, when Kalman filter is associated to an optimal controller, linear quadratic
Gaussian (LQG) technique requires the solution of two distinct Riccati equations, one
for the controller and the other for the observer, according to seperation principle, which
guarantees that controller and observer have independent dynamics. Then, after having
solved these two design problems, controller and observer may be combined to develop
a dynamic compensator to control the flow system. However, standard Riccati solvers
based on Schur-Hamilton decomposition described in Chapter 4 have a computational
time that scales with the cube of the dimension of state matrix A. Hence, this approach
to compensator design quickly becomes highly time-requiring as the number of states
increases, i.e. as the mesh grid gets more and more refined.

For all these reasons, we implemented a control technique in frequency domain
based on Youla-Kucera parameterization [75] - [76], called Wiener-Hopf control. This
strategy allows to compute in a single step the compensator transfer function obtained
after design of both controller and observer. This interesting feature represents for our
purpose an important property, since it can provide substantial computational sav-
ings. Besides, in Wiener-Hopf control many techniques are available which scale with
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Figure 6.2: Alternative representation of closed-loop control scheme with transfer func-
tion modeling mismatch.

the square of matrix dimensions. Moreover, this frequency-based approach allows to
directly exploit information concerning exact noise spectra, thus avoiding the intro-
duction of expensive noise-shaping filters, required when using Kalman filter. Besides,
if white noise is affecting the system, then the compensators calculated using LQG
control approach and Wiener-Hopf theory are exactly the same. What follows, is a

description of Wiener-Hopf control theory.

6.3 Wiener-Hopf optimal compensator design

Among the possible approaches to the problem, the most suitable way to define the
compensator function K(s) is the procedure described in [53]. The system to which
we refer is represented in Figure 6.1, where with H we have indicated the input-to-
state transfer function. With some manipulations it is possible to obtain an equivalent
representation, as shown in Figure 6.2, where H represents the model we have realized

of system transfer function. It can be easily shown by inspection that
e=d+Cn+C(H - H)u (6.10)

where e represents the difference between feedback measure y and its estimate ¢. So,
if the model perfectly matches system dynamics, feedback is represented by noise com-
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Figure 6.3: Noise-to-measure block diagram of the controlled system.

ponents alone. Then, to simplify the block-diagram we can notice that

u= Ky (6.11)
CHu = § (6.12)

By subtraction we get
(I - KCH)u = Ke (6.13)

If now we introduce a new definition of control input, i.e. © = K*e and consider perfect
matching between model H and actual system H, then we obtain the block-diagram
shown in Figure 6.3. Compensator transfer function K can be recovered through the
following relation:

K*=(I-KCH) 'K (6.14)

Afterwards, we will define an objective function to be minimized, which closely reminds
time-based LQR/LQG control:

=3 [ T iQoud +Tr (Rowb) df (6.15)

where with symbol ¢ we have indicated spectral density function, whereas matrices Q
and R represent state and control weights, respectively. From inspection, we can find
the following relationships:

y={I+CHK")(Cn+d)

r=HK"d+ (I+HK"C)n (6.16)
u=K*d+ K*Cn

Spectral density functions ¢,, and ¢,, are then straightforwardly determined as

bpe = HK*pga KT HY + (I + HK*C)ppn (I + HK*C)H

uu — dd + ¢nnc K
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where superscript H denotes conjugate transpose. After substitution of Equation (6.17)
into (6.15), we get

+QHK*¢ddK*HHH} +Tr {RK*¢ddK*H + RK*CqsnncHK*H}) daf
(6.18)

However, this formulation leads to the design of a noncausal compensator, unless we
enforce causality constraint by introducing an appropriate Lagrange multiplier, as fol-
lows:

J=3 / (Tr {Q¢nn + QHKCoun + QbnnC" K" H" + QHK L Cpnn " KT H +
+QHK1¢ddK1HHH} LT {RKfrqﬁddKfrH n RKiCqﬁmcHKiH} T oTr {A_Ki}) df

(6.19)

where subscript + indicates that only causal part has been considered. Now, if we
derive Equation (6.19) with respect to K_”;H and impose stationary conditions, we can

find a closed form solution for compensator transfer function:

aJ
ST = H"Q¢pnC" + HYQHK pga + H'QHK Ch,, C" +
+ (6.20)

+ RK% ¢pgqg + RK;CpnCH + A_ =0

or, in a more elegant fashion:
(H"QH + R) K (ChpnC" + ¢paq) + A- = —H"Q¢,, CM (6.21)

Equation (6.21) is a Wiener-Hopf equation and different approaches, both analytical
and numerical, are possible in order to solve it. What follows is a comprehensive
description of the different techniques developed in literature to solve Wiener-Hopf

problem.

6.3.1 Analytical solution

Mathematically speaking, Wiener-Hopf problem consists of finding two complex func-

tions K7} (jw) and A_(jw) satisfying the following relation on the imaginary axis [56]:
A(jeo) K () + A—(jew) = Bjiw) (6.22)

where A(jw) and B(jw) are two Lipschitz-continuous functions. To solve this equation,
we need to find a factorization of A(jw) highlighting causal A, (jw) and noncausal part
A_(jw), ie.

A(jw) =

(6.23)
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After substitution in Equation (6.22), we get

AL (jw) K (jw) + A_(jw)A_ (jw) = B(jw)A—(jw) (6.24)
b4 (jw) —¢—(jw) F(w)

With the introduction of function ¢(jw), Wiener-Hopf problem has been recast into a
standard Hilbert problem, which can be stated as follows: let C' be a smooth closed
boundary, defined in complex set C, f(7) is a function satisfying Lipschitz condition on
C. We need to find functions ¢4 (7) and ¢_ (1), regular on C and Lipschitz continuous,
satisfying

¢(T) — (1) = f(1), with 7€C (6.25)

In order to solve Hilbert problem, Plemelji provided the following formulas:

bp(r) =+ () + %/ ) e

2 C 5 — T
(6.26)
6-(r) = ~550) + 5= [ L e

By extending boundary C' to infinity and letting f(7) — 0 for 7 — oo, it is possible to
consider the imaginary axis as boundary C.

However, Plemelji formulas (6.26) need the computation of a complex Cauchy inte-
gral. Solution of such integral is possible through the application of residue theorem:
suppose C'is a simply connected open subset of the complex plane and a4, ..., a;, ..., an
are finitely many points of U and f is a function which is defined and holomorphic on
U\{a1, ..., ai, ..., ay}. If C is a rectifiable curve in U which bounds a;, but does

not, meet any and whose start point equals its endpoint, then

/Cf(z) dz =27 ZRes(f, a;) (6.27)

where Res(f, a;) denotes the residue of f at a;. If for a; we consider the poles of
function f and we call k; the order of each pole, we can find a closed form for the

residues:
. 1 dki—1 ks
Res(f,a;) = lim I W(z —a;)" f(2) (6.28)

z—ao (k; — 1
To our scope, these notions of complex analysis are sufficient. For further knowledge,
the interested reader is referred to [1]. Then, once function ¢4 (jw) is determined,

compensator transfer function is easily recovered as

¢+ (jw)

K Gw) = Ay (jw)

(6.29)

As mentioned before, this control technique leads to the same compensator obtained
through LQG control design. In order to prove this statement, we will now consider, as

an example, an optimal control of an industrial rigid servo-system, which is schemati-
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Figure 6.4: Schematic representation of an industrial rigid servo-system.

cally illustrated in Figure 6.4. Equations governing its system dynamics are:

Jmom + Dmom =Tm — Tim
Jiby + Dif = nryy — 7 (6.30)

9m = nel

where subscripts m and [ indicate motor and load part, respectively, whereas J is rotor
inertia, D viscous damping, 6 angular position, n the gear ratio and 7 the torque. Then
with 7, we have indicated torque exchanged between load and rotor part through the
transmission. With some trivial manipulations, we can represent system dynamics with

a unique equation, i.e.
J .. D .
CM&w%%%+(Dm+—Q9m:ﬂn—— (6.31)
n n
or, in a more compact fashion
JO+ DO = 1., — 71 (6.32)

In order to achieve state space formulation, we choose 0 as state variable x, while 7,,
represents control input u, whereas 7y, is considered as a torque disturbance n affecting
the system. Finally, we choose to measure angular velocity 6, which is supposed to be
affected by random noise d. We get:

'ffB +l +l

€r = Jx Ju Jn

R (6.33)
u=—Kzx

For feedback controller design, we define the following objective function:

J = 5/ (qz* +ru?) dt (6.34)
0
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Optimal gain K is recovered from solution of a Riccati equation:
ATP+PA+Q—-PBR 'BTP=0
2D 1, 0 (6.35)
5P +q - b=

We find two solutions, we take just the positive one:

q
=JD —4+1-1 .
p=4J T(HTDQ + ) (6.36)
_ p-lpp— q _
K=R BPD<,/TD2 +1 1> (6.37)

For the observer we have to solve an analogous Riccati equation:

hence

AP+ PA+Q—PCTR'CP =0
D1, (6.38)
—2—=p+q—=p” =0

J T

where ¢ and 7 represent state and measure noise covariances, respectively. We get:

_ Di [ [gJ?
~ o~ D G.J2
L=PCTR™' = = (\/gﬁ +1-— 1) (6.40)

Compensator transfer function in Laplace domain L(s) then reads:

hence

F(s)=K(sl —A+BK + LC)"'L (6.41)

If now we assume unitary parameters, we find:

(vV2-1)

Froa(s) = ——~—=1
racls) = = A

(6.42)

As for Wiener-Hopf approach, the associated scalar equation is obtained by considering

1
H = (ju—A)"'B=- .
31w+ (6.43)
nn — HNHH =
¢ q 2
We get,
(w? +2)2 , , 1 1
~ 7 K* +A_ e
(w2+1)2 +(]w) (Jw) 7]w+1w2+1 (644)

A(jw) K (jw) + A (jw) = B(jw)
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Factorization of A(jw) can be straightforwardly recovered by inspection:

o AL(w) (e +v2)? , (—jw+1)?
A(jw) = - A, (jw) = —— A_(jw) = ——F— 6.45
Function f in Plemelji formulas (6.26) reads
7(j) 1 (6.46)
JW) = ——; - :
(jow = V2)2(jw + 1)
Then, the associated Cauchy integral is
+joo _
RN RFONNE / i dz (6.47)
2mj Jo 2 — jw 215 J—joo (2 —jw)(z+1)(z = V2)

This complex integrand has a pole of order 2 for z = v/2 and two poles of order 1 for
2z = jw. In order to calculate the integral on the imaginary axis we need to define a
half-circle path T" in the right half of Gauss plane and let its radius go to infinity. As
for the pole on the imaginary path, a semicircular path + has to be followed in order

to circumvent it, so:

1 (z) 1 (z) 1 f(2)
215 Jo 2z — jw dz = 275 Jp 2z — jw dz 27j /’r z—jw dz (6.48)
Then
1 (=) . _ . o 1
957 7 =g = el g+ Beslf VD) = oy (649)

Now, we need to compute the integral over . Firstly, we parameterize variable z as

follows:
r=jwtee?, —L<p<i (6.50)
2 2
hence
/2 ; J0Y i cedt
IS :/ fw +€€j6 Jjge o
z — jw o e
vEd ! ) (6.51)
:j/ f(jw +ee?®) do
—m/2
Secondly, by letting the radius go to zero:
/2 )
/ f(z,) dz = lim j fw +ee?®)do =
z — jw = o
¥—0 J /2 (6.52)

/2
oy / F(jw) d6 = jrf(jeo)

—7/2
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hence

N N ! R !
¢+(M_\2%\) (VZ+ 120w + 1) N Ve gesn O

Thus, from (6.29), we get

. jw+1
K7 (jw) = — 6.54
Hi) = G TR T 1y (054
Finally, compensator transfer function is recovered from (6.14):
. (V2 —-1)?
K = 6.55
wr (o) Gotava 1) (6.55)

As can be easily observed, Equations (6.42) and (6.55) coincide.

6.3.2 Numerical solution

We have just seen how analytical solution of Wiener-Hopf equation requires long math-
ematical computation. Furthermore, if multiple inputs are considered, then impulse
response is not scalar anymore, while if we consider multiple outputs for feedback, it
is C' that turns into a matrix. In these cases Wiener-Hopf equation has matrix co-
efficients, making analytical handling impracticable. Fortunately, numerical approach
is decisively more appealing and straightforward. Starting from Wiener-Hopf equa-
tion (6.21), we apply inverse Fourier transform, obtaining the following convolution

integrals:
“+o0
/ a(t — 7)ky(7)dT = b(t) t>0 (6.56)
0
/m a(t— Py (P dr 4+ A () = b(t) £ <0 (6.57)
0

After time discretization of the integral of (6.56), we obtain

AtY aiphy=b; with i=0,...,n (6.58)
p=1
or, in matrix form
_ao a_1 a_9 [P a_np 1 _ko_ _bo_
a1 an a_q N A—n+1 kl bl
At | a2 aq ag . A_py2 ko| = [bo
(6.59)
|an  Gn-1 Gp—2 ... ap | _kn_ _bn_

Ak =10
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Hence, determining the compensator transfer function simply requires the solution
of a linear system. After that, vector k(¢) is Fourier-transformed back in frequency
domain, in order to obtain K (jw). It is to notice, however, that matrix A arisings after
discretization of a SISO system has very peculiar properties, since it is always hermitian
positive definite (hpd) and all terms on the same diagonal are equal. In particular, if
a matrix has these particular symmetries, it is said to be in Toeplitz-like form. As
for SIMO and MISO systems, instead, the elements a; in matrix A are represented by
matrices themselves, hence A is said to have a block Toeplitz structure.

This statement will be of fundamental importance for the solution of the linear
system arising in Wiener-Hopf control design, since standard factorization techniques
usually adopted to solve a linear system could be avoided. As a matter of fact, stan-
dard approaches to the solution of the linear system requires the factorization of LHS
into two matrices, the first lower triangular, the second upper triangular. Solution is
then recover after a step of forward-substitution and a subsequent step of backward-
substitution. Typical factorization algorithms are mainly based on Gauss elimination
method or Cholesky factorization, if the matrix is hpd. All these algorithms are able
to handle nonsingular square matrices, but their computational time scales with N3,
where N is matrix dimension, whereas Toeplitz and block Toeplitz matrices, thanks
to their symmetries, can be factorized with sophisticated algorithms which scale only
with N2,

Such algorithms can be broadly classified into two categories, namely Levinson-type
and Schur-type. As for Levinson-type algorithms, they produce the factorization of the
inverse of Toeplitz matrix, while Schur-type algorithms produce the factorization of
the Toeplitz matrix itself. However, Levinson-type algorithms have the main drawback
that they are limited to scalar Toeplitz matrices, while Schur-type algorithms, on the
other hand, offer a greater flexibility and higher parallelization. What follows is a
comprehensive description of the algorithms that have been developed in order to
factorize Toeplitz matrices arising from Wiener-Hopf control theory, i.e. Cholesky and

Schur factorizations.

Cholesky factorization

When a hermitian positive definite matrix needs to be factorized, the standard approach
is to adopt Cholesky factorization. This straightforward algorithm is briefly outlined
in the following. Let us call A the IV x N hermitian positive definite matrix, a;; its

element in row ¢ and column j and C' its factorization. We have

A=clc (6.60)
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We first compute ¢11 = y/ar;. Then for i = 2, ..., n we calculate the diagonal term

Cij; as
i-1 1/2
Cii = (aii — ZC?]C) (661)
k=1

and off-diagonal terms are evaluated as

Jj—1
Cij = (aij — Zcikcﬁc> /ij for j = 1, ey 1 —1 (662)
k=1

As previously mentioned, the main drawback associated with this algorithm is the
high computational cost, since by inspection it can be found that it requires N3/3

flops, hence factorization time rapidly increases for high dimensional matrices.

Schur factorization

The Schur factorization algorithm that has been developed in the one outlined in [33].
In order to provide a description of how it works, let us consider a block Toeplitz hpd
matrix A of size mp x mp, where m is the size of each block, while p represents the
number of blocks. The simpler case of scalar Toeplitz matrix can be readily recovered
by considering m = 1. Now consider the first block row ﬁl 22 Ep . Since
A isa hpd matrix, we can find its Cholesky factorization A= C1CH | where €} is an
m x m lower triangular matrix. Now, let A; = C’flflj. It is easy to see that A; = CH.
Let us define two matrices G1(A) and G2(A) as follows:

(A, Ay A3 ... A,
0 A Ay ... Ay,
Gi(4)=|: =+ :
A Ay
0 0 ... 0 A
- L (6.63)
0 Ay As ... A,
0 0 Ay ... A,
G = | :
0 - A,
0 0 |
Then,
I 0| |GH(A)
A=|GH(A) GH(A ! =cHiwa 6.64
L C N L] A (6.:64)
where
G1(A I 0
G = |G and W = (6.65)
Ga(A 0 —I
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Now we must search for a transformation matrix U that satisfies the property UF WU =

W, so that UG = R, where R is an upper triangular matrix. Then we have:
A=c"wae=c"v"wua

e oy %

ol = (6.66)
=RHR

that provides the factorization of A. Since matrix G comprises two upper triangu-
lar block Toeplitz matrices, considerable computational savings can be obtained by
working with a generator matrix defined using the first block rows of G; and Ga:

Ay Ay L. A, A,
Ay ... A, A,

Gen = (6.67)

As for matrix U, due to the properties required, it has to be a hyperbolic Householder
transformation since it must satisfy U WU = W, where W is a diagonal matrix whose
entries are either +1 or —1. If this property is satisfied, then U is also claimed to be a
W-unitary matrix. Furthermore, if 2 is a column vector such that £ Wa # 0, then U

can be expressed as follows:
2xxt

U=W — puETion (6.68)
In our algorithm, we used hyperbolic Householder transformations in order to reduce
the generator matrix Gen to an upper triangular matrix by successively zeroing ele-
ments below the diagonal of columns of matrix G in (6.66). So, among the possible
choices of x in Equation (6.68), we would like to find the one that, given an arbitrary
column vector u, satisfies

Uu = —oe; (6.69)

where e; is a column vector whose j-th element is 1 and other elements are 0, and o is

a constant value. If we assume that efWej =1, then by choosing
|uj] (6.70)

we find that U is a hyperbolic Householder transformation mapping u to —oe;. This

transformation will be used several times in the algorithm in order to reduce matrix
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G, as will be shown later. From Equation (6.66) we obtain

(A A AL A L A,
0 A Ay As ... Ay,

0 0 A Ay ... A,
0 0 0 A :

o |t : : 6.71)
0 Ay A3 Ay ... A4,
0 0 & Az ... Apfl
0 0 0 Ay ... A,
0O 0 0 0 :

Now, since the first column of the generator is already in the right form we can use
the generator matrix starting from the second row down. The first row of the upper
submatrix of the generator will represent the first block row of the triangular factor
of the Toeplitz matrix. In order to achieve full factorization, the first step involves
eliminating the first diagonal in the lower half of the generator matrix. The idea is to
do that while preserving Toeplitz structure of the remaining portion of the matrix. In
this way, we can repeat the process on the smaller generator till we fully triangularize
G. Therefore, we substitute the first block row in generator matrix with the second

block row of the upper submatrix:

(6.72)

Now let Uy be the block hyperbolic Householder transformation, obtained as previously
outlined using vectors that have one nonzero element in their upper half and zero
elements in the lower half. Thus, we can eliminate A5 using A; by applying U; to Gen.
We get,

0 A Ay ... A,

U,Gen = ~
0 Az ... A,

(6.73)

Similarly, all matrices constructed by stacking the corresponding rows in the two halves
of the generator matrix are shifted versions of Gen matrix in (6.72). Hence, all the
work that was needed to zero out the diagonal row of As in the lower submatrix was

done in the first step. At this stage, the generator matrix G has a Toeplitz submatrix
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Figure 6.5: Computational time of Cholesky factorization with different values of p and
m.

in its upper half and another Toeplitz submatrix in its lower half:

(A, Ay As Ay ... A

P
Ay /12 %3 %pq
0 0 A Ay ... A,
0 0 0 A
G=1|: =+ (6.74)
A Ay Ay
0 A A,
0 0 p2

The second row of the upper submatrix of G is the second block row of the triangular
factorization of Toeplitz matrix. The process is then repeated on the two lower right
submatrices of the generator in (6.74). After p — 2 steps the generator is completely

triangularized.

Performance assessment

In order to compare the performances of Schur algorithm with respect to standard
Cholesky factorization, we used both of them to factorize a N x N block Toeplitz
matrix made of p blocks of size m x m on each block row, with different choices
of parameters m and p. Results in Figures 6.5 - 6.6 indicates that for matrices of
small size the computational time is quite the same, whereas the difference quickly
becomes more relevant as parameter p increases. Then, factorization time has been
measured, keeping one parameter constant and varying just the other one. What we
have observed is that Cholesky factorization time has cubic convergence with respect
to both parameters m and p (Figure 6.7). As a matter of fact, Cholesky algorithm
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Figure 6.6: Computational time of block Toeplitz factorization with different values of
p and m.
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Figure 6.7: Computational time of Cholesky factorization for fixed m = 3, measured
values (squares) and theoretical prediction Cp? (solid line).

does not take into account the structure of the matrix, hence it has a cubic dependence
on the whole matrix dimension N = m X p, as mentioned in Section 6.3.2. As for
Schur factorization time, quadratical dependence has been observed on parameter p,
as outlined in Figure 6.8, while time has proved to scale cubically with the block size
m (Figure 6.9). This last observation is not surprising because at the beginning of
Schur algorithm a Cholesky factorization step is required in order to triangularize the
first block in the first block-row. However, this can not be considered a significant
drawback since in the present application the size of block m is always much smaller
than p, typically three orders of magnitude.
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Figure 6.9: Computational time of block Toeplitz factorization for fixed p = 2000,
measured values (squares) and theoretical prediction Cm? (solid line).

6.4 Impulse response measure

In order to implement Wiener-Hopf control for drag reduction in a turbulent channel

flow, we need to determine the input-to-state tensorial impulse response H,,, where

the input is represented by actuator wall forcing, whereas the state vector is represented

by wall-normal velocity and vorticity of the flow field. Such impulse response has

been obtained with the strategy proposed in [49]. First of all, statistically stationary

conditions have been considered for the turbulent flow at the same Reynolds number of

the problem. Then, this flow has been perturbed through wall-normal velocity forcing

Uw- Such perturbations were represented by Gaussian white noise with an amplitude
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of 0.000125, whose autocorrelation function reads:
E{vy(x + Az, z 4+ Az, t + At)vy(x, 2, 1)} = 6(Azx, Ay, At) (6.75)

where ¢ is Dirac impulse function. Thus, as a consequence of such perturbation, state

variables of the flow field could be decomposed as follows:

vToT = ’D((E, Y, z, t) + ’U(‘Ta Y, z, t) (6763“)
nror = ﬁ(xa Y, 2, t) + 77(% Y, z, t) (676b)

where overline indicates variables referred to the unperturbed flow field, whereas the
others are related to wall forcing. Cross-correlation between input and output then
reads:

Efvror(z+a',y, 2+ 2, t + )y (2, 2, t)} =
+E{o(x+a,y, 2+, t+ t')vf(m', 2 )
+E{v(+a,y, 2+ 2, t+t )l (@, 2, 1)} (6.77a)

E{nror(z+a',y, 242, t+ vy (a', 2/, ')} =
+E{fx+a',y, 2+ 2, t+ t')vff(ac/7 2t
+E{n(z+a,y, 242, t+ )y (@', 2, )} (6.77b)

Simplifications in (6.77) are possible by considering that no correlation exists between
perturbation and unperturbed flow. Then, it is well known from signal theory that
when a white noise is passed through a linear system, the cross-correlation between
the input and output is proportional to the impulse response of the system, so input-

to-state impulse response could be recovered by:

Hyo,(z,y, 2,t) = B{v(z+ 2, y, z+ 2, t + vg AT
Hmw—{ ( ) = Ef{u( Jvy ( )} (6.78)

Hnﬂw (1"’ Y, z, t) = E{T](SE + 1,/, Yy, 2 + Zla t+ tl)vg(xlv Zla tl)}
Finally, leveraging system ergodicity led to:

Hy, o, (az Y, 2, t)
Lo L- 1
L L / / UTOT(x +a’ y, 24+ t+ t/)vf(x/, 2t dt' da' dZ' (6.79a)

H%“w( T, Y, 2z, t

Ly L 1

=1 L nTOT(m +a y, 242 t+ )i, 2 ) d da' dZ (6.79b)

With this strategy it was possible to obtain at once the whole space-time dependence of
the impulse response. The numerical simulation was carried out for a turbulent channel

flow at Re = 3500, considering a computational box having dimensions L, = 4,
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L, = 47 /3, while Fourier series used during FFT and IFFT transformations have been
truncated at a = 96 and S = 64 and 128 points have been used for discretization in
wall-normal direction. As usual a hyperbolic tangent stretching grid was introduced.
Correlations have then been measured through averaging over a time of 75000 wall-
unit, considering a time step of 0.75, which is about 5 times the time step of a typical
DNS at Re = 3500.

6.5 Results of Wiener-Hopf control for drag reduction

In order to implement a Wiener-Hopf compensator for drag reduction, impulse response
is not sufficient. As a matter of fact, the knowledge of the functions of cross-correlation
between the state noise and wall-measurements is required. Such statistics have been
previously obtained in [52] from DNS of a turbulent channel flow at Re = 3500 con-
sidering the same computational domain used to measure impulse response and the
same resolution for wall-normal discretization and truncation of Fourier expansions.
Ag for time discretization, a resolution of 0.75 and a horizon of 150 wall units have
been considered.

Afterwards, optimal compensators have been designed for a turbulent channel flow
of size L, = 4w, L, = 47/3, at Re = 3500 leveraging streamwise and spanwise wall
shear stresses for the feedback and dissipation norm in Wiener-Hopf cost function
(6.15). These choices have been motivated by results achieved in [52], where a Wiener-
Hopf compensator was developed for optimal feedback of a single wall measure using
two different, state norms, namely turbulent kinetic energy and dissipation rate. Re-
sults showed that energy norm, which has proved to be really effective in full state
control, when applied in an observer-based framework, is totally ineffective in provid-
ing drag reduction results. Furthermore, it was demonstrated that using wall pressure
for feedback is equally ineffective with both state norms.

Optimal compensators have then been designed for a set of wavenumbers o < 12
—54 < g < 54. Control action has been computed runtime in DNS by application of
the following convolution integral:

Oy (e, B, 1) = /Ot IA((a, B, T)ym(a, B, t —7)dr (6.80)

where K is the impulse response of the compensator and 1 is the history of measure-
ments in wavenumber space. Then, such integral has been discretized using a time
resolution of 0.75 wall unit and truncated at time 7t = 18.75. The spatial structure
of compensator kernels obtained in this way is reported in Figures 6.10 and 6.11 for
different time lags. What we can notice is that the kernel for feedback of streamwise
wall shear stress is symmetric with respect to both x and z axes, whereas kernel for
spanwise skin friction is symmetric for z axis and antisymmetric for z axis. Another

interesting feature is that wall information required for feedback is heavily limited to
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Table 6.1: Drag reduction results using SIMO Wiener-Hopf approach with different con-
trol penalties R and measurement noise covariances ¢4q.

R
21072 31072 41072

41072 | 3.567 3.821  4.322
11071 | 4.467 4.567  3.891
Pad 910-1| 4397  3.985 3177
4107t | 2.776  3.177 2.716

the proximity of the actuator. Furthermore, by observing the sequence of frames rep-
resenting kernels at different time lags, we can observe that kernel evolves downward
with respect to the point of application and this is consistent with the behavior of full
state convolution kernels discussed in Section 4.6.

So said, a parametric study has been carried out to find the best choice of control
penalty R appearing in Wiener-Hopf formulation and the influence of measurement
noise ¢gq. For this purpose, a set of more than 20 DNS have been performed using 10
AMD Opteron quad-core machines belonging to the cluster of University of Salerno.
Simulations took around 4 days each for a total of 9 years of CPU time. Results
have then been compared with drag reduction obtained by adopting a single-input
compensator for feedback of streamwise skin friction, obtained using the scalar version
of the proposed Schur factorization algorithm. What has emerged is that a maximum
drag reduction of 4.6% can be achieved for R = 0.03 (Figure 6.12). Furthermore,
such results have proved to be independent of measurement noise ¢g4q for a range
of covariance 41072 < ¢g9 < 510!, while for outer values performances rapidly
deteriorate, as outlined in Table 6.1. As for single-output compensator, instead, a
drag reduction of nearly 5.5% was observed, but performances have been showed to
significantly reduce outside the range 3 1072 < ¢gq < 8 10~2. This allows the conclusion
that state estimation is not improved by the use of multiple measures, but it can benefits
from a higher robustness with respect to measurement uncertainty.

Finally, in order to appreciate how optimal Wiener-Hopf compensator works, in
Figure 6.13 we have represented time evolution of high- and low-speed streaks. We can
observe that control effectively reduces the dimensions of near-wall coherent structures.
Furthermore, we can notice from Figure 6.14 that suction is applied under high-speed
streaks, whereas blowing contrasts low-speed streaks. However, observer-based control
reveals unable to significantly affect the regenerative process. The explanation is related
to poor performances of state estimation. As a matter of fact, wall forcing appears to
be applied also in portions of the flow field where no turbulent structures are present.
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Figure 6.10: Spatial and temporal evolution of convolution kernel for SIMO streamwise
wall shear stress 7, feedback, obtained through Wiener-Hopf control design at Re = 3500
by using dissipation norm, R = 0.03 and ¢4q = 0.1.
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Figure 6.11: Spatial and temporal evolution of convolution kernel for SIMO spanwise

wall shear stress 7, feedback, obtained through Wiener-Hopf control design at Re = 3500
by using dissipation norm, R = 0.03 and ¢34 = 0.1.
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Figure 6.12: Main statistics of the uncontrolled (red line) and controlled flow at Re =

3500 using dissipation norm for the feedback of streamwise wall shear stress (black line)
and both stresses(blue line) with the best choice of control parameters.
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Figure 6.13: Three-dimensional view of a turbulent channel flow uncontrolled and con-
trolled with SIMO Wiener-Hopf compensator at Re = 3500 by using dissipation norm,
R =0.03 and ¢g4q = 0.1: visualized are high- (light) and low- (dark) speed streaks at 30%
of bulk velocity.
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Figure 6.14: Top view at different time steps of the lower half of a turbulent channel
flow uncontrolled and controlled with SIMO Wiener-Hopf approach at Re = 3500 by using
dissipation norm, R = 0.03 and ¢4q = 0.1: visualized are high- (light) and low- (dark)
speed streaks at 30% of bulk velocity. At wall control actuation is represented by contours
graduated according to the legend.






Chapter 7

Conclusions and Future

Developments

The present work has addressed the problem of reducing the friction drag in a tur-
bulent channel flow, by applying optimal feedback control through zero-net-mass-flux
blowing/suction MEMS actuators and sensors at walls. Our results have shown that
when knowledge of the whole flow state is available, optimal control leads to very good
performances, provided an optimal set of tuning parameters is adopted. The most
important conclusion is that the norm of the state used in the definition of optimal
control cost function has a strong impact on the overall performances, with the norm
based on turbulent kinetic energy yielding the best results. Moreover, Direct Numer-
ical Simulations carried out at Re = 1500 with feedback control applied through wall
boundary conditions have succeded in achieving full relaminarization. As far as we
know, this result has been obtained with a constant-gain LQR controller for the first
time in this work. Furthermore, this outcome has been demonstrated to be indepen-
dent of the initial conditions of the flow field and of saturation effects of the MEMS
actuators. Then, for a higher Reynolds number, namely Re = 3500, relevant drag and
net drag reduction was achieved using the same norm in a slightly modified fashion.
Besides, results have been proved to be independent of the choice of control penalty in
optimal control cost function, suggesting that for higher Reynolds numbers the effect
of nonlinearities strongly limits the performances of linear controllers.

Then, we have turned to considering a control scheme in a more realistic scenario,
i.e. where wall-measurement information alone is available. The first attempt has
concerned the design of a compensator based on optimal output feedback control theory.
Results based on Hy and H,, norms of disturbance-to-state transfer functions have
shown that the performances are quite limited if compared to LQR control approach.
For this reason, the implementation of a state observer was made necessary. Therefore,
a frequency-based Wiener-Hopf approach has been followed for the design of a single-
input multi-output compensator for the feedback of streamwise and spanwise wall shear
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stresses using dissipation norm of the state, which has proved to perform better than
energy norm in an observer-based control framework. The approach uses a properly
defined and measured impulse response of the system as the system model. A fast
Schur solver has been developed in order to efficiently factorize the block Toeplitz
matrix of the linear system arising from time discetization of the associated Wiener-
Hopf matrix equation. Results have shown that performances degrade significantly
with respect to full-information control. Furthermore, comparison with an optimal
compensator exploiting just streamwise skin friction revealed that SIMO compensator
leads to the same drag reduction but it benefits from a higher robustness with respect
to the measurement noise.

The limitations of optimal linear control theory applied to turbulent drag reduc-
tion have been underlined throghout this work. We think that future developments
are possible only by abandoning linear system theory, e.g. by considering a feedback
linearization of the nonlinear terms neglected by the linear representation of the flow.
As for the design of a compensator based on wall measurements, performances have
been proved to be strongly affected by the time span used for the discretization of the
Wiener-Hopf equation. Hence, it would be of interest to consider a smaller time step,
even though this would result in a significantly higher computational cost during the
phase of kernel design. Moreover, we suggest that further improvements are possible by
accounting for the actual nonlinear impulse response of the flow subject to wall-forcing.
As a matter of fact, in the present work only the linear part has been considered, which
corresponds in Wiener nonlinear systems theory to the first-order convolution kernel
relating system input to system output. Then, knowledge of higher-order Wiener ker-
nels can be straightforwardly accounted for in Wiener-Hopf optimal control theory,

leading to kernels which are optimal for the actual turbulent flow.



Appendix A

Proof of Bewley Conjecture

In [3] it has been conjectured that the lowest sustainable drag of an incompressible
constant mass-flux channel flow, when controlled via a distribution of zero-net-mass-
flux blowing/suction over a no-slip channel walls, is exactly that of the laminar flow.

The proof of this conjecture starts with the definition of the sustainable drag ([4]):

T— 00 T—00 T—oo 1

. . " . o (" ou
(D)oo = lim (D(t))r = lim ; ?/o D(t)dt = lim —/O /Fi %dxdt (A.1)

where n is the wall-normal, Ff is the boundary set grouping upper and lower walls.
Then, incompressible Navier-Stokes equations are considered, highlighting the mean

pressure gradient P,:

88_13 +uVU =VP +iP, + AU (A.2a)
VU =0 (A.2b)

where ¢ indicates unit vector in streamwise direction. The mean pressure gradient in

the streamwise direction is then chosen so to maintain a constant bulk velocity:

Up = L U(x, t) dx = constant (A.3)
ViJa

where € is the rectangular domain of the problem (0, L) x (=1, 1) x (0, L,) and V =
2L, L. is the volume of such domain. Then, we choose the laminar Poiseuille solution
for the reference velocity profile U(y). Blowing/suction control can be analytically
represented as u(z, t) = —¢(x, t)n. So, by integrating Navier-Stokes equations over
space multiplied by velocity U, then integrating by parts, applying boundary conditions
and finally taking the time average, we find an expression for (D):

(D)UY = (V]| VU3)ec < | oo+ ¢2/2>dx> (A4)

o0

113



114 Appendix A. Proof of Bewley Conjecture

where the quantity < fF2i o(p + ¢2/2) dz>oo is the time-averaged power input applied
at walls, while the quantity (D),UgV represents the time-averaged power required
to maintain the unsteady controlled flow by the bulk pressure gradient. If we now
consider the laminar drag Dy, of the corresponding laminar channel flow with the same
dimensions, viscosity and bulk velocity, then by integrating the wall-normal derivative

of the laminar velocity profile, i.e. U(y) over €2, we find:

1
DUV = yLsz/ U’ dx (A.5)
-1
where the quantity DyUpV may be interpreted as the power required to maintain
the laminar flow by the bulk pressure gradient. Finally, we split the velocity field in
Navier-Stokes equations in its mean and fluctuating components, namely U and u,

then, following the same analytical manipulations that led to A.4, we find

1
IVUIE = LoL. | Udy+ Jul? (4.6)
After combining Equations A.4, A.5 and A.6, we come to the fundamental relation,
which has appeared for the first time in [8]:

</Fi B(p + ¢2/2)dz> — [DLUBV] = (Vv3)_ >0 (A7)

o0

A quick analysis of A.7 allows us to assert that when (D)., < Dy, i.e. sublaminar
drag is achieved, then the power of the applied control input is always larger than
any possible power saved due to drag reduction for any possible control distribution
¢(x, t). For this reason relaminarization is the highest result that can be achieved

through blowing/suction wall actuation with a positive net power saving.
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