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Abstract

The flow on non-planar surfaces with curvature in the streamwise direction
is studied through direct numerical simulations (DNS) and laboratory ex-
periments. Two typical cases are considered: the Taylor-Couette flow (i.e.
the flow in the gap between two rotating cylinders) and the Dean flow (i.e.
the pressure-driven flow in a curved duct). Each flow is characterized by a
laminar solution, which becomes centrifugally unstable above a critical value
of the Reynolds number, so that elongated, streamwise-oriented, large-scale,
vortical structures develop. By growing the Reynolds number, increasingly
complicated flow portraits determined by successive bifurcations appear until
the turbulent regime is reached, and qualitatively similar large-scale struc-
tures can still be observed.

The numerical simulations have been carried out by using a pseudo-
spectral parallel code which is periodic in the homogeneous (streamwise
and spanwise) directions, and uses high-accuracy compact finite-difference
schemes for the discretization of the radial direction. The experiments have
been conducted at the Manchester Centre for Nonlinear Dynamics on a
Taylor-Couette apparatus.

In the first part of the work, we study the pattern of transition to turbu-
lence produced by both temporal and spatial forcing in the Taylor-Couette
geometry, respectively through numerical simulations and experiments. The
effect of temporally modulating the velocity of the inner cylinder, being the
outer at rest, is investigated with DNS in a range of the relevant parameters
(Reynolds number, modulation frequency) which is wider than that consid-
ered in the literature. The issue of spatially modulating the shape of the inner
wall is explored with a campaign of experiments, where a sinusoidally-shaped
inner cylinder is built and tested.

In the second part of this thesis the focus shifts to the turbulent regime.
The presented Taylor-Couette simulations are the first well-resolved turbu-
lent DNS, whereas the simulations of the Dean flow are the first accurate
attempt to analyse in detail how curvature affects the statistical properties
of the flow (e.g. mean streamwise velocity profile, friction coefficients etc.).
The typical features of wall-bounded turbulence can be observed in both
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flows. Besides for the Taylor-Couette flow, the large-scale structures, which
appear and develop in various ways in the first stages of transition, reappear
in turbulent regime, and influence mean and instantaneous properties of the
flow. The contribution of the large-scale structures to the turbulent statistics
is quantified and discussed.
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Chapter 1

Introduction

In this initial chapter a concise description of the Taylor-Couette and Dean
flows is presented, through a definition of the geometries and the character-
istic parameters. Besides, a minimal review of the massive literature on the
subject is provided, as well as the reasons which have motived this work. An
outline of the thesis closes this introductory chapter.

1.1 Background

Many flows of engineering interest are characterized by streamwise-curved
surfaces such as the flows through an array of blades in a turbomachine, and
those on airplane wings or in curved ducts; the behaviour of the streamlines
in these flows is such that centrifugal instabilities exist (see [22], [36]), which
influence the pattern of transition to turbulence since the early stage of this
process. Moreover, centrifugal instabilities produce, under proper circum-
stances, large-scale, vortical structures which are oriented in the streamwise
direction. These large-scale structures deeply affect the mean and instanta-
neous characteristics of the flow.

It is customary [102] to classify the flow on curved surfaces in three main
groups, each representative of a wider category of flows: (1) the flow in the
gap between two concentric, rotating cylinders (referred to as Taylor-Couette
flow, TCF hereinafter), where the driving force is the movement of the walls;
(2) the flow generated by a pressure gradient in a streamwise-curved duct
(referred to as Dean flow, DF hereinafter); (3) the boundary layer over a
concave walls (referred to as Görtler flow). In the present work only the first
two classes will be considered.

The importance of the TCF geometry relies not only on its relevance as a
prototypical flow, but also on its engineering applications; we recall, among
the others, its employment as photo-catalytic and photochemical reactor (see
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[104], [48], [78], [118], [93]). In the same way, the comprehension of the
curvature-related effects in the Dean flow is pivotal in the design of devices
where a fluid is forced to flow between confined streamwise-curved walls.

The numerical codes commonly used in industry for the design of fluid-
related devices work out their results by solving RANS equations or imple-
menting LES; in presence of highly circulatory phenomena, they need proper
models for the representation of pressure-driven and/or shear-driven turbu-
lent flows. However, the modelling of these flows is far from satisfactory.

In the present work, the TCF will be considered mostly in connection
with the basic problem of affecting its pattern of transition to turbulence
through temporal or spatial forcing, as well as with the issue of describing and
quantifying the interaction between turbulence and the large-scale vortical
structures. For the DF, the focus will be on applicative and modelling issues,
as the presence of a logarithmic region for the mean velocity profile, or the
dependence of friction coefficients on curvature.

1.2 Taylor-Couette flow

The TCF is the flow in the gap between a pair of coaxial rotating cylinders.
The geometry is sketched in fig. 1.1, where the azimuthal (streamwise) direc-
tion is labeled as θ, the spanwise direction as z and the radial direction as r.
The radius of the inner cylinder is Ri, the radius of the outer is Ro, the axial
extension of the cylinders is H, and the gap width between the cylinders is
d = Ro − Ri. The angular velocity of the inner and outer cylinders are Ωi

and Ωo, respectively, and their ratio is Ω = Ωo/Ωi. The fluid is confined in
the upper and lower extremities by two lids, which can either rotate with the
same angular velocity of one of the cylinders, or be stationary, in dependence
of the chosen experimental setup. The shape and the relative movements of
the lids strongly affect the flow characteristics [9], and are responsible for the
so called end-effects [63].

Being the geometry fixed, and neglected the effects of gravity and other
external forces, the only relevant fluid dynamic parameters are the Reynolds
numbers Ri and Ro related to the inner and outer cylinders:

Ri =
ΩiRid

ν
, Ro =

ΩoRod

ν
,

where ν is the kinematic viscosity of the fluid. Instead of the Reynolds
number, for historic reasons, it is possible to encounter in several references
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Figure 1.1: Geometry of the Taylor-Couette problem.
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where η = Ri/Ro is the ratio between the inner and the outer radius; η
discriminates the case of small-gap geometries, where η is close to 1, from
that of large-gap. The parameter Γ = H/d represents the ratio between the
height of the cylinders and the gap width. It is useful to distinguish cases
with long cylinders, where Γ ≈ O(10), from those of short cylinders, with
Γ ≈ O(1).

The first experiments on the TCF were performed by Couette [26] and
Mallock [76] (see [33] for an overview on historic experiments) in the late
19th century. In this very dawn of the subject, the attention was focused on
the design of a device to measure easily and accurately the dynamic viscosity
of the fluid µ; in fact, at low value of the Reynolds number [33], the following
formula:

G =
4πµR2

iR2
oH(Ωi − Ωo)

R2
o −R2

i

expresses the torque G transmitted to a length H of one cylinder as a result
of a rotation of either, as a function of the angular velocities, the geometric
parameters and the fluid viscosity.

However, it was only in 1923, with the seminal work of Taylor [114], that
the main characteristic of the TCF was discovered. In his study with a fixed
outer cylinder device Taylor showed, both by experiments and calculations,
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that, as a consequence of centrifugal instabilities, above a critical value Ri,cr

of the Reynolds number, the laminar solution [6]

wl(r) =
ΩiRi

1 − η2

[Ri

r
(1 − η) − r

Ri
(η2 − Ω)

]
(1.1)

becomes unstable, and doughnut-like, large-scale, vortical structures appear
in staggered arrays within the flow. Since then, these structures bear the
name of Taylor vortices (TV).

Many papers on the subject (for a review see [112]) later defined the
properties of TV, as the number N of vortices for a given cylinder length
or, otherwise stated, the axial vortex wavelength λz = H/N (see [63]), and
the influence of the end-effects on the development of such structures [10].
Besides, owing to the instability of the laminar solution the TCF was also
analysed under the point of view of bifurcations in nonlinear systems (see [30],
[8], [24], [28], [23]). Experiments (see [19], [9]) and numerical simulations (see
[1], [80], [42], [87]) showed that both Ri,cr and N depend on the geometry
and on the characteristics of the experimental setup (see [108], [89], [29]).

To analyse the transition scenario, we start by considering the case of
outer cylinder at rest, i.e. Ro = 0. As Ri increases further above Ri,cr

and reaches a certain value Ri,w, the TV experience an Höpf bifurcation and
gain azimuthal waviness, characterized by an azimuthal wavenumber m. The
name “wavy Taylor vortices” (WTV) is used to describe the TV in this state.
As the value of Ri grows further, the flow can shift from one mode, described
by the pair (N, m), to another; the experience has shown that the pair (N, m)
depends on the geometry (see [58],[57]).

Besides, as a consequence of the high nonlinearity of the problem, above
a certain value Ri,nu of the Reynolds number the solution is not unique and
the observed mode depends on the flow history, (see [25], [8]).

At even higher values of the Reynolds number, an additional modulation
of the azimuthal waviness settles (see [45], [20], [60]), which can be seen
as a further Höpf bifurcation, leading to a torus-like attractor [27]. In this
regime the vortices are called “modulated wavy Taylor vortices” (MWTV).
Successively, as the first signals of chaotic motion appear [113], doughnut-
like structures, with an axial wavelength different from their low-Reynolds
number counterparts [19], still exist and even when a fully turbulent regime
is established they thrive, although immersed in a noisy background. In this
late stage of their existence, which seems to stop only at very high values of
Ri [106], these so-called “turbulent Taylor vortices” (TTV as in [94], [62])
influence the mean and instantaneous flow field properties. The experiments
carried out at even higher Reynolds number focused on the existence of
scaling laws (see [46], [69], [40]), and structure functions (see [12], [66], [111]).
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In fig. 1.2 snapshots of the above mentioned regimes (i.e. TV, WTV,
MWTV and TTV) are reported for different geometries, characterized by
the pair (η, Γ), in devices with the outer cylinder at rest (Ro = 0). As Ri

grows the TV (fig. 1.2(a)) are observed to gain more and more azimuthal
waviness, by becoming first WTV (fig. 1.2(b)) and then MWTV (fig. 1.2(c));
eventually, they enter the turbulent regime as TTV (fig. 1.2(d)).

The pattern of transition to turbulence varies heavily in dependence of
both geometric and fluid dynamic parameters (as a cross-check of [2] and
[103] shows): in fact the gap, the length of the cylinders and the end-effects
all contribute to the selection of the flow.

The richness of patterns hidden behind the TCF geometry becomes even
larger when more free parameters are introduced. When the outer cylinder is
rotated spiral flows (see [107]), turbulent spots and turbulent spirals (see [50],
[70], [81], [90]) appear, as pictured in fig. 1.3. Spiral flows can also appear in
both laminar (see [121], [117]) and turbulent [3] regime, as a consequence of
an axial flow superimposed on the TCF.

As a side aspect, we mention that the above-described pattern of transi-
tion has been interpreted as an example of transition to turbulence via the
Landau’s scenario [64] of successive bifurcations; this theory, though very
suggestive, is today widely questioned [43]. Moreover, this geometry has
been one of the first cases in which the theory of the strange attractors has
come to valuable results [17].

Being the transition scenario of TCF reasonably well understood, reports
have recently appeared in literature where the aim is to control the mass
transport and mixing properties of the Taylor counter-rotating cells by suit-
able changes in the geometry of the problem. Of particular interest are those
papers dealing with the forcing of the TV via temporal modulation of the
inner cylinder velocity [126], or spatial modification of the inner cylinder
shape [37]. In fact, through a temporal forcing, Youd, Willis & Barenghi
[125] have demonstrated the existence of reversing and non-reversing TV,
whose existence is related both to the value of the Reynolds number and the
frequency of forcing. The spatial forcing which is realized in [38], through
a sinusoidally-shaped inner cylinder, has shown that the characteristics of
the TCF are significantly affected by the wavelength of the sinusoidal mod-
ulation. The open issues on the temporal and spatial modulated TCF that
will be discussed in the present work are described respectively in §1.4.1 and
§1.4.2.

A number of numerical simulations was carried out in the past for the
TCF in cylinders with both infinite and finite lengths (see [67], [77], [72],[101]).
However, the values of Reynolds number at which these simulations were per-
formed are far from the turbulent regime, with the only exception of [51],
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(a) TV: Ri = 830, η =
0.889, Γ = 30.

(b) WTV: RA
i = 1251 and

RB
i = 1404, η = 0.875, Γ = 20.

(c) MWTV: RA
i = 1487 and

RB
i = 1982, η = 0.875, Γ = 20.

(d) TTV: Ri = 5240, η =
0.896, Γ = 123.

Figure 1.2: Flow regimes in the TCF with Ro = 0: TV (from [25]), WTV
(from [17]), MWTV (from [17]) and TTV (from [62]).
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Figure 1.3: Map of the TCF for a η = 0.833, Γ = 30 apparatus (from [2]).

which is nevertheless not well resolved. The direct numerical simulation
(DNS) of the Navier–Stokes equations for low-Reynolds number turbulent
wall flows has become, in recent years, a valuable tool for basic turbulence
research [84], both as complement and in substitution of laboratory experi-
ments. It appears however that DNS has not yet been exploited to its full
power for TCF investigations. As a consequence, till now, the turbulent
regime remains largely unexplored numerically. The open issues on the TCF
in turbulent regime that will be discussed in the present work are described
in §1.4.3.

1.3 Dean flow

The DF develops when a pressure gradient drives a fluid in a streamwise-
curved channel. In fig. 1.4 a curved channel is sketched, where the azimuthal
(streamwise) direction is labeled as θ, the spanwise direction as z and the
radial direction as r. The radius of the centre of the channel is Rc, Lz is the
axial (spanwise) extension of the channel and lθ is the azimuthal extension
expressed in radians. We note that the streamwise extension of the channel
for the centreline is Lθ = lθRc. The radius of the inner wall and outer wall

7
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Figure 1.4: Geometry of the Dean problem.

are respectively Ri and Ro, and they are related to the half width of the
channel δ by Ro−Ri = 2δ. The degree of curvature of the channel is usually
expressed as γ = δ/Rc; the curvature coefficient γ and the ratio η between
the inner and outer radius are related by the formula η = (1 − γ)/(1 + γ).

A suitable Reynolds number is

Re =
Ubδ

ν
,

which is based on the bulk velocity Ub, the half-width of the channel δ and
the viscosity of the fluid. The bulk velocity Ub is related to the mass flow per
axial length Q by Q = 2Ubδ. Instead of the Reynolds number it is possible
to encounter, in literature, the Dean number:

De = Re
√

γ,

which takes into account also the curvature parameter.
In his seminal work [31] dated 1928, Dean observed that as De exceeds a

certain threshold, the laminar solution [6]:

wl(r) =
Pθ

2ν

[
r log r + Ar + Br−1

]
, (1.2)

where A = (η2 logRi − logRo)(1 − η2)−1, B = (R2
i logRi)(1 − η2)−1, is no

more stable, and streamwise-elongated, large-scale, vortical structures de-
velop close to the outer wall of the curved channel. These vortices are now
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called Dean vortices (DV). Like its TCF counterpart, the characteristic di-
mension of the DV is the axial wavelength of the vortical structures; although
the DV are quite similar to TV, their characteristic dimensions are, however,
different.

As the Dean number increases, a pattern of transition to turbulence de-
velops which is a pale image of the rich scenario of transition to turbulence
discussed for the TCF. In fact, DV may merge or split (see [14], [13], [47]),
and this reduces or increases, respectively, the number of vortices in the
channel, and, as a consequence, their characteristic wavelength. However,
another scenario is possible (see [44], [68]), in which the streamwise vortices
deform in the azimuthal direction and successively travelling waves appear.
At first, a wave characterized by small azimuthal wavelength, corresponding
to undulating vortices, is present and successively wavy-like structures, with
large azimuthal wavelength, appear, which are known as twisting vortices.
The undulating vortices are quite similar to the WTV, while the twisting vor-
tices have no counterpart in the TCF. Once the turbulent regime is reached,
the presence of elongated structures become subject of some controversy. In
fact, the existence of large-scale turbulent Dean vortices (TDV) has been
questioned by some researchers, while others [52] believe that they do exist
at all (see [96] for a complete review of the subject).

In analogy with the TCF, we emphasize that the exposed pattern of
transition (see [11], [83]) depends heavily on the degree of curvature of the
channel as well as on end-effects, caused by the finite spanwise width of the
curved channel.

Owing to its importance in practical applications, the DF in the turbu-
lent regime has been studied more thoroughly than TCF to the aim of a
general understanding of the underlying physics of turbulence in presence
of streamwise curvature. This turbulence-focused attitude is an important
difference from the TCF, where the largest efforts have been devoted to the
study of the first stages of transition. The milestone work of Bradshaw [16],
and a full chapter of [116] are dedicated to the effects due to curvature in
turbulent flows, and a modern comprehensive review of the subject can be
found in [96]. As pointed out by Bradshaw [16], curvature effects on the
average properties of a flow in turbulent regime are heavily nonlinear, and,
in particular, the extra rate of strain imposed by streamwise curvature turns
out to be one order of magnitude larger than what would be inferred from
an analysis of the equations of motion.

As a consequence, massive differences exist between the turbulent straight
channel flow and a curved channel flow with even the smallest curvature.
Experimental (see [44]) as well as numerical analyses (see [85], [124], [91])
of the DF have been carried out in the past to elucidate how streamwise
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curvature affects the transition to turbulence and eventually the turbulence
itself; nevertheless, some fundamental issues deserve further investigation.
These aspects will be mentioned in §1.4.4.

1.4 Motivations

The aim of the present work is twofold. In the first half of the work, which is
schematically represented in the left part of the large central box in fig. 1.5,
we have considered the non-turbulent regime. The effect of temporal modu-
lations of the inner cylinder velocity (upper quadrant, numerical study) and
of the spatial modulation of the inner cylinder shape (lower quadrant, ex-
perimental study) are studied to understand how such forcing modifies the
pattern of transition to turbulence in TCF. In the second half of the work
(the right part of the box), turbulence itself becomes the central subject of
our study, carried out through direct numerical simulations. In fact, both
TCF (upper quadrant) and DF (lower quadrant) are considered in turbulent
regime, to the aim of characterizing the behaviour of engineering-relevant
parameters (e.g. friction coefficients, mean velocity profiles, turbulence in-
tensities etc.) and of analysing how large-scale and small-scale structures
coexist and interact.

1.4.1 Time-modulated TCF

Let us consider the TC problem with a co-sinusoidal time modulation of the
inner cylinder velocity:

wi(t) = Ωi(t)Ri = ΩRi cos(ωt),

with a zero mean rotation and the outer cylinder at rest, i.e. Ωo = 0. Both
stability analyses [92] and numerical simulations [125] have shown that, in the
low-frequency regime, Ri,cr is higher than in the no-modulation case. More-
over, recent numerical simulations conducted by Youd, Willis & Barenghi
[125] have shown that two kinds of flow exist, in dependence of the Reynolds
number and the oscillation frequency: (1) a reversible-TV flow (where the
sense of rotation of the TV changes as the inner cylinder goes from positive
to negative velocities); (2) a non-reversible TV flow.

However, these interesting results are available in literature just on a small
region of the two-dimensional space parameters made by Reynolds number
and modulation frequency. Moreover, the physical meaning of these flows
has not been considered in detail. We believe that the extensions of the
results to higher values of both frequency oscillation and Reynolds number
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could be interesting and instructive. In fact, by growing the frequency of
oscillation, it could be possible to determine, if any, the critical frequency
at which the TV cease to exist, and which kind of flow substitutes them.
Besides, by reaching values of Reynolds number which are associated with
WTV, it could be possible to see whether the temporal forcing interacts with
the periodic nature of the flow in an almost resonant behaviour. These points
will be addressed in detail in chapter §3.

1.4.2 Spatially-modulated TCF

Among the several devices which have been proposed to modify the behaviour
of the cellular-like structures, those that force the vortex wavelength have
been the most studied. We can cite the experimental studies of Wiener et
al. [122] on an hourglass geometry, that of Ikeda & Maxworthy [54] on a
sinusoidal modulated inner cylinder at rest and a moving outer one, and the
very recent ones by Drozdov, Rafique & Skali Lami [37] and Staples & Smits
[109] both on the moving sinusoidal inner cylinder with the outer one at rest.

In particular, the last two works present a qualitative description of the
pattern of transition to turbulence. We believe that an accurate quantitative
description of the transition to turbulence scenario could be very interesting
in determining the effects caused by the wavelength forcing. Besides, the
non-uniqueness which is typical of the TCF for the straight cylinder, has not
yet been explored for sinusoidally-shaped inner cylinders. These points will
be discussed in detail in chapter §4.

1.4.3 Turbulent TCF

Although TTV have been deeply investigated since the seminal work of Pai
[94], dated 1943, the difficulties of experimental measurements and the lim-
ited availability of accurate numerical simulations have determined a shortage
of data on the behaviour of the TTV, which are typically described through
flow visualisations, or with single-probe experimental measurements.

We believe that, by analysing the high-Reynolds number regime through
an accurate DNS, it could be possible to provide a large amount of infor-
mation on the behaviour of the flow in terms of mean velocity, turbulence
intensities, high-order statistics. Moreover, a contribute on the existence of
a logarithmic law for the concave and convex wall, which is still an open
problem (see [96]), could be given, eventually leading to an improvement of
the current RANS and LES modelling of rotating flows driven by wall move-
ments. Lastly, it is our aim to describe the interaction of wall turbulence
with TTV, by computing their relative contribution to the usual turbulent
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statistics. These points will be discussed in detail in chapter §5.

1.4.4 Turbulent DF

In spite of its above-mentioned importance, to our knowledge there are only
a few number of direct numerical simulations on DF in turbulent regime
(namely [85], [91], [124]). Besides, the results presented in literature some-
times disagree: for example the effect of curvature on the turbulent intensities
is considered negligible by [85] and very important by [91]. Moreover, the
analyses of some fundamental points remain at preliminary stage, as the be-
haviour of the friction coefficient as a function of the curvature on the concave
and convex surfaces, which have been studied by [91] but without particular
discussion of the obtained results.

Another fundamental issue for engineering applications and turbulence
modelling (RANS, LES) is the questioned existence of a logarithmic law for
the streamwise velocity. These points will be addressed in detail in chap-
ter §6.

1.5 Outline of the thesis

The outline of the thesis has been already sketched in fig. 1.5. The numer-
ical method used for the direct numerical simulations will be presented in
chapter §2, with emphasis on its design, targeted towards parallel comput-
ing and commodity hardware. In chapter §3 numerical simulations of a time
modulated TCF in a wide-gap geometry will be discussed. A map of the flow
regimes as a function of the Reynolds number and the frequency of modula-
tion will be presented, and the nature of the flows will be analysed in detail.
The results of a campaign of experiments on a TCF, with a sinusoidally-
shaped inner cylinder, will be presented in chapter §4. Chapter §5 opens the
part of the thesis devoted to the fully-turbulent regime, and describes the
TCF in turbulent regime. The analysis of the turbulent DF at several degrees
of curvature, carried out through DNS, is the subject of chapter §6. Finally,
in chapter §7 some general conclusions will be given, and the main results
presented in the previous chapters will be summarized and discussed on a
global optics; besides, some possible future developments will be hinted.
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Chapter 2

Numerical method

The numerical method used for the simulations presented in chapters §3, §5,
§6 will be introduced in this chapter. For a more detailed description of the
method, as well as for its parallel strategy and performance, the paper [99] by
Quadrio & Luchini must be taken as reference. Since this publication may not
be readily available, we report here the main characteristic of the numerical
method, and the minor adjustments implemented during the present work.

2.1 The direct numerical simulation

The direct numerical simulation (DNS) of the Navier–Stokes equations for in-
compressible fluids in geometrically simple, low-Reynolds number, turbulent
wall flows has become in the last years a valuable tool for basic turbulence
research [84]. A few examples of such flows are the turbulent plane channel
flows and boundary layers (which naturally call for the use of a cartesian
coordinate system), and turbulent pipe flows and flows in ducts with annular
cross-sections (which are well suited for the cylindrical coordinate system).

Despite their practical relevance, turbulent flows in pipes and circular
ducts have not been studied so deeply through DNS as their planar coun-
terparts. This can be at least partially ascribed to the numerical difficulties
associated with the cylindrical coordinate system, in particular the increase
of the azimuthal resolution of the computational domain with decreasing
radial coordinate.

For the cartesian coordinate system, a very effective formulation of the
equations of motion was presented almost 15 years ago by Kim, Moin & Moser
in [59]. This formulation has since then been employed in many of the DNS of
turbulent wall flows in planar geometries. It consists in the replacement of the
continuity and momentum equations written in primitive variables with two
scalar equations: one (second-order) for the normal component of vorticity
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and one (fourth-order) for the normal component of velocity, much as the
Orr–Sommerfeld and Squire decomposition of linear stability problems. In
this way pressure disappears from the equations, and the two wall-parallel
velocity components are easily computed (through the continuity equation
and the definition of vorticity) when a Fourier expansion is adopted for the
homogeneous directions. This method has been extended to the cylindrical
geometry in [99] and will be briefly reviewed in the following.

2.2 Formulation of the equations

The non-dimensional Navier-Stokes equations for an incompressible fluid in
cylindrical coordinates are:

∂u

∂z
+

1

r

∂ (rv)

∂r
+

1

r

∂w

∂θ
= 0; (2.1)

∂u

∂t
+ u

∂u

∂z
+ v

∂u

∂r
+

w

r

∂u

∂θ
= −∂p

∂z
+

1

Re
∇2u; (2.2a)
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∂w

∂θ

)
; (2.2b)
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+
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∂p

∂θ
+

1

Re

(
∇2w − w

r2
+

2

r2

∂v

∂θ

)
, (2.2c)

where the Laplacian operator in cylindrical coordinates takes the form:

∇2 =
∂2

∂z2
+

1

r

∂

∂r

(
r

∂

∂r

)
+

1

r2

∂2

∂θ2
, (2.3)

and a Reynolds number Re = Uδ/ν is selected by choosing the appropriate
reference dimension δ and velocity U .

To close the differential problem an initial condition for all the fluid vari-
ables should be specified, and suitable boundary conditions have to be chosen.
Periodic boundary conditions are used for the azimuthal direction, as well
as for the axial direction, whereas the no-slip condition is considered at the
walls.

The periodicity assumption permits to write a variable f as

f(z, r, θ, t) =
∑

α,m

f̂(r, t)eiαzeimθ,

where the hat indicates the Fourier component of the transformed variable
and the symbols α and m denote the axial and azimuthal wavenumbers,
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respectively. By defining k2 = (m/r)2 + α2, and by introducing the Chan-
drasekhar [22] notation:

D1(f) =
∂f

∂r
; D∗(f) =

∂f

∂r
+

f

r
, (2.4)

the Fourier-transformed Laplacian operator (2.3) can be written in the more
compact form:

∇2 = D∗D1 − k2.

The transformed equations are:

iαû + D∗(v̂) +
im

r
ŵ = 0; (2.5)

∂û

∂t
= −iαp̂ +

1

Re

(
D∗D1(û) − k2û

)
+ ĤU ; (2.6a)

∂v̂

∂t
= −D1(p̂) +

1

Re

(
D1D∗(v̂) − k2v̂ − 2im

r2
ŵ

)
+ ĤV ; (2.6b)

∂ŵ

∂t
= − im

r
p̂ +

1

Re

(
D1D∗(ŵ) − k2ŵ +

2im

r2
v̂

)
+ ĤW. (2.6c)

In these expressions, the nonlinear convective terms have been grouped
under the following definitions:

ĤU = −iαûu − D∗(ûv) − im

r
ûw; (2.7a)

ĤV = −iαûv − D∗(v̂v) − im

r
v̂w +

1

r
ŵw; (2.7b)

ĤW = −iαûw − D1(ûw) − im

r
ŵw − 2

r
v̂w. (2.7c)

2.3 Equation for the radial vorticity compo-

nent

The wall-normal (radial) component of the vorticity vector, which we shall
indicate with η, is defined as

η =
1

r

∂u

∂θ
− ∂w

∂z
,

and, after transforming in Fourier space, it is given by:

η̂ =
im

r
û − iαŵ. (2.8)
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By multiplying equation (2.6a) times im/r and subtracting equation
(2.6c) times iα, and by means of the relations (2.4) it is possible to write the
following second-order equation for η̂:

∂η̂

∂t
=

1

Re

(
D1D∗(η̂) − k2η̂ + 2

im

r2
D1(û) + 2

mα

r2
v̂

)
+

im

r
ĤU−iαĤW. (2.9)

We note that equation (2.9) does not contain the pressure terms, be-
cause of the nabla vector properties. The numerical solution of equation
(2.9) requires an initial condition for η̂, which can be computed from the
initial condition for the velocity field. The periodic boundary conditions in
the homogeneous directions are automatically satisfied thanks to the Fourier
transform, whereas the no-slip condition for the velocity vector translates in
η̂ = 0 to be imposed at the two walls at r = Ri and r = Ro.

2.4 Equation for the radial velocity compo-

nent

The elimination of the pressure-related term in equation (2.6b) is a little
cumbersome, since it requires pressure to be written as a function of velocity.
After some algebra and by using the time derivative of the continuity equation
(2.5), the following expression for p̂ is obtained:

p̂ = − 1

Re

1

k2

[
k2D∗(v̂) − D∗D1D∗(v̂) − 2

m2

r3
v̂ + 2

im

r2
D1(ŵ) − 2

im

r3
ŵ

]
+

− 1

k2

[
∂D∗(v̂)

∂t
+ iαĤU +

im

r
ĤW

]
.

This expression for p̂ can now be differentiated with respect to the ra-
dial coordinate, and then substituted into equation (2.6b) to get rid of p̂
altogether. Eventually, the fourth-order equation for v̂ emerges in the final
form:

∂

∂t

[
v̂ − D1

(
1

k2
D∗(v̂)

)]
=

1

Re
D1

{
1

k2

[
k2D∗(v̂) − D∗D1D∗(v̂) − 2

m2

r3
v̂+

2
im

r2
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ŵ
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+

1
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−k2v̂ + D1D∗(v̂) − 2
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)
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[
1

k2

(
iα ĤU +
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r
ĤW

)]
+ ĤV . (2.10)
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This scalar equation can be solved numerically provided an initial con-
dition for v̂ is known. The periodic boundary conditions in the homoge-
neous directions are automatically satisfied thanks to the Fourier transform,
whereas the no-slip condition for the velocity vector immediately translates
in v̂ = 0 to be imposed at the two walls. The continuity equation written
at the two walls makes evident that the additional two boundary conditions
required for the solution of (2.10) are D1(v̂) = 0 at r = Ri and r = Ro.

2.5 Velocity components in the homogeneous

directions

For computing the nonlinear terms and their spatial derivatives, one needs
to know the velocity components û and ŵ in the homogeneous directions at
a given time by knowing v̂ and η̂. By using the definition definition (2.8) of η̂
and the continuity equation (2.5) written in Fourier space, a 2 × 2 algebraic
system can be written for the unknowns û and ŵ; its analytical solution
reads: 




û =
1

k2

(
iαD∗(v̂) − im

r
η̂

)

ŵ =
1

k2

(
iαη̂ +

im

r
D∗(v̂)

) (2.11)

When k2 = 0 the system (2.11) is singular. By applying the averaging
operator

f̃(r, t) =
1

Lz

1

lθ

∫ Lz

0

∫ lθ

0

f(z, r, θ, t) dzdθ,

on equations (2.2a) and (2.2c), the proper equations for the mean motion
can be written as

∂ũ

∂t
=

1

Re
D∗D1 (ũ) − D∗ (ũv) + fz;

∂w̃

∂t
=

1

Re
D1D∗ (w̃) − D1 (ũw) − 2

r
ṽw + fθ.

In these expressions, fz and fθ are the forcing terms needed to force the
flow through the channel against the viscous resistance of the fluid.
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2.6 Spatial discretization in the homogeneous

directions

As a consequence of the hypothesis of periodicity, the unknown functions
are expanded in truncated Fourier series in the homogeneous directions. For
example the radial component v of the velocity vector is represented as:

v(z, r, θ, t) =

+nz/2∑

h=−nz/2

+nθ/2∑

`=−nθ/2

v̂h`(r, t)e
iαzeimθ (2.12)

where:

α =
2πh

Lz

= α0h; m =
2π`

lθ
= m0`

Here h and ` are integer indexes corresponding to the axial and azimuthal
direction respectively, and α0 and m0 are the fundamental wavenumbers in
these directions, defined in terms of the axial length Lz of the computational
domain and its azimuthal extension lθ, expressed in radians.

2.7 Compact finite-differences schemes

Compact finite-differences (hereinafter FD) schemes are used to discretize
the differential operators by enjoying quasi-spectral resolution (see [65]). The
main characteristic of a compact FD scheme can be most easily understood
by thinking of a standard FD formula in Fourier space as a polynomial in-
terpolation of a transcendental function, with the degree of the polynomial
corresponding to the formal order of accuracy of the FD formula [115]. Com-
pact schemes improve the interpolation by replacing the polynomial with a
ratio of two polynomials, i.e. with a rational function. This obviously in-
creases the number of available coefficients, and moreover gives control over
the behavior at infinity (in frequency space) of the interpolant, whereas a
polynomial necessarily diverges. This allows a compact FD formula to ap-
proximate a differential operator in a wider frequency range, thus achieving
resolution properties similar to those of spectral schemes [65].

As an explicative example, we will illustrate the method proposed by
Thomas [115] by considering a fourth-order one-dimensional ordinary differ-
ential equation, linear for simplicity, in the form:

D4 (a4f) + D2 (a2f) + D1 (a1f) + a0f = g, (2.13)

where the coefficients ai = ai(r) are arbitrary functions of the independent
variable r, and g = g(r) is a known right-hand side and Dp = ∂p/∂rp.
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Let us moreover suppose that a differential operator, for example D4, is
approximated in frequency space as the ratio of two polynomials, say D4 and
D0. Polynomials like D4 and D0 have their counterpart in physical space, and
d4 and d0 are the corresponding FD operators. The key point is to impose
that all the differential operators appearing in the example equation (2.13)
admit a representation such as the preceding one, in which the polynomial
D0 at the denominator remains the same.

Equation (2.13) can thus be recast in the new, discretized form:

d4 (a4f) + d2 (a2f) + . . . + d1 (a1f) + d0 (a0f) = d0 (g) ,

and this allows us to use explicit FD formulas, provided the operator d0 is
applied to the right-hand side of our equations. We note that, owing to
the absence of the third-derivative operator from equation (2.13), compact
fourth-order accurate schemes at the cost of explicit schemes can be used.

However, the particular nature of equations (2.9) and (2.10) does not per-
mit to obtain straightforwardly a fourth-order accuracy over a five unevenly
spaced points stencil (see [75]), as their cartesian counterpart do. In fact
three main points make the extension difficult: (1) third-derivative terms are
present in equation (2.10), thus preventing the possibility of finding explicit
compact schemes; (2) both equations (2.9) and (2.10) do contain r-dependent
coefficients which are not in the innermost position; (3) equation (2.10) for
v̂ is a fourth-order equation, yet the highest differential operator is not D4,
but DD∗DD∗.

The first problem can be solved by using the continuity equation (2.5),
which allows the first radial derivative of v̂ to be substituted with terms not
containing radial derivatives:

D∗(v̂) = −iαû − im

r
ŵ.

The second problem, though cumbersome for the algebra handled, can be
faced with a straightforward strategy by applying repeated integrations by
parts to shift the r-dependent coefficients in the innermost position, i.e. by
repeatedly performing the following substitutions:

aD1(f) = D1(af) − D1(a)f ; aD∗(f) = D∗(af) − D1(a)f,

where a indicates the generic r-dependent coefficient. Finally, the presence
of fourth order terms like DD∗DD∗ instead of D4, simply reflects in a more
complicated formula for the derivation of the FD coefficients.
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2.8 Time discretization

The two equations (2.9) and (2.10) are coupled since (2.9) contains v̂. Pro-
vided the nonlinear terms are advanced in time explicitly, equations (2.9)
and (2.10), though coupled, can be solved sequentially at each time step, by
solving first (2.10) for v̂ and then (2.9) for η̂.

Time integration of the equations is performed by a partially-implicit
method, implemented to reduce the memory requirements of the code to a
minimum, by exploiting the finite-difference discretization of the wall-normal
direction. The use of a partially-implicit scheme is a common approach
in DNS [59]: the explicit part of the equations can benefit from a higher-
accuracy scheme, while the stability-limiting viscous part is subjected to
an implicit time advancement, thus relieving the stability constraint on the
time-step size ∆t.

We can write the equations (2.9) and (2.10), for a generic wavenumber
pair (h, `), in a short-handed form of the type:

∂

∂t
ûnknh` = êxplh` + împlh`

where ûnknh` represents the unknowns of the problem, namely the left-hand
side of equations (2.9) and (2.10), êxplh` is the explicit part, which consist
of nonlinear terms plus some additional viscous curvature terms (see [98] for

more details), and împlh` is the implicit part.
By following [86], we use an explicit third-order, low-storage Runge-Kutta

method for the integration of the explicit part of the equations, and an
implicit second-order Crank-Nicolson scheme is used for the implicit part,
which altogether result in

ûnkn
n+p/3

h` − ûnkn
n+(p−1)/3

h`

∆t
= σp

(
împl

n+p/3

h` + împl
n+(p−1)/3

h`

)
+

+

(
τpêxpl

n+(p−1)/3

h` + ξpêxpl
n+(p−2)/3

h`

)
(2.14)

with p = 1, 2, 3, and ∆t the time advancement. The σ, τ , ξ coefficient vectors
can be expressed in a single matrix of the form

(
σT |τ T |ξT

)
=




4/15 8/15 0
1/15 5/12 −17/60
1/6 3/4 −5/12


 .

The procedure to solve these discrete equations is made by two distinct
steps. In the first step, the right-hand sides (hereinafter RHS) corresponding
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to the explicitly-integrated parts part have to be assembled. At a given time,
the Fourier coefficients of the variables are represented at different r positions;
hence the velocity products can be computed through inverse/direct Fast
Fourier Transform (hereinafter FFT) in wall-parallel planes. Their spatial
derivatives are then computed: spectral accuracy can be achieved for wall-
parallel derivatives, whereas the FD compact schemes are used in the wall-
normal direction. These spatial derivatives are eventually combined with
values of the RHS at previous time levels. The whole r range, from one wall
to the other, must be considered.

The second step involves, for each α, m pair, the solution of a set of two
ordinary differential equations (ODEs), derived from the implicitly integrated
viscous terms, for which the RHS is now known. A FD discretization of the
radial differential operators produces two real banded matrices, in particular
pentadiagonal matrices when a 5-point stencil is used. The solution of the
resulting two linear systems gives η̂n+1

h` and v̂n+1
h` , and then the homogeneous

velocity components ûn+1
h` and ŵn+1

h` can be computed by solving system (2.11)
for each wavenumber pair. For each α, m pair, the solution of the two ODEs
requires the simultaneous knowledge of their RHS in all r positions. The
whole α, m space must be considered. In the α − m − r space the first
step of this procedure proceeds per wall-parallel planes, while the second one
proceeds per wall-normal lines.

2.9 The parallel strategy

Being the calculations executed in parallel by p computing machines (nodes),
data necessarily reside on these nodes in a distributed manner, and commu-
nication between nodes takes place. Therefore, the main design goal is to
keep the required amount of communication to a minimum.

The FD discretization in the r direction permits to distribute the un-
knowns in wall-parallel slices and to carry out the two-dimensional inverse
and direct FFT locally to each machine. Moreover, thanks to the locality
of the FD operators, the communication required to compute wall-normal
spatial derivatives of velocity products is small, since data transfer is needed
only at the interface between contiguous slices.

The arrangement of the data across the machines is schematically shown
in figure 2.1: each machine holds all the streamwise and spanwise wavenum-
bers for nr/p contiguous r positions. The FFT in the homogeneous directions
do not require communication at all, while the radial derivatives needed for
the evaluation of the RHS require a small amount of communication at the
interface between contiguous slices.
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Figure 2.1: Arrangement of data in wall-parallel slices across the channel,
for a parallel execution with p = 3 computing nodes.

The critical part of the procedure lies in the second half of the time-step
advancement, i.e. the solution of the set of two linear systems, one for each
h, ` pair, and the recovery of the planar velocity components: the necessary
data just happen to be spread over all the p machines. It is relatively easy
to avoid a global transpose, by solving each system in a serial way across the
machines: adopting a LU decomposition of the pentadiagonal distributed
matrices, and a subsequent sweep of back-substitutions, only a few coeffi-
cients at the interface between two neighboring nodes must be transmitted.
The global amount of communication remains very low and, at the same
time, local between nearest neighbors only. The problem here is to obtain a
reasonably high parallel efficiency: if a single system had to be solved, the
computing machines would waste most of their time waiting for the others
to complete their task. In other words, with the optimistic assumption of in-
finite communication speed, the total wall-clock time would be simply equal
to the single-processor computing time. The key observation to obtain high
parallel performance is that the number of linear systems to be solved at
each time (sub)step is very large, i.e. (nz + 1)(nθ + 1) which is at least 104

and sometimes much larger in typical DNS calculations [32]. This allows the
solution of the linear systems to be efficiently pipelined.

While a computer program based on the numerical method described
heretofore can be easily run on a general-purpose cluster of machines, con-
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nected through a network in a star topology with a switch, for maximum ef-
ficiency a dedicated computing system can be specifically designed and built
on top of the parallel algorithm described above. An example of a such a ded-
icated system, made by 10 SMP nodes, has been built at the Dipartimento
di Ingegneria Aerospaziale del Politecnico di Milano. Each node carries 2
Intel Xeon 2.66 GHz CPU, and 512MB of 266 MHz SDRAM; the intercon-
nections are two onboard Gigabit Ethernet cards. This is the machine where
most of the computations have been carried out. For some smaller computa-
tions we have used the first prototype of such a dedicated system, composed
of 8 SMP Personal Computers: each node is equipped with 2 Pentium III
733MHz CPU and 512MB of 133MHz SDRAM. The nodes are connected to
each other by two cheap 100MBits Fast Ethernet cards.

Finally, we notice that the cylindrical version of the computer code shares
with its cartesian counterpart the basic structure, and the high computa-
tional efficiency when executed in serial or parallel mode (see [99]). The
differences in source code are actually very limited, allowing to re-use most
of the numerical routines.

2.10 Validation

2.10.1 Laminar TCF

To the purpose of validating the numerical method in the cylindrical geom-
etry, we present here a few results concerning both TCF and DF. Further
comparisons of results obtained from our DNS code and results available
in literature can be found in the following chapters. For the TCF numerical
simulations have been conducted in the laminar regime for various dimension
of the radius ratio, η; in fig. 2.2 the computed radial profile of the azimuthal
velocity w(r) is presented for Ri = 2, Ro = 0 and for two different η : 0.925
and 0.75.

Both the velocity profiles fit well the laminar solution wl(r), given by
equation (1.1), thus no visible difference can be appreciated between the
computed solutions and the analytical solutions. The relative error E be-
tween the computed and the laminar solution:

E = max
Ri<r<Ro

∣∣∣∣
w(r) − wl(r)

wmax

∣∣∣∣ (2.15)

where wmax is the maximum of the azimuthal velocity, is plotted in fig. 2.3 for
η = 0.925. The value of E is low and, most important, it decays as a fourth-
order power function of the number of points in the radial direction nr−4,
which confirms the asymptotic order of accuracy of the numerical method.
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Figure 2.2: Laminar solution wl(r) for the TCF with Ω = 0. Analytical
solution: continuos line, η = 0.925, and dashed line, η = 0.75. Computed
solution: 4 for η = 0.925 (with nr = 64), and � for η = 0.75 (with nr = 32).
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Figure 2.3: Relative error as a function of nr for a TCF with Ω = 0, η = 0.975.

26



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2

w
 [

w
m

ax
]

∆r [δ]

γ=0.0126
γ=0.143

Figure 2.4: Laminar solution wl(r) for the DF with Pθ/µ = 2. Analytical
solution: continuous line, γ = 0.0126, and dashed line, γ = 0.143. Computed
solution: 4 for γ = 0.0126 (with nr = 32), and � for γ = 0.143 (with
nr = 64).

2.10.2 Laminar DF

The same kind of validation is carried out for the DF with a ratio between
the pressure gradient and the viscosity equal to two, i.e. Pθ/ν = 2. Both
cases of large (γ = 0.0126) and small (γ = 0.143) curvature have been tested;
the azimuthal velocity profile w(r), obtained from the numerical simulations
are plotted in fig. 2.4 and compared with the laminar solution wl(r), given
by equation (1.2). The agreement between the velocity profiles is fairly good;
the relative error, plotted in fig. 2.5 for γ = 0.143, shows both small values
and a fourth-order decay.

2.10.3 TV and WTV

The numerical method is also assessed by comparing the obtained values
of Ri,cr with those available in literature for both large-gap and small-gap
geometries. A periodic box with Lz = 2d, lθ = π is considered; 32 and 16
modes in axial and azimuthal directions are used, whereas 33 points are used
in radial direction. The initial field consists of fluid at rest with small super-

27



 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 10  100

E

nr

error

x-4

Figure 2.5: Relative error as a function of nr for a DF with Pθ/µ = 2, γ =
0.143.

imposed disturbances, O(10−3), on high spatial modes. After a settlement
time, the solution, for low values of the Reynolds number, reaches a steady
regime. Other grids and different initial conditions have been considered
too: the results have been found to differ only for the time required for the
settlement of the final solution.

For a large-gap geometry with η = 0.5 our simulations provide a Ri,cr

in the range ]68.2, 68.4[, in excellent agreement with the value of 68.2 calcu-
lated through numerical simulations by [42],[87] and with the value of 68.4
measured in experiments by [103]. The small-gap geometry with η = 0.95
provides good results too; a Ri,cr in the range ]184, 186[ is calculated against
a value of 185 by [87]. Moreover, the value of the torque [34]:

G(r) = µ2πr2H

[
∂w(r)

∂r
− w(r)

r

]
(2.16)

evaluated at the inner wall has been calculated in both geometries. In table
2.1 the values of G(Ri), for various Ri, are compared with those calculated by
[42], in a large-gap geometry (η = 0.5) and with the experimental results of
[34] for a small-gap geometry (η = 0.95). The agreement is fairly good in the
large-gap geometry, and it is satisfactory (around one per cent), considering
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η = 0.5 G(Ri)[µwiRiH] η = 0.95 G(Ri)[10−7Nm]
Ri ref. [42] here Ri ref. [34] here % error

60.0 16.7551 16.7546 150 94 96.58 2.6
68.0 16.7551 16.7546 184 118 118.47 0.4
69.0 16.9347 16.9370 186 121.3 120.10 1.0
72.5 17.6752 17.6758 188 124 126.30 1.8
80.0 19.0527 19.0514 195 140 142.45 1.7

Table 2.1: Steady TCF: torque, as in eq. (2.16), at the inner cylinder, for
different values of Ri. In the large-gap geometry (η = 0.5) the comparison
is with the numerical results by [42]. For the small-gap geometry (η = 0.95)
the comparison is with the experimental results by [34].

the coarse mesh used, in the small-gap case. Preliminary simulations in the
wavy regime have been conducted too. A DNS with a Lz = 2d, lθ = 2π
periodic box and with (nz, nθ, nr) = (64, 32, 32) has been conducted for
values of the Reynolds numbers of (Ri, Ro) = (255,−55). The results of the
simulations show a pair of wavy vortices, with azimuthal wavenumber m = 2
and a characteristic period of rotation T = 117δ/wi; the non-dimensional
rotational velocity s = 2π/(mTΩi) is 0.054, in agreement with the results of
0.05 derived from the graphs presented by [107].

2.11 Performance

A brief evaluation of the performance of the numerical method is now given
by referring to [99] for more detailed analysis. We present here data ob-
tained with the cartesian counterpart of the present code. The performance
evaluated for the cartesian code applies for the cylindrical code too, in par-
ticular concerning the properties of the PLS parallel method. For a problem
of the same computational size, the CPU overhead of the cylindrical version
compared to the cartesian case is approximately 40%. Pre-computing the
r-dependent coefficients increases memory requirements by about 13%. In
the following, instead of the (nz, nθ, nr) triad already seen for the cylindri-
cal code, we will consider the streamwise and spanwise modes nx and nz,
respectively, and the wall normal discretization points ny, of the cartesian
geometry.

The amount of required RAM is dictated by the number and the size
of the three-dimensional arrays, and it is typically reported (see [59],[55])
to be no less than 7 nx × ny × nz floating-point variables. Owing to the
implementation of the time advancement procedure, which takes advantage of
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the finite-difference discretization of the wall-normal derivatives, the present
code requires a memory space of 5 nx × ny × nz floating-point variables,
plus workspace and two-dimensional arrays. For example a simulation with
nx = ny = nz = 128 takes only 94 MBytes of RAM (using 64-bit floating-
point variables).

In a parallel run the memory requirement can be subdivided among the
computing machines. With p = 2 the same 1283 case runs with 53 MBytes
of RAM (note that the amount of RAM is slightly larger than one half of the
p = 1 case, because of the duplication of boundary planes).

As far as CPU efficiency is concerned, without special optimization the
1283 test case mentioned above requires 42.8 CPU seconds for the computa-
tion of a full three-sub-steps Runge-Kutta temporal step on a single Pentium
III 733MHz processor. Internal timings show that the direct/inverse two-
dimensional FFT routines take the largest part of the CPU time, namely
56%. The calculation of the RHS of the two governing equations (where
wall-normal derivatives are evaluated) takes 25% of the total CPU time, the
solution of the linear systems arising from the implicit part around 12%, and
the calculation of the planar velocity components 3%. The time-stepping
scheme takes 3% and computing a few runtime statistics requires an addi-
tional 1% of the CPU time.

The parallel (distributed-memory) performance of the code is illustrated
in fig. 2.6, where speedup ratios are reported as a function of the number of
computing nodes. We define the speedup factor as the ratio of the actual
wall-clock computing time tp obtained with p nodes and the wall-clock time
t1 required by the same computation on a single node:

S(p) =
tp
t1

.

The maximum or ideal speedup factor Si that we can expect with our
PLS algorithm, corresponding to the assumption of infinite communication
speed, is less than linear, and can be estimated with the formula:

Si(p) = p

(
1 − 4(p − 1)

ny

)
, (2.17)

where the factor 4 accounts for the two wall-parallel planes duplicated at
each side of interior slices. Equation (2.17) reduces to a linear speedup when
ny → ∞ for a finite value of p. A quantitative evaluation of the function
(2.17) for typical values of ny = O(100) shows that the maximum achievable
speedup is nearly linear as long as the number of nodes remains moderate,
i.e. p < 10.
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Figure 2.6: Measured speedup on the Pentium III-based machine as a func-
tion of the number p of computing nodes. Thick lines are the ideal speedup
Si from eq. (2.17) for ny = 128 (continuous line) and ny = 256 (dashed line).
From [99].
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The maximum possible speedup Si is shown with thick lines. Si ap-
proaches the linear speedup for large ny, being reasonably high as long as p
remains small compared to ny: with p = 8 it is 6.25 for ny = 128 and 7.125
for ny = 256. Notwithstanding the commodity networking hardware and
the overhead implied by the error-corrected TCP protocol, the actual perfor-
mance compared to Si is extremely good, and improves with the size of the
computational problem. The case 192× 128× 192 is hardly penalized by the
time spent for communication, which is only 2% of the total computing time
when p = 8. The communication time becomes 7% of the total computing
time for the larger case of nx = 128, ny = 256 and nz = 128, and is 12% for
the worst (i.e. smallest) case of 1283, which requires 7.7 seconds for one time
step on our machine, with a speedup of 5.55.

2.12 Final remarks

The numerical method reviewed here has proven to be capable of achieving
high efficiency by using commodity hardware. Many elements of the code
concur to the cause, in particular: (1) the compact FD approach, (2) the v, η
formulation, (3) the parallel method, (4) the possibility of using a low-cost,
dedicated system.

In fact, the choice of compact finite differences of fourth-order accuracy,
while retaining a large part of the accuracy enjoyed by spectral schemes, is
crucial to the development of the parallel strategy, which exploits the locality
of the FD operators to largely reduce the amount of inter-node communica-
tion. Moreover, it permits a minimal storage space of 5 variables per point,
compared to the commonly reported minimum of 7 variables per point. Im-
portant is also the formulation of the cylindrical Navier–Stokes equations in
terms of radial velocity and radial vorticity, which permits to solve them
numerically with high computational efficiency.

Besides, the parallel method, based on the pipelined solution of the linear
systems (PLS) arising from the discretization of the viscous terms, permit to
subdivide the computing effort, as well as the required memory space, among
a number of low-cost computing nodes. Moreover, a dedicated system can
be easily built, using commodity hardware and hence at low cost, to run a
computer code based on the PLS method.
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Chapter 3

Temporal Modulation of

Taylor-Couette flow

In the present chapter the flow field in the gap between an inner cylinder,
moving with a time dependent law, and an outer steady cylinder is investi-
gated via direct numerical simulations. A large-gap geometry is considered
and Reynolds numbers characterized by the presence of TV and WTV are
analysed.

3.1 Background

Since the milestone work of Taylor [114], who discovered that an array of
pairs of counter-rotating vortices appear as a product of centrifugal instability
above a critical value of the Reynolds number, large efforts of the scientific
community have been devoted to the comprehension of the behaviour of these
vortices, the TV.

The behaviour of these doughnut-like structures is considered to be piv-
otal for the overall control strategy of the flow, i.e. to enhance the mass
transport and mixing properties. Many control strategies have been studied,
ranging from the shape modification of the cylinders (hourglass geometry
[122], wavy geometry [100]), to the axial movement of the inner cylinder
(see [82], [71]), from the superposition of axial flow (see [121], [53]) to the
temporal modulation of the azimuthal velocity of the cylinders. In particu-
lar, as recently reviewed by Normand [92], the temporal modulation of TCF
has been investigated through asymptotic methods [49], experimental stud-
ies [35], linear stability combined with Floquét theory [21], and numerical
simulations [125].

Here, we consider the last approach and study the flow generated by the
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co-sinusoidal modulation of the rotational velocity of the inner cylinder

Ωi(t) = Ω cos(ωt) (3.1)

in the case of zero-mean rotation, being the outer cylinder at rest, i.e. Ωo = 0.
As a consequence of (3.1), the inner-cylinder Reynolds number defined in §1.2
is now a time-dependent parameter,

Ri(t) =
ΩRid

ν
cos(ωt) = R cos(ωt).

The Navier–Stokes equations in the case of cylinders with infinite axial length
admit a solution, which can be written in closed form by means of the mod-
ified Bessel functions of order one, I1 and K1. The solution is given by (see
[21]):

w(r, t) = wi

[
η

1 − η2

(Ro

r
− r

Ro

)
+

∆(r,Ro)

∆(Ri,Ro)
cos(ωt)

]
, (3.2)

where wi = ΩRi, ∆(r, s) = I1(κr)K1(κs) − I1(κs)K1(κr), κ =
√

iω/ν and
i =

√
−1.

Owing to the amplitude of the modulated part, which is not infinitesimal,
a perturbation theory cannot be used, however both stability analyses and
numerical simulations have shown that, in the low-frequency case, the critical
value of the Reynolds number at which TV appear is higher than Ri,cr,
which is the value for the zero-frequency limit. Moreover, when this critical
Reynolds number R0 is reached, the numerical simulations in [125] have
shown that two kinds of flow can exist, in dependence of the Reynolds number
and the oscillation frequency. In one case, the so-called reversing TV appear:
their sense of rotation alternatively changes as the inner cylinder velocity goes
from the positive to the negative values, and vice versa; in the other case,
a non-reversing modulated flow appears, in which the sense of rotation does
not change with the sign of the inner-cylinder velocity. Besides, experiments
[95] have shown that, for very high frequencies, TV exist just in a small range
of Reynolds numbers and thus a sudden transition to a chaotic flow takes
place.

Since the physical nature of this reversing phenomenon is not clear, we
investigate these problems with DNS. We chose a large-gap geometry since
the TV have a wider domain of existence than in small-gap geometry, as we
will see soon in §3.2. As a consequence, the transition between reversing and
non-reversing regimes can be observed in wider range of Reynolds numbers.
At the same time, the range of considered Reynolds numbers and frequencies
will be expanded compared to what is currently available in literature [126],
in order to observe the effects of a temporal modulation on the possible
insurgence of periodic phenomena.
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3.2 The numerical simulations

We chose to focus on a large-gap geometry with η = 0.5. The reason is
related to the relative difference between the critical values of the Reynolds
number at which TV and WTV settle, respectively Ri,cr and Ri,w. When
η is close to one this relative difference, i.e. (Ri,w − Ri,cr)/Ri,cr, is small,
but increases as η diminishes. For example, in a small-gap geometry with
η = 0.883 (see [2]) the relative range is 0.2, while for η = 0.5 a value of 6 is
obtained.

Since our main interest is the behaviour of a single pair of vortices and
not the interaction between many of them, we have chosen an axial length
of Lz = 2d, which, according to the experimental observations, is the typical
axial dimension of a single pair of counter-rotating vortices. As azimuthal
dimension we have considered the full angular extension: lθ = 2π. The num-
ber of modes chosen for the simulation are (nz, nθ) = (32, 16); for the radial
direction 33 points have been chosen on a non-uniform mesh. Simulations
with a finer grid, (nz, nθ, nr) = (32, 16, 64), have shown no substantial dif-
ference. In [125] various axial wavelength have been considered, while in our
simulations the axial wavelength α = 2π/Lz is fixed at the value π/d.

The initial condition for the ω = 0 case consists of the Couette laminar
solution, equation (1.1), with superimposed disturbances of O(10−3) on the
higher-frequency spatial modes. When a temporal modulation is considered,
the initial condition is the solution of an ω = 0 case at the proper Ri.

3.3 Reversing and non-reversing TV

As mentioned in §2.11, when ω = 0 the computed Ri,cr is in the range
]68.2, 68.4[. As Ri grows beyond Ri,cr the TV thrive until the appearance of
WTV produced by an Höpf bifurcation. The corresponding Ri,w is approxi-
mately 480 ([58] reported a value of 475) and the azimuthal wavenumber is
m = 1.

When a slow modulation is considered the appearance of TV shifts from
R = Ri,cr to R = R0 > Ri,cr: with ω ≈ 3ν/d2 it is R0 ≈ 123, which results
in a ratio R0/Ri,cr ≈ 1.78. This result is in good agreement with the value
obtained by Youd, Willis & Barenghi [126], i.e. R0/Ri,cr ≈ 1.755. The
increase in the value of the critical Reynolds number means that the core of
the flow does not respond instantaneously to the velocity of the inner wall.
Though R (Ri,cr < R < R0) is compatible with the existence of TV for the
non-modulated case, locally the vortices feel a lower R, and thus decay; when
R > R0, however, the vortices have enough energy to survive through the
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Figure 3.1: Reversing and non-reversing TV flow.

whole cycle.
As observed in the numerical study by [125], for R > R0 and low ω a

reversible regime exists, for which the sense of rotation of the TV changes as
Ωi passes from positive to negative values, see fig. 3.1(a). This configuration
is named reversing TV flow (RTV hereinafter). No particular consideration
was given in [125] to the physical significance of the RTV.

In a physical experiment the sense of rotation of the inner cylinder can
be reversed by simply viewing the experimental setup upside-down; if one
pair of vortices is pushing fluids from the outer towards the inner cylinders
in the up orientation, it will continue to do so also in the upside-down view.
So the numerical RTV appears as unphysical in experiments, where only
non-reversing TV (NRTV hereinafter) are observed, see fig. 3.1(b) .

The explanation of the numerically observed RTV can be given by con-
sidering the influence of a (numerical or experimental) perturbation in the
selection of the solution of a pitchfork bifurcation problem. By applying a
perturbation expansion [30] of the velocity field in the Navier–Stokes equa-
tions, the transition of the standard TCF from the laminar solution can be
expressed through a nonlinear equation for the amplitude X(t) of the per-
turbed streamwise velocity field, namely

Ẋ = (Ri − Ri,cr)X − X3. (3.3)

The equation (3.3) is nonlinear and depends on the parameter Ri. Its
steady solution can be found by solving (3.3) for Ẋ = 0. In fig. 3.2 we
have sketched these steady solutions: by growing the Ri above its critical
value Ri,cr we pass from one stable solution, labeled with the number 1 (see
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Figure 3.2: State diagram illustrating a pitchfork bifurcation, eq. (3.3), from
[8]. The stable branch are labeled with 1, the unstable with −1.

[27]), to three possible solutions: one unstable (label −1) and two stable
(label 1). In line of principle, both the stable supercritical branches can be
followed by continuously growing Ri from the subcritical solution. Owing
to its particular form, this bifurcation is known as pitchfork bifurcation.
In physical system perturbations ε of some sort (no matter if numerical or
experimental in nature) always exist, and (3.3) modifies in:

Ẋ = (Ri − Ri,cr)X − X3 + ε. (3.4)

The steady solutions to this equation are sketched in fig. 3.3. Now the two
branches of the solution are no mores symmetric, and only one can be followed
by slowly increasing Ri from Ri = 0, while the other can be reached only
through jumps. In any case, the non uniqueness feature exists only above a
critical value Ri,nu, to which corresponds a critical point labeled in fig. 3.3
with the index i = 0. Roughly speaking, the perturbation selects a particular
branch of the solution. Another, not minor, consequence of the presence of
a perturbation is that “no precise critical value of Ri exists for the onset of
the cellular motion” (as stated in [8]).

In an experimental setup, the experimental perturbation εe depends on
many factors related to the geometry (e.g. lids’ movements, the manufactur-
ing process), and is therefore not controllable. Thus, εe chooses the preferred
branch which means, roughly, how many vortices appear; however, the chosen
branch does not depend on the sense of rotation of the cylinder. In a numer-
ical simulation, we introduce some controllable perturbation εn to the initial
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Figure 3.3: State diagram representing a perturbed pitchfork bifurcation,
eq. (3.4), from [8] The stable branch are labeled with 1, the unstable with
−1, the critical point with 0.

field; without εn the laminar solution would persist up to high Ri whereas by
means of εn it loses stability and, at the proper value of Ri > Ri,cr a particu-
lar pair of TV appears. Let us call this pair the A-vortices. We have checked
that the same A-vortices are selected in a simulation where both the sense
of rotation of Ωi, and the sign of the initial perturbation εn are reversed. On
the other hand, the reversal of just one of the two parameters Ωi, εn produces
a pair of vortices which are identical to the A-vortices, but shifted by half a
period in the axial direction. This means that, for a given εn the change from
Ωi to −Ωi, corresponds to a shift of half a wavelength. Thus, by imposing
an initial perturbation εn, the TV which are properly selected by a given Ωi

switch to their half-a-period twins with the inversion of Ωi to −Ωi. As stated
above, in experiments the sense of rotation of the TV does not depends on
the sense of rotation of Ωi, whatever εe is considered; so it appears that the
numerically observed RTV are the logical counter-part of the experimental
NRTV.

To identify the vortices we have decided, following [18], to use the stream-
function Ψ, which, for a two-dimensional case, is defined as:

v(r, z) =
1

r

∂Ψ(r, z)

∂z
, u(r, z) = −1

r

∂Ψ(r, z)

∂r
, (3.5)

and can be extended to the three-dimensional case, by simply taking into ac-
count the azimuthal dependence. In fact, in the 3D case Ψ(r, z, θ) represents
“the intersection of the physical stream-surfaces with a θ-meridional plane”
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(see [18]). By using the axial-periodicity of the flow, the Fourier transformed
Ψ can be obtained as

Ψ̂h`(r, t) = (iα)−1rv̂h`(r, t).

As a representative example of RTV, a full period T = 2π/ω of modu-
lation is plotted in fig. 3.4 for the case (R, ω) = (140, 3.52). The azimuthal
velocity in a (z, r) plane is plotted at θ = 0. The cylindrical annulus has been
represented as straightened, so that the actual geometry can be visualized
by closing the box cyclically. Two iso-surfaces where Ψ attains positive (yel-
low/grey coloured) and negative (blue/dark coloured) values are also plotted,
hinting at the TV. The positive TV in the upper part of the gap (see figs
3.4(a) and 3.4(b)) is observed to switch its position with the negative vortex
at half the cycle, and occupies the lower part of the gap (figs 3.4(e) and
3.4(f)) during the second part of the cycle.

In fig. 3.5 a full period of modulation has been similarly plotted for the
case (R, ω) = (140, 7.04) which is characterized by NRTV. We notice that
the positive and negative rotating TV do not change position during all the
period and that they repeat their cycle of growth and decay every half a
period.

3.3.1 Map of existence of NRTV and RTV

In fig. 3.6 the map of existence of NRTV and RTV has been depicted as a
function of the two parameters R and ω. When ω is increased above a certain
limit, the flow behaves like an oscillating Stokes’ boundary layer [6] (ST,
hereinafter): the frequency of oscillation is so high and the periodic variation
of azimuthal velocity is confined in such a thin layer near the moving wall
that the TV cannot be sustained in the bulk of the flow. We note that the
range considered by [125] is limited to 2 < ω < 8, so that the Stokes’ regime
was not observed in their simulations.

The frequencies corresponding to the transition from the RTV to the
NRTV and from the NRTV to the ST regime both show a dependence on R.
This dependency is very strong for the NRTV-ST boundary, and relatively
weak for the RTV-NRTV boundary.

In fig. 3.7 we have plotted the limit of existence of the various regimes
as a function of ω and the square root of the difference between the current
R and the R0. This figure seems to suggest that the critical frequency and√

R − R0 scale in a linear way for both the NRTV-RTV and the RTV-ST
boundaries.

In fig. 3.8 the thickness of the Stokes’ layer δs =
√

2ν/ω is represented as
a function of

√
R − R0; it can be seen that the range of δs under consideration
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(a) t = 0T . (b) t = 4/50T .

(c) t = 8/50T . (d) t = 20/50T .

(For caption see facing page.)
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(e) t = 24/50T . (f) t = 28/50T .

(g) t = 44/50T . (h) t = 48/50T .

Figure 3.4: RTV for (R, ω) = (140, 3.52) at various instants of a temporal
period T . Iso-azimuthal velocity contours (∆w = 0.1wi) and iso-Ψ surfaces:
blue/dark=-0.08, yellow/grey=0.08.
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(a) t = 0T . (b) t = 2/28T .

(c) t = 4/28T . (d) t = 12/28T .

(For caption see facing page.)
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(e) t = 14/28T . (f) t = 18/28T .

(g) t = 24/28T . (h) t = 26/28T .

Figure 3.5: NRTV for (R, ω) = (140, 7.54) at various instants of a temporal
period T . Iso-azimuthal velocity contours (∆w = 0.1wi) and iso-Ψ surfaces:
blue/dark=-0.08, yellow/grey=0.08.
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is confined below one gap width d.

3.4 Temporally modulated WTV

As R increases above R0 the range of existence of NRTV grows, but when
R ≈ 250 we observe new phenomena appearing at a particular frequency. In
fact, the number of vortices per axial length doubles, giving rise to four TV
(N4) instead of two (N2), which is the solution for the ω = 0 case at the same
Ri.

We have compared the N4 and N2 flows in a ω = 0 case; their main
differences are: (1) for N4 the critical Reynolds Ri,cr4 at which the TV first
appear is around 100, while for N2 it is Ri,cr2 ≈ 68.2; (2) the critical Reynolds
Ri,w4 at which the Höpf bifurcation occurs is approximatively 250 which is
lower than the value for N2: Ri,w2 ≈ 480; (3) the range of Ri for which the
Höpf regime thrives for N4 is smaller than for N2; (4) the temporal period of
the wavy structures for the N4 case is T ≈ 95δ/wi while for the single pair
is T ≈ 165δ/wi; (5) after the settlement of the short-living wavy regime, a
sudden transition to chaotic regime appears for the N4 case, while the pattern
of transition experienced by the N2 flow manifests other instabilities before
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entering the chaotic regime.
Although the critical Ri,w at which waviness appears is about 480, we have

recognized that by means of the temporal forcing a sub-critical bifurcation
of the Höpf type can take place. In fact as R increases up to ≈ 300, in a
particular range of frequencies, the TV of both the N2 and N4 classes begin
to gain a certain amount of waviness, and become θ-dependent.

Though we have noticed that for certain value of the couple (R, ω) the
waviness extends to multiples of the azimuthal wavelength (m = 2, 3, ..),
the kinetic energetic content of the first azimuthal mode, m = 1, remains
comparable or larger than those of the other modes. So we have chosen to
use, as a suitable indicator of the waviness in the flow, the (radial) integral
kinetic energy belonging to the zero axial and the first azimuthal mode:

E0,1 =

∫
Ro

Ri

3∑

i=1

〈|ûi(α = 0, m = 1, r)|2〉 dr, (3.6)

where 〈·〉 represents the time average. The energy E0,1 is plotted for various
values of R, from 350 to 500, as a function of ω in fig. 3.9. The curves are
pinned with a number (2 or 4) indicating the N2 or N4 case.

At low R the energy E0,1 clearly shows three features: two peaks and a
broad band. The peak at low ω corresponds to a four vortices system, N4,
and appear at ω ≈ 5ν/d2; the flow has a three-dimensional character. The
second peak belongs to the two vortices system, N2, and appears at values of
ω ≈ 30ν/d2, which corresponds to periods of modulation of ≈ 200δ/wi. We
recall that the characteristic period of a the N2 system in the zero-modulation
case is T ≈ 165δ/wi. In fig. 3.10(a) an N2 system of WTV has been depicted
for (R, ω) = (425, 26.7).

The broad band is related to the high frequency-regime, ω > 40ν/d2,
and the flow consists of four WTV, N4. We note that the appearance of the
broad band is associated with a modulation period T ≈ 110δ/wi, while the
characteristic period of the N4 vortices is T ≈ 95δ/wi. In fig. 3.10(b) WTV,
belonging to the N4 class, have been plotted for (R, ω) = (400, 50.2).

We can thus claim that some oscillation frequencies, related to the charac-
teristic period of the zero-frequency case, appear to amplify the wavy nature
of the flow, resulting in a sub-critical transition to a wavy regime.

It can be seen that for the higher R the energy E0,1 is almost constant
with ω. Moreover, the flow is characterized by the N2 vortices system for
ω < 40ν/d2 and by the N4 vortices system for ω > 40ν/d2. In particular, in
fig. 3.11 we have plotted three different cases of WTV for the same R = 500.
In fig. 3.11(a) a value of ω = 18.84ν/d2 has been considered which results
in a N2 system of wavy vortices characterized by an azimuthal wavenumber
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function of ω at various R. The symbols 2 and 4 represent the regions where
the regime N2 and N4 respectively exist.
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(a) N2 at (R, ω) = (425, 26.7).

(b) N4 at (R, ω) = (400, 50.2).

Figure 3.10: Sub-critical wavy regime: N2 and N4 WTV. Iso-azimuthal
velocity contours (∆w = 0.1wi) and iso-Ψ surfaces: blue/dark=-0.08, yel-
low/grey=0.08
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(a) ω = 18.84ν/d2.

(b) ω = 69.11ν/d2.

(For caption see facing page.)
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(c) ω = 56.52ν/d2.

Figure 3.11: Wavy regime at R = 500. Iso-azimuthal velocity contours
(∆w = 0.1wi) and iso-Ψ surfaces: blue/dark=-0.08, yellow/grey=0.08
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m = 1; however other cases can happen, and, in fact for ω = 69.11ν/d2,
see fig. 3.11(b), an N4 system appears with an azimuthal number m = 3.
The competition of azimuthal modes have been observed too, as pictured in
fig. 3.11(c), for the case ω = 56.52ν/d2 where m = 1 and 2 appear at the
same time.

3.5 Final remarks

Our numerical simulations of a temporally modulated TCF in a large-gap ge-
ometry with η = 0.5 confirm the existence of reversing and non-reversing TV,
already observed by [125]. The value of critical Reynolds number at which
these phenomena appear is in good agreement with the after-mentioned pa-
per.

By extending the analysis in the R−ω space to a wider region compared to
[125], new insight is provided into the behaviour of the temporally-modulated
flow. We observe that the critical frequency at which the transition from RTV
to NRTV appears depends on the Reynolds number. Moreover, by growing
the modulation frequency another transition is noticed, for the first time:
NRTV are substituted by oscillating Stokes’ flows; the frequency at which
this happens shows a strong dependence on the Reynolds number.

By growing the Reynolds number further, two classes of phenomena are
observed: (1) an halving of the axial period of the vortices, as a result of
the modulation at particular frequencies; (2) a sub-critical transition to the
wavy regime. The latter feature is magnified at some frequencies, which
are approximatively related to the typical period of the WTV in the zero-
modulation limit, in what could be seen as an almost-resonant behaviour.
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Chapter 4

Spatial modulation of

Taylor-Couette flow

In this chapter we present the results of a campaign of laboratory experiments
conducted, under the supervision of Prof. Tom Mullin, at the Manchester
Centre for Nonlinear Dynamics, University of Manchester. The flow visuali-
sations of the patterns of instability experienced by a fluid confined between
a moving inner cylinder with sinusoidal shape and an outer circular one at
rest will be presented and discussed.

4.1 Background

As seen in the previous chapters, the TV are the fundamental patterns that
characterize the TCF. As a consequence, various kinds of devices have been
studied in order to modify the behaviour of these cellular-like structures,
which influence the physical properties of the flow (i.e. mass transport and
mixing), and to control their stability properties. These studies involved both
temporal and spatial forcing, as mentioned in chapter §3 where the temporal
forcing has been already addressed. Regarding the spatial forcing, we men-
tion the experimental study of Wiener et al. [122] on an hourglass geometry,
that of Ikeda & Maxworthy [54] on a sinusoidally-shaped inner cylinder at
rest and a moving outer one, and the very recent ones by Rafique & Skali
Lami [100], Staples & Smits [109] and Drozdov, Skali Lami & Rafique [38] on
the moving sinusoidal inner cylinder and the outer one at rest. In particular,
in the present chapter, we focus on the sinusoidal spatial modulation of the
inner cylinder. This geometry has been also studied numerically by Drozdov
[39] for its promising application in mixing, suspension and emulsification.

The experimental works previously carried out on this subject have fo-
cused on qualitative rather than quantitative description of instabilities that
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Figure 4.1: Technical design of the sinusoidally-shaped cylinder at Manch-
ester Centre for Nonlinear Dynamics.

lead to the settlement of turbulence. At low values of the Reynolds num-
ber, a pair of cellular-like structures for each wavelength has been observed;
the vortices successively double in number, and then experience some kind
of oscillation which eventually leads to the turbulent regime, with again a
single pair of TV-like structures. Our aim is to describe the pattern of tran-
sition through an analysis of high-quality images which permit quantitative
information on the flow. Moreover, the region in which instabilities develop,
the characteristic dimensions of the various regimes, as well as some features
related to the non-uniqueness of the flow will described for the first time.

4.2 Experimental apparatus and procedures

The flow generated in the gap between a steady outer cylinder and a sinusoidally-
shaped inner one has been studied through a campaign of experiments con-
ducted at the Manchester Centre for Nonlinear Dynamics (MCND, Univer-
sity of Manchester), under the supervision of prof. Tom Mullin. The inner
cylinder (see fig. 4.1) has been realized in aluminium, while the outer one is
in Plexiglas, which guarantees good optical properties for the visualisations.
The whole system is portrayed in fig. 4.2. The outer cylinder has a radius
Ro = 31.63mm, while the inner radius is

Ri(z) = Ri + A sin(2πz/λ),

where Ri = 20mm is the average radius, A = 5mm is the amplitude of the
spatial modulation, λ = 83.6mm is the wavelength of the sinusoidal cylinder.
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Figure 4.2: Experimental apparatus realized at the Manchester Centre for
Nonlinear Dynamics. The water jacket is labeled as W, P is the pipe which
permits the intake of fresh water into the outer cage C. The total vertical
(axial) dimension of the apparatus is 310mm.
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Defining the mean gap as d = Ro−Ri we obtain d = 11.63mm and, therefore,
A ≈ 0.43d, λ = 7.19d. The average radius ratio is η = Ri/Ro ≈ 0.632. The
tolerances are ±0.2mm.

The inner cylinder is driven round at an angular velocity Ωi by a step-
ping motor controlled by an oscillator. The outer cylinder is held fixed, hence
Ωo = 0. The total length of the sinusoidal cylinder is H = 209mm ≈ 18d,
at the top and bottom extremities the lids do not rotate. The temperature
inside the gap is held constant at 25±0.1◦ C through a water bath surround-
ing both cylinders (see fig. 4.2); the temperature of the bath is controlled by
a commercial controller. The fluid is a water-glycerine mixture and its kine-
matic viscosity at 25◦ C has been measured with a Hubbelohde viscometer
(suspended level viscometer) as ν = 5.94 ± 0.03cSt (in accordance with the
value of 5.79 ± 0.03cSt measured in [105]); as a tracer, for the purpose of
visualisation, a Mearlmaid Pearl Essence (a natural essence obtained from
fish scales) was added in small quantities (few νl). A thin sheet of light
generated from a slide projector enlighten a meridional plane between the
cylinders; a digital camera (NikonD100) is used to capture the images with
a resolution of 6.1 Megapixels (3.008×2.000) and color depth of 36 bit.

As pointed out by Coles [25], the feature of non-uniqueness is typical of
TCF. In order to catch the primary branch of the solution (see Benjamin [8]),
the angular velocity in our experiments is increased slowly, starting from rest
up to the desired value of the Reynolds number

Ri =
ΩiRid

ν
.

The linear acceleration dRi/dt was 0.17 which is far from the limit of sudden
acceleration described in [123]. As a consequence, the total time to speed-up
the system to Ωi = 2.1rad s−1 is 240s. When the existence of secondary
branches is analysed, both sudden impulsive accelerations and decelerations
of Ωi are tried. Once the proper Ri is reached, the flow is allowed to stabilize
for about ten times the average viscous diffusion time τ = d2/ν ≈ 22.8s.

A comparison (see tab. 4.1) with the other sinusoidal-cylinder experi-
ments available in literature ([54],[100], [109], [38]) shows that our experi-
ment is characterized by the largest relative amplitude (A/d) and relative
wavelength (λ/d), and by the smallest radius ratio η. These facts should
permit to our experiment to follow the pattern of transition to turbulence in
a clearer way than previous analyses.
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Ref. A/d λ/d η A/Ri

[54] 0.112 2.8 0.96 0.0048
[100] 0.391, 0.196 7.1 0.68 0.186, 0.093
[109] 0.12 2,3,4,5 0.90 0.0133
[38] 0.031, 0.061, 0.122 5.6 0.80 0.038, 0.076, 0.153
here 0.43 7.2 0.63 0.25

Table 4.1: Comparison between the characteristic dimensions of the
sinusoidally-shaped inner-cylinder setups available in literature.

4.3 Results

4.3.1 Primary flow

At the very low value of Ri (around 20.5), we have observed that in each wave-
length a cellular pattern develops in the form of a pair of counter-rotating
vortices (see fig. 4.3); the same kind of flow was observed by other investi-
gators. The elements of the pair rotate in a direction such that the fluid is
pumped from the outer cylinder to the inner one in correspondence of the
minimum radius. Apart from their different shape, these structures are quite
similar to the TV of the straight-cylinder case, and the wavelength of the
couple is around 0.8λ. We call this, for obvious reasons, the mono-cellular

regime.
In the case of straight cylinders (see [63]) we know that:

• the typical wavelength of the vortex pair is ≈ 2d, which is consider-
ably lower than the value of 5.8d observed for the sinusoidally-shaped
cylinder;

• for the radius ratio corresponding to the maximum gap in the sinusoidally-
shaped cylinder ηm = Rm/Ro = (Ri − A)/Ro ≈ 0.475 the critical
Reynolds number Ri,cr at which TV develop is around 65 and becomes
even higher for η.

This suggests that the effect of the spatial modulation is to force an early
transition from the laminar to the primary flow, and that this forcing influ-
ences the wavelength of the Taylor-like vortices.

4.3.2 Secondary flow

By slowly increasing Ri we can follow the primary branch of the solution; at
Ri ≈ 85 a secondary instability develops. Another pair of counter-rotating
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Figure 4.3: Picture of a (z, r) meridional plane for half a wavelength of the
sinusoidal shaped inner cylinder. In the central region a clockwise-rotating
vortex C can be noticed. The white line is the sinusoidal inner cylinder, the
upper part of the picture is outer cylinder.

Figure 4.4: Picture of a (z, r) meridional plane for a 0.28λ length in the
trough region of the sinusoidal shaped inner cylinder. In the central region
a couple of counter-rotating small vortices, labeled as C, can be noticed; on
both sides of the small vortex pair a large scale vortex is present.
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vortices appears in the region corresponding to the minimum gap, as in
fig. 4.4.

As depicted in fig. 4.5 these secondary vortices are generated near the
outer cylinder (see fig. 4.5(c)); in figs 4.5(c) to 4.5(h) we can follow their
growth after their birth near the outer cylinder: they increase in size ex-
panding towards the inner one, and eventually they occupy the whole gap.
They succeed in filling the whole space between the primary vortices. We
appoint this second type of flow as the bi-cellular regime.

Even though we believe this instability should be studied considering the
complex geometry as a whole, an intuitive explanation for the development
of these secondary vortices can be gained from the following argument. At
first, we recognize that the region corresponding to the crest of the sinusoidal
cylinder is not heavily interested by the primary cellular-like structures. If
we consider, in this simplified vision, the sinusoidal geometry as a locally-
deformed circular cylinder, we can associate at each z point a local Reynolds
number

Ri(z) =
ΩiRi(z)d(z)

ν
,

as depicted in fig. 4.6; this function has a local minimum in correspondence
of z = λ/4, where Ri(λ/4) = RM , the crest. So once fixed the Ri,cr(z) the
crest is interested by the instability later than trough.

We have also plotted Ri/Ωi in case of a sinusoidal amplitude of A/2.
It is easy to see that by halving the amplitude the local minimum of Ri is
significantly less pronounced, while the local maximum is slightly decreased;
so it is possible, as described by [100], that for the same Ri the case with
amplitude A is in mono-cellular regime, while the one with A/2 experiences
a bi-cellular flow. This means that the amplitude has a massive effect on the
road of transition to turbulence.

We have then focused on the area occupied by the secondary vortices.
For each vortex, the area has been evaluated as the white region surrounded
by dark margins as in fig. 4.4; by analysing three series of pictures of the
same region, the mean area occupied by the vortex has been computed, the
error bars have been derived from the standard deviation of the area. The
area has been plotted in fig. 4.7 versus Ri, normalized with the dimension
d2. In the mono-cellular regime, the area is obviously equal to zero. As
the instability develops the secondary vortex appears, and its size grows,
eventually reaching an asymptotic value which is slightly below unity; we
note that the unitary case corresponds to a vortex which has the same shape
of those in the straight-cylinder geometry.

Though the secondary vortices have already been observed by [100] (see
the picture (3.ii) of the cited work), this is the first time that the birth of
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(a) Ri=82, (b) Ri=85, (c) Ri=86, (d) Ri=87,

(e) Ri=88, (f) Ri=90, (g) Ri=92,

P

S
l

(h) Ri=112,

Figure 4.5: Pictures of a (z, r) meridional plane in correspondence of the
trough region: transition from the mono-cellular to the bi-cellular regime
in dependence of Ri. The bright curved line on the left of each picture is
the inner cylinder surface, while the outer cylinder is at the right. P is the
primary vortex, S is the secondary one, and l is the distance between the
edges of two secondary vortices.
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the flow is observed and a description in terms of characteristic parameters
of the flow is proposed.

4.3.3 Non-uniqueness: part I

It has been recognised, during our experiments, that a critical Reynolds
number Ri,nu (around 65) exists, above which the flow appears to be non-
unique. In fact, for Ri > Ri,nu it is possible, by a sudden start of the
angular velocity or by an abrupt deceleration from very high Ri, to obtain a
bi-cellular regime instead of the expected mono-cellular one. In fig. 4.7 we
have described in terms of vortex area also one of these secondary branches,
which in line of principle can be very numerous. Though non-uniqueness is a
common feature in TCF with straight-cylinder geometry, its discovery in the
spatially-modulated flow is new. As a remark we recall that, in analogy with
the circular-cylinder case, the critical value of the Reynolds number Ri,nu is
expected to depend on the experimental apparatus.

4.3.4 Höpf bifurcation

The bi-cellular flow exists and thrives up to Ri ≈ 220. Above this value
the secondary vortices begin to oscillate in the axial direction; each vortex
oscillates in phase with its companion: the flow experiences an Höpf bifurca-
tion. Also [100] recognized that “with the increase of the rotation rate, the
flow undergoes the subsequent transition and the multi-vortex configuration
starts oscillating”, however they do not give any further description of this
flow.

The oscillations can be described in terms of their amplitude and fre-
quencies. Since we are able to analyse just a (z, r) meridional plane at a
time we can’t say whether these oscillations are of the same kind of those
experienced by the flow in WTV, i.e. we cannot guarantee whether the flow
is still axisymmetric.
However, as Ri, grows three facts can be observed:

• the centre of each vortex shifts towards the crest;

• the amplitude of the oscillation increases;

• the radius of each vortex diminishes.

The analysis of the pictures suggests an indicator that takes into account
the above-mentioned facts: the distance between the external edges of the
vortices belonging to the secondary pair (distance l in fig. 4.5(h)). This
distance diminishes as Ri increases, as shown clearly in fig. 4.8.
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We have also measured the period T of the oscillation: for each Ri, seven
measurements of the period have been taken with a digital chronograph, and
then the mean value and the error bars evaluated. As the Reynolds number
increases, T appears to diminish. However, dividing the period T by the
period of rotation of the inner cylinder Trot = 2π/Ωi, it turns out that, in the
interval considered (see fig. 4.9), the ratio between the characteristic times
T/Trot is almost constant with Ri at a value of 0.42.

4.3.5 Pattern of transition to turbulence

Above a certain Ri (around 287) the secondary vortices disappear altogether,
and the primary vortices grow to fill the whole wavelength. We appoint
this flow as the second mono-cellular regime. Though this regime is quite
similar to the mono-cellular regime of §4.3.1, the characteristic length λ of
the vortices is now larger than that of the primary mono-cellular flow.

The flow remains successively stable for a wide range of Ri. In fact, it
is only at Ri ≈ 450 that the flow begins to oscillate in radial direction in
correspondence of the trough. The amplitude of this phenomenon is large
and gives rise rapidly to the onset of a turbulent motion. The appearance of
turbulence, at Ri ≈ 480, does not eliminate the cellular pattern in the flow,
at least in the range of Ri considered (< 820). This is consistent with what
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is known from the circular-cylinder case, where the TTV last up to very high
Ri.

4.3.6 Non-uniqueness: part II

We have previously shown in §4.3.3 that the phenomenon of non-uniqueness
is deeply rooted in the nature of the problem; moreover, the higher Ri the
wider is the variety of multiple possible solutions.

As an example in fig. 4.10 four different cases at Ri = 246 are shown.
The regions near the top and the bottom of the lids of the apparatus are
pictured. The solution corresponding to the first branch has an even number
of cells, is symmetric with respect to a plane at z = H/2 and perpendicular
to the z axis, and it is characterized by a wavy regime. However, we have
observed also a sub-critical solution with a steady secondary mono-cellular
flow, and both symmetric and non-symmetric features with an even number
of cells.

In figs 4.10(a) and 4.10(e) two small vortices (we call A the one close to the
lids and B the other) appear in the 25% of wavelength near the extremities;
another symmetric case is the one depicted in figs 4.10(b) and 4.10(f) where
the upper and lower region are occupied by a single vortex of type A. A
snapshot of a non-symmetric flow has also been captured: while the upper
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(a) Bicellular. (b) Mono-cellular. (c) Non sym-
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Figure 4.10: Non-unique flow configurations at Ri = 246, pictured in a z, r
meridional plane at the top (a-d) and the bottom (e-h) extremities of the
apparatus. The white curved line on the left of each picture is the inner
cylinder surface, the outer cylinder is the right part of each picture. Lid is
on top in (a-d) and on bottom in (e-h). A is the vortex close to the lid and
B is the vortex close to vortex A.
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quarter (see fig. 4.10(c)) is occupied by a A-vortex, the lower quarter (see
fig. 4.10(g)) shows a bi-cellular structure quite similar to that of fig. 4.10(e).

In all the previous examples the sense of rotation is dictated by the Ekman
pumping layer (see [6], [108], [29]): the fluid goes from the stationary lids
to the moving wall, resulting in a counter-clockwise rotating vortex near the
upper extremity and a clockwise rotating vortex near the lower one.

However, it has been shown [10] for the TCF with straight-cylinder that
this is not the only possibility: flows with an odd number of cells may exist,
the so-called anomalous modes. We have verified that the same is true for the
spatially-modulated apparatus. In fact both the A-vortices of figs 4.10(d) and
4.10(h) have clockwise sense of rotation, thus indicating anomalous modes.

4.4 Final remarks

In this chapter, we have presented a quantitative evaluation of the pattern
of transition from the laminar solution to the onset of the turbulence in a
Taylor-Couette apparatus with sinusoidally-shaped inner cylinder. In order
to obtain a better comprehension of the spatial forcing, both wavelength and
amplitude of the spatial modulation are larger than in the previous analysed
apparatuses.

The measurements suggest that the very first effect of the spatial forcing is
to trigger a centrifugal instability at values of Ri which are small in compari-
son with the straight-cylinder case. However, the structures generated by this
instability are quite similar to the TV seen in the straight-cylinder case, ex-
cept for the wavelength which is significantly larger (around 0.8λ = 5.8d com-
pared to 2d for the straight case). By further increasing Ri above around 85,
another instability is generated near the outer cylinder: toroidal-like struc-
tures appear in steady pair. Successively, these structures experience an Höpf
bifurcation characterized by an almost constant ratio of period of oscillation
T to period of rotation Trot = 2π/Ωi, namely T/Trot ≈ 0.42. Eventually the
oscillations lead to a chaotic regime, where the TV-like structures are still
present, even though superimposed on a turbulent background. Moreover, as
commonly happens in nonlinear systems, non-unique behaviours have been
noticed above a certain value of Ri (around 65). The comparison between
our results and the existing literature suggests that the pattern of transition,
once fixed Ri and Ro, depends dramatically on the wavelength λ and the
amplitude A.

66



Chapter 5

Turbulent Taylor vortices

This chapter deals with the turbulent TCF, studied with DNS. A co-existence
of large-scale structures and small-scale turbulence is the main feature of this
flow: the large-scale vortical structures, TTV, fill the whole gap, and affect
the mean and instantaneous properties of the flow. Our aim is to identify
the relative contribution of TTV to low-order turbulence statistics.

5.1 Background

Since the first experiments of Pai [94] the existence of TTV has stirred the
interest of a plethora of scientists. In fact, the persistence of large-scale,
well-defined, vortical structures in such a wide range of Reynolds number,
up to several hundred times the critical value Ri,cr, raised at first the sus-
picion that some kind of large-scale, organized, vortical structure permeates
the fluid flows in turbulent regime. Today many studies (see [88]) recognize
that the existence of the same kind of structures in laminar and turbulent
regimes in TCF depends on its particular symmetries, and that the fascinat-
ing suggestion of the persistence of cellular structures up to the turbulent
regime cannot be generalized to the turbulent flow tout court.

Moreover, for the particular nature of its pattern of transition to turbu-
lence, the TCF was seen, in the early years of its study, as a paradigm of
the process of transition to turbulence via the Landau’s successive bifurca-
tions hypothesis [64]. In fact the toroidal TV gain successive waviness and
modulation in azimuthal direction as the Reynolds number increases, and,
as mentioned above, they are still present in turbulent regime; however, the
analysis of the energy spectra has shown (Fenstermacher, Swinney & Gol-
lub [43]) that, after initial stages which are characterized by sharp peaks,
hence in accordance with Landau’s theory, a broad-band component and,
successively, a large amount of noise appear as predominant. Accordingly,
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the transition-to-turbulence scenario based on an infinite-bifurcations pat-
tern suggested by the Russian scientist seems to be not fully applicable in
this case (see [15]).

Many aspects of the TTV have been already investigated. Koschmieder
[62] studied their characteristic wavelength, showing its strong dependence
on the flow history. Smith & Townsend [106] discovered that large-scale
vortices exist up to values of Ri several hundreds times larger than the critical
Reynolds number at which they first appear; however, both the value Ri,ttv

of the Reynolds number at which TTV develop, and their dependence on Ro

are not yet well defined (see the dashed region in fig. 1.3 from [2]). Barcilon
et al. [5] and later Barcilon & Brindley [4] studied the small-scale structures
which develop close to the walls at high Reynolds numbers and co-exist with
TTV.

While the literature on experimental works is impressive, with many ex-
periments conducted in the most various ranges of Reynolds number, the
only numerical simulation devoted to the subject is, to our knowledge, the
conference paper by Hirschberg [51]. In fact, the other numerous and useful
numerical simulations of TCF deal with the capture of the first instabili-
ties (as in Fasel & Booz [42], Marcus [79], Moser, Moin & Leonard [87]), in
regimes which are far from a fully developed turbulent case (as in Raspo et
al. [101], Magere & Deville [74]) or are focused on various ways of prevent-
ing the TV from reaching the turbulent regime by controlling the boundary
conditions (Marques & Lopez [82]) or by adding secondary flows (Wereley &
Lueptov [120]).

Comprehensive and extensive analyses of the turbulence statistics for the
turbulent TCF are absent in literature, owing to the lack of numerical sim-
ulations and the intrinsic difficulty in obtaining valuable experimental mea-
surements close to moving walls. As a consequence, it is unclear the relative
dynamical role of TTV and the typical turbulent structures, as well as the
most immediate strategy to discriminate between them. Hence the relative
contribution of the large-scale structures to the main statistical quantities,
which are customarily employed to characterize the turbulent flow, still needs
to be addressed.

Other aspects of this flow which are fundamental both for the design of
TC devices and for the RANS and LES modelling of turbulent flows over
streamwise-curved walls need further examination. For example, the exis-
tence of a logarithmic law for the mean velocity profile on the concave and
convex wall is still an open problem, since, as discussed in [96], some re-
searchers believe in its presence, while others denies it.

To give a contribution in this area, we have performed several DNS of
the TCF in the fully turbulent regime, focusing on a small-gap geometry.
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The simulations resulted in large databases, whose statistical analysis will
be described in the following.

5.2 The numerical simulations

We have studied the turbulent flow which develops in the gap between a pair
of cylinders with infinite axial length as sketched in fig. 1.1. Direct numerical
simulations of the Navier–Stokes equations have been carried out with the
numerical method, the computer code and the computing system described
in chapter §2.

We have used the half-gap width δ and the velocity of the inner cylinder
wi as scaling quantities, so that the reference time is δ/wi. We have chosen a
small-gap geometry of the same kind of that considered by Andereck, Liu &
Swinney [2] with η = 0.882, which corresponds to an inner radius Ri = 15δ
and an outer radius Ro = 17δ. Regarding the dimensions of the periodic box,
a few considerations on the nature of the flow have been necessary to suggest
the proper values. The azimuthal extension of the box has been chosen as
lθ = π/2, which is twice that used in [51]. Experimental results [62] suggest
that the axial wavelength of a pair of vortices is 5δ in turbulent regime, so
we have chosen an axial dimension of Lz = 5δ, which has been a posteriori
accounted as reasonable for the TTV simulation.

To obtain a good resolution of the spatial scales, 512×256 Fourier modes
have been used respectively in the axial and azimuthal directions, while 129
points have been considered for the discretization of the radial direction. The
grid size for the simulation with the highest Reynolds number, i.e. (Ri, Ro) =
(10500, 0), are 3.3− 3.7 wall units1 for the outer and inner wall respectively,
in the axial directions, from 0.7 (near the inner wall) to 3.0 (in the centreline)
wall units in the radial direction, and less than 8.7 in the streamwise direction.
The time advancement is ∆t = 0.015δ/wi which corresponds to ∆t+ ≈ 0.1.
The computational domain has the following dimensions in wall units: Lz is
around 880, and Rclθ is approximately 4410. One simulation with an axial
dimension of twice this size has not shown significant differences in terms of
the considered turbulence statistics (see below).

In a preliminary stage, a number of simulations has been also carried out
for smaller Ri on a coarser grid, i.e. 128 × 128 modes and 129 radial points
on a computational box of Lz = 5δ, lθ = π/4; they are listed in tab. 5.1 and
correspond to cases (a) to (e). For Ri = 6000 also a small amount of rotation
of the outer cylinder in both the directions has been considered.

1Obtained by non-dimensionalazing with ν and the friction velocity uτ , as defined by
eq. (5.2).
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The simulations have been run for 700δ/wi; the first time interval of
200δ/wi has not been considered in the averaging process, which has been
carried out with 26 flow fields, each separated from the other by 20δ/wi. The
computational time for the simulation (f) is around two weeks on a cluster
of 10 SMP Personal Computers, each equipped with 2 Intel Xeon 2.66 GHz
CPU, and 512MB of 266 MHz SDRAM.

In all these simulations the initial field consists of the laminar solution of
eq. (1.1), with superimposed disturbances of O(10−3) in correspondence of all
Fourier modes. Other initial conditions have been tested, and no significant
differences have been noticed.

5.3 The onset of turbulence

We start by defining the Reynolds number Rτ based on the average friction
velocity uτ as:

Rτ =
uτδ

ν
. (5.1)

From the balance of forces in the azimuthal direction, see [124], the av-
erage friction velocity is defined as:

uτ =

√
(1 − γ)2τ i + (1 + γ)2τ o

2ρ
, (5.2)

where γ = δ/Rc is the curvature parameter evaluated at the central line, the
over-bar represents the average in the (z, θ) directions, the azimuthal shear
on a plane normal to r in the θ direction is

τ(z, θ, r, t) = µ

(
∂w

∂r
− w

r

)
,

the indices i and o in eq. (5.2) represent the value of an r-dependent function
evaluated, respectively, at r = Ri and r = Ro. It is also possible to define a
local Rτ as Rτ,p = uτ,pδ/ν, where

uτ,p =

√
τ p

ρ

is the local friction velocity at the inner (p = i) or outer (p = o) wall.
As shown by eq. (5.2) the local Reynolds number is connected with the

wall shear τ . The behaviour of the wall shear in a turbulent plane channel is
deeply influenced by the presence of near-wall structures (elongated streaks,
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Figure 5.1: Rτ (t) for Ro = 0 at various Ri: 10500 (continuous line), 6000
(dashed line), 3000 (dotted line), 1500 (dashed-dotted).

quasi-streamwise vortices) which cooperate to the self-sustained cycle [56] of
turbulence. In TCF large-scale vortical structures exist, which fill the central
part of the gap and redistribute the shear on the walls. It is not obvious
therefore how to separate this effect from those produced by turbulence, since
the friction velocity takes into account and mixes up both contributions.

In fig. 5.1 the temporal behaviour of Rτ is plotted for various values of
Ri and Ro = 0. The signal shows a transient of around two hundreds time
units, which are necessary for the turbulent regime to settle from the (initial)
perturbed laminar solution. In the fist part of the signal at t ≈ 100δ/wi, an
overshoot around 30 − 40% higher than the long-time mean value appears.
After the overshoot, Rτ decreases and it takes another hundred time units
to reach a statistically steady plateau for t > 200δ/wi.

In tab. 5.1 for various pairs (Ri, Ro) the time-averaged values of Rτ,i, Rτ,o

and Rτ , computed after discarding the transient, are reported.

Since no previous DNS is available for a turbulent TCF at such high
values of the Reynolds number, a comparison can be given just with the
plane turbulent Couette flow. The DNS carried out by [61] has Ri which
corresponds to our case (b); and Rτ is found to be approximatively 52. This
suggests that the large-scale structures induced by curvature increase the
shear significantly on both walls; as a first and rough approximation, we can
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case (Ri, Ro) Rτ,i Rτ,o Rτ

a 1500,0 34.9 31.3 33.0
b 3000,0 77.0 68.5 72.5
c 6000,0 125.6 111.5 118.1
d 6000,300 122.4 108.7 115.1
e 6000,-300 129.0 114.4 121.2
f 10500,0 188.1 164.6 176.1

Table 5.1: Rτ for various values of (Ri, Ro).

estimate the contribution of TTV as the relative difference between Rτ for
the present case and the plane Couette flow, this value is around 40%.

It is easy to see, from the above-mentioned table, that the effect of in-
creasing Ri at a fixed Ro, is to make all Rτ,i, Rτ,o and Rτ grow. The behaviour
of the local Reynolds number Rτ,i and Rτ,o is depicted in fig. 5.2 as a func-
tion of the Ri for the case of steady outer cylinder. At high value of Ri

both Rτ,i and Rτ,o seem to follow an almost linear behaviour. Moreover the
data of the numerical simulation by [61] and [7] for the plane Couette flow
have been added, so that the effect of the curvature can be better appreci-
ated. A counter-rotating (Ro < 0) outer cylinder produces a further, small
increase in the three strain-related Reynolds numbers, the opposite is true
for a co-rotating (Ro > 0) outer cylinder. This result is consistent with what
is expected in the Couette case, where the Reynolds number depends on the
difference between the velocity on the two walls, so that counter-rotating
walls produce an effective higher Reynolds number.

Though, as already stated, no previous DNS exist at such high Ri, a com-
parison is however possible with the experimental data available in literature.
In fact, the value of the torque G(Ri) non dimensionalized by πρw2

i R2
i H can

be derived from the Wendt’s empirical formula (by [119] and also cited in
[34]):

G(Ri) = 0.46

[
1 − η

η2

]0.25

R−0.5
i , (5.3)

and compared with the results of our experiments, as done in tab. 5.2. The
relative error (GW − GDNS)/GW is within few percent for all the cases con-
sidered.
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Figure 5.2: Rτ,i (continuous line) and Rτ,o (dashed line) as a function of Ri,
for Ro = 0 (©), Ro = 300 (4), and Ro = −300 (5). The � refers to the
simulation by [61] and the � to [7], both performed in a plane Couette flow.

case (Ri, Ro) here Wendt rel. err.
b 3000,0 372 370 -0.006
c 6000,0 495 523 0.053
f 10500,0 635 687 0.076

Table 5.2: Torque G(Ri) at various Ri. The comparison is made with the
experimental data from Wendt’s formula 5.3.
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Figure 5.3: Comparison between the mean azimuthal velocity w(r) at
(Ri, Ro) = (10500, 0) (continuous line) and the laminar solution (dashed
line) eq. (1.1) as a function of r.

5.4 Low-order turbulence statistics

5.4.1 Mean profile

In fig. 5.3 the radial profile of the azimuthal component w of the velocity
vector, averaged in time and in (z, θ) directions, is shown for the highest
Reynolds number tested, i.e. (Ri, Ro) = (10500, 0). A comparison is made
with the laminar solution represented by the equation (1.1). A region of
slowly decreasing velocity appears in the central region of the gap,

The angular momentum rw has been depicted in fig. 5.4; the central
region has almost constant rw, which means a nearly constant circulation
(see [116], [106], [102]). The shear layers at the walls become thinner as Ri

increases. These results are in agreement with the experimental observations
of [94], though our simulations are carried out at lower Reynolds number.

As pointed out by Bradshaw [16], an analogy exists between the effect
of buoyancy and that of rotation. As a consequence, a parameter which
is commonly used to characterize the effect of buoyancy has been re-casted
in order to represent the effect of rotation (see [116]): the Richardson flux
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Figure 5.4: Angular momentum rw(r) for Ri = 10500 (continuous line) and
Ri = 6000 (dashed line), with outer cylinder at rest.

number

Rf =
−2v′w′wr−1

−v′w′[∂w/∂r − wr−1]
, (5.4)

where the prime the turbulent fluctuation; it represents the ratio between
the streamwise and radial production term in the turbulent kinetic energy
equation. In fig. 5.5 the behaviour of Rf is plotted as a function of the
radial position ∆r = r − ri for Ri = 6000 and 10500; both curves show an
asymmetry and a minimum value in the inner part of the channel which gets
closer to the inner radius as Ri increases. As a consequence, the relative
importance of the streamwise production increases with Ri and the region of
high production is shifted towards the inner cylinder, as Ri grows.

In fig. 5.6 the azimuthal velocity has been plotted in logarithmic scale
and in local wall units. Both walls have been drawn in the same graph. We
notice that a viscous sublayer exists on both walls, where w+ equals r+; the
velocity profile is fairly similar on both walls up to ∆r+ ≈ 40, but in the
central part of the channel the velocity in the outer part is slightly higher
than in the inner part.

The presence of a logarithmic law for the mean azimuthal velocity is
investigated in fig. 5.7. We note that no DNS exist for the TTV, so the data
are compared with the plane Couette and channel flow. The velocity profile
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Figure 5.5: Richardson equivalent flux number Rf for Ri = 10500 (continuous
line) and Ri = 6000 (dashed line), with outer cylinder at rest.

w+ at the inner wall is plotted in logarithmic (local) scale and compared with
three logarithmic laws proposed in literature: (1) 2.55 ln∆r+ + 4.7 by [7] for
a plane Couette flow at Rτ = 52; (2) 2.5 ln∆r+ + 4.6 by [61] for a plane
Couette flow at Rτ = 82.2; (3) 2.5 ln∆r+ + 5.5 by [59] for a plane channel
flow at Rτ = 180. The first law seems to agree best with our data, but just
for few, around 20, wall units, since the velocity profile becomes very flat in
the central part of the channel (see fig. 5.3) and cannot follow a logarithmic
profile.

The reason for the lack of logarithmic law can be ascribed to the low value
of Ri. As noted in [106], “no significant region of logarithmic variation of ve-
locity can exist” for “any flow of Reynolds number less than 20000” in a TCF
with outer cylinder at rest 2. This means that owing to the large-scale struc-
tures that occupy the central part of the gap, a logarithmic equilibrium layer
exists only very near the wall when the Reynolds number is large enough.
We are planning to carry out in the near future cases with Rτ ≈ 200 − 250,
in order to analyse whether at this Rτ , which guarantees a fully developed
turbulence for the plane channel flow, a logarithmic layer does indeed appear.

2For the sake of completeness we note that the logarithmic layer proposed in [106] is
2.44 ln∆r+ + 4.4 valid for each wall.
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Figure 5.6: Mean azimuthal velocity w+(∆r+) in local logarithmic scale for
(Ri, Ro) = (10500, 0), at the inner (continuous line) and outer (dashed line)
wall. Comparison with the sub-layer law r+ (dotted line).
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logarithmic laws proposed in literature.
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Figure 5.8: r.m.s. values of velocity vector non-dimensionalized by local uτ ,
at the inner wall, for (Ri, Ro) = (10500, 0): u is the continuous line, v is the
dashed line, and w is the dotted line.

5.4.2 Statistical moments

We have also analysed the behaviour of flow through the root mean square
(r.m.s., hereinafter) value of the velocity and vorticity fluctuations. The
r.m.s. defines the squared root of the average of the quadratic difference
between the instantaneous flow and the mean flow; here, as mean flow we
consider an average in time as well as in the homogeneous directions.

In figs 5.8 and 5.9 we have plotted the behaviour of the three components
of the velocity vector on the inner and outer walls, scaled with the local fric-
tion velocities at Ri = 10500. At the outer wall the turbulence intensities are
higher than at the inner one. The azimuthal component is the predominant
one near both walls, and shows a peak at r+ ≈ 15 for both walls; moreover,
close to the walls, it assumes slightly higher values than in the plane Couette
channel (see fig. 5.10 by [61]), which is the limit for η → 1 of our problem.
The axial and radial components too have r.m.s. values that are remark-
ably higher than in the case of Couette channel. This fact could depend
on a redistribution of the turbulence intensities of the azimuthal component
operated by the large-scale structures. We note that the behaviour of the
turbulence intensities is in accordance with that supposed by MacPhail and
cited in Townsend [116].
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Figure 5.9: r.m.s. values of velocity vector non-dimensionalized by local uτ ,
at the outer wall, for (Ri, Ro) = (10500, 0): u is the continuous line, v is the
dashed line, and w is the dotted line.

Figure 5.10: r.m.s. values of velocity components, non-dimensionalized by
uτ , by [61] (Rτ = 52): the continuous line is the streamwise component,
the dashed line is the radial conponent, and the dotted line is the spanwise
component.
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Figure 5.11: r.m.s. value of the vorticity ω+
rms for the z- (continuous line), r-

(dashed line), and θ-component (dotted line) at the inner wall, for (Ri, Ro) =
(10500, 0).

The r.m.s. of the three components of the vorticity vector, scaled in
viscous local units, are shown in figs 5.11 and 5.12. The analysis of these plots
suggests that the azimuthal and axial component of the vorticity vector are
higher near the outer wall than near the inner, whereas the opposite is true
for the radial component. The behaviour of the axial and radial components
is quite similar to those of the same component for the η = 1 limiting case
computed by [61], however the azimuthal streamwise component is different.
This effect too could be a consequence of the mean motion generated by the
large-scale structures.

While in the case of flow in straight channels it is possible to derive an
analytical expression for the total shear, sum of Reynolds stress and mean
flow contribution, as a function of the wall-normal coordinate, in this case
such a simple relation does not exist. In fact, starting from the azimuthal
component of the momentum equation written for a turbulent flow, if we
make the hypothesis of a statistically stationary turbulent flow and use the
continuity equation, the relation

ν
∂

∂r

[
1

r

∂

∂r
(rw)

]
− 1

r2

∂

∂r
[r2v′w′] = 0, (5.5)

can be obtained (see Stuart [110]), which cannot be integrated to give the
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Figure 5.12: r.m.s. value of the vorticity ω+
rms for the z- (continuous line), r-

(dashed line), and θ-component (dotted line) at the outer wall, for (Ri, Ro) =
(10500, 0).

total strain. The turbulent Reynolds stress −v′w′, together with the viscous
stress νr[∂(wr−1)/∂r] and the total stress, sum of the two previous terms,
are plotted in fig. 5.13. An asymmetry can be easily observed, particularly in
the centre of the gap for the turbulent stress and at the walls for the viscous
stress, however when non-dimensionalized for the proper local uτ , the latter
asymmetry almost disappears.

Higher order statistics, i.e. the skewness (S) and flatness (F ) factor,
are depicted respectively in figs 5.14 and 5.15. From the results of the cor-
responding planar case by [61], we know that S is anti symmetric to the
channel centreline, while F is symmetric. The present results do not show a
particular symmetry for S, though the azimuthal component is almost anti-
symmetric, while F is almost symmetric for all but the azimuthal component.
We note that the skewness of the radial and azimuthal components of the ve-
locity vector is quite different from the value of 0 which is that of a Gaussian
distribution. As in the case of plane Couette flow the z component should
be zero for symmetry reasons. Its very small values assesses the adequacy
of the statistical sample. The flatness factor is nowhere close the value of 3
corresponding to a Gaussian probability distribution function. The flatness
of the r component has its maximum value at the outer cylinder wall, the θ
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Figure 5.13: Total stress (continuous line), turbulent Reynolds stress (dashed
line) and viscous stress (dotted line) non-dimensionalized by global uτ , for
(Ri, Ro) = (10500, 0).

component shows two local maxima at a distance ∆r+ ≈ 85 from both the
walls, and the z component has its maximum slightly above the centre of the
gap.

5.5 Turbulent Taylor vortices

5.5.1 Correlations and spectra

The axial monodimensional power spectral density functions of the velocity
components,

Φα,p(α; r) =

∫ mM

−mM

|ûp(α, m; r)|2dm

r
, (5.6)

where p = r, z, θ, are shown in fig. 5.16, for the Ri = 10500 case evaluated
at the centre of the gap; we note that the radial and azimuthal components
show peaks at multiple of the basic wavenumber, as a consequence of the
large-scale structures; the axial component has a smooth behaviour at low α,
at least in this radial position at the centre of the gap. All the spectra show
a rapid decay for small-scales with approximatively 8 order of magnitude
between the energy-containing scales and the smallest resolved scales.
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Figure 5.14: Skewness factor S(r) of velocity vector for (Ri, Ro) = (10500, 0):
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Figure 5.15: Flatness factor F (r) of the velocity vector for (Ri, Ro) =
(10500, 0): w (continuous line), v (dashed line), and w (dotted line) com-
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Figure 5.16: Monodimensional spectra of velocity Φ+
α,p(α;Rc) as a function

of the axial wavenumber α, for (Ri, Ro) = (10500, 0).The continuous line is
u, the dashed line is v and the dotted line is w.

The azimuthal monodimensional power spectral density functions of the
velocity components is defined as:

Φm,p(m; r) =

∫ αM

−αM

|ûp(α, m; r)|2dα. (5.7)

The azimuthal spectra are shown in fig. 5.17, for the Ri = 10500 case
evaluated at the centre of the gap; they do not show any pile-up at high
wavenumbers, and the difference between the energy-containing scales and
the smallest scales is 5 order of magnitude.

The mono-dimensional correlation coefficients can be easily obtained from
the power spectra, by recalling that they form a Fourier-transformed pair:

Rz,p(z; r) =

∫ αM

−αM

Φα,p(α; r)eιαz dα

2π
, (5.8)

Rθ(θ; r) =

∫ mM

−mM

Φm,p(m; r)eιmθ dm

2π
. (5.9)

Rz,v evaluated at a distance from the inner wall of 4.3 wall units shows a
minimum at a distance of around 27 wall units (see fig. 5.18), which is in
good agreement with the value of 30 evaluated for the dimension of the quasi
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Figure 5.17: Monodimensional spectra of the velocity Φ+
m,p(m;Rc) as a func-

tion of the azimuthal wavenumber m, for (Ri, Ro) = (10500, 0). The contin-
uous line is u, the dashed line is v and the dotted line is w.

streamwise vortices in the plane channel flow (see [59]); the Rz,u and Rz,w, at
the same distance, have both non zero values for the large-scale correlation.
While in a standard channel flow this would be an indication of insufficient
length of the computational domain, we recall that in the present case the
presence of large-scale structures with very large longitudinal size makes this
picture less clear. This issue will be addressed in the next section when the
contribution of the large-scale structures will be removed from the statistics.

Rθ,v evaluated at 4.3 wall units reaches a plateau, which is slightly above
the zero value, at around 180 wall units (see fig. 5.19). The Rθ,u and Rθ,w

have both non zero values for the large-scale correlation. As discussed above,
the large-scale structures are envisaged as responsible for this behaviour.

5.5.2 The tracking of TTV

As stated above, a possible explanation for the non-zero value of the correla-
tion coefficients at large distance, as in figs 5.18 and 5.19, is the presence of
large-scale structures that fill the gap. As shown by the axial spectra these
structures corresponds to the first axial mode, moreover they are slowly de-
pendent from the azimuthal direction, so we could track the behaviour of
these structures by analysing the phases and amplitudes of the (1, 0)-mode

85



-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5

R
z,

p

z [δ]

u
v
w

Figure 5.18: Monodimensional correlation the velocity Rz,p(z) as a function of
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Figure 5.19: Monodimensional correlation the velocity Rθ,p(θr) as a function
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of the velocity vector. We note that we should consider also the (−1, 0)-mode,
but the properties of the Fourier transform guarantee that v̂1,0 = v̂∗

−1,0, where
the star means the complex conjugated; so the (−1, 0)-mode has a π-shift
in the phase diagram, and the same amplitude of the (1, 0)-mode. In figs
5.20(a)–5.22(a) we have plotted the phases φ(v̂1,0)(r, t) of the three compo-
nents of the (1, 0)-mode velocity vector for various times; we can see that the
phases φ(v̂1,0 and φ(ŵ1,0 change slightly with both time and radial position,
which is an indicator that the structures do not have a large drift in time.
The large jump in the fig. 5.20(a) is due to π-shift experienced by the (1, 0)-
mode axial velocity in the passage from the inner half to the outer one. The
amplitudes |v̂1,0|(r, t) of the three components of the the (1, 0)-mode velocity
vector for various times have been plotted in figs 5.20(b)–5.22(b). Consis-
tently with our interpretation of this mode as a TTV related, the axial (see
fig. 5.20(b)) and azimuthal (see fig. 5.22(b)) component show maxima close
to the wall, whereas the radial component (see fig. 5.21(b)) has a maximum
in the centre of the gap; all the components do not vary substantially in time.

5.5.3 TTV contribution to turbulence statistics

Once established that the large-scale structures are almost steady in time,
we want to isolate their effect from those of the surrounding turbulence. By
following [85] and [124], who have used the same strategy for the turbulent
Dean flow, we decompose the velocity field up = up(z, r, θ, t) in a mean and
fluctuating part by means of different operators:

up(z, r, θ, t) = u
′

p(z, r, θ, t) + up(r), (5.10)

up(z, r, θ, t) = u
′′

p(z, r, θ, t) + ũp(z, r), (5.11)

where the former (over-bar) is a global average over homogeneous coordinates
and time, and the latter (tilde) is an average in the streamwise direction and
in time. The latter average keeps alive the large-scale contributes, while the
former filters it. From equations (5.10) and (5.11) it is possible to derive

u
′

p = (ũp − up) + u
′′

p , (5.12)

which expresses the instantaneous flow field u
′

p as a sum of two contributions:

the former (ũp−up) = (u
′

p−u
′′

p) depends on the TTV structures, and the latter

u
′′

p is the filtered turbulence contribution. The (ũp − up) field is a function of
just the axial and radial coordinates, so it is a two-dimensional field for which
a streamfunction Ψ(z, r), as in eq. (3.5), can be obtained easily. In fig. 5.23
the streamfunction Ψ(z, r) is plotted. Two regions, associated respectively
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Figure 5.20: Phase and amplitude of the axial component of the (1, 0)-mode
velocity vector as a function of the radial position and for various time in-
stants.
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Figure 5.21: Phase and amplitude of the radial component of the (1, 0)-
mode velocity vector as a function of the radial position and for various time
instants.
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Figure 5.22: Phase and amplitude of the azimuthal component of the (1, 0)-
mode velocity vector as a function of the radial position and for various time
instants.
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Figure 5.23: Streamfunction Ψ(z, r) of the average velocity field (ũp − up).
The numbers represent the values of the corresponding iso-streamfunction
loci.

with positive and negative values of Ψ, appear and fill the most part of the
gap. They have the typical shape of the counter-rotating vortex pair and
a comparison with the streamfunction resulting from the computation by
[42] (as in fig. 7b) for a smaller Ri shows that these large-scale structures
can be confidently interpreted as TTV. Both regions are not symmetric to
the centreline; the jet-like structures already observed by [42] and [19] are
present in correspondence of the outflow region, at z ≈ 1.2δ. Thus the above-
described averaging procedures could prove itself to be effective in capturing
the main features of the TTV structures.

By applying the eq. (5.12) we can recast the second order statistics for
the p-component of the velocity vector as,

(u′

p)
2 = (u′

p − u′′

p)
2 + (u′′

p)
2, (5.13)

where the squared root of the left-hand-side are the r.m.s. of the velocity
vector, already plotted in figs 5.8 and 5.9. The right-hand-side in eq. (5.13)
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Figure 5.24: r.m.s. values of velocity at the inner wall non dimensionalized
with the local uτ , for (Ri, Ro) = (10500, 0): u (continuous line), v (dashed
line), and w (dotted line). The symbol � represents [(u′

p − u′′

p)
2]1/2, while

the � symbol is [(u′′

p)
2]1/2.

can be viewed as the sum of a TTV-dependent contribute (u′

p − u′′

p)
2 plus a

filtered turbulent one (u′′

p)
2. If we want to analyse the contribution of the

TTV and of the filtered turbulence to the r.m.s. of the velocity, we can
simply calculate [(u′

p − u′′

p)
2]1/2 and [(u′′

p)
2]1/2; we note, however, that the

two contributions do not sum up to give the overall r.m.s because no linear
law relates them. In figs 5.24 and 5.25 the two contributions have been
plotted together with the [(u′

p)
2]1/2, as function of the radial dimension, in

the proximity of both walls. The TTV contribution [(u′

p − u′′

p)
2]1/2 (white

squares) to the turbulence intensities of the axial and azimuthal components
is by far more important than the filtered turbulent one [(u′′

p)
2]1/2 (black

diamonds). However, close to the walls, the radial component v depends
most on the turbulent contribution. While the TTV contribution is not
symmetric at all, the turbulent contribution is almost symmetric on both
walls, and appear as not dependent on the distance form the wall, at least
for ∆r+ > 60; besides, the azimuthal component overwhelms the other two
for all the gap width, and at the centre of the channel the three components
do not differ very much. These results suggest that the great part of the
turbulence intensities in the proximity of the walls is due to the presence of
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Figure 5.25: r.m.s. values of velocity at the outer wall non dimensionalized
with the local uτ , for (Ri, Ro) = (10500, 0): u (continuous line), v (dashed
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the TTV, whose effects are completely different form those produced by the
surrounding turbulence which becomes, at least for the axial and azimuthal
components, the most important factor in the centre of the channel. A
comparison between the filtered contribution and fig. 5.10 shows a qualitative
agreements between the turbulent Couette plane flow and the filtered part
of the present simulation.

Also the turbulent contribution to the total viscous stress can be analysed
by dividing the contribution in terms of TTV and filtered-turbulence; in fact,
the relation

−(v′w′) = −(v′ − v′′)(w′ − w′′) − v′′w′′, (5.14)

holds. In fig. 5.26 the left-hand-side, already plotted in fig. 5.13, has been
drawn together with the two right-hand-side contributions: the former de-
pends from the TTV and the latter results from the filtered turbulence. It
appears that the TTV contribution is higher than the filtered turbulence one
for all the gap length except a thin layer (∆r+ < 10) close to the inner wall;
the TTV-related shear stress is higher on the outer wall than on the inner in
all the gap width, and this characteristic transfers to the overall shear due
to the overwhelming importance of TTV. The filtered turbulence contribu-
tion is higher on the inner wall region than on the outer one, however once
the central region of the gap is reached (∆r+ > 80) the relative importance
switches.

The same approach used for the second-order turbulence statistics can
be applied to the high-order ones; in fact, by decomposing the third- and
forth-order statistics through the relation given by eq. (5.12) the following
expression can be derived,

(u′

p)
3 = (u′

p − u′′

p)
3 + (u′′

p)
3 + 3(u′

p − u′′

p)(u
′′

p)
2, (5.15)

(u′

p)
4 = (u′

p − u′′

p)
4 + (u′′

p)
4 + 6(u′

p − u′′

p)
2(u′′

p)
2 + 4(u′

p − u′′

p)(u
′′

p)
3, (5.16)

From these statistics the skewness S = (u′

p)
3/[(u′

p)
2]3/2 and flatness F =

(u′

p)
4/[(u′

p)
2]2 factors can be derived easily. In fig. 5.27 we have plotted the

contribution of the TTV (u′

p − u′′

p)
3/[(u′

p)
2]3/2 and those of the filtered turbu-

lence (u′′

p)
3/[(u′

p)
2]3/2, together with the total skewness, already portrayed in

fig. 5.14. The dependence on the TTV is again strong, though also the other
contributes are now important; in particular the TTV imposes their shape to
the total skewness in the central part of the gap. More than the contribution
of u

′′

p to the total skewness is important to analyse the skewness factor of

the filtered turbulence velocity field, defined as (u′′

p)
3/[(u′′

p)
2]3/2, which has

been plotted in fig. 5.28. It is possible to observe that the three components
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Figure 5.26: Viscous stress contribution at the inner (4) and outer (5)
wall, for (Ri, Ro) = (10500, 0). The continuous line is the total viscous stress
−(v′w′), the dashed line is the TTV contribution −(v′ − v′′)(w′ − w′′), and
the dotted line is the filtered turbulent contribution v ′′w′′ .
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Figure 5.27: Skewness factor S(r) of velocity vector for (Ri, Ro) = (10500, 0):
u (continuous line), v (dashed line), and w (dotted line) component. The
symbol � represents (u′

p − u′′

p)
3/[(u′

p)
2]3/2, while the � is (u′′

p)
3/[(u′

p)
2]3/2.

qualitatively agree with the turbulent Couette plane flow data given by [61].

In fig. 5.29 we have plotted the contribution of the TTV (u′

p − u′′

p)
4/[(u′

p)
2]2

and those of the filtered turbulence (u′′

p)
4/[(u′

p)
2]2, together with the total

flatness, already portrayed in fig. 5.15. The dependence on the TTV is now
very feeble and the turbulence-related contribution is now more important
for all the flatness factor components. By plotting, as in fig. 5.30, the flat-
ness factors of the filtered velocity field alone (u′′

p)
4/[(u′′

p)
2]2 it appears that

the three components of the filtered velocity field have a behaviour which is
qualitatively similar to the turbulent Couette plane flow.

By subtracting the contribution of the TTV (ũp − up)(z, r) from the ve-
locity fields it is also possible to study the behaviour of the monodimen-
sional correlation coefficients R

′′

z,p(z) and R
′′

θ,p(θr), which depend just on the

filtered-turbulence u
′′

p. In figs 5.31 and 5.32 the correlation coefficients have
been plotted and the large-scale correlations observed in figs 5.31 and 5.31 are
now almost completely disappeared, which is consistent with the idea that
the TTV have a big influence on the flow properties. However, we observe
that the R

′′

z,u and R
′′

θ,u still conserve some important large-scale contribution
which means that not all the large-structures have been successfully elimi-
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Figure 5.29: Flatness factor F (r) of velocity vector for (Ri, Ro) = (10500, 0):
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Figure 5.30: Flatness factor of the filtered turbulent velocity field
(u′′

p)
4/[(u′′

p)
2]2 for (Ri, Ro) = (10500, 0): u (continuous line), v (dashed line),

and w (dotted line) component.

nated; besides, the R
′′

z,w has a local (positive) minimum around 50 wall units,
which is followed by a small increase and successively leads to an almost-zero
correlation.

From the filtered monodimensional correlation coefficients R
′′

z,p(z) and

R
′′

θ,p(θr), by simply inverting the formula (5.8) and (5.9), the filtered monodi-
mensional spectra

Φ
′′

α,p(α; r) =

∫ Lz

0

R
′′

z,p(z; r)e−ιαzdz, (5.17)

Φ
′′

m,p(m; r) =

∫ lθ

0

R
′′

θ,p(θ; r)e
−ιmθdθ, (5.18)

can be obtained. In fig. 5.33 we have plotted the axial monodimensional
spectra evaluated at the centre of the gap r = Rc. The peaks at the multiple
of the first wavelength which were present in fig. 5.16 have almost completely
disappeared, as expected after an average process which substantially elim-
inates the structures responsible for those peaks; at high wavelengths no
significative change has occurred. The small peak which can be observed for
Φ

′′

α,w are probably a consequence of large-scale structures which have escaped

from our filtering process. The azimuthal spectra Φ
′′

m,p(m; r) differs from the
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Figure 5.31: Monodimensional correlation of filtered velocity, R
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Figure 5.32: Monodimensional correlation of filtered velocity, R
′′
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a function of the azimuthal distance at ∆r+ = 4.3 from the inner wall for
(Ri, Ro) = (10500, 0). The continuous line is u, the dashed line is v and the
dotted line is w.
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Figure 5.33: Monodimensional spectra of filtered velocity Φ
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previously evaluated Φm,p(m; r), plotted in fig. 5.17 just for its m = 0 com-
ponent, which disappears in a logarithmic scale and so has not been plotted
again.

5.5.4 Large-scale structures visualisation

As shown in our previous analysis, and as remarkably pointed out by Barcilon
et al. [5] and Barcilon & Brindley [4], the large-scale TTV and small-scale
vortical structures co-exist for this geometry in turbulent regime. Besides,
[4] believe that the small-scale structures “were the inflow and outflow of
Görtler vortices existing in the wall-boundary-layer region”, which appear
close to the inner and outer walls.

In fig. 5.34 a meridional plane of iso-azimuthal velocity w(z, r) for an
instantaneous flow field in the case of (Ri, Ro) = (10500, 0) has been plotted.
The azimuthal direction has been straightened, in fig. 5.34, for the purpose
of a better representation. Close to the inner and outer walls two regions
of respectively high and low azimuthal velocity tend towards the centre of
the channel. These regions are the outflow and inflow boundaries of a pair of
TTV. Two surfaces of iso-streamfunction Ψ (see equation (3.5) and [18]), one
positive (blue/dark coloured) and the other negative (yellow/grey coloured),
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are depicted; they appear quite similar to a pair of TTV which counter-rotate.

The inflow and outflow boundaries of the TTV push fluid from one side
of the channel towards the opposite wall. By referring to fig. 5.34, on the
inner wall we can trace the inflow region as a region of impinging fluid com-
ing from the opposite half-channel, which determines high value of local wall
shear stress, and the outflow one as an area of local low shear stress, deter-
mined by the movement of high azimuthal velocity from the inner wall to the
centre of the channel. The first region corresponds to the blue/dark coloured
stripe of fig. 5.35 where the fluctuating part of the shear at the inner wall
τ

′

(z, θ;Ri, t) = τ(z,Ri, θ, t) − τ i for an instantaneous flow field is plotted.
The red/grey area corresponds to the outflow boundary of the TTV pair. It
is characterized by two features: (1) red/grey coloured, wide (50 − 70 wall
units), elongated (around 1000 wall units) streaks; (2) small-scale (around
200 wall units of length and 40 wall units of width) tilted (8− 10◦ in stream-
wise direction) structures which do not appear in the blue region. The first
structures resembles those observed by [61], while the value of the tilting
angle of the second is comparable with that shown in [4], instead their width
is bigger than those presented in the above mentioned article, but we have
to notice that our Ri is more than two times lesser than the lower limit of
those considered there.

5.6 Final remarks

Direct numerical simulations of a TCF in turbulent regime have been carried
out at a Reynolds number up to Rτ ≈ 180 based on friction velocity, viscosity
of the fluid and half gap width.

The experimentally observed TTV have been recognized, for the first
time to our knowledge, in a numerical simulation, and the effects produced
on mean and instantaneous turbulence statistics have been analysed. An
almost constant-circulation structure fills the central part of the gap, its size
growing with Ri; to satisfy the boundary conditions, two shear layers develop
at the cylinders walls, the thicknesses of which decrease with Ri. A viscous
sublayer exists on both walls, whereas the presence of a logarithmic law for
the average azimuthal velocity cannot be assessed with the present data,
since the logarithmic profile in this flow should be observable only at very
high Reynolds numbers. Turbulence intensities are significant not only for
the azimuthal velocity, but also for the radial and axial velocity components.
This last effect is a consequence of the presence of large-scale structures
which contribute heavily on low-order and high order statistics. We have
implemented a simple method to filter the flow fields, to the aim of separating
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Figure 5.34: Azimuthal velocity in a plane, w(z, r; θ) (with ∆w = 0.15wi) and
iso-streamfunction surfaces for (Ri, Ro) = (10500, 0): positive (yellow/grey,
0.45) and negative (blue/dark, -0.45).

Figure 5.35: Instantaneous shear around the mean value at the inner wall
τ

′+(z, θ;Ri, t)/µ for (Ri, Ro) = (10500, 0) (∆τ+ = 0.15; positive values are
depicted in blue/dark and negative in red/grey).
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large- and small-scales contributions. Though the filtering process can still
be improved, the obtained results show how large the effects of TTV are,
and how they can be separated from the smaller scale turbulence structures.

Small-scales structures, hypothesized on theoretical consideration and ob-
served in experiments, have also been captured. They have been observed
close to the cylinders walls and they resemble the typical structures of the
wall-turbulence.
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Chapter 6

Turbulent Dean flow

In this chapter Direct Numerical Simulations of the Dean flow in turbulent
regime are described. Different cases with mild and strong curvature are
considered; the effect of the curvature on mean and instantaneous properties
of the flow is analysed. In particular, the behaviour of the friction coefficient
on the convex and concave walls is studied as a function of the curvature,
and a comparison with the few existent data is reported.

6.1 Background

The basic geometry of a curved channel, where an azimuthal pressure gradi-
ent drives the flow in the gap between an outer concave and an inner convex
wall, is pivotal both as a paradigmatic case for the study of flow on stream-
wise curved surface and for its central role in engineering applications. Since
the fundamental study of Dean [31], this flow, which is today commonly re-
ferred to as Dean flow [102], has been the subject of several analyses which
aimed at a general understanding of the underlying physics of turbulence in
presence of streamwise curvature.

As pointed out by Bradshaw [16], curvature effects on the average prop-
erties of a flow in turbulent regime are heavily nonlinear: in particular, the
effects of the extra rate of strain imposed by streamwise curvature turns out
to be one order of magnitude larger than would be inferred from an analysis
of the equations of motion.

As a consequence, massive differences exist between the turbulent straight
channel flow and the curved channel flow. Experimental [44] as well as nu-
merical [85] analyses of the Dean flow have been carried out in the past
to elucidate how streamwise curvature affects the transition to turbulence
and eventually the turbulence itself; however, some fundamental aspects still
remain obscure.
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It is generally recognized [102] that, above a critical value of the Reynolds
number, the laminar solution becomes centrifugally unstable, and counter-
rotating structures, known as Dean vortices (DV), appear close to the concave
surface. Though the feature of DV resembles the TV discussed in the previous
chapters, the pattern of transition experienced by the Dean flow is by far less
rich than that of the TCF (see [112]). The first stage of the transition can
be reached by one of these mechanisms: (1) by triggering an instability that
leads to the merging or the splitting of the DV (see [13], [47]); (2) by the
deformation of the the streamwise vortices in azimuthal direction with the
successive appearance of two kind of travelling waves, undulating vortices
and twisting vortices (see [44], [68]).

When the turbulent regime is reached, some observers [52] have discovered
that large-scale structures similar to DV are present, in a clear parallel with
what has been observed in TCF [63]; however both typical dimension and
spatial extension of TDV and TTV are different, having the former smaller
axial wavelength and radial extension, and a less steady position in space.
On the other hand, others (see [96] for a complete review on the subject)
believe that TDV do not exist at all. As a general statement, we emphasize
that the portrayed pattern of transition depends heavily on the degree of
curvature of the channel as well as on end-effects.

The numerical difficulties related to the cylindrical geometry have pre-
vented a massive use of direct numerical simulations for the study of the Dean
flow [84]. The large number of results obtained by the scientific community
through the DNS of turbulent straight channels, including the analysis of
turbulence statistics [59] as well as the discovery of a of self-sustained mech-
anism for the wall turbulence [56] and the implementation of various control
strategies [73], appears as a mirage for the DF community.

In fact, in spite of its above-mentioned importance, only few direct nu-
merical simulations at the Dean flow exist. Moser & Moin [85] carried out
one simulation for a small curvature DF at Reynolds number of 2900, based
on centreline mean velocity and channel half-width. Nagata & Kasagi [91]
recently considered a range of curvatures, by simulating a flow with constant
friction velocity, which is not probably at such an high Reynolds number
to show a fully developed turbulence, and examined how the friction co-
efficient depends on the curvature. Xu, Choi & Sung [124] considered a
small-curvature channel, proposing a strategy for turbulence control.

The results presented in literature seem to disagree on some aspects: for
example Moser & Moin [85] sustain that the value of the curvature should
have small effect on the turbulent intensities, while Nagata & Kasagi [91]
show the opposite to be true. Moreover, sometimes they remain at a prelimi-
nary stage on other issues which we believe should deserve a deeper analysis.
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For example, the behaviour of the friction coefficient as a function of the
curvature is found in [91] to be monotonic for the concave wall, but non-
monotonic for the convex wall. Besides, the question of the existence of a
logarithmic law for the streamwise velocity near both the walls does not seem
to have received any profitable answer.

In this work, through direct numerical simulations of the Navier–Stokes
equation for an incompressible fluid, we investigate the DF in turbulent
regime at various degrees of curvature, adding some contributions on var-
ious aspects of the problem which are still considered as open question by
the scientific community, and presenting details on turbulence statistics.

6.2 The numerical simulations

As already seen in chapter §1, in the Dean flow a streamwise pressure gradient
drives a flow in a channel curved in the streamwise direction. The azimuthal
pressure gradient ∂p/∂θ is written with the concise notation Pθ. This flow
admits (see eq. (1.2)) a laminar solution

wl(r) =
Pθ

2ν

[
r log r + Ar + Br−1

]
,

where A and B depends on the geometry. By integrating the laminar solution
along the radial direction, the mass flow per unit of axial length Q can be
expressed as a function of the pressure gradient:

Q =
Pθ

2ν

[
(logRo − logRi)

2

1/R2
i − 1/R2

o

− R2
o −R2

i

4

]
. (6.1)

From eqs (1.2) and (6.1), and defining a bulk velocity Ub as Q/(2δ), the
laminar solution can be recasted in terms of Ub

wl
θ(r) =

Ub

2δ

[
r log r + Ar + Br−1

](
(logRo − logRi)

2

1/R2
i − 1/R2

o

− R2
o −R2

i

4

)−1

.

(6.2)
In this chapter we consider as characteristic dimensions the channel half-

width δ and the bulk velocity Ub; the curvature degree is defined as γ = δ/Rc,
where Rc is the radius at the centreline.
The numerical method used has been presented in chapter §2.

By considering a periodic box we are aware that the experimental condi-
tion of a flow in curved duct cannot be properly simulated, since the effects
of the lateral walls are removed, and periodic boundary conditions in both
the homogeneous directions are employed.
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We can confidently get rid of the end-effects, by comparing our results
with those obtained in the central region of an experimental domain with a
large aspect ratio (the ratio between the spanwise dimension and the channel
width), and by making sure that the streamwise Lθ and spanwise extension
Lz are large enough for all the turbulent (small- and large-scale) structures
to develop.

Another problem is related to the high computational cost of a DNS.
In fact, the required computational effort forces us to consider the shorter
computational domain which is not lacking the basic aspects of the real
turbulent flow. So, the choice of the proper streamwise Lθ and spanwise
extension Lz is not trivial. In fact, by choosing Lθ we should guarantee that
this distance is long enough for the streamwise-elongated turbulent structures
to be uncorrelated, and the selection of Lz forces the wider structure of the
flow to be shorter than Lz, and moreover we have to guarantee that Lz is large
enough for the small structures to be uncorrelated. Besides, if we want to
study the phenomenon of merging and splitting of DV, and more generally if
we are studying the effect of a mutual interaction between couples of vortices
which are far the one from the other, we should consider computational
domain comprehending several pairs of vortices.

For all the above mentioned considerations, we have decided to use a
domain with an axial dimension Lz = 4/3πδ and a streamwise dimension
Lθ = 8πδ. To guarantee the adequate spatial resolution, 516 × 128 modes
are used in the streamwise and spanwise direction respectively; in radial
direction 129 points are used on a non-uniform mesh. The dimensions of
the computational stencil, scaled with the inner layer quantities (uτ , ν), has
a spanwise width of 4.3 − 7 wall units, a streamwise extension of 4.8 − 13,
where the two values take into account the lowest and highest local Rτ at
the inner and outer walls of all the simulations. The non-uniform mesh used
for the radial direction produces a minimum distance, between consecutive
points close to the walls, of 0.55− 0.89 wall units and a maximum distance,
in the centre of the channel, of 5.4 wall units. The time advancement is
∆t = 0.015δ/Ub, corresponding to ∆t+ ≈ 0.10 − 0.24.

The Reynolds number is defined as Re = Ubδ/ν, and the chosen value
is Re = 2800 (see [59]). Four different curvatures have been considered,
covering the range between large to small curvature and are reported in
tab. 6.1. As initial field for the case with minimum curvature γ1 we have used
a fully developed turbulent flow in a straight channel with a 128×128 modes
and 129 radial points, which has been spectrally interpolated to obtain all the
required modes; all the other simulations have been started from a γ1 fully
developed turbulent flow. The typical time required for a simulation is of the
order of a week on a cluster of 10 SMP Personal Computer, each equipped
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case η γ Rτ,i Rτ,o Rτ Cf,i10−3 Cf,o10−3

1 0.975 0.0126 162.3 189.6 176.8 6.721 9.166
2 0.875 0.066 135.8 200.5 175.8 4.705 10.25
3 0.778 0.125 132.7 208.0 184.7 4.495 11.04
4 0.6 0.25 132.6 213.6 201.5 4.487 11.64

Table 6.1: Comparison between Reynolds number, Rτ , and local friction
coefficients, Cf , for various curvature, expressed as η and γ.

with a 2 Intel Xeon 2.66 GHz CPU, and 512MB of 266 MHz SDRAM. The
simulation have been run for a total time of 800δ/Ub units and the first
200δ/Ub have been discarded for the computation of the statistics, which
have been computed on 30 fields stored every 20δ/Ub.

6.3 Curvature effects on wall-shear stress

The imposed pressure gradient drives the flow between the curved walls in
such a way that the velocity profile is no more symmetric about the centre-
line of the channel, contrarily to straight channel flow. Besides, the mean
azimuthal velocity profile has different slopes over the inner and outer wall.
A suitable parameter for the description of the wall turbulence, related to
the shear stress, is the local Reynolds number,

Rτ,p =
uτ,pδ

ν
=

√
τ p

ρ

δ

ν
,

where uτ,p are the local friction velocity, and τ p represents the shear stress
at the inner (p = i) and outer (p = o) wall.

From the balance of the mean forces in azimuthal direction [124] a global
friction velocity

uτ =

√
Pθ

ρRc
=

√
(1 − γ)2τ i + (1 + γ)2τ o

2ρ
(6.3)

can be defined as well.
In tab. 6.1 a comparison of the cases at various curvature is presented in

terms of different mean flow parameters. As the curvature increases, from
the top to the bottom, the asymmetry of the flow grows too, in fact the Rτ,i

decreases and Rτ,o increases.
Figure 6.1 reports the behaviour of the local friction Reynolds number

versus curvature: as the curvature grows, at the inner cylinder the Reynolds
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Figure 6.1: Behaviour of the local Rτ at the inner and outer wall as a function
of the curvature parameter. The dashed curve is the Rτ,i and the continuous
line the Rτ,o.

number decreases and eventually it seems to reach a plateau, while at the
outer wall the local Reynolds number increases and perhaps reaches a plateau
for curvature slightly higher than those considered here.

By following the definition of the friction velocity is easy to see that the
local friction coefficient Cf can be written as

Cf,p =
τ p

ρU2
b /2

= 2

(
Rτ,p

Re

)2

.

A monotonic behaviour of Cf over the upper wall can be observed in tab. 6.1,
and confirms qualitatively the results presented by [91], while the behaviour
at the inner wall shows a significant difference with the above mentioned
article, where Cf is reported as non-monotonic.

In fig. 6.2 the ratio between the local friction coefficient for a fixed γ
and the friction coefficient Cf0 = 8.18 · 10−3 for the plane channel at the
same Re = 2800 (see [59]) is plotted and compared with the results obtained
by [91], who have conducted simulations at Rτ = 150. At low curvature
the results agree, however as γ increases both quantitative and qualitative
differences appear. This difference is a consequence of the diverse hypotheses
under which the two simulation have been carried out. In [91] a constant Rτ
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Figure 6.2: Behaviour of the relative friction coefficient Cf to Cf0 at the inner
(dashed line) and outer wall (continuous line) as a function of the curvature
parameter. Comparison between [91] (�) and the present simulations (�).

was assumed, however this (see eq. (6.3)) does not guarantee that a significant
physical parameter such as the pressure gradient or the mass flow, as in our
simulation, is held constant for different curvature: we can thus conclude that
on both walls the behaviour of the friction coefficients is monotonic with γ.

6.4 Low-order turbulence statistics

The slopes at the wall are, obviously, just a small part of the story. In fact,
looking at the average profile of azimuthal velocity, fig. 6.4, we can see how
large is the asymmetry between the upper (r > Rc) and lower (r < Rc)
part of the channel, and how this asymmetry increases with γ. In order to
compare cases with different inner radii we have rescaled the radial coordinate
as ∆r = r−Ri. It is important to note that the maximum of the streamwise
velocity, which for the laminar case lies in the inner part of the channel,
exhibits here an unexpected non-monotonic behaviour as shown in fig. 6.3.
For small curvatures it shifts towards the outer part of the channel, and only
when γ increases further it eventually moves towards the inner part of the
channel. This behaviour can probably be observed in fig. 4 by [91], however
it is not noticed nor discussed.
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Figure 6.4: Average azimuthal velocity w as a function of the radial position,
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line, and γ4 is the dashed-dotted line.

114



case η γ k k−1 C

1 0.975 0.0126 0.58 1.71 8.52
2 0.875 0.066 1.08 0.92 10.98
3 0.778 0.125 1.08 0.92 10.00
4 0.6 0.25 0.97 1.03 8.44

Table 6.2: Parameters of the logarithmic law k−1 log(∆r+) + C for various
curvature, expressed as η and γ.

We now come to discuss the issue of the existence, for the average az-
imuthal velocity w+, of a logarithmic law of the form k−1 log(∆r+) + C. As
reported in [96] various laws have been proposed for small curvature: (1)
k = 0.42, C = 5.45 from the experimental data of Patel; (2) k = 0.4, C = 5.5
form the DNS data by Moser & Moin; and (3) k = 0.41, C = 4.9 from
boundary layer experiments by Bandyopadhyay. However all of them fit the
velocity profile for just a small range of ∆r+ and for the only concave wall.

In fig. 6.5 we report, in logarithmic scale and for the small-curvature
case γ1, the average azimuthal velocity non-dimensionalized with the proper
local friction velocity as a function of ∆r+. In this graph a logarithmic
law should appear as a straight line for a conspicuous range of ∆r+ in the
region 30 < ∆r+ < 100 (e.g. [59] for the plane channel flow). The values
k = 0.4, C = 5.5 proposed in literature [85] fit reasonably well in the concave
region (outer wall), whereas C = 7.5 has been used to fit the velocity profile
in the convex part (inner wall) of the channel. We note that a viscous sub-
layer definitely exists for ∆r+ < 5, where the azimuthal velocity scale with
the radial dimension: w+ = ∆r+. These results are in good agreement with
those presented by [85] for the same value of the curvature parameter, but
do not allow to drawn conclusion about the existence of the law of the wall.

In figs 6.6 and 6.7 we plot the azimuthal velocity w+ versus ∆r+ for
various values of curvature. In the outer part of the channel, and especially
for the higher curvature, a logarithmic law can be observed to exist (see
fig. 6.8) but it depends heavily on the curvature and, in particular, an increase
of the k parameter and a corresponding decrease of C occur, as shown in
tab. 6.2; however in the mild curvature regime the k parameter keeps constant
with γ. Moreover we notice that the logarithmic region shifts towards the
wall as the curvature increases, and its extension expand as well.

No logarithmic law seems to be present for the inner wall. Our general
conclusion on the existence of the logarithmic law is that for the concave wall
it could exist with the (k, C) parameters depending on γ, while for the inner
wall the existence of such a law seems less plausible.
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Figure 6.5: Average azimuthal velocity w+(∆r+) at the inner (continuous
line) and outer (dashed line) walls, expressed in logarithmic scale for γ1. The
sublayer velocity law w+ = ∆r+ (dotted line) and the two logarithmic law
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Figure 6.6: Average azimuthal velocity w+(∆r+) at the inner wall expressed
in logarithmic scale, at various γ: γ1 is the continuous line, γ2 is the dashed
line, γ3 is the dotted line, and γ4 is the dashed-dotted line.

As pointed out by Townsend [116], shear flows in curved geometry man-
ifest regions of constant circulation, in which the streamwise velocity has
constant angular momentum. In fig. 6.9 we have plotted the product rw as
a function of ∆r for various γ, non-dimensionalized with the maximum of
rw for each γ. We note that in the case of large and mild curvature a wide
region of constant angular momentum exists in the outer part of the channel,
while for small curvature this region is very thin. This fact confirms, for the
first time in a numerical simulation, the observations made in various exper-
iments (see [41]) which, however, were conducted at Re ten to twenty times
larger than ours. Being this region of almost-constant angular momentum
close to the outer wall, the shear layer near the outer wall becomes thinner as
curvature grows. On the contrary, at the inner wall a thicker layer is formed.

Starting from the analogy between the effect of the buoyancy and that of
rotation, Bradshaw [16] derived the rotational counterpart of the Richardson
equivalent flux number

Rf =
2wr−1

r∂(wr−1)/∂r
, (6.4)

which represents the ratio between the streamwise and radial production term
in the turbulent kinetic energy equation as shown in eq. (5.4). Besides, Rf
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Figure 6.7: Average azimuthal velocity w+(∆r+) at the outer wall expressed
in logarithmic scale, at various γ: γ1 is the continuous line, γ2 is the dashed
line, γ3 is the dotted line, and γ4 is the dashed-dotted line. The logarithmic
law 2.5 log(∆r+) + 5.5 is plotted with a double-dashed line.
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Figure 6.9: Angular momentum rw(∆r) for various γ: γ1 is the continuous
line, γ2 is the dashed line, γ3 is the dotted line, and γ4 is the dashed-dotted
line.
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Figure 6.10: Richardson equivalent flux number Rf(∆r) for various γ: γ1 is
the continuous line, γ2 is the dashed line, γ3 is the dotted line, and γ4 is the
dashed-dotted line.

can be interpreted as two times the ratio between the static pressure gradient
in radial direction and the total pressure gradient in the radial direction, and
it is used as a suitable weight for the dissipation lengths, being in so a useful
parameter for RANS or LES modelling. If the angular momentum is constant
with r, it is easy to show that Rf = −1. The Richardson equivalent flux
parameter is represented, as a function of the radial position ∆r, in fig. 6.10.
It is possible to see that for a mild curvature there exists a region in the
upper half of the channel where Rf = −1. Moreover when the denominator
of eq. (6.4) goes to zero, Rf goes to infinity and this particular value of r is
called the zero shear stress point, which depends heavily on γ [41] as can be
observed in fig. 6.3.

The turbulence intensities for the three velocity components are plotted
in figs 6.11 and 6.12 for the regions respectively close the inner and the
outer wall and for the curvatures γ1 and γ2. We note that: (1) the r.m.s.
are asymmetric, and this aspect is enhanced at higher curvatures; (2) the
general behaviour of the r.m.s. near the convex wall does not change as γ
grows, however a reduction of the θ component and a magnification of the
r, z appear; (3) at the concave wall the behaviour of the r.m.s. changes for
all the three components; (4) at least close to the wall, the θ component is
predominant on z and r, the last being the smallest of the three; (5) in the
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Figure 6.11: r.m.s. values of velocity components non-dimensionalized by
local uτ , at the inner wall for various γ: γ1 is the continuous line, γ2 is the
dashed line.

concave region the maximum of r.m.s. for the θ component gets closer to
the outer wall as γ increases, while for the convex region the movement of
the maximum is towards the centre of the channel; (6) for mild curvature
the z and r component became greater than θ at a distance from the wall of
around 90 wall units.

As a general conclusion, and comparing the results with the simulation
conducted for a straight channel [59] (plotted in fig. 6.13), we can state
that the turbulence intensity for the streamwise component decreases, as γ
grows, while the spanwise and radial components increase, and eventually
overwhelm the azimuthal component. Our results confirm the qualitative
observation by [91] that the curvature has a large effects on turbulence in-
tensities.

The r.m.s. of the vorticity vector ω is plotted, non-dimensionalized with
the local wall units, as a function of the radial position and for γ1 and γ2

curvature, in figs 6.14 and 6.15. We use the same scale to make a valuable
comparison. At the concave wall the r.m.s. are bigger than at the convex
wall for all the components of the vector. The curvature has large effects on
both walls; in particular, the asymmetry increases as the curvature grows.

The high-order turbulence statistics, skewness S and flatness F factors,
are derived for different curvature degrees. In figs 6.16 and 6.17 the skewness
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Figure 6.12: r.m.s. values of velocity components non-dimensionalized by
local uτ , at the outer wall for various γ: γ1 is the continuous line, γ2 is the
dashed line.

Figure 6.13: r.m.s. values of velocity components for a channel flow; the
symbols refer to experimental results at Rτ = 180 from [59]. The continuous
line is u, the long-dashed line is v, and the small-dashed line is w; the symbols
refer to experimental results.
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(4) component of velocity vector for various γ: γ1 is the continuous, and γ3
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and flatness are respectively plotted for γ1 and γ3. The results of our simu-
lations show good agreement with the data available in literature for the γ1

case, for both the skewness and the flatness factor. We can notice that as
the curvature increases skewness and flatness becomes more asymmetric too.

6.5 Turbulence structures

The mono-dimensional spectra of velocity Φα,p and Φm,p, defined in eqs (5.6)
and (5.7), are depicted respectively in figs 6.18 and 6.19 for the curvature γ4

valuated at 59 wall units from the concave (outer) wall. We note that Φα,p in
fig. 6.18 is plotted with a linear scale. They both show no pile-up of energy
associated with the small-scale, decaying vortices, so they have been correctly
described in our simulation; moreover the axial spectrum Φα,p shows for all
its components a peak. Visualisations have shown that this peak is associated
with elongated large-scale structures which can be possibly connected with
the TDV; these structures are not steady as the previously seen TTV, and so
are partially erased by the temporal and azimuthal mean process. We have
not conducted further analyses on these structures.

124



 0

 2

 4

 6

 8

 10

 12

 0  0.5  1  1.5  2

F

∆r [δ]

γ1
γ3

Figure 6.17: Flatness factor F (r) of axial (©), radial (�), and azimuthal
(4) component of the velocity vector for various γ: γ1 is the continuous, and
γ3 is the dotted line.
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m,p(m) of velocity at a dis-
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dashed line is v and the dotted line is w.

The mono-dimensional correlation coefficients Rz,p and Rθ,p are depicted
in figs 6.20-6.22 and 6.23-6.25, respectively. We have pictured the mono-
dimensional correlation coefficient Rz,p and Rθ,p for different values of the
curvature from γ1 to γ4, at a distance from the outer wall which is between
the value 4.3 (for small curvature) and 4.9 (for high curvature) wall units.
The Rz,p and Rθ,p of all the three component go to zero in half the axial
period.

The points at which Rz,v and Rz,w reach their minimum are related,
respectively, to the spanwise dimension ∆z+

v of the predominant, quasi-
streamwise, near-wall, vortical structure, and to the half spacing ∆z+

s be-
tween the near-wall high- and low-velocity streaks. The zero-curvature data,
reported in fig. 6.26, are taken from fig. 23 by [59]. Both the dimensions of
the streaks and of the vortices are observed to grow with the curvature; the
growth of the streaks as a function of γ is larger than that of the vortices.

An analysis of the fluctuating part of the shear at the inner τ
′

(z, θ;Ri, t)
and outer τ

′

(z, θ;Ro, t) wall can produce a vivid image of the behaviour of
the small-scale structures in the proximity of the walls. Preliminary, we have
to observe that the Reynolds number at the outer wall is higher than that
at the inner wall, so the outer wall is more turbulent.

In the case of small curvature γ1, the shear stress at the inner and outer
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Figure 6.20: Mono-dimensional correlation coefficients Rz,u(z) at the concave
wall (∆r+ = 4.3−4.9) for various γ: γ1 is the continuous line, γ2 is the dashed
line, γ3 is the dotted line, and γ4 is the dashed-dotted line.
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Figure 6.21: Mono-dimensional correlation coefficients Rz,v(z) at the concave
wall (∆r+ = 4.3− 4.9) for γ1 is the continuous line, γ2 is the dashed line, γ3

is the dotted line, and γ4 is the dashed-dotted line.
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Figure 6.22: Mono-dimensional correlation coefficients Rz,w(z) at the concave
wall (∆r+ = 4.3− 4.9) for γ1 is the continuous line, γ2 is the dashed line, γ3

is the dotted line, and γ4 is the dashed-dotted line.
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Figure 6.23: Mono-dimensional correlation coefficients Rθ,u(θr) at the con-
cave wall (∆r+ = 4.3 − 4.9) for γ1 is the continuous line, γ2 is the dashed
line, γ3 is the dotted line, and γ4 is the dashed-dotted line.
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Figure 6.24: Mono-dimensional correlation coefficients Rθ,v(θr) at the con-
cave wall (∆r+ = 4.3 − 4.9) for γ1 is the continuous line, γ2 is the dashed
line, γ3 is the dotted line, and γ4 is the dashed-dotted line.
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Figure 6.25: Mono-dimensional correlation coefficients Rθ,w(θr) at the con-
cave wall (∆r+ = 4.3 − 4.9) for γ1 is the continuous line, γ2 is the dashed
line, γ3 is the dotted line, and γ4 is the dashed-dotted line.
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Figure 6.26: Dimension of the turbulent wall structures: streamwise vortices
∆z+

v (continuous line) and streaks ∆z+
s (dashed line) as a function of the
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Figure 6.27: Instantaneous shear around the mean value τ
′+(z, θ;Ri, t)/µ at

the convex wall for an instantaneous flow field, at γ1 (∆τ+ = 0.2, the positive
values are red-coloured, the negative blue-coloured).

Figure 6.28: Instantaneous shear around the mean value τ
′+(z, θ;Ro, t)/µ

at the concave wall, for an instantaneous flow field, at γ1 (∆τ+ = 0.2, the
positive values are red-coloured, the negative blue-coloured).
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Figure 6.29: Instantaneous shear around the mean value τ
′+(z, θ;Ri, t)/µ at

the convex wall for an instantaneous flow field, at γ3 (∆τ+ = 0.2, the positive
values are red-coloured, the negative blue-coloured).

Figure 6.30: Instantaneous shear around the mean value τ
′+(z, θ;Ro, t)/µ

at the concave wall, for an instantaneous flow field, at γ3 (∆τ+ = 0.2, the
positive values are red-coloured, the negative blue-coloured).

wall, respectively figs 6.27 and 6.28, shows the presence of elongated (their
streamwise extension is 400−900 wall units) quasi-streamwise (with angle of
3−10◦) streaks of high (red) and low (blue) azimuthal velocity. As previously
shown from the correlation coefficients (see fig. 6.26) in case of curvature γ1,
at a distance ∆r+ = 4.3 from the concave wall the minimum of Rz,w suggests
a streak spanwise half-spacing of around 50 wall units while the minimum
of Rz,v is in correspondence of around 30 wall units; both results show that
these streaks are quite similar to the typical structures of the turbulent plane
wall flows.

From the values of Rτ,i and Rτ,o in tab. 6.1 we have observed that an
increase of γ has dramatic effects on the shear at the wall; the same conclusion
can be inferred from an analysis of the shear at the inner (see fig. 6.29) and
outer (see fig. 6.30) walls for a mild curvature (γ3). By comparing these
figures with their companions 6.27, 6.28 for the γ1 curvature we can surmise
that the streaks at the outer wall are longer than in the γ1 case, which
confirms the results in fig. 6.26; besides, at the inner wall the streaks do not
appear anymore, which is a consequence of the low value of the local Rτ,i.
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6.6 Final remarks

Direct numerical simulations have been conducted in a curved channel flow
at various degrees of curvature and for a Reynolds number which guarantees
a fully developed turbulence. If we imagine to deform a straight channel
flow by continuous bending of the streamwise axis, we recognize that the
mean and instantaneous properties of the flow change dramatically with the
increase of bending. In fact the profile of the streamwise velocity gains a
strong asymmetry and the fluid is pumped, owing to centrifugal effects, from
the inner to the outer wall. As the bending of the channel grows, the shear
stress at the concave (outer) wall increases, while the opposite occurs for
convex (inner) wall.

Moreover, as the curvature grows a large part of the channel in the ex-
ternal part of the gap is characterized by a nearly irrotational mean motion
in which the angular momentum is almost constant with the radial position.

Both the wall layers are characterized by a viscous sublayer. For none of
the considered curvature values the velocity profile near the convex wall shows
a logarithmic law; on the other hand, the velocity profile over the outer wall
does ineed show a logarithmic behaviour. The slope and the intercept of the
fitting logarithmic line are strongly dependent on the amount of curvature.

As the curvature grows the turbulence intensity for the azimuthal com-
ponents decreases, and its profile becomes more asymmetric. The radial
and spanwise components exhibit increasing intensities which become higher
than the streamwise component at large curvature. At the wall the flow
presents elongated streaks and quasi-streamwise vortices which are similar
to the widely recognized structures existent in the case of the straight chan-
nel.
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Chapter 7

Summary and Conclusions

In this work various questions related to incompressible flows over solid sur-
faces with curvature in the streamwise direction have been considered. The
issues of the pattern of transition to turbulence and the turbulent regime
itself have been investigated. Two prototypical flows have been the subjects
of our analysis: the Taylor-Couette flow, chosen for its physical importance,
and the Dean flow, selected for its applicative relevance.

In the laminar regime both flows can be described by an exact solu-
tion of the incompressible Navier–Stokes equations. As a consequence of a
centrifugal instability, above a critical value of the Reynolds number, these
flows show the occurrence of elongated, streamwise-oriented, large-scale, vor-
tical structures, superimposed on the laminar solution. These structures are
known as Taylor vortices (TV) or Dean vortices (DV), in dependence of the
flow geometry; they characterize also the transitional regime and, at least
for the Taylor-Couette flow, the turbulent regime too. In fact, borne as az-
imuthally straight vortices, they deform as the Reynolds number grows, and
gain azimuthal waviness. More complicate features appear as the Reynolds
number increases further; once the turbulent regime is reached the large-scale
structures eventually reappear, although immersed in a noisy background.

The effect of these structures on Taylor-Couette flow has not been satis-
factory described in the literature, especially in the case of the fully turbulent
regime, and together with the characterization of the turbulent Dean flow in
terms of mean and instantaneous properties (i.e. friction coefficient, veloc-
ity profile, turbulence intensity, etc.) is the main motivations of the present
work.

To this aim, we have performed both numerical simulations, in transi-
tional and turbulent regime, and laboratory experiments. For the numerical
simulations we have used a computer code designed for the parallel DNS of
incompressible flows in cylindrical coordinates, a short description of which
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has been given in chapter §2, while the experiments have been conducted at
the laboratories of the Manchester Centre for Nonlinear Dynamics, Univer-
sity of Manchester, with a newly designed Taylor-Couette apparatus .

The transitional regime has been studied in two different configurations
of the Taylor-Couette flow, in order to assess the influence of temporal and
spatial forcing, and to investigate a possible control strategy.

Direct numerical simulations have been used to study the effect of a tem-
poral forcing on a large-gap Taylor-Couette system, as described in chapter
§3. A wide range of Reynolds numbers and oscillation frequencies have been
considered. We have concluded that the forcing delays the formation of the
TV. Reversing and non-reversing TV flows have been recognized. A third
regime, related to the oscillating Stokes’ layer, has been moreover observed
and described for the first time. The frequencies at which transition among
these three regimes occurs have been found to depend on Reynolds number,
and we have been able to describe this dependency in terms of a Landau’s
equation. As the Reynolds number increases further, for some particular
frequencies, the axial period of the TV halves, and a sub-critical transition
to a wavy regime takes place. The frequencies at which this last feature
appears are approximately related to the typical period of the wavy TV in
the zero-frequency limit, denoting a sort of quasi-resonant behaviour.

Once assessed that a time forcing influences the transition in TC flows, we
have analysed, in chapter §4, whether the same is true for a spatial forcing,
by investigating how the wavelength of a sinusoidally-shaped inner cylinder
affects the characteristics of the TV.

The analysis has been carried out through a campaign of laboratory ex-
periments, performed under the supervision of prof. Tom Mullin at the
MCND during a six months stay. By slowly increasing the Reynolds number,
we have been able to observe both steady and periodic flows which eventually
lead to the turbulence regime. At the early stages of transition, the inner
cylinder wavelength forces the appearance of a pair of counter-rotating vor-
tices, similar to the classical TV, which develop in the region of the trough.
They fill the whole gap but the crest region. As the Reynolds number in-
creases, a pair of steady secondary vortices appears, made of counter-rotating
structures which occupy the region of the crest and fill the outflow region of
the primary vortices. At even higher Reynolds numbers, the secondary vor-
tices experience an Höpf bifurcation and begin to oscillate; the amplitude
of the oscillations grows with the Reynolds number, until they disappear,
and a mono-cellular flow re-establish. However, these large vortices occupy
the whole sinusoidal-wavelength. Successively, turbulence appears. We have
also found that, above a certain threshold value of the Reynolds number, the
uniqueness of the flow ceases to exist.
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Our attention has then switched to the behaviour of the Taylor-Couette
and Dean flows in the fully turbulent regime. We have carried out a number
of direct numerical simulations for both flows to build a large database of
several flow fields. They have been subsequently analysed, and particular
attention has been dedicated to the issues of the presence of turbulent Taylor
vortices (TTV), the behaviour of the friction coefficient versus curvature, and
the presence of a logarithmic region for the streamwise velocity profile. In
particular, the simulations of the Taylor-Couette flow in turbulent regime
represent the first case of DNS at such an high value of Reynolds number,
while the simulations of the Dean flow explore a wide range of curvature
parameter in a fully turbulent flow for the first time.

In chapter §5 we have considered a small-gap Taylor-Couette flow in tur-
bulent regime. The TTV have been observed, and their effects on low-order
turbulence statistics have been analysed. The TTV produce, in the central
part of the gap, a region of constant angular momentum; the velocity profile
is asymmetric and the friction coefficient at the inner wall is higher than at
the outer wall. The presence, if any, of a logarithmic layer for the average
azimuthal velocity profile is confined to a very small region, but its very
existence is subject to some degree of uncertainty. Another main effect of
the TTV is the redistribution of turbulence intensity to the radial and axial
velocity components. The contribution to the TTV-free turbulence statistics
shows behaviours resembling, qualitatively, the plane turbulent Couette flow.

The Dean flow in turbulent regime has been considered in chapter §6
at various degrees of curvature. The friction coefficient changes dramati-
cally as the curvature varies: on the convex wall it decreases while on the
concave wall it increases. The azimuthal velocity profile becomes more and
more asymmetric as the curvature increases. The point of maximum veloc-
ity moves from the centreline, but we have observed an unexpected range of
relatively low curvatures, where this point approaches the outer wall, before
crossing the centreline again and moving towards the inner wall, as com-
monly reported in literature. For none of the curvatures analysed, the mean
velocity profile near the inner wall shows a logarithmic behaviour; however,
the profile close to the outer wall shows indeed a logarithmic region, whose
parameters are dependent on the curvature. The turbulence intensities are
heavily asymmetric, too. At the wall, small-scale structures appear which
have been recognised as the elongated streaks which characterize the flow in
the case of the straight channel.

We conclude that large-scale structures represent the main elements of the
flows on streamwise-curved surfaces, both in laminar and turbulent regime,
in particular for TCF. A suitable temporal or spatial forcing is capable to
affect the transition process efficiently. Once the turbulent regime is reached,
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the effect of large-scale structures on the flow properties is conspicuous and
reflects in both mean and instantaneous properties. For the TCF, we have
been able to quantify those effects, and to show that, when the large scale
structures are removed, turbulence statistics have a behaviour more similar to
the turbulent Couette flow. In the case of DF, the small-scale structures have
shown characteristic dimensions which depends from the degree of curvature.

Finally, we want to give few hints on at least two further subjects that
could represent an extension of the present thesis. The first deals with the
interesting issue of spiral turbulence, which has been recognized in many ex-
periments on Taylor-Couette apparatus with counter-rotating cylinders (see
[70], [97]). Here, both laminar and turbulent regime coexist. To our knowl-
edge this flow is still unexplored numerically, and a deep investigation could
give better insights into the comprehension of the boundary between the lam-
inar and turbulent regions. The second research is related to analysis and
implementation of a suitable control strategy (e.g. blowing, suction, spatio-
temporal modulated movement of the wall) for a DF in turbulent regime,
and could provide some interesting application for engineering devices.
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[55] J. Jiménez. Computing high-Reynolds-number turbulence: will simu-
lation ever replace experiments? J. Turbulence, 4:22, 2003.
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