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Abstract

The automatic design of crashworthy structures is carried out using two
different optimization techniques. The first technique is based on a genetic algorithm,
leading to a global search on the design space. Alternatively, a sequential linear
programming approach is used to perform a local optimization. The dynamic of the
structure is analysed by means of a multi-body or of an explicit FEM code.
Optimization leads to substantial improvements in the objective function and can help
in the understanding of the crash dynamic. This article provides different examples of
successfully optimizations, leading to substantial improvements of the structure.

1. Introduction

The design of crashworthy structures is commonly carried out by using
modern explicit multi-body or FEM codes, in the effort to limit as much as possibie
the number of experimental crash test needed to achieve an acceptable design. The
cpu time required to perform a multi-body analysis is negligible, while a single FEM
analysis of a structural component requires few hours of cpu time. Furthermore, the
level of accuracy of both multi-body and FEM codes in the prediction of the dynamic
of the system is acceptable. For these reasons an optimization code can be used to
drive the design process. Some examples of optimization for crashworthy structures
are available in literature. An optimality criteria was used by Mayer, Kikuchi and
Scott [11] to drive the shape optimization of an automotive body rear rail, the
response of the structural element was analysed using the DYNA3D FEM code.
Following a completely different approach, Hajela [7] used a genetic algorithm,
combined with the multi-body code KRASH, to choose the best combination of pre-
defined energy-absorbing elements for an helicopter subfloor. Two commercial
codes, namely MADYMO and PAM-CRASH have a direct interface with
optimization drivers (MADYMIZER and PAM-OPT respectively), and some
examples of applications are being available where alloy sheets thickness or
pretensioned seat belts design parameters play the role of design variables [3,13].
Nevertheless, the use of the optimization approach is not well established, partly
because of the total amount of time required to perform a single optimization run,
partly because of the difficulties that can arise carrying out, during the optimization,
the analysis of a structure which is slightly different from the initial one.
Furthermore, using an explicit dynamic solver to analyse the behaviour of the
structure does not allow to gain direct sensitivity information of the objective
function and constraints.

The use of both multi-body and FEM codes is addressed in this paper. The main
difference in the two approaches lies in the formulation of the problem: a FEM code
allows to state the problem in term of the effective shape of the structure, while a
multy-body code imposes the choice of global variables such as the desired force-
displacement law of an energy adsorbing element. Nevertheless, a multi-body code
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requires a slightly reduced cpu time to perform the simulation, allowing for the
optimization of more complex dynamic systems and the use of more design variables.
Optimizations are performed using VeDyAC [4] - a multi-body code developed at
Politecnico di Milano - as dynamic solver and a simple genetic algorithm as
optimization solver. Alternatively, the FEM code PAM-CRASH is coupled with a
SLP optimization solver.

2. Crash optimization

To optimize a crashworthy structure the problem has to be stated in the
classical form

find x: min f(x) and g (x) < 0, where
x is the vector of design variables,
J(x) is the objective function that should be minimized and
£ (x) is a vector of constraints.

Given this form of the problem the optimization can be carried out with the aid of
classical mathematical programming tools; however, one has to take into
consideration some peculiar aspects of the problem at hand:

* crash is a highly non-linear phenomenon, so that both the objective function
and constraints can be discontinuous;

* the use of an external solver prevents to collect derivatives information, even
when the objective function and constraints are continuous with respect to the
design variables;

* objective function and constraints derivative information can alternatively be
gained by means of a finite difference scheme. Unfortunately, explicit
integration solvers are known to introduce “noise” into response functions
[1,2,10];

» the number of function evaluations has to be kept as reduced as possible,
being a single crash dynamic analysis a cpu intensive work.

First three points suggest the use of an optimization algorithm that does not require
derivative information. Unfortunately, such type of algorithms requires a lot of
function evaluations. This type of optimization algorithm can therefore be applied
only when the analysis of the system requires few minutes, i.e. when it is carried out
with a multi-body solver.

If the problem at hand imposes the use of a FEM code a different optimization
strategy has to be adopted in order to reduce the number of simulations, A sequential
linear programming approach, where derivatives are gained by means of a secant
approximation of the response surface, can be adopted with success [1,14]. By this
way the objective function and constraints are replaced by a multi-point
approximations of the response surface.

3. Genetic algorithm
A genetic algorithm is an optimization strategy that mimics the natural
selection mechanism to carry out an efficient search in the design space of the global

optimum [5]. The genetic algorithm evaluates at the same time the objective function
and constraints values of a set of different design solutions. A rank based on the
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objective function and constraints violations is then assigned to each design solution.
This rank is used to generate a new set of design points by combining the old ones in
such a way to “shifi” the population towards design points with better ranking
Genetic algorithms are known to find the global optimum of the problem at hand
regardless of its continuity properties. Furthermore, they do not need derivative
information. Bound constraints on design variables values are easily imposed, while
general constraints can be imposed only with the penalty function method. The
number of function evaluations required to perform a successful genetic search can
be quite large, though some techniques could allow a reduction of the number of
FEM or multi-body simulations [7,15].

4. Sequential linear programming

The optimization is performed on a multi-point linear approximation of the
objective function and constraints, thus reducing each optimization step to a simple
linear programming problem. Changes of design variables are limited by appropriate
move limits in order to keep the optimal solution inside the region where the linear
approximation is acceptable. If the move limit region is completely within the
infeasible region then a slack variable is added to relax the constraints while adding a
huge penalty term to the objective function.

The values of objective function and constraints are checked after the linear
optimization. The new design point s accepted or rejected in function of the value of
the Lagrangian function computed on the basis of active constraints Lagrange
multiplier; only active or critical constraints are used to compute the Lagrange
multipliers. By this way, a solution can be accepted even if it leads to an increase of
objective function provided that the initial solution is not in the feasible region and
the new design point leads a smaller constraint violation [6].

The size of the move limit region is automatically updated in function of

the error on the objective function and active or quasi-active constraints;

the choice to reject or to accept the new design point;

the value of gradients;

the change of each design variable value.

The total time required to perform the optimization can be reduced using a
parallel computer or a cluster of workstations. Given a new design point the
algorithm needs to evaluate the objective function and constraints in at most » points,
where 7 is the number of design variables. These n evaluations can easily be
performed at the same time. To this purpose, the program has a master-slave
structure, where the master process drives the optimization and slaves perform
objective function evaluations. The objective function evaluation needed to check the
new design point reduces the total speed-up as only one slave process is needed to
perform this bottle-necking task (Fig. 1).

5. Optimization using multi-body code

A first example of optimization with multi-body code can be found in [9]. In
that work a multi-body model of a business aircraft seat was used to study effects of
different deceleration histories on the compressive lumbar load. The deceleration
history was sampled at 13 equally spaced instants, and the value of deceleration at
these points was chosen as design variables. The deceleration curve was constrained
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Fig. 1: block diagram of the slp optimizer.

to satisfy the AC 25.562-1A seat homologation standard deceleration equivalence
criteria, and a minimization of the lumbar load was successfully carried out. At the
same time, a second optimization was performed, in the effort to maximize the
lumbar load with a deceleration time history that does not satisfy the standard’s
deceleration equivalence criteria. The resulting deceleration curve, thogh nor
satisfying the standard’s equivalence criteria, led to a compressive lumbar load
greater than that found during the minimization run. About 3300 simulations were
necessary to carry out either the maximization or the minimization run. The
difference between the maximum and minimum compressive Jumbar load was of

about 950 N, thus clearly stating the inadequacy of the homologation standard (Fig.
2).
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Fig. 2: unfiltered deceleration curves and corresponding lumbar loads.

A second set of minimization/maximization runs was performed taking in
consideration the homologation standard as modified by a FAA memorandum [3]
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That time, the difference between the maximum and minimum compressive lumbar
load became negligible, showing how the memorandum led to a better definition of
the deceleration equivalence critera.

An energy absorbing helicopter seat was object of a deep investigation. The
maximum allowed stroke of the seat was of 22 cm, and the seat was required to give
acceptable loads for the 5%, 50™ and 95™ percentile dummies. After a parametric
study on the force-displacement law of the seat energy absorbing element, the 95t
percentile dummy was still experiencing a compressive lumbar load of about 5660 V.
1t was then decided to perform an optimization of the force-displacement law. Force
values at equidistant points, together with the first point displacement, were chosen as
design variables, for a total of 11 variables. Each force variable was constrained
between 10 and 6000 N, while the first point displacements was constrained between
2 and 100 mm. By this way, the optimization does not use any information from the
previous parametric study. The optimization led to a force displacement law such that
the compressive lumbar load experienced by the 95™ percentile dummy was reduced
to 5160 N (Fig. 4). A total of 4694 multi-body simulations were required, while the
parametric study with the 95® percentile dummy took 1215 evaluations. In spite of
the high number of simulations required the whole optimization run took about one
day on a Digital AlphaStation 600 A 5/500.

Energy absorbing
elements

Fig. 3: VeDyAC model of the energy adsorbing helicopter seat.
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Fig. 4: optimized force/displacement law and corresponding compressive lumbar load.
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As it can be difficult to realize such a force-displacement curve, a second
optimization was carried out reducing the number of design variable and assuming a
perfectly plastic behaviour of the seat for most part of the displacement. The resulting
force-displacement curve let to an almost constant compressive lumbar load in the

dummy, with a maximum of 5360 N (Fig. 5). A total of 4172 multi-body simulations
were required for this second run.
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Fig. 5: optimized force/displacement law and corresponding compressive lumbar load.

6. Optimization using FEM code

The optimization of a simple intersection cruciform helicopter subfloor
element was carried out using a FEM code for the analysis of the response of the

structure (Fig. 6). The element is hit by a 110 Kg mass with an initial velocity of 8
m/s.

Fig. 6: simple intersection-cruciform subfloor element.

The FEM model of the initial design was validated by comparing the deceleration

time history of the impacting mass predicted by the FEM code with experimental
data. The correlation between FEM analysis and experimental data proves to be good
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(Fig. 7). A key feature of the model turned out to be a correct model for rivets

behaviour.
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Fig. 7: reaction forces on the impacting mass, initial design.

A set of design variable was chosen to identify different structural solution. Variables
taken into consideration were (Fig. 8):

1. dimension of diagonal elements;

2. thickness of straight elements;

3. thickness of diagonal elements;

4. angle between diagonal and straight elements.
The FEM mesh has to be automatically generated for every possible configuration.
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Fig. 8: optimization variables.

A first optimization run was carried out in order to maximize the absorbed energy per
unit of crushed mass (SE). Being the density of the material constant, results are
presented as a function of absorbed energy per unit of crushed volume. The range of
possible values for each variable is constrained between reasonable limits (Table 1).
Furthermore, the ratio between the maximum and the average deceleration of the
impacting mass (LUR) is limited to a maximum value of 1.5. The energy absorbed as
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well as the LUR are computed after filtering the deceleration curve with a SAE J211b
compliant 60 Hz filter.

Inf limit Variable Sup. limit
30mm < x;,< 70 mm
05mm < x,< 3mm
05mm < x3< 3mm

0.174 rad xs< 1.57rad

IA

Table 1: variable bound constraints.

The optimization was carried out with four slave processes (one processor for each
variable), reducing the wall clock time from 38 hours, that would have been required
with a single processor, to 20 hours. The negative influence of the single solution
check to the total wall clock time is evident, as a perfectly scaling algorithm should
require about 10 hours for the same problem. This influence will clearly be mitigated
in problems with more variables.

The optimization procedure was able to improve the value of the objective function
within few finite element evaluations (Table 2), and led to a design were the angular
panels carry the major part of the load (Fig. 9).

FEM Objective function Variable Initial Finale
evaluations [KN/mm*] value value
1 0.064 X1 45 mm 64 mm
6 0.136 X3 1 mm 0.5 mm
11 0.154 X3 1 mm 1.55 mm
16 0.154 X4 0.785rad 122 rad
19 0.164

Table 2: optimization convergence history

The final design model was again validated comparing the deceleration of the
impacting mass with experimental deceleration data (Fig. 9). While the correlation
between experimental data and FEM result is not as good as for the initial design, the
difference in the average value seems acceptable. Furthermore, the difference implies
an objective function value better than expected. The initial peak of force in the
experimental diagram is cut due to the saturation of the accelerometer channel.

The final solution leads to a noticeable improvement in the SE value at the
expense of a very stiff response. Unfortunately, such type of solution proves to be too
stiff for practical purposes. Clearly, the SE index alone can be a misleading parameter
to compare different energy absorbing structures, as it does not give information on
the total energy to be absorbed and does not take in consideration structural
compatibility requirement arising when the energy absorbing has to transmit reaction
forces to the surrounding structure. To show the effect of these requirements on the
optimal shape of the energy absorbing element an additional set of four optimization
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runs was carried out constraining the average deceleration to a maximum of 50, 40,

30 and 20 m/s”.
5E+5 —
Z
THIN @ b
4‘: THICK 8 445 8
M -- 2 8
B I
% 8 3E+s ﬁil ——— Experimental
g Al £ i
:::,;'l::ﬂ“ ° il - ——  Numerical
duann ‘ﬁ" £ .
nat’e S 2E+5 .
o] I
3 i
£ i
§ tEs
s IR ',M/\,WWV\
& Iww A
OE+0 —— : ‘ \ ‘
0.000 0.005 0.010 0.015

Time {s]

Fig. 9: optimal shape for maximum specific energy absorption and comparison of
experimental vs. numerical resuits.

Optimizations led to designs which are noticeably different from the unconstrained
one (Fig. 10, Fig. 11, Table 3). As the initial design average deceleration lies between
30 and 40 m/s” the optimization algorithm behaved differently for the 50/40 m/s” and
the 30/20 m/s” constraints. In the first case the final solution led to an improvement of
the objective function at the expense of an increase of the average deceleration. In the
second case the algorithm was able to find a feasible solution still keeping constant
the objective function value (Fig. 12, Fig. 13).
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Fig. 11: optimal shapes, 30 and 20 /s> maximum deceleration
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50ms" | 40m/s | 30m/sE | 20 mist |
34.67mm | 31.5 mm 30 mm 30 mm
O0S5Smm | 0.54mm | 05 mm 0.5 mm
1.39mm | 1.95mm | 0.88 mm | 0.684 mm
1.45rad | 1.295 rad | 1.235 rad | 0.733 rad

H-k k’v) ><N k»-d

Table 3: final values of design variables.
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Fig. 12: increment of specific absorbed energy with respect to the initial design.
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Fig. 13: relative average deceleration values.

7. Conclusions

Different approaches are shown for the optimization of a crashworthy
structure. The approach based on a genetic algorithm coupled with multi-body
simulations can be useful for a conceptual design of the structure, while the SLP code
coupled with a FEM code is tailored for the final design of a structural component. In
both cases the use of an optimization tool can lead to substantial tmprovements of the
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initial design. It seems to the author that the use of an optimization approach will
become more and more common, as commercial optimization codes especially
tailored for this type of problem are available and the total time required to perform a
simple optimization is affordable. Unfortunately, the time that has to be spent for the
problem set-up is not negligible, and can heavily depend on the analyst experience. In
particular, the model of the structure should give reliable results as noticeable
changes in the design are introduced, both for analysis with multi-body or FEM
codes. Furthermore, the set of objective function and constraints has to be precisely
stated, as the common engineering sense may be misleading.
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