Trajectory optimization and real-time simulation for robotics applications

Michele Attolico
Pierangelo Masarati
Paolo Mantegazza

Dipartimento di Ingegneria Aerospaziale
Politecnico di Milano

Multibody Dynamics 2005
International Conference on Advances in Computational Multibody Dynamics
ECCOMAS Thematic Conference
Madrid, June 2005
Index

1. The trajectory optimization problem.

3. Application

4. The real-time simulation.
The dynamic equations

The multi-body equations of the robot are:

\[
F(x(t), \dot{x}(t), z(t), u(t), p) = 0
\]
\[
G(x(t), p) = 0
\]

where:

\begin{itemize}
 \item \(x(t) \) and \(z(t) \) are the states
 \item \(u(t) \) and \(p \) are the system inputs
\end{itemize}
The trajectory optimization problem

Find a $u(t)$ control input and a p value in order to move the robot:

- Minimizing a suitable cost function.
- Satisfying some constraints over the trajectory:

$$C(x(t), u(t), p) \geq 0$$
The trajectory optimization problem

The cost function has the form:

\[
f(u(t), T) = \int_0^T (d_1 + d_2 v(t)^T v(t)) \, dt
\]

where

\[
v(t) = \int_0^t W(t - \tau) u(\tau) \, d\tau
\]

and \(W(t) \) is the impulse response of a suitable filter \(W(s) \).

In this work, a high pass filter is used, in order to have a control law with reduced energy at high frequency.
From the continuous to the discrete problem

A direct method is used:

- The system input $u(t)$ must be discretized over a time grid:
 - The discrete values become unknowns of the optimization problem
 - The continuous behavior is obtained by polynomial interpolation. The interpolation order can change at each time interval.
- The dynamics equations are integrated by MBDyn multi-body solver through a “shooting” procedure
- The constraints $C(x(t), u(t), p) \geq 0$ are sampled:
 - Any continuous constraint generates many discrete constraints at different times.
 - Not all the integration times can be used because the problem becomes too large.
 - An heuristic algorithm selects only those times where the constraints are about to be violated.
From the continuous to the discrete problem

The problem unknowns are:

- the final time T
- the discrete values of the j-th control input u_j
- the constant system input p

$$y = \begin{pmatrix} T \\ \vdots \\ u_j \\ \vdots \\ p \end{pmatrix}$$
From the continuous to the discrete problem

An SQP algorithm is used to solve the optimal problem:

- Harwell VF13 solver
- Iterative solution
- The following differential quantities are needed:
 - ∇f
 - the constraints Jacobian J

The derivatives are computed through central finite difference:

- $2n+1$ dynamic equations integrations are needed at each optimization step, where n is the unknowns number.
The optimization algorithm

MBDyn → Assembler

\[x(t), u(t), p, T \]

VF13 solver

\[f, \nabla f, C, J \]
The optimization algorithm

MBDyn

Optimizer program

Assembler

VF13 solver

\[f, \nabla f, C, J \]

\[x(t), u(t), p, T \]
Problem adaptation

When an optimal solution is found, a problem adaptation can be performed:

The control \(u(t) \) are adapted:

- some interpolation points are inserted or deleted in the discretization grid
- the most appropriate polynomial interpolation function is selected in a given interval of the analysis time

A new optimization can be performed starting from the former solution
MBDyn Overview

Index 2/3 Differential-Algebraic, Initial-Value problem solver

\[
M \dot{x} - \beta = 0 \\
\dot{\beta} - F(x, \dot{x}, t) + \lambda = 0 \\
\Phi(x, \dot{x}, t) = 0
\]

Algebraic kinematic constraints; e.g.
- revolute joints

Multidisciplinary problems capability:
- aeroelasticity
- electric components
- hydraulic components

Implicit integration by means of second-order A/L stable scheme
MBDyn Overview

Free software project:

http://www.aero.polimi.it/~mbdyn/

Developed at the “Dipartimento di Ingegneria Aerospaziale” of the University “Politecnico di Milano”

General purpose:

• parallel/multithread linear/nonlinear solvers
• distributed Real-Time enabled by RTAI/RT-Net/RTAILab
• interface to arbitrary CFD solvers for aeroelastic analysis
Algorithm validation

The validation has been made by means of problems with analytical solutions:

- Material point linear movement thrust through a force, with various constraints.

- The found solutions agree with the analytical ones
Application: Two arms robot

The robotic arm is a two degree of freedom planar robot.

The system inputs are the couples C_1, C_2 applied at the two hinges.

The couples can vary between -1 and 1 whereas the hinge angles θ_1, θ_2 between -135 and 135 degrees.
Application:
Two arms robot

Robot geometry and mass:
- Link 1:
 - mass 3.9 kg
 - length 1.0 m
- Link 2:
 - mass 0.685 kg
 - length 1.0 m

Path conditions:
- The end effector initial position is $x_e = 2, y_e = 0$
- The final position is $x_e = 0, y_e = 2$
- At the initial and final position the robot is motionless.

The cut-off frequency of the filter is 8Hz
Application: Two arms robot

Robot geometry and mass:
- Link 1:
 - mass 3.9 kg
 - length 1.0 m
- Link 2:
 - mass 0.685 kg
 - length 1.0 m

Path conditions:
- The end effector initial position is $x_e = 2, y_e = 0$
- The final position is $x_e = 0, y_e = 2$
- At the initial and final position the robot is motionless.

The cut-off frequency of the filter is 8Hz
Application: Two arms robot

Robot geometry and mass:
- Link 1:
 - mass 3.9 kg
 - length 1.0 m
- Link 2:
 - mass 0.685 kg
 - length 1.0 m

Path conditions:
- The end effector initial position is $x_e = 2, y_e = 0$
- The final position is $x_e = 0, y_e = 2$
- At the initial and final position the robot is motionless.

The cut-off frequency of the filter is 8Hz
Application: Two arms robot

Robot geometry and mass:
- Link 1:
 - mass: 3.9 kg
 - length: 1.0 m
- Link 2:
 - mass: 0.685 kg
 - length: 1.0 m

Path conditions:
- The end effector initial position is $x_e = 2, y_e = 0$
- The final position is $x_e = 0, y_e = 2$
- At the initial and final position the robot is motionless.

The cut-off frequency of the filter is 8Hz
Application: Two arms robot

Results:

- The optimal solution is found after:
 - 233 iterations
 - 16633 MBDyn runs
 - 5 control adaptations
- The traveling time is 3.436s
Application:
Two arms robot

The hinge angles are:
Application:
Two arms robot

... and the resulting path is:
Application: Two arms robot

Then the optimal solution is proved with a more sophisticated model:

- The two links are flexible:
 - First link: iron, thickness 5.0mm
 - Second link: aluminium alloy, thickness 2.5mm
- A feedback control is needed:
 - The torque applied at each hinge becomes the sum of the feedback control output and the optimal solution
Application:
Two arms robot
Real-Time Simulation

MBDyn allows real-time simulation under Linux
Real-Time Application Interface (RTAI) http://www.rtai.org/

Advantages:
- same software for rather different purposes
- same models/model components; no modeling limitations

Drawbacks:
- “large” models (redundant set) => sample rate limitations
- no theoretical guaranteed upper bound to worst case time

Good performances obtained so far
- 6 dof robot with friction, 120 eq.: >2 kHz on Athlon 2.4 GHz
Real-Time Simulation (cont.)

Distributed Real-Time simulation:
- Multibody Analysis
- Control
- Monitoring
Conclusions

The optimization using a MBDyn software is a powerful and versatile tool.

It is possible to verify the optimal solution with the same model in a complete control scheme.

Further development:

• Optimization with flexible models