Y POLITECNICO DI MILANO

FRIENDCOPTER WP5 Active Twist March 29-30, 2007 Yeovil

Pierangelo Masarati, Gian Luca Ghiringhelli, Marco Morandini

Politecnico di Milano

Outline

- Blade design and optimization
 - Analytical work
- Design scaling issues
 - Status of activity
 - Open issues
 - Roadmap

Analytical work

POLITECNICO DI MILANO

Active Twist - March 29-30, 2007 - Yeovil

POLITECNICO DI MILANO

Active Twist - March 29-30, 2007 - Yeovil

POLITECNICO DI MILANO

Scaling: outline

- AI 5.11 DLR: preliminary mechanical properties on LPS ?
- AI 5.18 POLIMI/RTU: active twist cross section upscale FEM model (design constraint)
 - D-spar 🗸
 - change of actuator type Not critical; Pending AI 5.11
 - minimum skin thickness ?
 - erosion protection ~
 - material selection ?
- AI 3.8 ATW-optimisation: up-scale optimisation to full scale;
 - EADS puts MATLAB-script on the FPR with ECD detailed cross-sectional data (geometry/ply lay up) of the reference rotor doc ✓
 - Ongoing

Design Optimization so Far

- local objective is <u>maximum twist/span per electric field</u>
- constraints (from helicopter manufacturers):
 - outer shape dictated by airfoil
 - "C" shaped spar
 - circular lead additional mass in the front part of the nose
 - chordwise C.G. between 22% and 30%
 - chordwise elastic axis between 20% and 25%
 - upper bound on mass/span
 - lower/upper bounds on blade first torsional frequency
 - upper bound on axial strain
 - lower/upper bounds for beamwise bending stiffness
 - lower bound for torsional stiffness
 - (=> extra: upper bound on distance between S.C. and C.G.)

First upscaling results

Iocal objective is <u>maximum twist/span per electric field</u>
<u>NO upper bound on distance between S.C. and C.G.</u>

Chord	Model scale	2.5	2.25	2.25	2.5
Span	Model scale	2.5	2.5	2.5	2.5
Piezo	Model scale	2.5	2.25	2.5	3
\pm 45 ply	Model scale	2.5	2.25	2.5	2.5
(deg/m)/(V/m)	9.99E-7	4.30E-7	4.77E-7		4.59E-7
	9.99E-7	1.08E-6	1.19E-6		1.15E-6

D shape

				D shape
	Chord	Model scale	2.5	2.5
naximum twist/span per	Span	Model scale	2.5	2.5
electric field	Piezo	Model scale	3	3
NO upper bound on distance	\pm 45 ply	Model scale	2.5	2.5
etween S.C. and C.G.	(deg/m)/(V/m)	9.99E-7	4.59E-7	4.54E-7
		9.99E-7	1.15E-6	1.14E-6

Initial design 0 -0.015 -0.3 -0.24-0.18-0.12-0.06-0.360 Final design (->no D) 0 -0.015-0.36-0.3-0.24-0.18-0.12-0.06

Active Twist - March 29-30, 2007 - Yeovil

CG-SC distance: C shape

Iocal objective is <u>maximum twist/span per electric field</u>
<u>upper bound on distance between S.C. and C.G.: 5% chord</u>

	Free	5.00%	Free	5.00%
Chord	Model scale	Model scale	2.5	2.5
Span	Model scale	Model scale	2.5	2.5
Piezo	Model scale	Model scale	3	3
\pm 45 ply	Model scale	Model scale	2.5	2.5
(deg/m)/(V/m)	9.99E-7	5.25E-7	4.59E-7	2.20E-7
	9.99E-7	5.25E-7	1.15E-6	5.50E-7
		52%		48%

was 30%; better optimization?

Active Twist – March 29-30, 2007 - Yeovil

CG-SC distance: D shape

Iocal objective is <u>maximum twist/span per electric field</u>
<u>upper bound on distance between S.C. and C.G.: 5% chord</u>

Free	5.00%	Free	5.00%
Model scale	Model scale	2.5	2.5
Model scale	Model scale	2.5	2.5
Model scale	Model scale	3	3
Model scale	Model scale	2.5	2.5
9.99E-7	3.30E-7	4.55E-7	4.23E-7
9.99E-7	3.30E-7	1.14E-6	1.06E-6

POLITECNICO DI MILANO

Active Twist – March 29-30, 2007 - Yeovil

Results/Design Scaling to Full-Scale¹²

- Scaling confirmed
- D shape: useful for aeroelastic constraint?
- Full-scale blade design issues?
- Lamination sequence?
- Aerostrike?

T.E. blade design and optimization

• Ongoing

Scaling Laws

Scales:

§	Length:	sf	2.5
§	Modulus:	1	1
§	Voltage:	1	1
§	Elastic torsion stiffness:	sf^4	39.062
§	Induced twist moment:	sf^3	15.625
§	Twist authority (deg/m)/(V/m):	1/sf	0.4
§	Span:	sf	2.5
§	Twist authority (deg/span)/(V/m):	1	1

The tip twist should (!) be the same, although the twist rate decreases when scaling up to full-scale.

Road Map

- Current assumptions:
 - § MFC can only be produced at the current thickness (0.3 mm; please correct)
 - § Same voltage is used (~300 V; please correct)
- Current approach:
 - § Work with scaling laws applied to the model-scale blade section properties
 - § Introduce scale effects in blade section FEM model (multiple layers of MFC, design similar to original)
 - § Re-run optimization on the full-scale model