

Numerical Analysis of the Bypass Valve in a Loop Heat Pipe

Michel Speetjens, Camilo Rindt, Joy Klinkenberg

Laboratory for Energy Technology, Dept. Mechanical

Engineering, Eindhoven University of Technology, The

Netherlands

Outline

- Background
- Objectives and strategy
- Integral thermodynamical analysis
- •FVM analysis: mathematical model
- •FVM analysis: status and outstanding tasks

Background

- Loop Heat Pipe: thermal control of Alpha Magnetic Spectrometer used for extra-terrestrial studies on anti-matter (see UNIBG-talk)
- **Bypass valve:** prevent freezing of working fluid (Propylene) in liquid line by interrupting circulation:

 $p_{sat} > p_{min}$: valve closed; circulation

 $p_{sat} \leq p_{min}$: valve open; no circulation

Objectives and strategy

- Objective: more accurate description of the bypass valve in the SINDA/FIUINT thermal simulator for the two steady-state operating modes (i.e. open/closed; see before)
- **Strategy:** numerical analysis of fluid flow and heat transfer in bypass valve by FVM-simulations w/ **FLUENT**
- ➤ detailed determination of physical quantities (pressure drops, temperature changes, flow rate, ...) so as to better parameterise bypass valve in SINDA/FIUINT

Integral thermodynamical analysis

Mass conservation:
$$\dot{m} = \rho_i A_i V_i = \rho_o A_o V_o \overset{A_i = A_o}{\Leftrightarrow} \rho_i V_i = \rho_o V_o$$

Energy conservation:
$$h_i + \frac{V_i^2}{2} = h_o + \frac{V_o^2}{2}$$

Equation of state: ideal gas:
$$\rho(p,T) = \frac{p}{RT}$$
, $h = c_p(T)T$

> Relevant quantities: $p, \rho, T, V, \phi = AV$ at inlet/outlet

For Given: \dot{m} , p_i , T_i , $\Delta p = p_o - p_i < 0$ => determine quantities Inlet conditions: trivial; outlet conditions: above yields:

$$\frac{V_i^2}{2} \left[\frac{p_i}{p_o T_i} \right]^2 T_0 + c_p(T_o) T_o - c_p(T_i) T_i - \frac{V_i^2}{2} = 0 \Rightarrow T_o \Rightarrow p_o, \rho_o, T_o, V_o, \phi_o$$

 $(c_p(T): empirical relation in Çengel & Boles (2002))$

Integral thermodynamical analysis: an example

$$T_i = 245 \, K, p_i = 2.3 \, bar, \dot{m} = 68 \, \frac{mg}{s}, \, -\frac{p_i}{20} \le \Delta p \le 0, \, c_{p,i} = 1.3 \, \frac{kJ}{kgK}$$

►Inlet: above
$$+ \rho_i = 4.7 \frac{mg}{cm^3}$$
, $V_i = 3.6 \frac{m}{s}$, $\phi_i = 14.5 \frac{cm^3}{s}$
►Outlet:

≻Outlet:

- >Analysis suggests isothermal conditions
- Limitations: uniform inlet/outlet conditions; no viscous effects
- ► Realistic (non-uniform) conditions => numerical simulations MATEO ■INTERREG IIIC

FVM analysis: governing equations

Mass conservation: $\nabla \cdot (\rho u) = 0$

Momentum conservation: Re~O(3,000): laminar; steady, compressible Navier-Stokes equations: $\rho u \cdot \nabla u = -\nabla p + \nabla \cdot \{\mu[\nabla u + (\nabla u)^T]\}$

Energy conservation: Pe~O(300): advection-dominated heat transfer:

$$\rho c_p \boldsymbol{u} \cdot \nabla T = \nabla \cdot \{\lambda \nabla T\}, \ \rho(p,T)$$
: ideal gas; $c_p(T), \lambda(T)$: empirical

Equation of state: ideal gas: $\rho(p,T) = p/RT$

Rheology: Newtonian fluid w/ temperature-dependent viscosity following Sutherland's viscosity law:

$$\mu(T) = \frac{1.45T^{3/2}}{T + 110} \cdot 10^{-6}$$

FVM analysis: boundary conditions

Inlet: Poiseuille flow; saturation conditions

$$u_z(r) = 2V_i \left(1 - \left[\frac{r}{R}\right]^2\right) p_i = p_{sat}, T_i = T_{sat}$$

Solid boundary: no-slip; adiabatic: $(u, v) = (0, 0), \ \nabla T \cdot n = 0$

Outlet: prescribed pressure (via pressure drop)

- > Relevant quantities: inlet/outlet conditions
- Similar to integral analysis; yet now with non-uniform conditions and viscous effects

FVM analysis: status and outstanding tasks

Tasks:

Meshing of two operating modes (current status)

- > Implementation of model (in progress)
- ➤ Incompressible isothermal simulations (in progress)
- Compressible isothermal simulations (possibly sufficient; see before)
- Compressible non-isothermal simulations (double-check)
- Evaluation SINDA/FLUINT parameters

 North East South West
 INTERREGUIC

