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Introduction

The loop heat pipe (LHP) is part of the cryo-cooling system for the thermal control of the
Alpha Magnetic Spectrometer used for extra-terrestrial studies on anti-matter. The LHP
basically comprises a conventional cooling cycle (i.e. heat intake by an evaporator; heat
release by a condensor) following the schematic in Figure 1a. The circulation of the working
fluid (propylene) is set up by capillary forces in the evaporator according to the heat-pipe
principle (hence the denotation “LHP”). In order to avoid freezing of the working fluid and,
consequently, cessation of the circulation – and thus termination of the cooling process – a
bypass valve (component “V” in Figure 1a; cross-section in Figure 1b) has been placed between
evaporator and condensor that interrupts the circulation in case the evaporator pressure pe

(typically the saturation pressure) drops below a certain lower limit pmin (“back pressure”).
The system has two steady-state operating modes:

• pe > pmin: only liquid-vapour phase change possible; no risk of freezing. The bypass
valve is closed and the circulation is enabled. The LHP is operational.

• pe ≤ pmin: solid-vapour phase change possible; risk of freezing. The bypass valve is
opened and the circulation is halted; the working fluid (vapour) is redirected into the
evaporator through the compensation chamber (component “C” in Figure 1a). The
LHP is not operational.

To date a poor description exists of the thermodynamical behaviour of the bypass valve.
Better description is essential so as to better describe the behaviour of the LHP as a whole,
however. To this end the thermodynamical behaviour of the bypass valve in its two steady-
state operating modes is to be performed, first, through an analytical integral analysis and,
as a follow-up on the latter, through a detailed numerical analysis using the finite-volume
method (FVM). The discussion hereafter concerns the analytical integral analysis. Results of
the FVM analysis are communicated separately.

a) Schematic of the LHP. b) Cross-section of the bypass valve.

Figure 1: The Loop Heat Pipe (panel a) and the bypass valve (panel b). Components “V” and
“C” in panel a indicate the bypass valve and compensation chamber, respectively.
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Integral thermodynamical analysis

The bypass valve corresponds in both operating modes with an open two-port thermodynam-
ical system, i.e. having one inlet (denoted by ‘i‘”) and one outlet (denoted by “o”) (Shavit
& Gutfinger (1995)). Important to note is that viscous effects and inhomogeneous property
distributions on the ports are not taken into account in the integral analysis. These issues
are dealt to be with in the abovementioned FVM analysis. The integral thermodynamical be-
haviour of the bypass valve is in both operating modes governed by the integral conservation
laws for mass and energy. These laws are given by

ṁ = ρiAiVi = ρoAouo,
Q̇

ṁ
+ hi +

Vi

2
= ho +

Vo

2
, (1)

with ṁ, ρ, A, V and h signifying mass flow, density, cross-sectional area, velocity and specific
enthalpy, respectively, and Q̇ ≤ 0 representing heat loss by radiation. Closure of the problem
requires specification of the state of the working medium (propylene) as a function of the
thermodynamical variables. Propylene may to good approximation be considered an ideal
gas (Chao & Zwolinksi (1975)). This completes the integral model with the equation of state
and the enthalpy relation,

p

ρ
= RT, h = cp(T )T, cp(T ) =

3∑

k=0

akT
k, (2)

respectively, with R the specific gas constant and cp(T ) the temperature-dependent specific
heat with coefficients ak following Çengel & Boles (2002).

Relevant quantities are the thermodynamic variables p, ρ and T and the fluid-dynamical
variables V and φ = AV (volumetric flow rate) at the inlet and outlet of the bypass valve.
Given are the mass flow ṁ, the radiative heat loss Q̇, the cross-sectional areas Ai and Ao and
the inlet conditions pi, Ti and Vi. This straightforwardly leads to

φi = AVi, ρi =
pi

RTi
, (3)

and thereby fully determines the state at the inlet. The state at the outlet is determined as
follows. Recasting relations (1)-(2) yields

AoρoVo = ṁ,
po

ρo
= RTo, cp(Ti)Ti +

Q̇

ṁ
= cp(To)To +

V 2
i

2

{[
piToAi

poTiAo

]2

− 1

}
, (4)

providing three equations for the four unknown outlet quantities po, ρo, To and Vo. Imposing
the pressure gradient ∆p = po − pi < 0 fixes the outlet pressure po and, via expressions (4),
fully determines the state at the outlet as a function of ∆p. This is elaborated below.

The state at the outlet depends on the relative share of the three energy contributions
(radiative heat loss; kinetic energy; enthalpy flux) in the total energy balance (nonlinear
relation in (4)). Consider to this end relations (4) in the non-dimensional form

1−Π1 = c̄p(ΘT )ΘT + Π2

{[
ΛΘT

1 + Θp

]2

− 1

}
, Θρ =

1 + Θp

ΘT
, ΘV =

Λ
Θρ

, Θφ =
1

Θρ
, (5)

in terms of the non-dimensional outlet conditions

Θp =
∆p

pi
, ΘT =

To

Ti
, Θρ =

ρo

ρi
, ΘV =

Vo

Vi
, Θφ =

φo

φi
, (6)
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with c̄p(ΘT ) = cp(TiΘT )/cp(Ti). (Form (5) readily follows from rescaling (4)). The corre-
sponding parameters read

Π1 =
|Q̇|

ṁcp(Ti)Ti
=

radiative heat loss
enthalpy flux

, Π2 =
V 2

i

2cp(Ti)Ti
=

kinetic energy
enthalpy flux

, Λ =
Ai

Ao
, (7)

with parameters Π1 ≥ 0 and Π2 ≥ 0 relating the three energy contributions as indicated; the
independent outlet variable −1 < Θp ≤ 0 controls the pressure drop over the bypass valve.
The ratio of cross-sectional areas is fixed at Λ = 1, and thus ΘV = Θφ, hereafter.

Figure 2 gives a visual representation of the thermodynamical behaviour of the bypass
valve. Shown are the dependent outlet variables ΘT and Θρ(= Θ−1

V ) as a function of Θp and
Π2 with growing non-dimensional radiative heat losses Π1. The graphs clearly demonstrate
the changes in outlet conditions with changing Θp and Π2.

Correlations for normal operating conditions

Typical values for the various quantities under normal operating conditions are (Bodendiek et
al. (2005)): Ti ≈ 245 K, Vi ∼ O(10−5 m/s), ṁ ∼ O(10−5 kg/s), Ḣi = ṁcp(Ti)Ti ∼ O(30 W ).
This gives Π2 ∼ O(10−5) and thus implies that kinetic effects are negligible. Under this
proviso relations (5) simplify to

1−Π1 = c̄p(ΘT )ΘT , Θρ =
1 + Θp

ΘT
, ΘV =

ΘT

1 + Θp
, (8)

resulting in a constant outlet temperature for given Π1 and, consequently, proportional and
inversely-proportional dependence of Θρ and ΘV , respectively, upon Θp. The non-dimensional
outlet temperature ΘT is to good approximation given by ΘT = 1−Π1. This admits further
simplification of (5) to the practical correlations

ΘT = 1−Π1, Θρ =
1 + Θp

1−Π1
, ΘV =

1−Π1

1 + Θp
, (9)

that conveniently relate the inlet and outlet conditions of the bypass valve for given Π1. Fig-
ure 3 gives the outlet conditions as a function of Θp according to (8) (heavy) and approximated
by (9) (dashed) with growing non-dimensional radiative heat losses Π1. The correlations (9)
progressively depart from relations (8) with increasing Π1. However, deviations remain suffi-
ciently small for correlations (9) to provide an adequate description of the thermodynamical
behaviour of the bypass valve.

Conclusions and outlook

The above study concerns an integral thermodynamical analysis of the bypass valve in its two
steady-state operating modes. This study resulted in the practical correlations (9) between
the inlet and outlet conditions of the bypass valve. Omitted in this analysis are irreversible
effects occurring in the interior of the bypass valve due to viscosity. The influence of such
effects on the relations between the several thermodynamical quantities depends essentially
on the operating mode and is to be investigated through a detailed numerical analysis of
the bypass valve using the finite-volume method (FVM). Results of the FVM analysis are
presented in a forthcoming communication.
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Figure 2: Visual representation of the thermodynamical behaviour of the bypass valve. Shown
are the dependent outlet variables ΘT and Θρ(= Θ−1

V ) as a function of Θp and Π2 with growing
non-dimensional radiative heat losses Π1.
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Figure 3: Relations between inlet and outlet conditions of the bypass valve with increasing
radiative heat losses Π1. Heavy lines correspond with relations (8); dashed lines correspond
with the practical correlations (9).
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