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NOMENCLATURE 
 

 

Variable Description 

Ar [m
2 

] Radiator area 

G [W/K] Conductance 

Gback [W/K] Back conductance 

lvH [W/m
2
 °C] Evaporation enthalpy 

HRL [J/kg] Specific enthalpy arriving from the liquid line  

HRV [J/kg] Specific enthalpy transferred to the vapour line 

m&  [kg/s] Flow rate 

GQ [W] Heat transfer between the vapour grooves and the evaporator 

wall 

WQ [W] Heat transfer between the fluid wick with the solid one 

RQ [W] Heat transfer between the two-phase reservoir with the solid 

one 

WRQ [W] Heat transfer between the two-phase reservoir both with the 

solid wick 

T [K] Temperature 

Uw [W/K] Conductance inside the wick 

 

 

Subscripts 

 

Variable Description 

CC Compensation chamber 

Rad Radiative 

S Steady state 

Sat Saturation 
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1 INTRODUCTION 
 

Most thermal systems are generally rather complex and involving diverse physical processes. 

These last include natural and forced convection, radiation, complex geometries, property 

variation with temperature, nonlinearities and bifurcation, hydrodynamic instability, 

turbulence, multi-phase flows, or chemical reaction. It is common to have large uncertainties 

in the values of heat transfer coefficients, approximations due to using lumped parameters 

instead of distributed temperatures fields, or material properties that may not be accurately 

known. In this context, a complex system can be simplified with subsystems, each one can be 

singly analyzed and computed with accuracy and rapidity, but often when they are assembled 

in a global interconnected system present such a massive computational problem that are 

practically intractable. Most often some degree of approximation should be considered in the 

computational model. This could lead to consider a simplified model in which, for example, 

the main heat transfer processes are caught by using algebraic equations.  

In this deliverable the LHP model is analyzed in order to obtain a simplified algebraic system 

able to reproduce the main output of the sinda/fluint model. Since the vapour and the liquid 

lines are adiabatic only the evaporator/reservoir and the condenser zone are considered The 

dataset of input and output structures reduces the LHP model to few objects useful for a future 

implementation in a multiphysics code. 

 

1.1 Thermal analytic model 

 

SINDA/FLUINT uses ad-hoc tools to simulate the evaporator/reservoir physical processes 

[1]. The heat transfers inside the evaporator are depicted in the next picture.  

 
Fig. 1.1. Evaporator/reservoir heat transfer routes 

 

The liquid control volume exchanges energy with the solid nodes through the link between 

the vapour grooves and the evaporator wall (QG), the fluid wick with the solid one (QW), the 

two-phase reservoir both with the solid one (QR) and with the solid wick (QWR). These powers 

have to balance the heat flux arriving from the liquid lines (HRL) and transferred to the vapour 

line (HRV): 
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In the steady state mode the overall power absorbed from the Cryo-Cooler comes in the 

evaporator wall ( SWQ& ). Then, SWQ&  crosses from the evaporator wall to the solid wick 

( WWSW QQ && ≈ ) and it is shared between 
W

Q&  and 
back

Q& . It is possible to explicit these two 

powers as functions of two conductances (the first inside the wick Uw, and the second one 

from the wick to the reservoir Gback) and the temperature difference between the solid wick 

and Tsat (∆T): 
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1.2 

 

The liquid flow rate m&  depends on the power 
W

Q&  and the evaporation enthalpy at saturation 

temperature (Tsat): 
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Besides the pressure in the end of the liquid line (PL) is close to the saturation pressure (Psat) 

because the possible difference is due only to the pressure losses at the entrance in the 

reservoir from the liquid line. 

By using the previous simplifications the Eq. (1.1) becomes: 
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Looking at Eq. (1.4), there are two parameters (Gback, UW) and two unknown variables, so 

another equation is necessary. This equation comes from the energy balance in the condenser 

(Fig. 1.2): 

 

outfluxCCRVCCSRL QQmTHPTH −=⋅− &))(),((  1.5 

 

 
Fig. 1.2. Power balance in the radiator 
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The heat rate from the evaporator (HRV) depends on the temperature and the pressure at the 

radiator inlet. By simple considerations these two properties are related to the corresponding 

two at the inlet of the vapour line. In fact because the line is adiabatic, the temperature 

changes depends only on the axial conductances along the evaporator wall and can be 

considered negligible (furthermore the pressure drop has a small influence on the enthalpy). 

Hence the heat rate incoming in the radiator is function of the saturation properties: HRV(Tsat). 

The same considerations can be reserved for the liquid line so the heat rate in the end of the 

condenser is HRV(TL, Psat). 

The power rejected from the radiator (Qout) is due to the radiation towards the external 

environment. A radiative conductance Grad, a unique temperature for the radiator plate (Trad) 

and for the environment (Tsink) are considered, hence eq. (1.5) become: 
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Now considering the Eq. (1.4) and (1.5) with the (1.6) the three variables are Tsat, TL, Trad. An 

approximation for the Trad is the simple arithmetic average between the inlet and outlet fluid 

temperature in the condenser: ( )CinCoutrad TTT +⋅= 5.0 , hence: 
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1.7 

 

where Uwb is the ratio between the conductances in the wick (Uw,Gback), and 
back

Q&  is given in 

function of the overall power by using Eq. (1.2): ( )( ) SWWbackWback QUGUQ && ⋅+= . 

The algebraic system (1.7) has now 5 parameters (Uwb, QSW, Qflux, Grad, Tsink) and three 

variables. It is possible to solve it by using an iterative procedure. The results are shown in the 
next figure for the steady state operating temperature, Tssot, and the temperature at the 

condenser outlet, TCout.  
The results are related to three boundary conditions: (a) Qflux=70 [W],  Uwb=25/3 (b) Qflux=0 

[W],  Uwb =25/3 (c ) Qflux=70 [W],  Uwb=25/6. For all the cases the radiative conductance Grad 

is 5.0⋅10-9 [W/T4] and the Tsink is 170K. 
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Fig. 1.3. Temperatures in the LHP vs the overall heat power 
 

The results show a good accordance when the power is increasing, while generally the system 
(1.7) defines LHP temperatures lower than the SINDA predictions for smaller values of the 

heat power. The approximation for the radiator temperature, Trad, may be the reason of such 
discrepancy. Three different errors are due to this approximation:  

1) The average is made between the fluid nodes at the condenser inlet and outlet so its value 
should be lower when the radial conductance in the pipe between the fluid and the radiator is 

considered.  
2) The second error can be explained by looking at the LHP temperature profile in the 

condenser when the power inlet to the evaporator is high (Fig. 1.4).  
 

 
Fig. 1.4. Temperature profile in the condenser 

 

The condenser is subdivided into two parts. The first (Xin-X*) in which the initial temperature 
is similar to the saturation temperature (TCin≈Tsat) and the fluid is two-phase. The second 
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where only liquid is flowing and the temperature decreases towards TCout. The average 

between TCin and TCout is lower than the real temperature average ( ∑⋅ CTNc/1 ; Nc= node 

number) in the condenser when the first part is long, i.e. when the power is high. This error 

leads to consider an greater value for the radiator temperature and may compensate the  effect 
due to not considering the radial conductance in the pipe.   

3) The third error can be explained by analyzing the SINDA/FLUINT simulations when the 
power is low. The resulting  temperature profiles (depicted in Fig. 1.5) is different from the 

one showed in Fig. 1.4. 

 
Fig. 1.5. Temperature profile in the condenser  

 

It is evident the presence of two maximum. They are due to the design of the condenser in the 
zenith radiator (Fig. 1.6).  

 

 
Fig. 1.6. Condenser design, the red arrows show the heat transfer between different 

parts of the condenser 
 

The initial part of the pipe is near the end. The high temperature of the incoming two-phase 
fluid causes a important heat transfer (shown from the red arrow) to the outgoing fluid, the 

TCout increases and consequently the Tssop is higher. Another heat flux is exchanged between 
two parts of the same condenser in the middle of the radiator (red arrow) and leads to the first 

maximum in figure Fig. 1.5. 
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1.2 Input/Output structures 

 

The dynamic behaviour of any thermal system, schematically shown in Fig. 1.7, may be 
mathematically represented as: 

 

( ) 0,,,,0 =λwuxyL  1.8 

 

 
Fig. 1.7. Schematic of a dynamic sistem 

 

Where Lo is a system operator, t is time, x(t) is the state of the system, u(t) is the input, w(t) is 

some external or internal disturbance, and λ is a parameter set which defines some 
characteristic of the system. Each one of these quantities belongs to a suitable set or vector 

space and there are a large number of possibilities. 

Symbolically, the solver Lo could be either SINDA/FLUINT or the algebric system (1.7).  

Therefore, in the latter case (Eq. 1.9) the output is constituted by a vector (y) that includes the 

steady state operating temperature and the temperature outcome from the condenser while the 
input includes the power coming in the evaporator (u). The “disturbances” (w) are constituted 

from the boundary conditions: the external fluxes in the radiator (Qflux), the radiative 
conductance (Grad) and the sink temperature for the radiator (Tsink). The parameters that define 

the system (λλλλ) are both the radiator area (Ar) the ratio between the conductance inside the 
wick and the conductance from the wick to the reservoir (UWB). This parameter is related to 

the geometry of the evaporator and it is assumed to be constant for every boundary 
conditions. 
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