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1 Introdu
tion 51 Introdu
tionThe human knowledge of the universe is strongly based on teles
opes observations. The main ad-vantage of a spa
e teles
ope is linked to the absen
e of atmospheri
 turbulen
e, whi
h distortsastronomi
al images. The disadvantage is the need of keeping teles
ope dimensions within reason-able sizes, to ease their orbital displa
ement, with a 
onsequent limit on images resolution.In re
ent years di�erent proje
ts for spa
e teles
opes have been developed and realized, themost famous one for astronomi
al observations being the Hubble Spa
e Teles
ope. The quest forthe highest image resolution possible is now pushing toward larger and larger teles
opes. As saidsu
h a requirement 
on�i
ts with large teles
opes in outer earth spa
e be
ause of the problemof putting them into orbit. So from this point of view ground teles
opes represent a more viablesolution, but the problems linked to atmospheri
 turbulen
e distortion and manufa
turing errors onvery large mirrors risk to dispel all the theoreti
al advantages. These have been the main reasonsfor the development of di�erent adaptive mirror te
hnologies. The adaption idea is to modifythe mirror shape to 
orre
t both the image distortion 
aused by atmospheri
 turbulen
e and anypossible geometri
 error related to the mirror 
onstru
tion. These te
hniques have been alreadyapplied to some ground teles
opes with su

essful improvements of image qualities.Adaptive 
on
epts 
an be useful for spa
e based teles
ope also be
ause, if it is true that thereis no atmosphere distortion, there are nonetheless important problems related to thermoelasti
deformations of the mirror and of the satellite stru
ture, intera
tion with the attitude 
ontrolsystem and the always present problem of geometri
 impre
ision in the teles
ope 
onstru
tion andmounting in spa
e. The latest proje
ts trying to develop spa
e teles
opes with wider mirrors thanthe past ones will be all a�e
ted by manufa
turing errors, deployment impre
ision and thermoelasti
deformations that might 
ompromise teles
ope performan
es anyhow. So the need arises of applyingadaptive 
on
epts in spa
e too. Spa
e teles
opes with a
tive primary mirrors te
hnology do notexist right now, the most advan
ed proje
t being the James Webb Spa
e Teles
ope. It uses asegmented mirror te
hnology whi
h impedes to deform the mirror surfa
e with 
ontinuity, thusleading to somewhat inferior performan
es 
ompared to 
ontinuous mirrors.The aim of this report is to show the preliminary design and simulation of a possible adap-tive 
ontrol system related to the primary mirrors of the LIDAR teles
ope satellite. The LIDARprimary mirror is built with seven independent 
ontinuous mirrors, as shown in �gure 1; the po-sition and 
ontinuous deformations of ea
h of these mirrors 
an be 
ontrolled using a number ofdedi
ated, 
olo
ated sensor-a
tuator pairs. Using seven 
ontinuously deformable mirrors allows to
orre
t deployment errors, manufa
turing errors, thermal and other environmental disturban
es;at the same time, the teles
ope stru
ture 
ould be signi�
antly lighter than that of a segmentedteles
ope with rigid mirrors. The 
ontrol approa
h is derived from experien
es gathered in relationto, �eld proven, adaptive se
ondary mirror te
hnologies for ground teles
opes. The related design isbased on a deformable primary mirror assuring surfa
e 
ontinuity with the 
onsequent possibilityof obtaining 
ontinuous wavy mirror shapes. To this end the design is based on a large numberof dis
rete 
ontrollers using 
ollo
ated Capa
itive Sensors and Voi
e Coil Motor A
tuators. The
ontrol system is implemented in a fully de
entralized way, thus limiting the ex
hange of infor-mation between 186 dis
rete a
tuation points. It is based on a fairly simple 
ontrol law basedon an appropriate feedforward and a simple lo
al PD2 feedba
k, applied independently at every
ontrol unit. This report presents the basi
 satellite model 
hara
terization, fo
uses on the a
tua-tors models and shows the �nal modal redu
tion of the dynami
 system. It then reports the main
ontrol law properties and their parameters setting. Simulations results are reported eventually,to show the di�erent parameters a�e
ting 
ontrol performan
es and evaluating the a
hievement of



2 Satellite des
ription 6the required 
ontroller spe
i�
ations. Possible negative intera
tions between the satellite attitude
ontrol system and the a
tive mirrors 
ontrollers are also taken into a

ount.2 Satellite des
riptionThe Nastran Finite Element Model of the LIDAR teles
ope satellite has been provided by "CarloGavazzi Spa
e". This se
tion does aim neither at developing the satellite 
omponents nor their �niteelement model, but gives only an overview of the satellite main features needed to understand allthe fa
ets related to the mirrors 
ontrol system design.Figure 1(a) presents a sket
h showing all of the main satellite parts, while �gure 1(b) showsthe �nite element model used to perform the simulations.The ba�e has to be asymmetri
 to assure that the sunlight does not penetrate the opti
al tube.Its deployment will be based on an in�atable te
hnology needing a pressurized gas only for the �rstphase, be
ause the stru
ture will eventually be sti� enough to be self standing after its opening.The designed ba�e is a truss stru
ture that has been modeled using beam elements to reprodu
ethe stru
ture sti�ness after the deployment. The ba�e foils are modeled as non-stru
tural masseson trusses, to 
orre
tly 
ontribute to the main vibration modes of the model.The satellite has two main solar power units 
onne
ted at the bottom of the satellite 
entralbody. The solar panels are des
ribed by shell elements 
onne
ted to ea
h other by beam elementsthat simulate the deployment hinges.The satellite 
entral body 
an be divided into two main parts. The lower one is the bus 
ontain-ing all of the satellite equipments. The bus is modeled through shell elements simulating its wallsand beam elements simulating the frame stru
ture. Equipments dummies are des
ribed by meansof solid elements 
onne
ted to the bus panels. The upper satellite body represents the payloadrepository and is modeled in the same way as the bus.As shown in �gure 2(a) the teles
ope primary mirror surfa
e has a 4 m diameter and it is dividedin 7 se
tors: a 
entral element and six petals pla
ed around it. Ea
h petal has 25 a
tuators pla
eduniformly on its surfa
e, while the 
entral mirror has 36 a
tuators. All mirrors are made with a1 mm thi
k zerodur material, modeled using plate elements. The ba
k-plane design guarantees asu�
iently rigid support for the mirror and must have a low thermal deformation, 
omparable tozerodur glass. In the work here presented we have always used the �rst proje
t solution based onsandwi
h panels with two laminate skins and honey
omb, modeled respe
tively with laminatedplates and solid elements. The upper 
omposite laminate must have the same shape as the mirror,so the upper surfa
e must be as 
urved as the mirror. It should be remarked that, on
e the satelliteis in orbit, the mirror surfa
e is 
onstrained to the ba
k-plane only trough the a
tion of a
tuators,so without 
ontrol for
es every part of the primary mirror is free to move along the a
tuatingdire
tions. In the analysis performed up to now the a
tuators dire
tions are not normal to themirror surfa
e but all are aligned along the satellite spin axis, thus allowing a rigid verti
al pistonmovement of ea
h mirror.All the 
ontroller units are 
ollo
ated voi
e 
oil motor a
tuators and 
apa
itive sensors as shownin �gure 2(b). The a
tuators mobile parts are the stingers and they are modeled by steel beamelements. The stingers are 
onne
ted to the ba
k-plane trough springs (CBUSH elements), thusallowing a sti�ness that simulates the presen
e of axial bearings (�g.2(b)). In parti
ular for ea
hstinger there are two CBUSH elements, one between the stinger and the upper ba
k-plane skin,simulating only the bearing, and one between the stinger and the lower ba
k-plane, simulating thebearing and, possibly, the presen
e of the axial 
ontrol for
e. A very low �
titious axial for
e is
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ription 7

(a) Full satellite representation (Credit by Carlo Gavazzi Spa
e).

(b) Finite element model used for system simulation.Figure 1: LIDAR satellite.



2 Satellite des
ription 8needed to remove the rigid movements between the mirrors and the ba
k-plane as it will appearmore 
learly later on. The bearing transverse sti�ness is supposed to be equal to 6000 [KN/m℄,the axial one to 1 [N/m℄. The 
onne
tions between the stingers and the mirror are assumed asspheri
al hinges be
ause the solution of this problem is not 
lear yet. It is likely that some a
tuators
onne
tions will be realized as spheri
al hinges and others 
onstrained only along the axial dire
tion.The �nal solution is not obvious be
ause the a
tuators have to supply the 
onne
tion between themirrors and the ba
k-plane, but at the same time they have to allow all the mirrors rigid motions,possibly with the least thermal intera
tion between mirrors and ba
k-planes. An ideal solution
ould be a single a
tuator along the satellite spin dire
tion hinged at the 
enter of ea
h mirror,and all the other oriented normally to the mirrors surfa
es and free to move along the mirrorsplane. In this manner all rigid motions (translational and rotational) would be preserved withoutadditional in-plane for
es due to a non normal a
tuating a
tion, and without thermal intera
tionbetween mirrors and ba
k-plates. The mass (0.1 Kg) of the �xed body of ea
h a
tuator is split intotwo parts, one linked to the upper and one to the lower ba
k-plane skin. Finally 186 s
alar points(SPOINT) were de�ned using 186 multipoint 
onstraints equations (MPC). The value of the s
alarpoints is equal to the di�eren
e between the stingers displa
ements and the a
tuators body, thusallowing to introdu
e the degree of freedom dire
tly related to dire
tions to be 
ontrolled. Moreoverto verify the absen
e of possible negative intera
tions between the satellite attitude 
ontrol systemand the a
tive mirrors 
ontrol system, we 
arried out simulations with both 
ontrollers a
tivated.Thus the model takes into a

ount also the three free rotational degrees of freedom of the satelliteso that a reasonable attitude 
ontrol system has been designed and applied to evaluate the abovementioned intera
tions.The six petals are 
onstrained to the satellite main stru
ture trough hinges. The hinges aremodeled by shell and beam elements to allow the simulation of ball bearings. The material usedsimulates the presen
e of Elasti
 Memory Composites (EMC) that allow the petals opening on
ein orbit. We anti
ipate that the 
ontrol simulations will show the de�
ien
y of this �rst hingesproje
t solution, be
ause it doesn't guarantee a su�
ient stru
tural sti�ness. Figure 3 reports oneof the �rst six elasti
 modal forms, that represent a sort of rigid rotation of petals mirrors andba
k-planes together around the petals hinges. These modes are di�
ult to observe and 
ontrol asthey are 
oupled to the mirrors rigid motions, making it di�
ult to rea
h the requested 
ontrolpre
ision. Some analysis have demonstrated that to obtain good 
ontroller performan
es the initialmodal frequen
ies of 6 Hz have to be augmented up to 20 Hz by sti�ening the hinges, anotherpossible solution being the use of dampers on every hinge.The se
ondary mirror is mounted over a spike at a distan
e of about 3 meters from the primarymirror 
enter. The spike has been modeled with shell elements, while the 
ylinder at the base withbeam elements. The se
ondary mirror opti
s has been simulated by a 
on
entrated mass put atthe top of the spike.
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(a) A
tuators map on teles
ope primary mirror.

(b) A
tuator model sket
h (Credit by Carlo Gavazzi Spa
e).Figure 2: A
tuator map and a
tuator detailed des
ription.
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Figure 3: First petals elasti
 modal form.3 Modal approa
hUsing the �nite element model just des
ribed it is possible to 
hara
terize the satellite stru
turalbehavior and to extra
t all the data required for the simulation and design of the 
ontrol system.The model has to be redu
ed be
ause the �nite element model has too many degrees of freedom,mostly useless for the design and veri�
ation of the a
tive 
ontrol system. The 
hoi
e of a normalmodes redu
tion, allows to introdu
e in a simple way the stru
tural damping and to easily buildthe model state representation. The ith modal equation 
an be written as:
q̈i + 2ξiωiq̇i + ω2

i q = fC
i + fA

i + fe
i i = 1 . . . nm (1)where qi represents the normal mode 
oordinate, ωi, ξi, fC

i , fA
i , fe

i are respe
tively the naturalfrequen
y, the damping 
oe�
ient, the modal a
tive mirror 
ontrol for
e, the modal attitude 
ontrol
ouple and any external disturbing for
e, nm is the number of modes used. The modal for
es 
an



3 Modal approa
h 11be written as:
fC = XT fC (2)
fA = XT FA (3)
fe = XT F e (4)(5)where FC , FA and F e are respe
tively the a
tive mirrors 
ontrol for
es, the attitude 
ontrol 
oupleand the external for
es on physi
al degrees of freedom, and X represents the (na +nrr)×nm modeshape matrix, evaluated at ea
h s
alar point de�ning a mode:

X =
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(6)where na is the a
tuators number, while nrr represents the 3 rotational dof of the free satellite.The s
alar points S 
an be written as:
S = USg = UXgq (7)where Sg are all the FEM degrees of freedom and Xg the global modal matrix, U is the matrixthat extra
ts and 
ombines the displa
ements of interest. So we 
an give the following expressionof 
ondensed modal matrix:

X = UXg (8)Now the whole state system representation 
an be written as:
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(9)and in a more 
ompa
t form the system be
omes:
ẋ = Ax + f̃ (10)Previous studies have shown that the mirror a
tuators transfer fun
tions 
an be approximatedas �rst order dynami
 system, so their 
hara
terization passes trough a unique time 
onstantparameter:

ḟC = DfC + afC
req (11)where D is the s
alar matrix −aI, fC is the ve
tor of real 
ontrol for
es applied to the mirror, fC

reqare 
ontrol for
es 
ommanded at a
tuators input. The 
omplete system 
an be rewritten as:
{
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}
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[

A X̃T

0 D

]{
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+
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3 Modal approa
h 12The output S of the system are the displa
ements along the a
tuator axial axis 
orresponding tothe 
ollo
ated sensor points, and the three free rotations of the satellite:
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
















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=
[

X̃
]

{x} (13)A transformation T 
an be introdu
ed to obtain a fully un
oupled system that represents the �nalequations of motions:
x̄ = x + TfC (14)
T = (A + DI)−1X̃T (15)

{

˙̄x

ḟC

}

=

[

A 0

0 D

]{

x̄

fC

}

+

{

f̃e + f̃A + aTfC
req

afC
req

} (16)The system 
an be integrated using either its transition matrix or an expli
it Runge-Kutta algo-rithms. The �rst method takes advantage of the un
oupled stru
ture of the state matrix, that allowthe 
lose form determination of the needed transition matri
es. This greatly redu
es the 
ompu-tational time and simpli�es the 
al
ulations. On the other hand Runge-Kutta algorithms allow asimple introdu
tion of saturation nonlinearities or arbitrary time varying for
es, but the related
omputation time will be higher. The 
ontrol sampling time is split into two steps to 
onsider the
omputational delay between the positions measurements and the new for
e appli
ation, as it willbe shown in se
tion 7 (�g. 4(a)). The mirrors displa
ements are measured by 
apa
itive sensors,whose dynami
 have been modeled with a �rst order approximation. So the a
quired position 
anbe expressed as:
ṗmes = −[rbr]pmes + bS (17)where S is the position obtained trough the simulation of the dynami
 system and pmes the mea-sured position. Su
h an approximation of sensors dynami
s is not introdu
ed in the state spa
emodel dire
tly be
ause it 
ould 
reate problems in �nding a simple transformation T to un
ouplethe state spa
e stru
ture, to greatly simplify the transition matrix 
al
ulation. For this reasonequation 17 is implemented in the 
ode of the 
ontroller as a �lter that a
ts on the mirrors positionmeasures and not as part of the overall dynami
 system. In this way it is possible to have a goodrepresentation of the e�e
t of delay and shaping linked to sensors dynami
s, without 
ompromisingthe system un
oupled stru
ture previously obtained.Moreover the simulation 
an take a
tuators Coulomb fri
tion, due to the bearings guides, intoa

ount. This implies the possibility of inserting a 
onstant for
e opposing the velo
ity dire
tion.A few test of this modeling feature have demonstrated that the related e�e
t is almost negligiblein our proje
t.To des
ribe the stru
tural satellite behavior 3200 modes were 
hosen, 
overing frequen
ies up to1000 Hz. In general the number of modes must guarantee a good model redu
tion from a dynami
alpoint of view and the presen
e of a su�
ient number of primary mirror modes to 
orre
tly represent
omplex mirror shapes, at least at the points 
orresponding to the 
ollo
ated sensors-a
tuators.Moreover the dynami
s of a high number of modes is needed to verify possible spillover. If the
ontroller pass band frequen
y is 500 Hz, then the modal frequen
ies should en
ompass modes upto the double at least, to be sure of no spillover. The three free translation of the satellite wereremoved by deleting the relative rigid modes, while the three rotational rigid modes have been kept



4 High frequen
ies re
overy through residualization 13to allow the in
lusion of the satellite attitude 
ontrol system. In spa
e the only damping is thestru
tural one, so to be 
onservative a 0.005 modal damping fa
tor has been assigned to ea
h mode.This brings to a quite di�erent situation with respe
t to ground teles
opes, where damping 
anbe signi�
antly greater thanks to the presen
e of air between the mirror and the ba
k-plate. Thisimplies that only the 
ontroller 
an supply the damping guaranteeing stability. The two �rst orderdynami
 systems used to des
ribe the a
tuators and sensors dynami
s were both set at 500 Hz,so pra
ti
ally setting the mirrors 
ontrol bandwidth. On one hand the internal dynami
 of thesesystems 
an be faster, thus allowing to introdu
e less delay, on the other a lower 
ontrol frequen
ybandwidth 
ould redu
e the spillover e�e
ts on the higher frequen
y modes. So these �lters 
ana
quire a double meaning, the introdu
tion of a
tuators and sensors delay, and the presen
e ofanti-spillover �lters that attenuate the 
ontroller ex
itation of higher frequen
ies. In this sense thefrequen
ies of these �lters are important proje
t parameters that represent a 
ompromise betweenthe 
ontroller delays and spillover attenuation.4 High frequen
ies re
overy through residualizationDuring the simulation a stati
 re
overy of the high frequen
ies, not modeled in the dynami
s ofthe satellite, 
an be performed so that when the 
ontroller rea
hes a steady position at the endof the 
ommanded shapes they are not a�e
ted by the number of modes used. It should be notedthat the high frequen
ies re
overy is implemented only for mirrors s
alar points and not for thesatellite free rotation, be
ause the related improvement is negligible for the attitude 
ontrol system.In the following equations we will remove the three free rotational motions be
ause they do nota�e
t the modal sti�ness. So we 
an think that the satellite is �xed in spa
e without any mistake.The simulation of the mirrors 
ontrol system works with assigned �nal 
ommanded position, sothe di�eren
e between a modal trun
ation and the related stati
 residualization will appear inthe for
es needed to rea
h the �nal steady state. The stati
 residualization 
an be seen from twodi�erent points of view, both leading to the same result. The �rst interpretation divides low andhigh frequen
y modes, re
overing the latter with a stati
 approa
h:
{S} = [Xl|Xh]

{

ql

qh

}

= Xlql + Xhqh (18)Writing the system stati
 equilibrium equations, and assuming F = FC + FA + F e, we �nd:
[

ω2
]

q = XT F (19)
q =

[

ω2
]

−1
XT F (20)

S = X
[

ω2
]

−1
XT F (21)The physi
al �exibility matrix 
ondensed at the s
alar points S 
an be thus obtained from themodal matri
es as:

K
−1

= X
[

ω2
]

−1
XT = Xl

[

ω2
l

]

−1
XT

l + Xh

[

ω2
h

]

−1
XT

h (22)This implies that we 
an write the high frequen
y sti�ness modal 
ontribution as a fun
tion of lowfrequen
y modes and the 
ondensed sti�ness in physi
al degrees of freedom:
Xh

[

ω2
h

]

−1
XT

h = K
−1

− Xl

[

ω2
l

]

−1
XT

l (23)



4 High frequen
ies re
overy through residualization 14Now if we write the modal equations system by assuming that the high frequen
ies 
ontributionsa
t stati
ally at low frequen
ies:
{

q̈l + [Cl]q̇l +
[

ω2
l

]

ql = XT
l F

[

ω2
h

]

qh = XT
h F

(24)so that by using the se
ond set of equations to substitute qh in equation 18, we obtain:
S = Xlql + Xh

[

ω2
h

]1
XT

h F (25)Putting equation 23 into equation 25 we �nd the �nal expression for the relative displa
ements Swith high frequen
ies residualization:
S = Xlql +

(

K
−1

− Xl

[

ω2
l

]

−1
XT

l

)

F (26)The same result 
an be rea
hed with a di�erent approa
h based on a

eleration modes, i.e. the onethat is more 
ommonly used by stru
tural engineers. Before the 
ondensation at the s
alar pointsthe system equation 
an be written as:
MS̈g + CṠg + KSg = Fg (27)

Sg = K−1

(

Fg − MS̈g − CṠg

) (28)Then it is possible to substitute the a

eleration and speed values with those 
al
ulated throughthe low frequen
y modal redu
tion:
Sg = −K−1MXgl

(

XT
gl

Fg −
[

ω2
l

]

q − [2εlωl] q̇l

)

− K−1CXgl
q̇l + K−1Fg =

= K−1MXgl

(

[2εlωl]q̇l + [ω2
l ]ql

)

− K−1CXgl
q̇l +

(

K−1 − K−1MXgl
XT

gl

)

Fg (29)The modal eigenvalues problem 
an be written in 
anoni
al form as:
K−1MXg = Xg

[

1

ω2

] (30)so
K−1MXgl

= Xgl

[

ω2
l

]

−1 (31)Putting equation 31 into equation 29 we �nd:
Sg = Xgl

ql +
(

K−1 − Xgl
[ω2

l ]−1XT
gl

)

Fg + Xgl
[ω2

l ]−1[2εlω]q̇l − K−1CXgl
q̇l (32)By assuming a diagonal modal damping and remembering equation 22, we 
an demonstrate thatthe two �nal damping terms be
ome void:

Xgl
[ω2

l ]−1[2εlωl]q̇l − K−1CXgl
q̇l = (33)

= Xgl
[ω2

l ]−1XT
gl

CXgl
q̇l − Xgl

[ω2
l ]−1XT

gl
CXgl

q̇l − Xgh
[ω2

h]−1XT
gh

CXgl
q̇l =

= −Xgh
[ω2

h]−1XT
gh

CXgl
q̇l = 0The last term of the previous equation is zero be
ause we have a diagonal modal damping thatimplies orthogonal eigenve
tors through the physi
al damping matrix. Moreover if we 
onsider thatin our model the external for
es are applied only through a
tuators, and so through s
alar points,it is possible to equal the virtual work done by the global for
es Fg and by the 
ondensed s
alarpoints for
es F:

δST
g Fg = δST F (34)

δST
g Fg = δST

g UT F (35)



5 Stati
 
ondensation approa
h 15so we 
an state that:
Fg = UT F (36)Applying to equation 32 the extra
tion matrix U and 
onsidering relation 36 we have:

USg = UXgl
ql +

(

UK−1UT − UXgl
[ω2

l ]−1XT
gl

UT
)

F (37)
S = Xql +

(

UK−1UT − Xl[ω
2
l ]−1XT

l

)

F (38)Using the de�nition of U , S = USg, equation 36, and the stati
 equilibrium equation Sg = K−1Fg,we obtain
S = USg = UK−1Fg = UK−1UT F, (39)showing that UK−1UT is equal to the inverse of the sti�ness matrix K

−1 
ondensed at the s
alarpoints. Equation 38 
an now be rewritten as:
S = Xql +

(

K
−1

− Xl[ω
2
l ]−1XT

l

)

F (40)that is the same result obtained in equation 26. The simulation program requires K
−1 as an input,this matrix 
an be obtained by a FEM analysis solving na times the 
ondensed stati
 problem with

na unit load applied at the s
alar points degrees of freedom. A possible sour
e of trouble 
ould bethe need to put the physi
al �exibility in mean axes, to be 
oherent with the modal terms. We 
ansafely avoid su
h an operation be
ause the s
alar points are de�ned as relative movements betweengrid points, so the 
hoi
e of a parti
ular 
oordinate system has no e�e
t on the related �exibilitymatrix 
al
ulation.5 Stati
 
ondensation approa
hThe stru
ture modal des
ription shown in the previous two se
tions is not the only possible wayto obtain a redu
ed set of equations des
ribing the satellite behavior. Another solution 
ould
ome from the stati
 
ondensation of the Finite Element Model on appropriate physi
al degreesof freedom. For example the degrees of freedom of the nodes representing the displa
ements usefulto simulate the satellite 
ontrol systems, i.e. at the point and in the dire
tion of appli
ation of thea
tuators for
es.The FEM pre
ise dynami
 equations of the satellite stru
ture 
an be written as:
MS̈g + CṠg + KSg = FC

g + FA
g + F e

g (41)It is possible to 
hoose and then to separate the dynami
 degrees of freedom from the stati
 ones:
[

Mdd Mds

Msd Mss

]{

S̈d

S̈s

}

+

[

Cdd Cds

Csd Css

]{

Ṡd

Ṡs

}

+

[

Kdd Kds

Ksd Kss

]{

Sd

Ss

}

=

{

FC + FA + F e
d

F e
s

}(42)Now an Irons-Guyan redu
tion 
an be applied to the previous equations to obtain a system redu
edat the dynami
 degrees of freedom only:
M̃S̈d + C̃Ṡd + K̃Sd = FC + FA + F̃ e (43)where

K̃ = Kdd − KdsK
−1
ss Ksd (44)

M̃ = Mdd − MdsK
−1
ss Ksd − KdsK

−1
ss

(

Msd − MssK
−1
ss K−1

sd

) (45)



6 Satellite attitude 
ontrol low 16while the damping matrix C̃ 
an be thought as proportional to the sti�ness: C ÷ K. The statesystem 
an be written as:
{

S̈d

Ṡd

}

=

[

−M̃−1C̃ −M̃−1

I 0

]{

Ṡd

Sd

}

+

[

M̃−1

0

]

F̃ (46)These state matri
es are di�erent with respe
t to the modal ones be
ause they are not diagonal butfully 
oupled and require the inversion of the redu
ed mass matrix. The output 
an be expressedas:
S = USg = USd + USs = USd (47)be
ause all the degrees of freedom of interest for the 
ontrol systems simulation 
an be 
onsideredas dynami
 ones.The advantages linked with the stati
 model redu
tion are:

• The possibility to write a simpler simulation program.
• The displa
ements of the degrees of freedom are not obtained in mean axis but in a �xed ref-eren
e system. This 
ould simplify the interpretation of the results, espe
ially when absolutenodes displa
ements are requested.
• The simulation is always 
orre
t from the stati
 point of view without using any residualiza-tion pro
ess.
• The number of dynami
 degrees of freedom 
ould be lower then the numbers of normal modesrequired to have a good system representation.The negative aspe
ts 
an be resumed as:
• The impossibility to perform the state system integration with the transition matri
es be
ausethe state matrix is fully 
oupled. This means higher 
omputational time.
• The need to verify that the stati
 redu
tion does not 
hange the dynami
 properties of thesystem. In parti
ular it should be veri�ed that the normal modes of the global model are thesame as the stati
 redu
ed ones, at least in the frequen
y range of interest. If this is not the
ase some other dynami
 degrees of freedom have to be introdu
ed to obtain a better modelredu
tion from the dynami
 point of view.
• There is not a simple way to determine the redu
ed matrix for the stru
tural damping.On the base of these 
onsiderations we have de
ided to use the normal modes approximation,to assure a better simulation e�
ien
y and an easier determination of the stru
tural damping.Moreover by using all the normal modes inside the frequen
y range of interest we have the 
ertaintyto obtain a very good dynami
 model.6 Satellite attitude 
ontrol lowIn this work the satellite attitude 
ontrol system does not represent an important goal to a
hieve,but we are interested to verify the absen
e of possible negative intera
tions between it and themirrors 
ontrollers. So we have de
ided to 
hoose a simple 
ontrol law based on a PD a
tion,making also some approximations to simplify the problem. For example we have not introdu
edattitude a
tuators and sensors dynami
s and we have 
onsidered an ideally 
ollo
ated situation,



7 A
tive mirrors 
ontrol law 17Control Frequen
y (ωA) 4 Hz
KA

P 50
KA

D 700Table 1: Attitude 
ontrol parameters resume.where the attitude 
ontrol 
ouples are applied dire
tly to the mean prin
ipal inertia axes with theattitude angles being rotations around the very same mean axes. The only 
onstraint that has beenset is the maximum allowable 
ontrol 
ouple that 
an be used i.e.: 0.1 Nm. As it is possible toappre
iate looking at equations 13 and 16, the intera
tion between the two 
ontrol systems is notrelated to the modal state matrix, whi
h is fully un
oupled, but 
omes through the modal for
esand the modal re
overy of the physi
al displa
ements. This means that the attitude 
ontrol system
an be seen as a possible sour
e of external disturban
es for the a
tive mirror 
ontroller.The attitude feedba
k 
ontrol 
ouples 
an be expressed as:
fA

i = KA
P (preq

i − pmes
i ) + KA

Dṗmes
i (48)where i = 1 . . . nrr and pi refers to the three rigid rotation of the 
enter of mass. The 
ontrollerfrequen
y has been set to 4 Hz, a value higher than needed, in order to worsen possible intera
-tions with the deformable mirror 
ontrols. Random noises are added to the 
ontrol moments andmeasured angles. Moreover the a
tuators saturation is taken into a

ount assuring to not over
amethe limit 
ouples of 0.1 Nm. Table 1 resumes the main parameters of the attitude 
ontrol system.7 A
tive mirrors 
ontrol lawThe mirror 
ontrol for
es 
an be split in two parts, one related to a PD2 feedba
k 
ontrol law andanother related to a feedforward open loop 
ontribution.The general PD2 
ontrol for
es are written as:

FC
1i

= KPi
(preq

i − pmes
i )

α
+ KDai

(ṗmes
i )β + KD2ai

p̈mes
i + KDbi

(ṗreq
i )β + KD2bi

p̈
req
i (49)where the index i = 1 . . . na refers to the a
tuators number. The parameters KDb and KD2b allowto improve the 
ontrol �exibility, i.e.:

• KDb = 0, KD2b = 0 
ontrol in velo
ity and a

eleration;
• KDa = −KDb, KD2a = −KD2b 
ontrol in velo
ity and a

eleration error;
• 
ontrol with arbitrary setting of previous gains 
ould be seen as a trial to introdu
e feedfor-ward terms on requested positions, velo
ities and a

elerations. We will return to the gainsrelated to ṗreq and p̈req later on, i.e. when we des
ribe stati
 and dynami
 feedforward terms.The exponents α and β allow to introdu
e a nonlinear 
ontrol behavior on proportional and deriva-tive terms. The simulation program allows to introdu
e the same gains for all the a
tuators, ors
aling their proportional and derivative terms from the diagonal sti�ness values. So KPi

andKDai
an assume a 
onstant value or 
an be expressed as:
KPi

= KP

(

K
ii

I

max(Kdiag)

)γ (50)
KDai

= KDa

(

K
ii

I

max(Kdiag)

)γ (51)



7 A
tive mirrors 
ontrol law 18where KI is the system identi�ed sti�ness matrix 
ondensed at the 
ontrol points, namely thesame matrix needed to 
al
ulate the stati
 feedforward term, (equation 56). KP and KDa are twouser input parameters, and γ is an exponent allowing to better s
ale the gains. When there areimportant di�eren
es in diagonal sti�ness values a simple linear weighting 
an brings to an unstablebehavior and γ 
an be
ome an important nonlinear s
aling fa
tor to avoid this problem.Anyway the 
ontrol here used will be linear (α = 1, β = 1) and the proportional and derivativegains are 
onstant on ea
h a
tuator (γ = 0). The PD2 term 
an thus be written as:
FC

1i
= KP (preq

i − pmes
i ) + KDaṗmes

i + KD2ap̈mes
i (52)The �rst and se
ond derivative with respe
t to time in equation 52 are obtained using two �rstorder �lters:

ṗmes =
ωV

s + ωV

spmes (53)
p̈mes =

ωV

s + ωV

sṗmes (54)(55)where ωV must be 
hosen by 
ompromising between bandwidth and noise attenuation (see table2). The PD2 term alone is not adequate in providing the required 
ontrol pre
ision with a su�
ientbandwidth be
ause its gains are limited by stability. The presen
e of an integral term wouldnot improve 
ontrol performan
e without endangering stability, so the requested pre
ision 
an bea
hieved only by an appropriate feedforward. The simplest feedforward s
heme 
an be seen as thefor
e needed to obtain a 
ommanded steady state balan
ed position for the mirror, i.e. the stati
response. So the stati
 feedforward 
ontribution allow to rea
h the 
ommanded mirror position andthe PD2 feedba
k a
tion gives the ne
essary dynami
 performan
e and the fundamental systemdamping to satisfy bandwidth requirements. Assuming to know the true stru
tural sti�ness matrix
K 
ondensed at the 
ontrol points, the feedforward for
es related to a requested mirror shape preq
an be expressed as:

FC
2 = Kpreq (56)or in in
remental form

FC
2k+1

= f̄k + K(preq − p̄k) (57)where f̄k is the steady for
e rea
hed at the 
ommand time tk, and p̄k is the stati
 response position.This assumption is 
orre
t if the 
ontroller assures to rea
h the requested position at the end ofevery 
ommand step. However K is not known, and even the true stati
 position is not pre
iselymeasurable be
ause of the presen
e of environmental disturban
es and sensors and a
tuators noises.For this it is ne
essary to introdu
e an identi�
ation pro
ess (des
ribed in se
tion 9) to simulate theexperimental determination of the sti�ness matrix trough the use of a least square approximation.Su
h a simulation requires removing the possible presen
e of rigid motions between the mirrorsand their ba
k-plates and this is the reason of the low 
ontrol a
tion sti�ness put in the �niteelement model, 
ited in the opening se
tion. This sti�ness must be negligible 
ompared to theproportional 
ontrol gains, be
ause its presen
e should only remove sti�ness singularities without
hanging the model properties. It must be noted though that rigid body motions do not a�e
tthe a
tual experimental identi�
ation sin
e the related pro
edure 
an deal with free mirrors. Itis also ne
essary to be able to measure the stati
 response position p̄ and for
e f̄k. They 
an beobtained trough a simple average of the positions and for
es related to the �nal, stabilized, part
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(a) Appli
ation of 
ontrol for
e with delay respe
t to measure time.

(b) Sket
h of a typi
al 
ontrol behavior on 
ommanded step.Figure 4: Control a
tion.
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Figure 5: Shaping �lters 
omparison.of the 
ommand step, i.e. when the stati
 �nal position has been rea
hed. To avoid sudden high
hanges of the 
ontrol for
es two shaping �lters are applied to the 
ommand steps and to thefeedforward for
es. The program allows to use either a se
ond order shaping �lter or two di�erentkinds of algebrai
 pro�les (see �gure 5): a sixth order polynomial �lter, and a (1 − cos) �lter. Thetwo �lters frequen
ies 
an be 
hosen independently, a

ordingly to the 
ontrol needs. This impliesthat the requested position preq has an imposed transient state, so it is possible to exploit thefeedforward 
on
ept with some time blended pro�ling to improve dynami
 
ontrol performan
esduring transients:
FC

3i
= KDbi

(ṗreq
i )β + KD2bi

p̈
req
i (58)where KDb and KD2b 
an be interpreted as a lumped feedforward aimed at the 
an
ellation ofsystem inertia and damping. It has been spe
ulated that by using fully 
oupled mass and dampingmatri
es we 
ould have a
hieved a more ideal 
an
ellation of the system dynami
s. For a soundimplementation su
h an approa
h should not rely on the related theoreti
al terms but use exper-imentally identi�ed mass and damping matri
es, an un
ertain and di�
ult undertaking indeed.Moreover it would lead to a 
ontroller 
oupling all of the degrees of freedom dynami
ally. This
oupling in turn would mean a higher, likely unbearable, 
omputational e�ort and a higher iden-ti�
ation time before starting teles
ope observations. So we have 
hosen to simplify the approa
hby 
onsidering a lumped dynami
 feedforward, i.e. assume diagonal mass and damping matri
es.If the a
tuators are roughly uniformly distributed the lumped mass matrix term related to the ithdegree of freedom 
an be estimated by simply dividing the mirror mass by the a
tuators number.In this manner we obtain a 
onstant term for ea
h mirror, so avoiding the need to identify themass matrix. The lumped feedforward for the damping is somewhat more di�
ult to estimate but,



7 A
tive mirrors 
ontrol law 21assuming a diagonal modal damping we 
an approximate the physi
al one as proportional one, i.e.a linear 
ombination of mass and sti�ness matri
es. Presently the simulation program supportsdi�erent dynami
 feedforward gains expressions:
• two 
onstant 
oe�
ients for all the a
tuators, negle
ting the 
oupling and any physi
al in-terpretation

FC
3i

= KDb(ṗ
req
i )β + KD2bp̈

req
i (59)

• a diagonal mass M matrix and a diagonal identi�ed sti�ness matrix KIdiag
to s
ale the gains

FC
3i

=
(

Km
DbM

ii
+ Kk

DbK
ii

Idiag

)

(ṗreq
i )β + KD2bM

ii
p̈

req
i (60)

• a diagonal mass M and a 
omplete sti�ness matrix KI

FC
3i

= Km
DbM

ii
(ṗreq

i )β + Kk
DbKI(ṗ

req)β + KD2bM
ii
p̈

req
i (61)The requested velo
ity ṗreq and a

eleration p̈req 
an be 
al
ulated analyti
ally on the base of theshaping pro�les previously mentioned. In this proje
t we have 
hosen to use the �rst feedforwards
heme listed above, with di�erent gain values to di�erentiate the 
entral mirror from petals.Anyway, as we will show later on, the gain KDb on petals and on 
entral mirror 
orresponds quitewell to the relative lumped mass matrix term. Obviously β has been set to unit for the feedforwardterm too.So the �nal in
remental 
ontrol for
e implemented in our spe
i�
 
ase 
an be written as:

FC
k+1 = F̄k + FC

1k
+ FC

2k
+ FC

3k
=

= F̄k + KP (preq − pk) + KDaṗmes
k + KD2ap̈mes

k + KI(p
req − p̄k) + KDb(ṗ

req
k ) + KD2bp̈

req
k (62)It's important to note that the di�erent 
ontrol terms a
t at di�erent frequen
ies. In fa
t thePD2 
ontrol a
tion works at 
ontrol frequen
y, while the feedforward follows the lower 
ommandstep frequen
y. This is a key fa
tor for the 
ontrol system, be
ause it allows to apply a fullyun
oupled high frequen
y 
ontrol trough the PD2, and to introdu
e the 
ontrol 
oupling using thestru
tural sti�ness trough the feedforward 
ontribution at a lower frequen
y.The 
omputation and A/D/A 
onversions introdu
e errors and delays on the 
ontrol for
esthat are appropriately modeled in the simulation program. In fa
t the 
ontrol for
es applied duringa
quisition, 
omputation and 
onversion time are the same as those of the previous step and notthe new ones. Su
h a delay in the appli
ation of for
es 
an be set as a fra
tion of the samplingperiod. Moreover sensors, a
tuators and A/D/A 
onversions introdu
e errors that are modeledas wide band noises and quantization errors. The program simulate them by adding Gaussiannoises and quantization errors to measures and 
ontrol for
es, appropriately s
aled in relation toquantization resolution and input/output ranges. All of these parameters 
an be set by the user.To limit the e�e
t of time delays in the appli
ation of 
ontrol for
es the 
ontroller implements afurther 
ompensation in the form of a paraboli
 extrapolation:

F
Capp
k+1

= δF
Capp
k + (ǫFC

k+1 + ζFC
k + ηFC

k−1) (63)where F
Capp
k is the real 
ontrol for
e applied to the mirror at time tk, FC

k+1
, FC

k , FC
k−1

are the
omputed 
ontrol for
es at times tk+1, tk, tk−1 respe
tively and δ, ǫ, ζ, η are parameters 
al
ulatedon the base of the time delay.The 
ontrol system frequen
y has been set to 4000 Hz, to have a su�
iently large 
ontrolbandwidth for the simulated �lters and 
ompensators, while the 
ommand step has been set to



7 A
tive mirrors 
ontrol law 222 Hz. The initial suggestions of a 500 Hz 
ontrol frequen
y and 1 Hz 
ommand steps was provensoon to be inadequate to satisfy spe
i�
ations, mainly be
ause it was not able to en
ompass awide enough dynami
 
ontents of the system to ensure adequate stability with the relatively manyvibration modes involved. The above �gures have been determined after some tests with lower
ontrol frequen
ies aimed at granting the required a

ura
y of 200 nm. It has been seen that 2800Hz represents the lower 
ontrol frequen
y limit with a 2Hz 
ommand step, while 1600 Hz is thelimit with 1 Hz 
ommand step. The 
hosen frequen
y of 4000 Hz allows to maintain a higherresponse quality and a safe margin to a

ount for the approximations introdu
ed in the model.Note that higher 
ontrol frequen
ies should be even better but were ruled out be
ause of power
onstraints. It must be noted that even if the 
ommand step frequen
y is not high, we have to
ontrol and qui
kly damp transient 
ommands. So a su�
iently large 
ontrol bandwidth is requiredto avoid instabilities independently from the 
ommand step length. The derivative �lter has a 
uto� frequen
y of 500 Hz as a good 
ompromise to avoid high delays and noise ampli�
ation. Thefeedforward for
es and 
ommanded positions are pre-shaped with geometri
 �lters, both at 4 Hzfrequen
ies, i.e. half of 
ommand step time. The standard deviations of Gaussian noises are 1.0E-5N for the for
es and 30.0E-9 m for the positions. The quantization errors are 
al
ulated for 16bits, assuming ±0.0005 m as the range of positions to be measured and ±0.2 N as the range ofa
tuators for
es. The quantization errors represent an important fa
tor in determining 
ontrollerperforman
es and sti�ness identi�
ation quality. There are two main 
auses linked to this:
• the position sensors need a large range be
ause after the initial petals deployment phasethe 
ontrol has to a
t on mirrors rigid motions assuring the 
orre
t position of ea
h petalswith respe
t to the 
entral mirror. Clearly this request implies larger motions 
apabilitiesthan the operational demand for mirror deformation. So the position resolution is 15 nm andrepresents a �rst limit on the pre
ision available for the 
ontroller.
• the low system damping, together with the need of a low 
ontrol frequen
y to save power,does not allow to have high PD2 gains, so the feedba
k for
es 
ould be some orders ofmagnitude lower than the feedforward ones. This implies that the for
e quantization error
an signi�
antly modify the PD2 ideal for
es values and, in turn, this means lower dynami
performan
es of the 
ontrol. The �nal result is a sort of bang-bang 
ontroller.
• the high noise level and quantization error a�e
t steady for
e and position measurementsduring the sti�ness matrix identi�
ation pro
ess. This leads to a poor quality of the identi�edsti�ness matrix and, as a 
onsequen
e, to large errors in a
hieving the 
ommanded steadypositions.It's important to underline that even if quantization and noise are not negligible fa
tors, they arenot so important in determining the 
ontrol frequen
y, that is primarily a�e
ted by low systemdamping and high frequen
y dynami
 ex
itation during 
ontrol a
tion.To determine the 
ontroller PD2 gains two step were followed. First standard Ziegler-Ni
holstuning rules have been used to obtain a starting value of the PD terms. Then an optimization ofthese gains has been performed via a MonteCarlo method. The �nal gains and 
ontroller propertiesobtained with di�erent 
ontrol and 
ommand frequen
ies are summarized in table 2.
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onvergen
e and Sub-stepping te
hnique 23Control Frequen
y (ωc) 4000 Hz 2800 Hz 1600 HzCommand frequen
y (ωcmd) 2 Hz 2 Hz 1 HzA
tuators �lter frequen
y 500 Hz 500 Hz 300 HzSensors �lter frequen
y 500 Hz 500 Hz 300 HzDerivation �lter frequen
y (ωV ) 500 Hz 500 Hz 300 HzFor
e appli
ation delay 2

ωc
s 2

ωc
s 2

ωc
s

KP 1000 700 350
KDa 12 10 5

KD2a 0.0008 0 0
KDb(petals) 5 5 5

KD2b(petals) 0.12 0.12 0.12

KDb(
entral) 12 12 12

KD2b(
entral) 0.2 0.2 0.2Table 2: Control parameters resume.8 Solution 
onvergen
e and Sub-stepping te
hniqueThe feedforward 
ontribution allows to rea
h the exa
t steady position only if the identi�ed sti�nessmatrix is the ideal one but, as we will see in se
tion 9, the identi�
ation pro
ess 
an only givean approximation of the system sti�ness. So to improve the 
ontroller pre
ision in rea
hing therequested �nal position we 
an think to update the stati
 feedforward term more times inside asingle 
ommand step, as shown in �gure 6. Obviously this solution, that we will 
all sub-steppingte
hnique, requires su�
iently good dynami
 performan
es, be
ause the 
ontroller must be ableto qui
kly rea
h the steady position to allow 
omputing the for
e and position average neededto 
al
ulate the following feedforward a
tion. Anyway we have no guarantee about the use of anestimated sti�ness matrix in determining the feedforward 
ontribution. So we would like to knowthe e�e
t of possible ina

ura
ies related to the sti�ness identi�
ation.Supposing to use sub-stepping te
hnique, on
e the system has rea
hed a steady state position
p̄k+1 thanks to PD2 a
tion, the 
ontrol system for
e 
an be written in an in
remental form:

FC
k+1 = [KP ](preq − p̄k+1) + F̄k + KI(preq − p̄k) (64)where the index k refers to the sub-steps inside the main 
ommand step. The applied for
e 
analways be rewritten as a produ
t between real sti�ness and rea
hed position:

Kp̄k+1 = [KP ](preq − p̄k+1) + F̄k + KI(preq − p̄k) (65)from whi
h
(K + [KP ])p̄k+1 = F̄k − KI p̄k + ([KP ] + [KI)preq (66)The average for
e F̄ 
an be expressed in fun
tion of real sti�ness and average position too:
(K + [KP ])p̄k+1 = (K − KI)p̄k + ([KP ] + [KI)preq (67)Equation 67 
an be written in a more 
ompa
t form as:

p̄k+1 = [A]−1[∆K]p̄k + [A]−1[B]preq (68)
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Figure 6: Feedforward term 
an be updated more times inside the single 
ommand step through the sub-stepping te
hnique.where
[A] = (K + [KP ]) (69)

[∆K] = (K − KI) (70)
[B] = ([KP ] + KI) (71)The solution of the di�eren
e equation 68 
an be obtained as the sum of an homogeneous and aparti
ular solution:

p̄k = uk + vk (72)The homogeneous equation is:
uk+1 = [A]−1[∆K]uk (73)and the relative solution mat
hes:

uk = G[ρk]G−1u0 (74)where the diagonal matrix [ρ] and the transformation matrix G are simply the eigenvalues andeigenve
tors obtained from the matrix ([A]−1[δK]), while u0 is linked with the given initial 
on-ditions as we will see later. The parti
ular solution 
an be simply a
hieved 
onsidering that thefor
ing term [A]−1[B]preq is 
onstant. So we 
an try to �nd a parti
ular solution that is 
onstanttoo:
v = [A]−1[∆K]v + [A]−1[B]preq (75)i.e.

v = (I − [A]−1[∆K])−1[A]−1[B]preq = [C]preq (76)Through relations 69, 70 and 71, [C] 
an be written as:
[C] =

(

I − (K + [KP ])−1(K − KI)
)

−1 (

(K + [KP ])−1([KP ] + KI)
) (77)



8 Solution 
onvergen
e and Sub-stepping te
hnique 25Moreover we 
an say that:
(

[KP ] + KI

)

=
(

[KP ] + KI + K − K
)

=
(

K + [KP ]
)

−
(

K − KI

) (78)If we put equation 78 in 77 we obtain:
[C] =

(

I − (K + [KP ])−1(K − KI)
)

−1 (

(K + [KP ])−1
(

(K + [KP ]) − (K − KI)
))

=

=
(

I − (K + [KP ])−1(K − KI)
)

−1 (

I − (K + [KP ])−1(K − KI)
)

= I (79)So the general solution 72 
an be expressed as:
p̄k = G[ρk]G−1u0 + preq (80)Moreover if we 
hoose u0 = (p0 − preq) we �nd the solution that satisfy the initial 
ondition p0:

p̄k = G[ρk]G−1(p0 − preq) + preq (81)It is evident from equation 81 that if ea
h element of diagonal matrix [ρ] is below the unit valuethe solution 
onverges to the requested position preq:
ρi < 1 =⇒ lim

k→∞

p̄k = preq (82)This means that the solution 
onvergen
e is linked with the spe
tral radius of matrix ([A]−1[∆K]),faster 
onvergen
e implies spe
tral radius lower than unit. We 
an say that:
max‖ρ‖ = sr([A]−1[∆K]) = sr

(

(K + [KP ])−1(K − KI)
)

=

= sr
(

(I + K
−1

[KP ])−1K
−1

(K − KI)
)

≤

≤ sr
(

(I + K
−1

[KP ])−1

)

sr
(

(I − KKI)
)

≤ 1 (83)where sr(A) is the spe
tral radius of the matrix A. The spe
tral radius of (I +K
−1

[KP ]) is alwaysgreater than one be
ause it is the sum of two positive terms and one of them is the identity matrix,so the inverse of this matrix, that is the �rst term of 83, has 
learly a spe
tral radius less than one.The se
ond term of equation (I − KKI) has a sr less than unit even if the matrix KI has beenroughly estimated. If we 
ould have KI ≡ K we would obtain an instantaneous 
onvergen
e. Tonote that even without the KI matrix the 
onvergen
e is guaranteed
[A]−1[∆K] = (I + K

−1
[KP ])−1(I) (84)be
ause the term expressed in equation 84 has a sr less than unit. But the 
onvergen
e speed inthis 
ase would be lower, so its ne
essary to use identi�ed sti�ness matrix.We have just demonstrated that the appli
ation of feedforward term more times inside the
ommand step assures the solution 
onvergen
e even with a roughly estimated sti�ness matrix.The sub-stepping te
hnique 
an be seen as the division of the 
ommand length in sub-steps wherethe requested position remains 
onstant, so it is a sort of high frequen
y appli
ation of slower-a
ting 
ommands. But as we have underlined at the beginning of this se
tion, the sub-steppingrequires good dynami
 
ontrol performan
e to be applied. The LIDAR satellite system has lowpassive damping, only the stru
tural one, and so low PD2 gains. As we have seen in se
tion 7the 
ontroller 
an't provide high dynami
 performan
es without higher 
ontrol frequen
ies. Thismakes it di�
ult to apply with su

ess the sub-stepping te
hnique in our proje
t. For this reasonwe have only one iteration to rea
h a su�
iently pre
ise �nal steady position and, obviously, this
onstraint leads to the requirement of a su�
iently good identi�ed sti�ness matrix.
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ation 269 Identi�
ationAs underlined in the previous se
tion there is almost no possibility to exploit the sub-steppingpro
edure, so a good identi�
ation of the sti�ness matrix is required to obtain a

eptable shapingperforman
es. Su
h an identi�
ation 
an be 
arried out by retrieving from the lo
al 
ontrol unitsa set of averaged position and the related for
e 
ommands to set up a least squares system ofequations that is re
ursively solved to update the identi�ed sti�ness matrix in real time, thusallowing an adaptation to relatively slow system and disturban
es modi�
ations. The duration ofthe shape 
ommands must be long enough to insure that there remains a su�
ient time lengthto allow the averaging of the steady positions and for
es. The 
ommand time has to guaranteean adequate signal-to-noise ratio for the estimates. It is likely that su
h a 
onstraint 
ould not beimposed on some operational phases so that a real time re
ursive update of KI 
ould not always bepossible when very fast mirror shape 
orre
tions must be imposed. For su
h 
ases a pre-operationaltraining phase will be required and no attempt should be made to update the feedforward matrixwith too noisy and not 
ompletely settled positions and for
es, as that 
ould destroy any goodestimate already available. However, to allow maximum operational �exibility, the least squareidenti�
ation is solved with a re
ursive te
hnique anyhow so that the 
hoi
e of using just a pre-operational or a 
ontinuous identi�
ation 
an be made at due time, a

ording to the requirementsof spe
i�
 observations.In this way at the end of any set of independent 
ommanded shapes the supervisor 
omputerin 
harge of sending to the mirror the 
orre
t shapes to the de
entralized DSP 
ontrollers re
eivesfrom them the average positions and for
es, so that at ea
h instant of time the following equation
an be written:
F̄k = KI p̄k + F0 (85)

F0 being any 
onstant or slowly varying external disturbing for
e, e.g. the mirror weight, thesatellite attitude 
ontrol 
ouple, a lo
al perturbation asso
iated to variation of the environmenttemperature. Clearly for slowly varying for
es the identi�
ation pro
edure must be applied re
ur-sively on line, as it will be explained later on. By taking its transpose, to set the unknown termsto the right, equation 85 is rewritten:
p̄T

k K
T

I + FT
0 = F̄T

k (86)and 
ondensed in the form:
[

p̄T
k 1

] [

KI F0

]T
= F̄T

k (87)The least squares system 
learly derives from sta
king many of su
h equations to write:












p̄T
1 1

p̄T
2 1... ...

p̄T
n 1













[

KIF0

]T
=













F̄T
1

F̄T
2...̄

FT
n













(88)that 
an be expressed as:
AK̃I = B (89)with

A =













p̄T
1 1

p̄T
2 1... ...

p̄T
n 1













, B =













F̄T
1

F̄T
2...̄

FT
n













, K̃I =
[

KIF0

]T
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ation 27On
e a su�
ient number, i.e. n ≥ nact, of equations are available a �rst least squares solution ofthe normal system 
an be 
arried out in the form:
K̃I = (AT A)−1AT B (90)By 
alling Z = AT B and 
omputing the LDL fa
torization AT A = LDLT , the above equation isrewritten as:

LDLT K̃I = Z (91)and K̃I obtained by a forward ba
kward substitution of its LDL fa
torization fa
tors on Z. On
e
K̃I is obtained its rows are sent to the 
orresponding DSP so that it 
an start 
omputing the dotprodu
t with its measured positions to determine the feedforward for
e to be applied at its 
ontrolpoint. This phase is what has been previously 
alled the training phase and must 
learly be basedon a set of n ≥ nact independent shapes 
ommands. From this point onward a 
ontinuous updatingof Z by

Zk+1 = Zk + F̄k+1p̄
T
k+1 (92)and of the LDL fa
torization

Rk+1 = Rk + p̄k+1p̄
T
k+1 (93)
an be done, if the shape 
ommand steps are long enough and K̃I 
an be determined at assignedinstant and distributed to the DSPs to adapt to slowly 
hanging operational 
onditions. If thatis not the 
ase one must 
ontent himself with the training phase. It is noted however that thetraining phase adopts a re
ursive update form started by assuming K̃ = εI, with ε of the order of

104, as the re
ursive LDL update unsure a better numeri
al 
onditioning with respe
t to the bat
hsolution of the normal least squares equations. It is well known that a re
ursive QR te
hnique
ould be used in pla
e of the LDL approa
h. The latter has been preferred be
ause it is believedto be the best 
ompromise between the need of a good numeri
al 
onditioning and 
omputationale�e
tiveness and be
ause it allows a 
ontinuous adaptation, with reasonable 
omputational powerat the supervisor 
omputer, whenever that is possible.When the number of a
tuators rea
hes high values, the numeri
al simulation of the pre-operational identi�
ation phase 
an be
ame too expensive in terms of 
omputational time. Forthis reason the program allows to 
hoose an alternative way to simulate the identi�
ation pro
ess,based on stati
 response 
al
ulation. In fa
t on
e the system rea
hes the steady state position itis possible to negle
t the time dependent terms and during the pre-operational phase feedforward
ontribution is null. So the global a
ting for
e 
an be written as:
F̄ = [KP ](preq − p̄) + F0 (94)and it is possible to write the modal stati
 equations des
ribing steady behavior as:

[ω2
l ]q̄l = XT

l F̄ (95)One should note that we are 
onsidering a modal base without the free motions here, so thesatellite is supposed �xed in the spa
e and the modal sti�ness is not singular. This means thatwe 
annot evaluate the possible e�e
t of the attitude 
ontrol system dire
tly be
ause we shouldintegrate the free motions to know the attitude 
ontrol 
ouple. But as we will report later, we 
anintrodu
e noises on for
es and positions to take into a

ount the presen
e of disturban
es linkedto the satellite attitude 
ontroller. The system output 
an be expressed in two di�erent manners,depending on the need of either employing high frequen
y residualization or not:
p = Xlql without residualization (96)

p = Xlql +
(

K
−1

− Xl[ω
2
l ]−1XT

l

)

F with residualization (97)
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ation 28In the previous relations, without loss of generality, we have 
onsidered p ≃ S = Xlql to simplifythe writing of the equations. Now, 
ombining equations 94, 95 and 97 or 96 into a single system,it is possible to �nd the steady for
e and position that will be a
hieved for a given 
ommand
preq. It is remarked that the system is not able to rea
h the 
ommanded position be
ause duringpre-operational phase no information on the sti�ness matrix is available yet and we are workingwithout any feedforward 
ontribution. The �nal system is:











[ω2
l ]q̄l = XT

l F̄

F̄ = [KP ](preq − p̄) + F0

p̄ = Xlq̄l

or 













[ω2
l ]q̄l = XT

l F̄

F̄ = [KP ](preq − p̄) + F0

p̄ = Xlq̄l +
(

K
−1

− Xl[ω
2
l ]−1XT

l

)

F̄

(98)Putting the �rst equation of the system in the third and then substituting the for
e term F̄ withthe se
ond equation we 
an obtain the �nal system for both 
ases:
(I + K

−1
[KP ])p̄ = K

−1
([KP ]preq + F0) with residualization (99)

(I + Xl[ω
2
l ]−1XT

l [KP ])p̄ = Xl[ω
2
l ]−1XT

l ([KP ]preq + F0) without residualization (100)The system is solved with an LU fa
torization, using the GSL library, done only on
e at thebeginning of the identi�
ation pro
ess. In this way the steady �nal position at ea
h step is obtainedby 
al
ulating the right hand side of equations 100 or 99, and by a forward/ba
kward substitutionto solve the system
[LU ]p̄ = B (101)At the end it is possible to re
over the for
e F̄ by simply substituting the obtained position

p̄ in equation 94. To simulate a realisti
 experimental identi�
ation it is ne
essary to introdu
eappropriate noises and errors on the steady for
es and positions. A good pro
edure has proven tobe the following one:
• perform a su�
iently long simulation (a few times the 
ommand step length) with a 
onstantrequested position and without the feedforward term (be
ause we have no sti�ness matrixyet). The simulation has to be done with realisti
 a
tuators and sensors noises, 
orre
t quan-tization errors, and attitude 
ontrol system swit
hed on.
• extra
t from previous simulations for
es and positions standard deviations (σ) over the timethe system has been in steady state.
• use the for
e and position standard deviation just found to perform the following operationover ea
h steady for
e an position values obtained through stati
 response identi�
ation:

p̄real =

n
∑

i=1

(p̄ + err(σp))

n
F̄real =

n
∑

i=1

(F̄ + err(σF ))

n
(102)where n is the number of for
e and position values over whi
h it is possible to do the average.So n depends on the 
ommand step time dtcmd used during identi�
ation, 
ontrol frequen
y

ωc, and 
ontroller performan
es in a
hieving the �nal steady position (y%(dtcmd)):
n = (1 − y%(dtcmd)) dtcmd ωc (103)Figure 7(a) shows the 
omparison between the diagonal element of two sti�ness matri
es identi�edthrough the simulation and the stati
 response approa
h. In �gure 7(b) there is the 
omparison
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(a) Comparison between diagonal elements of two sti�ness matri
es identi�ed through di�erent ap-proa
hes.

(b) Comparison between two system responses where the feedforward is based on di�erent identi�edsti�ness matri
es.Figure 7: Real simulation of identi�
ation pro
ess vs stati
 response approa
h.
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ation 30between two system responses using the feedforward 
ontribution, based on the previous two dif-ferently identi�ed sti�nesses. Both �gures demonstrate that the stati
 response approa
h 
an givea sti�ness matrix equivalent to that obtained through the simulation of the real identi�
ationpro
ess. The advantage in 
al
ulation time is very important, for example to perform the matrixidenti�
ation on a single PC through the real simulation of the identi�
ation pro
ess we need about12 hours, while the stati
 response approa
h 
an give an equivalent result in less than 5 minutes.The main reason for the need of a pre
isely identi�ed sti�ness matrix is the la
k of systemdamping and the 
onstraint on the maximum 
ontroller feedba
k frequen
y. Low damping bringsto low PD2 gains be
ause of the presen
e of stability 
onstraint, and low PD2 gains do not permitto help the feedforward a
tion, from a stati
 point of view, in rea
hing the requested position.Moreover if there is low damping it is very di�
ult to use sub-stepping te
hnique be
ause of thetransient phase duration, that does not allow enough time for position and for
e averaging. So asystem with low damping needs a quite pre
ise identi�ed sti�ness matrix to assure the requestedpre
ision. This is 
lear our 
ase in spa
e where we 
an exploit system passive stru
tural dampingonly while 
ontroller damping 
annot add too mu
h be
ause of the 
onstraint on the 
ontrollerfrequen
y.The quality of the sti�ness identi�
ation is primarily related to a
tuators and sensors noisesand to quantization errors. Obviously a fundamental requirement is the ability of the 
ontroller torea
h a steady state position in a given time. All these aspe
ts are important in determining thepre-operational identi�
ation time. In fa
t if we have high noises and/or quantization error matedwith a not so high a
tive damping the only way to improve the sti�ness identi�
ation is to in
reasethe 
ommand step length, the 
ommand steps number or both. All these solutions tend to lengthenthe time required for the identi�
ation pro
ess. Another possible improvement of the identi�
ationpro
ess 
an 
ome from the use of optimized 
ommands having a high for
e-position to noise ratio,obtained by imposing relatively high but feasible for
es on ea
h a
tuator. The related pro
edureis the following:
• 
hoose the for
e ve
tor in the requested range

‖F̄range‖ = Fmin ≤ F̄ ≥ Fmax (104)
• re
over the related modal amplitude:̄

ql = [ω2
l ]−1XT

l F̄range (105)
• write the requested for
e as:

F̄range = [KP ](preq − p) + F0 = [KP ](preq − Xlq̄l) + F0 (106)
• substitute equation 105 in 106 and solve to obtain preq:

preq = [KP ]−1(Frange − F0) + Xl[ω
2]−1XT

l Frange (107)where preq represent the ve
tor of 
ommanded positions we were looking for. In this way weimpose for
es values during identi�
ation, but there is the problem of positions too. In general isnot possible to obtain both requested positions and for
es, but in the LIDAR proje
t the mirrors
an do rigid motions, so we 
an apply a rigid shift to the positions re
overed through equation 106,without 
hanging the for
es values. In this way we 
an 
ontrol both the position-noise ratio andthe for
e to noise ratio, thus improving the identi�
ation quality.



9 Identi�
ation 31Command steps number n 3000Command time length (dtcmd) 0.5 se
Total identi�
ation time 25 minControl frequen
y ωc 4000 HzPosition standard deviation σp 30e-9 mFor
e standard deviation σf 1e-5 mQuantization 16 bitA
tuator stroke ±0.0005 mA
tuator for
e range ±0.2 NTable 3: Control parameters resume.On
e we have obtained the identi�ed sti�ness matrix we would like to know the error that hasbeen introdu
ed. This requires a referen
e sti�ness matrix, whi
h depends on the usage, or not,of the high frequen
ies residualization pro
edure. If we do not use any residualization the sti�nessthat we are identifying is (remember equation 22):
Kref = Xl[ω

2
l ]−1XT

l (108)Instead if we use the high frequen
ies re
overy the referen
e sti�ness matrix is simply the physi
alsti�ness redu
ed to the s
alar points obtained from FEM analysis:
Kref = K (109)Figure 8(a) reports the per
entage di�eren
e between diagonal elements of the referen
e sti�-ness and the identi�ed one. This matrix identi�
ation has been performed using 3000 
ommandedsteps, with a step duration of 0.5 s, 
orresponding to an a
tual testing time of 25 minutes. Thefundamental parameters used are resumed in table 3. Figure 8(b) shows the per
entage error ofextra-diagonal matrix elements. Here signi�
antly worse errors show up but they refer to approxi-mately null elements linked to the low sti�ness 
oupling between petals and 
entral mirrors.
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(a) Diagonal elements.

(b) Extradiagonal elements.Figure 8: Per
entage error of identi�ed sti�ness elements.



10 Se
ondary mirror 3310 Se
ondary mirrorThe se
ondary mirror is mounted at the top of a spike that is about 3 meters high. Its role is tore�e
t the light 
aptured by the primary mirror to the sensor that a
quires the image informations,see �gure 9. We are interested to know the range of the se
ondary mirror displa
ements 
ausedby ex
itations 
oming from the adaptive 
ontroller of the a
tive primary mirror, to verify if it
an 
ompromise teles
ope performan
es. In parti
ular we have analyzed possible losses of the lineof sight of the 
enter of the se
ondary mirror from the ideal position and we have evaluated these
ondary mirror plane tilt. In this way we have been able to 
ompute where a line normal tose
ondary mirror plane interse
t the sensor plane, about 3 meters below. The sket
hes reported in�gures 10(a) and 10(b) summarize the pro
edure des
ribed below. The three red points of �gure10(a) are 
oin
ident with the three stru
tural FEM nodes positioned where the se
ondary mirror is
onne
ted to the spike. The green point 
orresponds to the FEM node that is pla
ed at the sensorposition. From the simulation 
ode we 
an evaluate the global displa
ements of these points bysimply putting the relative FEM nodes degrees of freedom inside the initial s
alar points set, inthe same way followed to obtain the satellite free rotations. The blue point represents the 
enterof se
ondary mirror; we 
an always �nd its position be
ause it is lo
ated in the 
enter of massof the triangle. On
e we know these informations we 
an re
over the deformed positions of thethree points des
ribing the borders of the se
ondary mirror and so the displa
ed position of these
ondary mirror 
enter of mass. Through the three points of the triangle we know the se
ondarymirror deformed plane too, so we 
an re
over the normal ve
tor to the plane. It is now possible to�nd where the proje
tion along the normal line interse
t the sensor plane. The sensor plane tiltrotations are 
onsidered rigid, while its translations are taken into a

ount, and are assumed to beequal to the sensor point displa
ements. In this manner we 
an know the alignment error betweenthe 
enter of the se
ondary mirror and the sensor, evaluate the e�e
t of the se
ondary mirror planedeformation, and ultimately determine the pre
ision of opti
 re�e
tions.

Figure 9: Sket
h of the opti
al 
on�guration (Credit by Carlo Gavazzi Spa
e).



11 Simulation results 34

(a) Spike, se
ondary mirror and sensor. (b) Pro
edure des
ription.Figure 10: Satellite se
ondary mirror displa
ements re
overy.11 Simulation resultsAll the following results have been obtained with a 4000 Hz mirror 
ontrol frequen
y, using theparameters reported in table 2. The 
ontroller requested pre
ision at the end of ea
h 
ommandstep is ±200E-9 m. The attitude 
ontrol system has always been swit
hed on using the settingparameters reported in table 1.The �rst simulation (�gure 11) shows the system response to a simple step, in order to verifythat the 
ontrol system is able to rea
h the 
ommanded position and to prove a stable behavior.Figures 13, 14 and 15 report the simulation results of a random 
ommanded history 
hara
ter-ized by small deformations, in the order of ±2E-6 m (see �gure 12). This history underlines thelow pre
ision due to quantization errors of for
es and, espe
ially, positions. In fa
t the positionresolution is 15 nm, a value that is higher than the average gap reported in the zoomed window(�gure 13). Moreover the PD2 a
tion is strongly determined by sensor noise. Considering the entityof quantization and noise errors the 
ontrol a
tually a
ts in a bang-bang manner, whi
h maintainsthe mirror response within a range of ±30E-9 m around the 
ommanded position. Figure 14 showsthe di�eren
e between the orders of magnitude of feedforward and PD2 
ontributions. As we havealready underlined, the PD2 gains must be kept low be
ause of stability 
onstraint linked to lowpassive damping and low 
ontrol frequen
y. In �gure 15 it is possible to note that in this simulationthe maximum for
e value is below the saturation limit of 0.2 N. Figure 16 reports the se
ondarymirror 
enter displa
ements from the ideal position aligned with the sensor. Figure 17 shows these
ondary mirror 
enter proje
tion on the sensor plane to underline the e�e
t of the se
ondarymirror surfa
e rotation. The red 
ir
le frames all the displa
ements while the green one en
losesthe displa
ements measured at the end of ea
h 
ommand step. In this 
ase the order of magnitudeof the displa
ements magnitude is always below 10 nm. In this se
tion there are no �gures giving



11 Simulation results 35informations about the out of plane displa
ement of the se
ondary mirror be
ause it is always verylow (under 1 nm.) and so leads to no interesting data.Figures 19 and 20 show a simulation with higher steps amplitude, the related displa
ementsare here 
ontained in the range ±25E-6 m. The 
ommanded history is random so the requiredmirror's shape 
ould be quite wavy as seen in �gure 18. Anyway the 
ontrol a
tion assures the �nal
orre
t mirror position with a pre
ision in the order of 30 ÷ 80E-9 m, as magni�ed in the zoomedview. In this 
ase 
ontrol for
es rea
h values that are beyond the saturation level. Su
h values aresurely a�e
ted by the random imposed deformation, moreover all the a
tuators 
onne
tions withmirrors are des
ribed through 3D hinges and all the a
tuators dire
tions are not perpendi
ular tothe plane but parallel to satellite spin axis, so involving a high in-plane mirrors sti�ness duringdeformation. This latter e�e
t 
an in
reases the 
ontrol for
es espe
ially at the a
tuators positionedon the external sides of petals, where the mirror-a
tuator angle 
an rea
h 18◦. If we 
ompare �gure20, related to a 
entral mirror a
tuator for
e, to �gure 21, related to an external a
tuator, we 
anappre
iate an important di�eren
e in for
es values. This implies that for
es 
an be higher than the�nal real ones, but it is quite unlikely that with the 
urrent a
tuators density and power this kindof deformations 
ould be a
hieved, even with the �nal 
orre
t 
on�guration. Anyway this aspe
tshould 
ared of along with the de
ision about the mirror-a
tuator 
onne
tions. Figures 22 and 23refer to se
ondary mirror displa
ements in a range of about 35 nm. The higher range respe
t theprevious history is in a

ordan
e with the higher for
es needed by the 
ontrol system.An important design spe
i�
ation is that the 
ontrol system should be able to adjust the mirrorsposition after initial deployment trough relatively high rigid displa
ements. This is the main reasonof the high measurement range imposed on displa
ement sensors (±0.0005 m). Figure 25 shows thesimulation of a history based on rigid mirrors displa
ements, as seen in �gure 24. The rigid motionsare along the axial a
tuators dire
tion be
ause, with the a
tual mirrors-a
tuators 
onne
tion, theseare the only rigid movements allowed. The displa
ements are large, in the order of ±0.005 m, sothat they are 
lose to the limit imposed by the spe
i�
ation. It is possible to appre
iate that the
ontroller is able to rea
h the requested positions within the requested pre
ision in the last 20%of the 
ommand step. As the zoomed view displays, the mirror response is not easily dumped bythe 
ontrol system, espe
ially on petals 
ontrol points. The main reason of that it is the 
ouplingbetween high rigid motions displa
ements and low frequen
y modal forms, that have the leastpassive damping. In parti
ular the �rst six petals modes are hardly observable and 
ontrollable.So, as we have already underlined in se
tion 3, the previous petals modal forms must have afrequen
y of at least 20 Hz to a
hieve a satisfa
tory 
ontroller performan
e. This implies eithera sti�er solution than that initially available or the possibility to add dampers to petals hinges.Figure 26 shows the 
ontroller performan
es with the �rst preliminary design data that was notable to satisfy the pre
ision requirements; in the zoomed view it's 
lear the 
ontroller di�
ultyin damping the mirror response. Figure 27 shows the very low for
e level needed to 
ontrol rigidmotions that, on
e the steady state is rea
hed, is mainly related to system noises and quantizationerrors. This is a proof that the initial �
titious axial sti�ness used to remove rigid motions is reallyunimportant, and that the high frequen
ies residualization works 
orre
tly. Figures 28 and 29 showthe se
ondary mirror displa
ements whi
h rea
hes higher values in this 
ase than in the previousones. In fa
t the displa
ements magnitude order is around 300 nm with peaks of about 600 nm. Thisrange growth is not linked to the for
es values be
ause, as we have just seen, the for
es to 
ontrolthe mirrors rigid motions are very low. But we have also underlined that the rigid movements ex
itethe petals modal shape, that have low damping and a frequen
y of 20 Hz. The spike mounting these
ondary mirror on its top has a modal shape with a frequen
y of about 20 Hz too, so when themirror 
ontroller ex
ites the petals modal shapes we obtain as a 
onsequen
e the spike ex
itation



11 Simulation results 36that brings to higher se
ondary mirror displa
ements. If su
h a range of displa
ements is to be
onsidered too high a possible solution 
ould be a frequen
y separation between the modes of thepetals hinges and the spike. It is important to underline that after the transient phase the rangeof displa
ements 
omes ba
k to lower values, i.e. below 200 nm, as it is possible to see in �gure30. So if the mirrors during their operational life are not requested to perform high rigid jumpsin a few se
onds this will not 
ause any problem. Figure 31 refers to the same history just shownbut with a 
ommand step frequen
y of 0.25 Hz, assuming a more realisti
 request for high rigidmovements at a lower frequen
y. The image demonstrates that after the 
ommand step transientthe se
ondary mirror displa
ements range de
reases below 30 nm.Figure 32 is related to a history where rigid motions are 
oupled to mirrors deformations, hereto be more realisti
 the movements range has been set to ±0.00025 m. In this 
ase the requestedtoleran
es are satis�ed in the last 40% of 
ommand step.Figure 33 shows a 
hess square deformation imposed on a petal mirror, where the amplituderange is ±2.5E-6 m. This kind of shape does not represent a problem for the 
ontroller performan
e,as shown in �gure 34, but it is one of the most 
riti
al from the for
e levels point of view. In fa
t in�gure 35 we 
an see that even if the deformation range is not so wide the for
es needed are highlyover the saturation level.Figure 36 reports the simulation of a time history that represents the �rst 100 modal shapes.This is a 
lassi
al test to verify the 
ontroller e�e
tiveness and it is here performed by imposing awide deformation range of ±50E-6 m. As it is possible to appre
iate in the zoomed view the steadystate position 
an be a�e
ted by an important gap due to sti�ness matrix identi�
ation errors.Obviously the sti�ness pre
ision be
ome more important when the deformation range grows up.Anyway in �gure 37 the maximum error of ea
h step of simulation is reported and it is evidentthat even with this high deformation range the requested pre
ision is guaranteed on
e the responserea
hes steady state.Figure 38 shows a 
omparison between two responses, with and without the presen
e of dynami
feedforward terms. These are important to improve the transient quality of ea
h step, as magni�edin the �gure zooms.As shown up to now the feedforward 
ontribution is quite important, so a 
orre
t sti�nessmatrix identi�
ation is fundamental to obtain a good 
ontroller. Figure 39 reports the di�erent
ontrol pre
ision obtained with di�erent sti�ness matri
es a�e
ted by di�erent noise values duringidenti�
ation:
• "0 noise" is the ideal situation where the identi�
ation is performed without quantizationerrors and Gaussian noises;
• "1 noise" refers to 30E-9 range error on position and 1E − 5 range error on for
e, i.e. theones used up to now;
• "2 noise" refers to 90E-9 range error on position and 3E − 5 range error on for
e;
• "3 noise" refers to 150E-9 range error on position and 5E − 5 range error on for
e;All the identi�
ations were performed trough the stati
 response approa
h to minimize 
ompu-tational time. The 
ommanded history implies a random wide range deformation of ±100E-6 mto emphasize the identi�ed sti�ness e�e
t on 
ontrol pre
ision. This simulation 
on�rms the im-portan
e for this proje
t of a good identi�
ation and so the relevant role of quantization errorsand noises in determining 
ontroller performan
es. But as we have demonstrated in se
tion 8, theappli
ation of sub-stepping te
hnique to 
ontrol a
tion 
an allow high 
ontrol pre
ision even with



11 Simulation results 37a roughly estimated sti�ness matrix. Unfortunately we 
ould not apply it be
ause of poor dynami

ontrol performan
es. Anyway to demonstrate the 
ontrol 
apabilities we have set the 
ontrol fre-quen
y to 10 KHz to obtain a very good dynami
 behavior and we have performed the previoussimulation using 3 sub-steps inside ea
h main 
ommanded position. The result is reported in �gure40 where it is possible to appre
iate the large 
ontrol pre
ision improvement, that is partly due tohigher PD2 gains and partly to sub-stepping appli
ation. Note in the zoomed view that at the endof 
ommanded step the three responses 
onverge to the same solution in spite of di�erent sti�nessmatri
es. This 
on�rms the 
onvergen
e demonstration 
arried out in se
tion 8.The results presentation ends with some images referred to the behavior of the attitude 
ontrolsystem. Figures 41 and 42 show the ability of the attitude 
ontroller to maintain the null referen
eposition of the satellite and the 
ouple needed. Figures 43 and 44 show the 
apabilities of the
ontroller to rea
h and maintain 
ommanded attitude angles with the ne
essary 
ouple; note inparti
ular the a
tuators saturation. The last �gure 45 makes a 
omparison between the samemirrors 
ommanded history but with the attitude 
ontrol swit
hed on and o�. The related responsesprove that there is no signi�
ant intera
tion between the two 
ontrollers, even when the satelliteis rotating under the 
ouple imposed by the attitude 
ontrol system.It is �nally important to remark that all simulations presented in this se
tion have been per-formed with an A/D/A plus 
omputational delay of half the sampling time, i.e. a very signi�
antdelay. This means that it is either possible to implement the 
ontroller with low 
omputationalpower or to improve its performan
es if the available power is higher.

Figure 11: Step response, simulation 1.
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Figure 12: 3D mirror deformation of simulation 2.

Figure 13: Response simulation 2.
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Figure 14: Feedforward and Pd2 for
e 
ontributions of simulation 2.

Figure 15: Control for
e of simulation 2.
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Figure 16: Se
ondary mirror 
enter displa
ements, simulation 2.

Figure 17: Se
ondary mirror 
enter proje
tion on sensor plane, simulation 2.
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Figure 18: 3D mirror deformation of simulation 3.

Figure 19: Response simulation 3.
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Figure 20: Control for
e of a 
entral mirror a
tuator, simulation 3.

Figure 21: Control for
e of external a
tuator, simulation 3.
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Figure 22: Se
ondary mirror 
enter displa
ements, simulation 3.

Figure 23: Se
ondary mirror 
enter proje
tion on sensor plane, simulation 3.
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Figure 24: 3D mirror rigid motions, simulation 4.

Figure 25: Rigid motions 
ontrol, simulation 4.
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Figure 26: Rigid motions 
ontrol with petals hinges modes with a frequen
y below 20 Hz, simulation 4.

Figure 27: Rigid motions 
ontrol with petals hinges modes with a frequen
y below 20 Hz, simulation 4.
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Figure 28: Se
ondary mirror 
enter displa
ements, simulation 4.

Figure 29: Se
ondary mirror 
enter proje
tion on sensor plane, simulation 4.
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Figure 30: Se
ondary mirror 
enter displa
ement along x dire
tion, simulation 4.

Figure 31: Se
ondary mirror 
enter displa
ement along x dire
tion with a 
ommand step frequen
y of 0.25Hz, simulation 4.
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Figure 32: Rigid motions and mirror deformations together, simulation 5.

Figure 33: Chess square 3D deformation, simulation 6.
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Figure 34: Simulation response of 
hess square petal deformation, simulation 6.

Figure 35: For
e value needed to perform a 
hess square shape, simulation 6.
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Figure 36: Mirror response to modal 
hange 
ommanded story, simulation 7.

Figure 37: Mirror response maximum error, simulation 7.
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Figure 38: Comparison between response with and without dynami
 feedforward 
ontribution, simulation8.

Figure 39: Comparison between responses with di�erent identi�ed sti�ness matri
es, simulation 9.
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Figure 40: Comparison between responses with di�erent identi�ed sti�ness matri
es, using sub-steppingte
hnique and 10 KHz 
ontrol frequen
y, simulation 9.

Figure 41: Satellite rigid rotations with null 
ommanded angles.
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Figure 42: Satellite attitude 
ouple needed to maintain the null angles position.

Figure 43: Satellite rigid rotations with non-null 
ommanded angles.
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Figure 44: Satellite attitude 
ouple needed to rea
h the 
ommanded angles of rotation.

Figure 45: Comparison between responses performed with the attitude 
ontrol system swit
hed on andswit
hed o�.



12 Con
lusions 5512 Con
lusionsThe simulations 
arried out demonstrate that the mirror 
ontrol system 
an satisfy the designspe
i�
ations. In parti
ular the 
ontroller allows the 
orre
t a
hievement of the �nal 
ommandedpositions with an a

eptable pre
ision. The performan
e is satisfa
tory both for small and highamplitude 
ommanded motions/deformations. The 
apability to 
ontrol rigid motions has beenveri�ed too, showing the 
ontroller e�e
tiveness within a wide range of rigid displa
ements, ±0.0005m, and with elasti
 deformations 
oupled to rigid movements.The most signi�
ant parameters limiting 
ontroller performan
es are the low stru
tural damp-ing and the 
onstraint on the sampling frequen
y, that has to be keep as low as possible to limitpower 
onsumption. Moreover all the 
ontroller 
omponents that 
an add any delay are impor-tant to de�ne the 
ontrol system 
apabilities. Among them we must remark the importan
e ofsetting appropriate bandwidths for the �rst-order �lters used to approximate the dynami
s of sen-sors/a
tuators and the time derivatives. For that an appropriate 
ompromise must be establishedto avoid high delays (low �lters frequen
ies) and spillover (high �lters frequen
ies). Another im-portant delay 
an be introdu
ed by a
quisition/
onversion (A/D/A) and 
omputational delays. Inthis report as we have adopted a likely 
autious solution by using half of the 
ontroller time stepfor the just mentioned delays. While negligibly a�e
ting stability boundaries sensors and a
tuatorsnoises, together with their quantization errors, are of paramount importan
e in determining 
ontrolpre
ision. Moreover the quantization introdu
es a nonlinear e�e
t that produ
es positioning limit
y
les through a sort of bang-bang 
ontrol. So these phenomena have to be taken into a

ountbe
ause they 
an a�e
t both pre
ision and stability of the 
ontroller. It has been underlined alsothat system noises and errors are highly signi�
ant in setting the a
hievable pre
ision of the identi-�ed sti�ness matrix. That is parti
ularly important for the LIDAR proje
t be
ause the low passivedamping available and the 
onstraint of a low 
ontrol frequen
y lead to poor dynami
 
ontrolperforman
es, while the sub-stepping te
hnique 
annot be used. So the �nal 
ontroller pre
isionis mainly linked to a good sti�ness identi�
ation. Fortunately it has been possible to demonstratethat with the a
tual system parameters a very good sti�ness approximation 
an be identi�ed.It has been also veri�ed that 
ontrol for
es 
an ex
eeds their saturation limit when large 
orre
-tions have to be applied. This problem 
ould be linked both to too widely random shape requestsand to model un
ertainties, in parti
ular around the mirror-a
tuator hinged 
onne
tions whi
h adda signi�
ant sti�ening e�e
t that is di�
ult to 
orre
t espe
ially on the petals. So a new veri�
ationshould be performed when all the stru
tural details and the 
ontroller 
apabilities approa
h their�nal design solution. However the simulations 
arried out so far have already demonstrated theneed of a su�
iently sti� 
onne
tion between the petals ba
k-plates and the satellite 
entral body.From the 
ontrol law point of view the results indi
ates the remarkable e�e
tiveness of thesolution based on a PD2 feedba
k term 
oupled to an appropriate open-loop feedforward aimed at
an
eling the modeled mirror dynami
s as far as possible. It has been shown that the feedforwardterm 
an be pro�tably split into a stati
 and a dynami
 
ontribution, the �rst assuring a 
orre
t �nalsteady position, the se
ond improving the dynami
 
ontroller performan
es during the transientphase of the 
ommand tra
king.The simulation program takes advantage from a high frequen
y re
overy through the stati
residualization te
hnique, that allows to avoid ina

ura
ies in the estimation of the steady state
ontroller for
es linked to the use of the simpler trun
ated redu
ed modal base. Moreover theidenti�
ation of the stru
tural sti�ness 
an be performed both with the real pro
ess simulationor with a simpler stati
 determination of the �nal 
ommanded position. We have shown that theresults thus obtained are 
omparable and that the stati
 response method allows to save a lot of
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lusions 56time, so greatly improving pro
essing e�
ien
y.The simulations have demonstrated that the satellite attitude 
ontrol system does not interferesigni�
antly with the mirror 
ontroller, be
ause they a
t mostly in an un
oupled mode.The evaluations of the se
ondary mirror displa
ements due to the a
tive mirror 
ontrol a
tivityhave shown that without important rigid motions the magnitude of the misalignment of the lineof sight with the image 
apture sensor is below 100 nm. The related boundary ranges grow up inpresen
e of signi�
ant mirrors rigid motions, rea
hing maximum values of about 600 nm duringthe 
orresponding relatively large transients. Su
h a situation is mainly linked to the 
ouplingbetween the �rst elasti
 petals modes, involving petals hinges sti�ness, and the se
ondary mirrorspike modes. So a possible solution 
ould be to set a good frequen
y separation between theseelements through an appropriate stru
tural design. It is important to remark however that if themirrors will not be required to large rigid 
orre
tion motions, the se
ondary mirror displa
ements
an be well 
ontained in a range of about 20-30 nm.The next step should be an improved update of the whole model in relation to the settingof integrated design spe
i�
ations. Finally, on
e all the system parameters and the performan
espe
i�
ations are frozen and 
leared, a �nal 
ontrol system optimization might be possible in viewof �nding the lowest sampling frequen
y 
apable of ensuring the satisfa
tion of all the spe
i�
ationswith the least power 
onsumption possible.
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