

Project ANTASME

WP 3
Report on Innovative Finite Element

Methods For Aeroelastic Analysis

Compiled by Roberto Flores

CIMNE: International Center for Numerical
Methods in Engineering

This report describes the activities carried out at CIMNE to improve the
analysis tools for coupled fluid-structure interaction analysis

In order to develop the capabilities of CIMNE’s software in the Fluid-
Structure Interaction (FSI) domain, research and development activities
have been focused in three different fronts:

• Advances in fluid solver technology.

• Development of a unified software platform (KRATOS) to allow

 integration of single-field codes into a coupled multiphysics solver.

• Development of new coupling algorithms.

Each of these aspects is summarized in the reports included in this
document.

• Improvements In CFD Solver Technology, Some Theoretical
Aspects (contributed by Enrique Ortega)

• A Short Description Of A 3D Navier-Stokes Compressible Flow

Solver (contributed by Roberto Flores)

• Basic Structure of KRATOS, An Object-Oriented Environment For
The Development Of Multi-Physics Analysis Software (contributed
by Pooyan Dadvand)

• Analysis Of Some Fluid-Structure Interaction Algorithms

(contributed by Riccardo Rossi)

1. IMPROVEMENTS IN CFD SOLVER TECHNOLOGY, SOME
 THEORETICAL ASPECS

 1.0. OVERVIEW

1.1. INTRODUCTION

When element-based data structures are used in finite elements calculations, certain
redundancies of information occurs. For linear solvers based on triangular and tetrahedral
elements, an alternatively and more efficient data structure using only edge information can
be considered. Edge-based data structures for finite elements calculations have been
introduced by Morgan et al. drawing from earlier finite volume schemes [2]. This mesh
representation allows both to take advantage of unstructured meshes and reduce CPU time
and memory required by the calculations [1,3,4] which is of vital importance when
considering three-dimensional flow calculations. Additionally, when compressible or
incompressible flow solvers are dealt with, edge-based representations make a straightforward
implementation of upwind schemes in the finite element method context possible. Several
comparisons between element and edge-based data structures performance can be found in the
literature, see for instance [1]. An excellent review of the most common upwind schemes and
its application on unstructured grids is set forth in [4]. .

1.2. EULER EQUATIONS

The Euler equations model a non-viscous, compressible and non-conductive fluid flow. This
set of conservation laws is represented by a coupled non-linear system of first order partial
differential equations, which can be written in different ways. The conservative form of the
equations must be used when it is necessary to take into account discontinuities in the fluid

CIMNE’s traditional focus on the field has been on low-speed applications. FE
software for near-incompressible CFD has been actively developed in the past. A
notorious example is the TDYN software package for ship hydrodynamics, which
after being initially developed at CIMNE is now marketed by “COMPASS
Ingeniería y Sistemas” (A CIMNE spin-off company). However, high-speed solver
capabilities were lagging behind so it was decided to develop a new solver for
highly compressible flows. In order to harmonize the new development with
existing in-house software, a decision was made to use a finite element based
code instead of the more traditional finite volume approach. To achieve optimal
performance, an edge based data structure has been chosen. While the actual
code is a 3D Navier-Stokes solver, in the following pages the general algorithm
is described using the bidimensional Euler equations for the sake of simplicity.

field, such as contact discontinuities or shocks. The conservative form of the Euler equations
can be expressed in a compact manner (omitting source terms) as follows

∂U ∂ Fκ
�+ = 0 (1)

∂ t ∂ xκ

where U is the vector of the conservative variables and Fκ is the inviscid flux vector in the
direction xκ. For two-dimensional flow these vectors are defined by

 ρ   ρ uκ 
   u u δρ u1  κ ρ 1 κ + 1κ p U = ; F = (2)
 u2  u u δρ  ρ 2 κ + 2κ p 
   
 ρ et   (ρ et + p u) κ  

where ρ is the fluid density, uκ is the component of the velocity vector in the direction xκ, p is
the pressure and δij denotes the Kronecker delta. In addition, the total specific energy et is
composed of the internal and kinetic energy of the fluid particle. Finally, the equation system
(1) is closed by the following state relation

p = ρ γ −1 et
1 u u  (3)()  − 2 κ κ 

in which γ = Cp/Cv is the constant pressure and volume specific heat ratio, adopted as γ = 1.4
in the present work.
The solution of the system of equations (1) over a closed domain Ω with boundary Γ = Γ0 ∪
Γn for a given time t requires additionally initial and boundary conditions given by

(,0) =U0 x t =0 , U x () x∈Ω
U x t (,) =Un () t ≥ 0 , x∈Γ0x (4)

n F n ˆ = F n t ≥ 0 , x∈ΓnF = ⋅

where n̂ is the unit outward normal vector to boundary Γn.

1.3. FINITE ELEMENT DISCRETIZATION

Consider a discretization of the whole domain Ω into subdomains or elements Ωe such as
eΩ = ∑ Ω . Then the weak formulation for the system of equations (1) can be expressed as

nelem

∂U ∂W κ n �dΩ − () Ω + W F dΓ = 0 (5)W F U d ∫ ∑k ∫ ∫Ω ∂t Ω ∂xκ Γ

being W a set of arbitrary weighting functions. Note that the advective fluxes terms are
integrated by parts in equation (5). To continue, an approximation to the conservative
variables vector U is defined in each subdomain Ωe in the following manner

nnode

U
�
= ∑ U N j j (6)

j=1

where nnode is the total number of nodes in the element, Nj is the standard finite elements �
shape function associated with node j and Uj is the value of U at the same node. Due to the
fact that the flux vectors Fκ are generally a non-linear function of U, the formers are also
approximated by the element shape functions as follows (group representation)

nnode nnode
κ κ κF U() = ∑ F N j = (j)N (7)
�

j ∑ F U
�

j
j=1 j=1

Assuming the Galerkin finite element formulation, Wj = Nj and the approximate weak
formulation can be written for a generic node i as

�
∂U ∂Ni κ � n∑∫Ωe

Ni ∂t
dΩ =∑∑κ ∫Ωe ∂x

F () ∑
∈
∫Γ i dΓ (8)U d Ω − N F

e i∈ e∈i κ b i

where the summation extends over all the elements e and boundaries b which contains the
generic node i.
Taking into consideration triangular elements with standard C0 shape functions and the
approximate forms for the conservative variables vector and the flux vectors given in eqs. (6)
and (7) respectively, the integral terms in eq. (8) can be evaluated as

�
∂U dU j  dU ∑∫Ωe

Ni dΩ =∑
∫ e

N N d i j Ω = M
dt  (9)

e i ∂t e i∈
Ω  dt ∈  i

∂Ni κ � Ω ∂Ni  κ κ κ
e

() ∑∑ ∑∑ F U d Ω =
e

 (Fi + Fj + Fk) (10)
κ κ

e i∈
∫Ω ∂xκ e i∈  3 ∂xκ 

n Γb n n N F dΓ = (2F + F) (11)∑
∈
∫Γ i ∑

∈
 i j 

b i b i  6 

where M is the consistent mass matrix and Ωe is the area of element e with nodes i, j and k. In
the last expression Γb is the length of the boundary edge b defined by nodes i and j.

1.3.1 Edge-Based formulation

Using and edge-based data structure, nodal values of the diverse quantities are obtained
adding edge contributions. The typical edge-data consists of the nodal coordinates and a list
of all the edges in the mesh and its connectivities, i.e. the nodes to define each edge. A list of
boundary edges where physical boundary conditions are imposed is also necessary. Several
routines to obtain an edge-data structure for finite elements calculations can be found in [1].
Once the edge-data is obtained for a particular problem, the right hand side of eq. (8) can be
evaluated for triangular linear elements in the following manner [4]

nei 2 M dU  = ∑∑ Cij
κ (Fi

κ + Fj
κ) + ∑Df (4Fi

n + 2Fj
n + Fi

n − Fj
n) (12)  κ f f dt i ed =1  f =1  i

where Cij
κ is the weight that must be applied to the sum of the fluxes in the xκ direction on the

edge ed, with nodes i and j, to obtain the contribution made for the edge to node i. The first
summation term extends over all the edges in the mesh that contain node i, i.e. nei, and for
each spatial direction xκ. The term between brackets is only non-zero when the node i lies on
the boundary and f denotes each edge that contains nodes i-j1 and i-j2, i.e. the boundary edges
associated with node i. The bar over normal fluxes Fi

n and Fj
n denotes prescript fluxes that
f

become equal to the calculated normal fluxes in the bracket term if no boundary conditions
are imposed on the edge. The weight coefficients are calculated as follows and the complete
process to obtain these weights is presented in [4]

e
κ Ω ∂Ni  Γ f κ Cij =∑   −  nij  (13)

e ij 3  ∂xκ e 12 ij∈

Γ fDf = − (14)
12

Again, the second term in the right hand side of eq. (13) is only non-zero when the node i lies
on a boundary. To obtain the Cij

κ weights, the summation extends over all the elements that

contains the edge ij , Γf is the length of the boundary edge ij and nij
κ is the vector normal κ

component at edge ij.

Similarly, the weights Cκ

ji to be applied to the sum of the fluxes in the xκ direction on the
edge ed, with nodes i and j, to obtain the contribution made for the edge to node j can be
calculated as

Cκ
ji = −Cij

κ (15)

and can be demonstrated by geometrical arguments [4].

As can be noticed, the weight coefficients (13) and (14) must be determined in a post-process
stage. Then eq. (12) is evaluated through a loop over each edge in the mesh and adding the
edge contributions to the appropriate nodes. A second loop over the boundary edges is also
necessary and the boundary contributions are added to the appropriate boundary nodes, too.
Finally, in order to write eq. (12) in a more compact format, fluxes in the weight coefficients
direction are defined by

κ κf = S Fi ij i
κ κ (16)f = S Fj ij j

where

Cκ
κ ij κ κS = and C = C C (17)ij ij ij ijCij

and taken into account the above expressions, eq. (12) becomes
nei 2  dU  n n n n

M  = ∑ C (fi + f j) + ∑Df (4Fi + 2Fj + Fi − Fj f) (18)ij
 dt i ed =1 ��	�  f =1
f

 iFij

Due to certain properties of the edge weights it is observed that the discretization scheme is
conservative in the sense that the sum of the contributions made for any interior edge is zero.
It is demonstrable too that the discretization scheme is a central difference type discretization
for the spatial derivatives and some dissipation terms must be introduced in order to provide
the necessary stabilization for the scheme. This fact brings about the replacement of the flux
function Fij defined in (18) by new consistent numerical fluxes. Adopting different forms for
the latter, it is possible to obtain a wide variety of algorithms in which the numerical
dissipation is introduced in a explicit manner or the flux function is modified according to the
physics of the problem. An excellent recompilation and a comparative study of the most
common algorithms is presented in [4]. Here, following Löhner's work [1], a first order
numerical flux according to the Roe’s approximate Riemman solver is employed in
conjunction with a limiting stage with the aim of reducing the amount of dissipation and
increasing the order of the scheme in regions where the flow is smooth.

1.4. ROE’S APPROXIMATE RIEMMAN SOLVER

The Roe’s solver for the Euler equations based on flux difference splitting is one of the most
popular and less dissipative approximate Riemman solvers and was developed by Roe in
1981. The idea behind this method is to solve the Riemman problem (Godunov) at the
interface of two piecewise constant states UL and UR in a approximate manner reducing the
computational cost and obtaining equally good results. The first order flux for this solver is
defined for each edge by

Fij = fi + f j − (,i j)A U U (U j −Ui) (19)

where Ui and Uj is the vector of conservative variables at the edge nodes i and j and |A(Ui,Uj)|
is the absolute value of the Roe matrix calculated in the direction of the edge eij. The last is
obtained projecting the conservative Jacobian matrices Aκ in the direction of the edge eij and
replacing the variables in the resulting Jacobian matrix by the density-average Roe variables.
Then the absolute value of the Roe matrix is achieved decomposing the last matrix by means
of its eigenvalues and eigenvectors matrices. General expressions for the Jacobian,
eigenvalues and eigenvectors matrices can be found in [5].
The density-average Roe variables are obtained by

ρ� = ρ ρij i j

ρ uκ + ρ uκ
i i j j (20)u�κ =ij ρ + ρi j

ρ H + ρ Hi i j j�H =ij ρ + ρi j

κwhere u is the velocity component in direction κ and H is the total enthalpy H=et+p/ρ. The
density-average values can be obtained with a higher computational efficiency through the
definition of the following auxiliary parameter [5]

ρR = j (21)ρi

which allows us to express

ρ� = R ρij i

Ruκ + uκ
κ j iu�ij = (22)

R +1
R H + Hj i�H =ij R +1

Using these interface or intermediate variables, the average speed of the sound is obtained by

 κ κ
2 � �c�ij = (γ −1) H� ij − 1 (u u)  (23)ij ij 2 

In order to avoid the eigenvalue and eigenvector decomposition of the Roe matrix A(Ui,Uj)
for the calculation of its absolute value in eq. (19), a calculation that is more computationally
efficient is presented in the next section.

1.4.1 A practical calculation of the dissipative term

Following the pioneer ideas of Turkel [6] and a simplification of his model proposed in [7],
the dissipative term, |A(Ui,Uj)|⋅(Uj -Ui), in eq. (19) can be evaluated in such a manner that
matrix-vector and vector-vector multiplication are avoided increasing the computational
efficiency. Then, the general three-dimensional expressions for the dissipation term of eq.
(19) are presented and the complete derivation of these terms can be found in [7].

Due to the hyperbolic nature of the Euler equations and its derived properties, any linear
combination of the Jacobian matrices, in our case the Roe matrix evaluated in the direction of
the edge eij, is diagonalizable with real eigenvalues. Thus, there exists a diagonal matrix Λij
containing the eigenvalues of A(Ui,Uj) and an associated matrix of eigenvectors Rij such that
the Roe matrix for the edge eij admits the following factorization

(j) = Rij Λij R (24)A U U −1
i , ij

and
= R−1A U U (i , j) Λ Rij (25)ij ij

where Λ = diag { , λ λ λ2, , , λ3 } andij λ1 1 1

uλ1 = ˆij

λ2 = ûij + c�ij (26)
λ = û − c�3 ij ij

It must be remembered here that all the variables correspond with the average-density Roe
variables calculated for the edge eij. In eqs. (26) ûij is the interface velocity projected on the

k (1) (2)�κ ⋅edge, i.e. u n , and n=(n ,n ,n(3)) is a unitary vector in the direction of the edge eij.ij

Introducing the factorization (25), the dissipative term of the Roe first order numerical flux
can be written as

−1D = (,i j)A U U (U j −Ui) = (Rij Λ Rij)∆U ji (27)ij

where ∆Uji=(Uj-Ui) is a five-component vector which entries are the differences between the
conservative variables vector components at edge nodes j and i. After some algebraic
manipulations [7] the dissipative term in the first order Roe flux can be evaluated as follows

 1   1 
 (1)   (1) 
u�ij (1)  u�ij (1) − n
 c�ij

+ n
  c�ij 

 (2)   (2) 
u�ij (2)  u�ij (2) λ − λ λ − λ+ n − n

D = ∆U ji +
2

2
1 Ψ1 


c�ij  + 3 1 Ψ  c�ij  (28)λ1

(3)  2 2
 (3)

u�ij (3)  u�ij (3) − n c�ij
+ n   c�ij 

   � � Hij   Hij + û − ûij ij c�   c�  ij   ij 

where
 γ −1  (1)  γ −1 (1) (1)  (2)  γ −1 (2) (2)  (3) Ψ = q û ∆U + − u + n  U + − � + n  −   � ∆  u ∆U1 ij ji ij ji ij ji     c� c� c� ij   ij   ij  (29)
 γ −1 (3) (3)  (4) γ −1 (5) + − u� + n ∆U + ∆Uij ji ji  c� c� ij  ij

 γ −1  (1)  γ −1 (1) (1)  (2)  γ −1 (2) (2)  (3)
2 + ˆ ∆ ji + − u − n ∆U ji + − � − n ∆U jiΨ =  q uij U  �ij  uij      c� c� c� ij   ij   ij  (30)

 γ −1 (3) (3)  (4) γ −1 (5)  u�ij − n ∆U ji ++ −  ∆U ji  c� c� ij  ij

uκ ⋅ κwith q = 1 (� �uij) . The two-dimensional form of eq. (28) can be obtained by setting ij2
(3) (3) u�ij = n = 0 and removing the fourth component in both, the differences vector ∆Uji and the

column vectors introduced in (28).
As can be noted in the definition of the eigenvalues of the Roe matrix (26), λ1 approaches
zero near stagnation points while λ2 and λ3 approaches to zero near sonic lines. In view of the
structure of the dissipation term, vanishing eigenvalues leads to the dissipation term at these
points approaches to zero with the consequence of numerical instabilities in general
calculations. A possibility to avoid this behaviour is to limit the eigenvalues defined in (26) in
the following manner

= max (,α ρ A1 ())
= max (

λ1 λ1

,α ρ ()A) (31)λ2 λ2 2

= max (,α ρ ()A)λ3 λ3 2

where α1 and α2 are parameters that limit the eigenvalues associated with the linear and non-
linear characteristic fields to a value that is a fraction of the spectral radius of the Roe matrix
ρ(A). These parameters must be numerically determined taking into consideration both
sharpness and oscillation-free capture of discontinuities as well as convergence rate of a given
numerical calculations. A value of α1 =α2 = 0.2 is recommended in [6,8]. It should be
noticed that when these parameters are set to zero no limiting is applied to the eigenvalues
and when they are set to the unity the dissipation term mimics an scalar dissipation model.
Vanishing eigenvalues can also be related to entropy violation problems and several ways to
treat it can be found in the literature, see for instance [5].

1.4.2 High order scheme

Common procedures to obtain oscillation-free high-order schemes are based on slope-limited
or geometric methods which were originated in Van Leer’s observations (1979). These
methods are based on the modification of the piecewise constant states used in the Godunov
projection stage. In order to achieve high-order spatial approximations, a piecewise linear
reconstruction of the interface variables is adopted using neighbouring values. Then, a slope
limiting stage must be applied to maintain the monotonicity of the numerical solution.
Adopting the MUSCL formulation for the reconstruction stage, the interface values in the
middle of the edge can be obtained with up to third-order accuracy in space in the following
manner

+ 1 −U + (1 k) (1 k)(U −U)U =  − ∆ + +i i i j i 4 (32)
− 1 +U j =U j − (1 k) j (1 k)(U j −Ui) − ∆ + + 4

where i
− , +

j∆ ∆ are difference operators given by

∆ =U −U = l ⋅∇ − (U −U)− 2 Ui i i−1 ji i j i
+ (33)

∆ =U −U = 2l ⋅∇U − (U −U)j j+1 j ji j j i

and lji is a vector from edge node i to node j, k is a parameter that allows to obtain different
spatial order approximations and the gradients of the variables at edge nodes, ∇Ui and ∇Uj,
are obtained via a recovery of the first derivatives at nodes procedure. It is possible to note
that the approximations of the difference operators in (33) belong to an approximation to the
gradient of the variables at nodes i and j using a central difference formulae. As was
mentioned earlier, the parameter k in eqs. (32) allows to obtain different order or
approximation, for example

k = -1 → second-order fully upwind scheme
k = 0 → From’s scheme (see [9])
k = 1/3 → third-order upwind scheme
k = 1 → three-point central difference scheme

A graphical representation of the high-order approximation is presented in Figure 1.

i

jlji

i-1

j+1

∇Ui

∇Uj

Figure 1: High-order approximation

The proposed extrapolation for the interface values (32) does not guarantee monotonicity
properties, then in order to obtain an oscillation-free solution, non-linear limiters are
introduced in the extrapolation stage through

s+ i −U =U + (1− ks)∆ + (1+ k s)(U −U)i i  i i i j i 4 (34)s− j +U =U − (1− ks)∆ + (1+ k s)(U −U)j j  j j j j i 4

where si and sj are the flux limiters. Two-parameter non-linear limiters are used in this work
based on the Van Albada model [1]. These can be defined by

 −  2∆i (U j −Ui) + ε si = max  0 , 2 
− 2 ()∆ + (U −U) + ε  i j i  (35)

 +  2∆ j (U j −Ui) + ε s j = max  0 , 2 
+ 2 ()∆ + (U −U) + ε  j j i 

where ε is a small constant included to avoid possible divisions by zero. It is possible to note
that when the limiters are equal to the unity a high-order approximation is done while when
the limiters are equal to zero the first-order approximation is recovered. At this limiting stage,
other models for the limiters calculation can be employed. In order to calculate the limiters,
different sets of variables can be used, i.e. primitive, conservative or characteristic variables,
but conservative variables are used in the present work.
Once the high-order approximations for interface values (34) are calculated, these values are
replaced in the first-order numerical flux defined in (19) leading to

+ − − +F = f (U) + f (U) − (i
+ ,U −jA U) (U j −Ui) (36)ij i j

and all the expressions presented in paragraph 4 and 4.1 remain valid replacing Ui for Ui
+ and

Uj for U −j . These changes in the fluxes along the weight coefficients direction fi and fj have
only a minor effect in the solution and could be omitted [1].

1.5. TIME DISCRETIZATION

The temporal discretization of eq. (18) is done in a fully explicit manner by means of a multi­
stage method that is a subset of the Runge-Kutta family of schemes. These methods allow to
increase the stability range and obtain high-accuracy solutions for transient problems.
Assuming the vector of conservative variables U is known at each node at time t=tn, the right
hand side of eq. (18), called the residual of the equation, at each node RHSi is evaluated and it
is possible to advance the solution in time from tn to tn+1=tn+∆t by means of an s-stage scheme
given by

(0) nUi =Ui
#

()s n −1 s−1Ui =Ui α s t M L i
RHS i (37)+ ∆

#
n+1 () sUi =Ui

where M −1  is the lumped mass matrix at node i and αs are coefficients that depend on the L i

number of stages s employed. For three and four stages these parameters are set according to

3 stages → α1 = 3/5 , α2 = 3/5 and α3 = 1.0
4 stages → α1 = 1/4 , α2 = 1/3 , α3 = 1/2 and α4 = 1.0

With the aim of reducing the computational cost in the residual evaluation, the dissipative
term (28) is calculated at time t=tn and remains frozen for the next s stages of the scheme.
Other possibilities proposed by Jameson, Schmidt and Turkel can be found in the literature.

1.5.1 Time step calculation

In the last paragraph the value of the time increment ∆t must be bounded by stability criteria.
In the present work, the time increment is determined at each node i as follows

∆t = min {C ∆tij } (38)i

where C is the Courant number and ∆tij is calculated, for each edge in the mesh that contains
node i, according to

t∆ =
l ji (39)ij V l + ci i

and
Vi

l =Vi ⋅ l ji (40)

In the equations above, lji is a vector from node i to node j and Vi and ci are the velocity vector
and the speed of sound at node i respectively. If a global time step is chosen to advance in
time, ∆t in eqs. (37) corresponds to the minimum ∆ti calculated over the mesh.

REFERENCES

[1] Löhner R., ‘Applied CFD Techniques’, John Wiley & Sons Ltd., 2001
[2] Morgan K., Peraire J., Peiró J., ‘Unstructured Grid Methods for Compressible Flows’, In

Report 787 – Special Course on Unstructured Grid Methods for Advection Dominated
Flows. AGARD, 1992.

[3] Morgan K., Peraire J., ‘Unstructured Grid Finite-Element Methods for Fluid Mechanics’,
Rep. Prog. Phys. 61: 569-638 (1998)

[4] Lyra P. R. M., Morgan K., ‘A Review and Comparative Study of Upwind Biased Schemes
for Compressible Flow Computation. Part III: Multidimensional Extension on
Unstructured Grids’, Arch. Comput. Meth. Engrg Vol 9: 207:256 (2002)

[5] Hirsch C., ‘Numerical Computation of Internal and External Flows’, Volume 2, John
Wiley & Sons. (1990)

[6] Turkel E., ‘Improving the Accuracy of Central Difference Schemes’, ICASE Report 88­
53, September 1988

[7] Hu G., ‘The Development and Applications of a Numerical Method for Compressible
Vorticity Confinement in Vortex Dominant Flows’, PhD Thesis, Virginia Polytechnic,
2001

[8] Swanson R.C., Turkel E., ‘Multistage Schemes with Multigrid for Euler and Navier-
Stokes Equations. Components and Analysis’, NASA Technical Paper 3631, August 1997

[9] Hirsch C., ‘Numerical Computation of Internal and External Flows’, Volume 1, John
Wiley & Sons. (1990)

17

2. A SHORT DESCRIPTION OF A 3D NAVIER-STOKES COMPRESSIBLE
FLOW SOLVER

2.0. OVERVIEW
To solve real problems of interest for the aerospace industry, there is a need to deal with
extremely large models (having tens of millions of elements). Therefore computational
efficiency is of prime importance. To achieve this goal the solver uses the edge-based
data structure described in chapter 1. It has been optimized for use in shared memory
parallel architectures using OPEN-MP directives and features extensive optimizations to
minimize memory access overheads (fully vectorized code with access pattern adapted
for minimum cache misses) . In this chapter the algorithm used for the general 3D case
is described.

2.1 NAVIER-STOKES EQUATIONS
The 3D Navier-Stokes equation set in conservative form can be written as:

3...10 ==
∂
∂

+
∂
∂

+
∂
∂ kfor

xxt k

k

k

k GFΦ
 (1)

with the vector of conservative variables, convective and diffusive fluxes being:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+
+

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

kiki

i

i

i

i

i

ii

ii

ii

i

i

uqhu
pUu
pUu
pUu

U

e
U
U
U

τ
τ
τ
τ

δ
δ
δ

ρ

2

2

1

33

22

11

3

2

1

0

GFΦ
 (2)

where the different terms can be expressed (in the case an ideal gas with Newtonian
behaviour) as:

ijkkvijij
i

ivii e
x
TkqpehuTceuU δεμμτρρ && +=
∂
∂

−=+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+== 2,,,

2
,

2

 (3)

In the case of high-Reynolds number flows the effect of turbulence is accounted by
solving the Reynolds average of the equations. The Reynolds stresses thus appearing are
modelled using a variety of existing turbulence models. These can be also expressed in
a manner similar to (1) (usually with the addition of a source term to the left-hand side)
therefore the basic scheme remains the same.

2.2 FEM DISCRETIZATION
The weak form of the equation set (1) is:

Wd
xxt

xW
k

k

k

k ∀=Ω⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

∫
Ω

0)(GFΦr
 (4)

W being an arbitrary test function.
Using the standard FE shape interpolation functions and the Galerkin method

)()(

~)(~)()(~

xNxW

NxxNx

i

j
j

j
j
rr

rrr

=

== ΦΦΦ
 (5)

we find the following semi-discrete form:

node
k

k

k

kj
ji niford

xx
NN ...10

~~~ ==Ω⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+∫
Ω

GFΦ&  (6) 

At this point, we will assume that the flux terms can be interpolated in the same way as 
the conservative variables (this is equivalent to using Lobato quadrature for the flux 
terms and does not affect the end result in any significant way) 

j
kj

j
kjk NxN FFF ~)(~~ =≅
r

 (7) 

( ) node
j
k

j
k

k

jj
ji niford

x
N

NN ...10~~~ ==Ω⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂

∂
+∫

Ω

GFΦ&  (8) 

The system can be written in matrix notation as: 

( )j
k

j
k

k

j
i

ji

j

d
x
N

N

dNN

GFr

M

rMΦ 1

~~

~

+Ω
∂

∂
−=

Ω=

=

∫

∫

Ω

Ω

−&

 (9) 

The expressions can be arranged in a way similar to what was described in the previous 
chapter. However, remark that in this case no assumption is made with respect to the 
shape of the elements. Therefore, the discussion is quite general (valid for 2D and 3D as 
well as for elements with different number of nodes and faces) 

k

j
kj

i
kkii

j
k

ij
kji x

N
NwheredNNdNN

∂

∂
=Ω−Ω−= ∫∑∫

Ω≠ Ω
,,,

~~ FFri
 (10) 

To keep the notation compact, from now on sum will be assumed for the index j, with 
the sum extended to all values of j except i; there is no sum on index i. To the same 
effect, in (10) only the convective terms have been included, the treatment of the 
diffusive fluxes is identical. 
Integration by parts of (10) yields: 

j
k

i
k

ij
k

i
kkii

j
kkji

i
kjki

ij
kjki

wherednNN

dnNNdNNdNN

FFFF

FFFri

~~~~
2
1

~~~
,,

+=Γ−

−Γ−Ω−Ω=

∫

∫∫∫

Γ

ΓΩΩ

 (11) 

The expression must now be symmetrised to achieve the benefits of the edge storage 

( )

i
kkii

j
kkji

i
kjki

ij
kkji

ij
kkjijki

dnNNdnNNdNN

dnNNdNNNN

FFF

FFri

~
2
1~~

~~
2
1

,

,,

Γ−Γ−Ω−

−Γ+Ω−=

∫∫∫

∫∫

ΓΓΩ

ΓΩ
 (12) 

Using the shape function property ∑
≠

−=
ij

ji NN 1  



( )

Γ−=

Γ−=

Ω−=

++=

∫

∫

∫

Γ

Γ

Ω

dnNNc

dnNNb

dNNNNd

cbd

kii
i
k

kji
ij
k

kjijki
ij
k

i
k

i
k

ij
k

ij
k

ij
k

ij
k

2
1

2
1

~~~

,,

FFFri

 (13)

The d coefficients are antisymmetric, meaning that only half of them need be stored.
Moreover, the b and c terms are zero for any interior edge so the storage requirements
are greatly reduced.
The scheme is conservative, as for any couple of internal nodes the total contribution to
the residual is zero.

0FFFFrr ji
ee =−=+=+ ij

k
ij
k

ij
k

ij
k

ji
k

ji
k

ij
k

ij
k dddd ~~~~

 (14)
When solving the complete set (1), diffusive fluxes must be added to eq. (13) yielding:

)~~()~~()~~(i
k

i
k

i
k

ij
k

ij
k

ij
k

ij
k

ij
k

ij
k cbd GFGFGFri +++++= (15)

To evaluate (15) the nodal values of the solution gradient are required in order to
calculate the G terms. These are obtained through a smoothing procedure. Assuming the
derivatives can be interpolated using the shape functions and using a weighted average
we have:

j
kji

j
k

j
kji

j
kji

dNN

dNNdNN

ΦMΦ

ΦΦ

1 Ω=∇

Ω=∇Ω

∫

∫∫

Ω

−

ΩΩ

,

,

 (16)

Solution of the system of equations (9) and (16) can be achieved in an efficient way by
means of an iterative procedure involving the lumped mass matrix

∑∫ Ω=
Ωj

jiij dNNδdM (17)

() 11

0

~~~

~

−− −=−

=

mmm ΦMrΦΦM

rΦM
d

d

&&&

&

 (18) 

 
2.3 CONVECTIVE STABILIZATION 
As the basic Galerkin discretization is inherently unstable in presence of large 
convective fluxes, the scheme thus devised is prone to spurious oscillations which 
render it completely unusable. To overcome this limitation the interface fluxes are 
modified according to Roe’s upwind scheme: 

ijijijij
ij

ij
ij

ij
k

ijj
k

i
k

ij
k

ij
k ij

ΦΦxxl
l
lu

uAFFFF
u

~~
2
1~~~

−=Δ−==

Δ−+=→

rrr
r

r
r

r
r

 (19) 



iju
A r  being the positive flux Jacobian evaluated along the direction of the edge. As 

explained in the previous chapter, the scheme (19) is only first order accurate. To 
recover a higher order of accuracy the nodal states are replaced with extrapolated values 
at the interface as explained in part 1.4.2 

( ) ij
k

ijj
k

i
k

ij
k ij uΦΦAFFF

u

r
r

+− −−+= ~~
2
1~~   (20) 

These extrapolated values are calculated using a limited MUSCL scheme in the same 
way described in 1.4.2 using the recovered gradients (16) to carry out the extrapolation. 
 
2.4 TIME INTEGRATION 
A multi-stage Runge-Kutta scheme is used as described in 1.5. The local time step is 
calculated accounting for convective and diffusive transport, thus: 

ρ
γ

υ
pah

au
hCFLt ii

i =
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
=Δ 2

2

,min r  (21) 

In order to accelerate convergence an implicit residual smoothing step is carried out 
before solving  

( ) ij
j

ijii toconnectedallfor ∑ −+= rrrr ε  (22) 

Eq. (22) is solved using a Jacobi iterative process 

∑
∑

+

+
=

−

j

j

j
n

i

i
n 11

1

ε

ε rr
r  (23) 

 
2.5 A METHOD FOR COUPLED EULER-BOUNDARY LAYER SOLUTION 
In many cases of interest the viscous effects are confined into a small volume next to the 
wall (the so called boundary layer). A common approach in these cases is to solve the 
thin layer equations to determine the effect of diffusion while the Euler equations 
account for the outer inviscid flow. The coupling between the two fields is achieved by 
means of the displacement thickness. This algorithm is less costly than the solution of 
the complete RANS equations over the whole domain while providing results of 
acceptable quality as long as the boundary layer remains attached. 
The traditional way of solving the boundary layer equations is to cut 2D slices of the 
solid body and solve the 2D version of the boundary layer equations over each slice 
using integral formulations. This approach, while quite simple, cannot account for 3D 
effects inside of the boundary layer. To overcome this limitation a 3D variant has been 
devised which combines low computational cost with increased accuracy with respect to 
the schemes in use. 
 
The 3D boundary layer equations (the energy term has been dropped to make the 
exposition more compact) can be written in a curvilinear reference system as 

0=
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

nt
nFFFΦ

ηξ
ηξ

   (24) 

where n represents the direction perpendicular to the wall. The flux vectors (in this case 
F includes both the convective and diffusive parts) are simplified due to the fact that 
normal gradients are larger than tangential ones 



⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

nn

nn

n

n

Uu
Uu

U

pUu
Uu

U

Uu
pUu

U

U
U

ηη

ξξ

ηη

ξη

η

ξ

ηξ

ξξ

ξ

ξ

η

ξ

τ
τ

ρ
FFFΦ  (25) 

Solving these equations requires the definition of a local reference frame at each point 
of the solid surface. Whereas this may be achieved without much trouble when using 
structured a structured mesh and dealing with simple geometries, in the case of an 
unstructured grid over an arbitrary shape the problem becomes quite difficult. 
To overcome this problem the equations are written instead in the global reference 
frame, much in the same way as (1). The equations are solved using a cell centered 
finite volume discretazation on a hybrid (structured in normal direction). To achieve this 
goal a “virtual” hybrid mesh of the boundary layer is created using the surface 
discretization of the solid. 

h

nij

nj
ni lij

Ci Cj

h

nij

nj
ni lij

Ci Cj

nij

nj
ni lij

Ci Cj

 
Fig. 1 - Virtual Cells Over Solid surface 

 
As these cells only exist internally to the solver, no real mesh has to be created for the 
boundary layer; the boundary mesh from the fluid volume is all that is needed. 
The average normal between two surface facets is defined as  

ji

ji
ij nn

nn
n

+

+
=  (26) 

then, a transfer coefficient from cell i to cell j can be defined as 

ijijij lnC ⊗= h  (27) 
The flow of a conservative variable from cell i to cell j can be written as 

ijij CFnF ⋅=Γ⋅∫
Γ

~d
ij

 (28) 

where the interface flow being calculated trough interpolation between states i and j. 
During this stage the thin layer assumption is enforced by retaining only the diffusive 
fluxes in normal direction (which, due to the hybrid nature of the grid can be easily 
calculated using standard finite differences). 
The 3D system of momentum equations is solved to calculate a trial momentum value at 
the end of the step: 



( tt
dt

dV i
i

i Δ+⇒⋅=∑ *~ UCFU
ijij )  (29) 

Then, the normal component is subtracted from (29) 
( )iiiii nUnUU ⋅−= ****  (30) 

The true momentum is obtained by adding the correct value of the normal component: 
u
iiii UnUU += **  (31) 

The correct value of the momentum is determined by forcing the conservation of mass 
on each cell which yields the equation for  n

iU

0=Γ⋅∫
Γ

d
cell

nU  (32) 

Once the displacement thickness has been determined from the solution of the boundary 
layer, coupling with the outer inviscid flow is achieved by forcing a transpiration 
velocity on the wall surface 

s
vv Eulern ∂

∂
=

*δ
 (33) 

s being the streamline direction and vEuler representing the slip velocity from the inviscid 
solution. 
 
2.6 AN EXAMPLE APPLICATION 
The code thus developed has been successfully applied to industrial scale aerodynamic 
problems. One such case is the analysis of the flow field over a transonic jet test model 
in order to determine the interference and aeroelastic effects due to the support 
mechanism. While the problems is highly complex due to its size, the analysis was 
carried out efficiently on desktop computers due to the highly optimized nature of the 
code. 
 
 

 
Fig. 2 - Surface Mesh of Test Model (3D mesh includes 11M cells) 

 



 
 
 

 
Fig. 3 - Detail of Mesh Around Support Attachment 

 
 
 
 

 
Fig. 4 - Pressure Contours In Transonic Flight 

 
 
 



 
Fig. 5 - Wing Deformation Due To Aerodynamic Loads 

 
 
 
 

 
Fig. 6 - Skin Friction Contours Calculated With The 3D Boundary Layer Code 

 
 



                        BASIC STRUCTURE OF KRATOS
          An Object-Oriented Environment for the Development
                         of Multi-Physics Analysis Software 

   

Overview

Complexity of multi-physics problems from one side, and the wide variety of problem-types from the 
other, lead the finite element developers to design their program structures as flexible and extendable 
as possible in order to avoid an unnecessary growing of the implementation effort. On the other hand, 
for development of interesting applications in this field a group of professionals with a variety of 
knowledge is needed. Providing a framework and a proper structure where this group of developers 
can work with each other are relevant aspects to design a new multi-physics code. 

Kratos has been designed to be a common environment for several kinds of activities in the field of 
multi-physics analysis area. Developers of finite element formulations can embed their problem type 
in Kratos while interacting with others in order to solve a multi-physics problem. Application 
developers who try to develop a new application in specific or general multi-physics area also can 
enjoy from this common environment. Even more, within this framework several contributions can 
interact together without conflict. Finally, end users can take advantages of multi-physics applications 
generated with Kratos as well as of Kratos itself. 

In this report, we will discuss the object-oriented structure of Kratos. The methodology to achieve the 
structure, key aspects and advantages of each part are also briefly presented. We also comment the 
multi layer nature of Kratos and its benefits to achieve the goals described above. 

mailto:pooyan@cimne.upc.es


 
 

1 Introduction 

One of the relevant topics in numerical methods nowadays is the combination of different analysis 
(thermal, fluid dynamic, structural) with optimization methods, adaptive meshing and different 
formulations in one global software package with just one user interface and the possibility to extend 
the implemented solution to new types of problems, as an approach to a multi-physics simulation 
environment. 
The automotive, aerospace or building sectors have traditionally used simulation programs to improve 
their products or services, focusing the computation in the major physical phenomena: fluid dynamics, 
structural, metal forming, etc. Nevertheless, the new needs for safer, cheaper and more efficient goods 
together with the impressive growth of the computing facilities, demand an equivalent solution for 
multi-physics problems. Moreover, new applications in the food, chemical and electromagnetic 
industry, among others, are not useful at all without a multi-physics approach. 
Some illustrative cases can be found in the design of sails and sailboats where structural and fluid 
dynamic computations have to be taken in account, sterilization processes (thermal and fluid dynamic 
analysis), strong magnet design (structural, thermal and magnetic analysis) or photovoltaic cells 
(thermal and electrical computations), among many others. 

1.1 Demands 

The world of computing simulation has experienced great progresses in recent years, and requires 
more exigent multidisciplinary challenges to satisfy the new upcoming demands. 
Due to the industrial maturity of one-purpose codes for the different fields, the production sector has 
increased its expectations, because realizes the need for solving in a more realistic way the problems 
they deal with, in order to stay competitive. Strong simplifications are the reason for which difficult 
problems could be solved in the past. These simplifications lead to a model as different from the real 
one, as the severity of the assumptions made. If we add the every required accuracy in a concurrent 
world, then we need to relax the assumptions and become more general in the way of solving 
multidisciplinary problems. 
The situation is not really new. What is novel is the need for solving multidisciplinary problems 
combining most of the information coming from different fields, obtaining a more precise information 
and therefore better optimization methods. This means to solve more complex problems. There are 
many strategies to approach the solution of this kind of problems. A simple approach assumes that the 
work done is worth enough and that people should use already existing codes to try to solve Multi-
Physics problems. Unfortunately in most of the cases this strategy will simply not work when there is a 
strong coupling between the different domains that each code has to solve. 
One of the crucial problems in the numerical simulations corresponds to the mesh generation, that 
means the necessary expertise to get good solutions of the problem, by avoiding numerical errors due 
to the use of bad elements (incorrect size or aspect ratio). This ability can be different for each physical 
field, because a suitable mesh is directly related with the obtained error that depends on the simulation. 
As consequence, a multi-physics environment should contribute to improve this situation. In this 
sense, knowing the physics of the problem helps to define a good mesh that will represent better the 
results. 
It has been also planned to integrate another interesting topic in Multi-Physics such as Optimization. 
Transversal demanded features for the Kratos framework are extendibility, efficiency and continuity of 
work. The extendibility of the code guarantees the state of the art in the framework. It makes easy to 
add new capabilities to the programs. The efficiency makes the program attractive to either researchers 
and end-users: as above said, concurrence is a constant value nowadays. 

 
 

2



 
 

1.2 Background 

Other existing initiatives can be found to provide a general framework to implement numerical 
methods without paying attention on the programming. Two good examples are POOMA (Parallel 
Object-Oriented Methods and Applications, a framework for applications in computational science 
requiring high-performance parallel computers) [2] and Deal.II (a C++ program library targeted at 
adaptive finite elements and error estimation) [3]. A previous project in CIMNE called FemLab 
created a C++ library to use for any finite element formulation [4]. All of these initiatives are an 
excellent starting point which has been taken in account to build Kratos.  

DATA BASE

SOLVERS

PRE & POST
INTERFACE

PREPARED!
Our formulation

Our other formulation

Our friend's formulation

KRATOS

Your interesting formulation

Finite Element
Developer

Do you want to join?

APPLICATION DEVELOPER

D
o you need an Engine?

New Application Developed with
KRATOS as engine

DATA BASE

SOLVERS

PRE & POST
INTERFACE

PREPARED!
Our formulation

Our other formulation

One of our friend's formulation

New Interesting formulation

End User

 
Figure 1: Kratos framework and extensions 

2 Kratos Approach 

We have identified that in a general enough framework, it is possible to fit any FEM code with very 
little effort. It is important to provide this facility in order to extend the capabilities of each program. 
Thus, we aim to provide a very general framework in which a code can be written by combining basic 
modules putting the effort just in the differences respect already existing modules. This information is 
typically the formulation of the element. However, many solving procedures differ from the standard 
FEM strategy, and the framework has to be able to find room for them. Moreover, it is essential to 
provide easy tools to customize the environment to the needs of any algorithm. 
Kratos has as main objective to establish a framework, a methodology and a computing structure to 
allow the building of multi-physics finite element programs at different levels of implementation. 
Depending on the interest of the user, the package can be used as a high level library to explore new 
finite element formulations or to check features of new implementations for industrial applications. 
Kratos consists in a set of classes and methods for programmers, providing the ability to handle multi-
physics, adaptive meshing and optimization problems. It has been designed as a user-developer 
approach, considering different levels of contributions to the Kratos system, as well as plug-in 
extensions (Figure 1). 
Kratos will help to build a numerical application in C++ from the simplest formulation (heat 
conduction) to the most complex one (optimization techniques). 

 
 

3



 
 

Kratos includes a revision of the state of the art on C++ programming for numerical applications: 
existing codes and external free sources. 
The aim of the first development phase is to provide simulation programs' developers with the ability 
to implement a new application in a few days, using a few test programs and the Kratos library. 
A set of initial user-developers has been defined, in view of the simulations to be performed: 

• basic heat conduction problem; 
• transient thermal or low frequency electromagnetic problems; 
• thermo-structural-fluid dynamic coupled problems; 
• adaptive meshing optimization problems; 

Last but not least, reusability and program maintenance is one of the main priorities within the Kratos 
philosophy. For this purpose, special attention is put in the modular aspects of the Object Oriented 
Programming and in the creation of an intranet platform to share all the Kratos documentation 
including methodology, structure, project progress and source code. 

3 Kratos’ structure 

3.1 Object-oriented structure 

History of object-oriented design for finite element programs turns back to early 90's and even more 
[7, 9, 10, 11, 13]. Before that, many large finite element programs were developed in modular ways. 
Industry demands for solving more complex problems from one side, and the problem of maintaining 
and extending the previous programs from the other side, has lead developers to address their design 
strategy towards an object-oriented one [2, 3, 4, 5, 6]. 
The main attempt of an object-oriented structure is to split the whole problem into several objects and 
to define their interfaces. There are many possible ways to do this for each kind of problem we want to 
program and the functionality of the resultant structure depends largely on it. In the case of finite 
element problems there are also many approaches such as constructing objects based on partial 
differential equations solving methods [2] or in the finite element method itself [9]. 
In Kratos we have chosen the second approach and have constructed our objects based on a finite 
element general methodology. This approach was selected because our goal was to create a finite 
element environment for multidisciplinary problems. Also our users were, in general, more familiar 
with this methodology than with physical properties. In addition, this approach has given us the 
necessary generality mentioned above in the objectives of Kratos. Within this scope we take our main 
objects from various parts of the finite element method structure. Then, we define some abstract 
objects for implementation purposes. Finally we define their relation and try to balance their 
responsibility. 
The main design effort is focused on the “element” object. An element has all the data necessary for its  
self calculation, and this makes it independent. In fact, element and its accessories together make the 
Finite Element Developer Layer. This will help the developers of new formulations to write their own 
elements and add them to the structure without any change in other parts of the program. 
All the necessary data during the process is encapsulated and structured in one single object. We hide 
the memory management and the data management through the implementation of model, also using a 
façade pattern [8] for the model, preparing a simpler interface for the whole database. This should help 
other developers to write their problems without being concerned on this side of the implementation. 
From the point of view of multi-physics problems, this database provides an unified method through 
which any problem-type can have access to the data belonging to other problem-types. This feature is 
the most important part of a multi-physics environment. 

 
 

4



 
 

3.2 Multi-Layer Structure 

One of the strategies of Kratos is its multi-layer approach. Why did we try to layer the Kratos’ 
structure and which is the benefit of it? On one hand, dividing the structure into layers allows us to 
concentrate and specialize our design on objects and their interfaces, taking advantage of the 
knowledge of the developers that will program in that layer. On the other hand, each layer working 
group must use a restricted interface to the other layers and this will reduce the dependency inside the 
program. Of course by decreasing the dependency, understanding each part will be easier and, 
meanwhile, maintaining the code for a long time would be facilitated. 

Finite element
developer layer

main kratos
developer layer

Application
developer layer

Kernel
Modeler

MeshAdaptor

Model
Solver

IO

Modeler

Solver

MeshAdaptor

Model
Geometry

Properties

Elements
Nodes

Conditions

IO

Materials

Mesh

Geometry
Points

Element
Nodes

Properties
Conditions

Node
DegreesOfFreedom

Property
Material

Conditions

Material

DOF
EquationNumber

Process
Model

Tools Layer

Vector

Matrix

Integral

Math Tools
Procecess

Variables

Point

 
Figure 2: Layers of Kratos 

In designing the layers of the structure we assume three types of developers: 
• main developers of the program, who are involved in the most technical programming part, 

and try to expand the basic abilities of the program (also called bricks developers); 
• element developers, who are mainly interested on finite element programming aspects, from 

the physical and mathematical point of view, without particular experience in C++ 
programming; 

• application developers who will use the entire library as a customizable finite element 
program where they can just to activate or deactivate certain functionalities or program a new 
global algorithms (i.e. interface programmers in finite element application projects and/or 
application managers). 

Each users group is respectively assigned one out of the three structure layers as shown in Figure 2 
plus one layer for the programming basic tools. The first and top layer is the Application Developer 
Layer and is provided by an object that hides other parts of the implementation from the application 
point of view. This layer has an external interface for other applications and provides the necessary 
tools and methods. The Main Developer Layer gathers most general parts from libraries. This part is 
defined to hide C++ and algorithm implementation technical concepts from the two other layers. It has 
an interface with the Application Developer Layer and another one with the Finite Element Developer 
Layer in order to provide a standard method for implementation. The Finite Element Developer Layer 
provides a common group of objects, that are important from the point of view of a new formulation. 
This layer provides an interface to the previous layers and also to the Tools Layer. Therefore, these 

 
 

5



 
 

interfaces are used as common standards for connecting to other parts of the program. The lowest layer 
is the Tools Layer. It provides the basic components for the rest of the program. Using these standard 
tools through the project ensures the portability and maintenance of the code. 

3.3 Performance and Efficiency 

For the design of many parts of the program we focus on the performance (understood as computation 
speed) rather than on the efficiency (understood as memory management). This strategy comes from 
the fact that for usual problems there is usually enough computer memory, and for large scale ones it is 
always cheaper to find a machine with enough memory than finding a faster machine. Meanwhile, we 
try to store every data just once with several references to it. Thus, in this way we preserve memory 
while the references increase the performance as we save the searching time for several entities. 

4 Kratos and Multi-physics 

4.1 Element sets 

One of the most important aspects of a multi-physics environment is the ability to handle several 
domains and process them in a different manner. The idea of "Element sets" comes from this aspect. 
Each element set in Kratos is a union of elements to be processed in the same way. Solver, result-
tables, and other processes that work on elements can be different for each set of elements. There is no 
restriction for an element to be just in one set. This strategy allows us to group some sets of elements 
in one set. This is specially helpful when the whole set of equations needs to be solved simultaneously 
as the value of certain physical unknowns is needed to solve other physical domains.  

4.2 Sharing data 

As mentioned before, we have one single database for all the different problem-types. To achieve full 
multi-physics capability we need also to establish a uniform database interface for all domains. Just by 
having this uniform database interface we can guarantee the accessibility of all the objects to their 
necessary data. A set of functions provides this interface in Kratos. Polynomial functions, 
interpolators, and table search functions are examples of these interface functions. By this function the 
interrelation between the parameters and unknowns can be established in a very generic way, for 
example, allowing conductivity depend on temperature values. Properties, sources and other objects in 
the Finite Element Developer Layer use these functions to extract data from the model. Kratos 
provides also a uniform interface for all the properties and sources. This is the final key to have a 
general interface between the element and the model as a database. 

2

Function

3
Element's

components
like

properties,
sources

4

Element

uniform interface to extract data from model

1

Model

 
Figure 3: Interface between the elements and the model  

 
 

6



 
 

4.3 Degrees of freedom 

One of the representative features of multi-physics analysis is the variety of degrees of freedom in 
each node. Each degree of freedom in Kratos is encapsulated in a Dof object. Each Dof provides the 
information of what variable stores (temperature, x displacement, etc.), its location in the global 
system of equations, its condition and also its value. This Dof encapsulation provides an easy and 
flexible way of adding new unknowns to the system. 

 
Figure 4: Dynamic arrays of the degrees of freedom  

Each node has a dynamic list of its degrees of freedom. Using this dynamic list of degrees of freedom 
gives us the desired flexibility while avoiding unnecessary use of the space. These lists are filled 
during run time by the elements. The idea of filling these lists by the elements comes from the fact that 
only each element knows what kind and how many unknowns it has. This idea provides a simple but 
effective mechanism to work with several elements in different problem-types. At the initializing time, 
each element asks to its nodes to add its Dofs to their lists. Then, each node adds these Dofs if they do 
not already exist in the list.  
 

Transient Loop
(time step)

solve element
set 1

domain loop
(convergence)

Update

solve element
set 2

solve element
set ...

solve element
set nincrease time step

Transient Loop  (time step)

Update

domain loop

solve element set 1

solve element set 2

until convergence

Increase time step

solve element set n

solve element set ...

End Transient loop  

7

Figure 5: Scheme of a Multi-Physics transient problem and the corresponding process tree 

 
 



 
 

4.4 Program flow 

In general, each group of problem-types has its own solving algorithm [1]. Transient and steady-state, 
one domain or multi-domain, two-three-four field problems, etc. are examples of the variety of 
processes in different problems. A possible approach is to provide some high level classes to manage 
these algorithms in a global form [12]. 
In Kratos, the high level classes mentioned above are called “processes”, and they are used to achieve 
a flexible and customizable flow of the program. You can consider each process as a construction unit 
for building the global algorithm. Each single step of the finite element methodology is encapsulated 
in one process. Each process can have several features too, like loops, conditions and normal 
statements. A compound pattern [8] is used to design the process. Each process can have several sub-
processes and will execute them as well as its own statements. Finally, by having a good interface we 
can customize Kratos’ flow very easily from outside as well as from inside (application layer). 

Update Data

converged?

yes

reached ending
time?

no

In this stage we can
update the data related to

the different update
processes such as

update geometry, update
properties, update

results, etc.

Transient loop

Could be another criteria
distinct than time

Solve structure

Solve fluid

no

Multi-physics part

End TransientIncrease time step

 
1 Begin Transient Loop

2 Update Data

3 Solve element set
3.1 Repeat 3 for each element set

4 Check convergence
4.1 If not converged:

go to 3
4.2 Else: continue

5 Increase time step

6 Check ending time
6.1 If not reached ending time:

go to 2
6.2 Else: continue

7 End Transient Loop

 
Figure 6: Flow-chart and pseudo-code of the transient loop for a fluid-structure interaction code 

4.5 Equation solver 

A very simple example of how a wide scope programming can be effective and integrate a wide range 
of different cases, is the implementation of equation solver. This class is responsible for solving any 
system of equations generated by Kratos, either linear or non-linear. It works using a Newton-Raphson 
algorithm [14], where the Jacobian matrix and the residual vector are provided and assembled by the 
element class. However, as the Jacobian matrix is computed outside of the algorithm, the element can 
provide to the equation solver any kind of matrix. If the problem is too complex to compute the 
derivatives, the Element Developer can choose to provide a secant matrix instead of a tangent one, and 
then the system is equally solved assuming that the approach is good enough. For either linear or non-
linear systems of equations, the element must give to the equation solver the residual vector instead of 
the classical forces vector. In the case of a linear problem there is the possibility to fix the number of 

 
 

8



 
 

non-linear iterations to 1. Finally, the Jacobian matrix in linear systems of equations is equal to the 
classical stiffness matrix, so it is straight forward for the Element Developer to integrate his element 
inside Kratos. 
The way of fixing the degrees of freedom in the System Matrix is by zeroing the rows related to the 
Dof's fixed, except for the diagonal value that is set to 1. The values in the System Vector related to 
the fixed Dof’s are set to zero as it is assumed that their residuals are zero. This algorithm destroys the 
possible symmetry of the matrix. There is no need to modify the System Vector in any other way, 
because it is calculated as a residual and the values of the fixed Dof's are already taken into account 
inside the elements. 

5 Further Work 

One of the main objectives of Kratos is to contribute to facilitate the easy and fast implementation of 
finite element programs. Extensive documentation and web-based presentations will be prepared to 
disseminate Kratos progresses, as well as to invite researchers to develop their own applications and 
element formulations within Kratos. 
Apart from working on the quality of current parts, the work will be focused on a robust and flexible 
script language interpreter to complete the environment, as well as on tools for converting partial 
differential equations into Kratos' elements.
 
 For more information, please visit http://www.cimne.com/kratos
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



References 

[1] F.J. Royo. Something About Multi-physics Problems and Programs. Internal Report, CIMNE, 
(2001) 

[2] Pooma: http://www.acl.lanl.gov/Pooma 

[3] Deal.II: http://gaia.iwr.uni-heidelberg.de/~deal 

[4] M. Galindo. FemLab v. 1.0. Technical Report n. IT-114. Ed. CIMNE. Barcelona (1994). 

[5] FemLab MATLAB http://www.femlab.com/femlab/ 

[6] OOFELI, An object finite element libray: http://wwwlma.univ-bpclermont.fr/~touzani/ofeli.html  

[7] J. Lu, D. White and W.F. Chen. Applying Object-Oriented Design to Finite Element 
Programming. Purdue University. ACM (1993). 

[8] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley Longman, Inc. (1998). 

[9] T. Zimmermann, Y. Dubois-Pèlerin and P. Bomme. Object-oriented finite element programming: 
I Governing principles. Computer Methods in Applied Mechanics and Engineering 98 (1992) 
291-303. 

 
 

9

http://www.acl.lanl.gov/Pooma
http://gaia.iwr.uni-heidelberg.de/~deal
http://www.femlab.com/femlab/
http://wwwlma.univ-bpclermont.fr/~touzani/ofeli.html


 
 

[10] Y. Dubois-Pélerin, T. Zimmermann and P. Bomme. Object-oriented finite element programming: 
II. A prototype program in Smalltalk. Computer Methods in Applied Mechanics and Engineering 
98 (1992) 361-397. 

[11] Y. Dubois-Pélerin and T. Zimmermann. Object-oriented finite element programming: III. An 
efficient implementation in C++. Computer Methods in Applied Mechanics and Engineering 108 
(1993) 165-183. 

[12] Y. Dubois-Pélerin and P. Pegon. Improving modularity in object-oriented finite element 
programming. Communications in Numerical Methods in Engineering. Vol 13 (1997) 193-198. 

[13] B.W.R. Forde, R.O. Foschi and S.F. Stiemer. Object–Oriented Finite Element Analysis. 
Computers and Structures, 34 (1990) 355-374. 

[14] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method. Volume 2. Fifth Edition. 
Butterworth-Heinemann 2000. 

 
 

10



Some example applications of KRATOS to FSI analysis 
 
 

 
Fig. 1 - Airbag Deployment 

 
 

 

 
Fig. 2 - Flag Flutter 

 



1 Overview

Over the last 40 years the FEM has experienced an exponential growth leading
to the definition of a set of reliable computational techniques for many different
problems. This maturity, together with the increasing availability of powerful
computational resources gave rise in relatively recent times to an increasing
interest in coupled problems. The field of Fluid-Structure Interaction (FSI)
has important applications ranging from the bio-medical to the aeronautical
fields. Different approaches were developed over the years for solving a FSI
problem which remains however far from being closed. This document addresses
the theoretical analysis of a partitioned coupling procedure for FSI. This is
achieved by choosing a simple but representative model problem, which allows
the development of analytical results. A loose coupling procedure is presented
in the first part of the paper. An iterative version of the same algorithm is
presented next together with an analysis of its convergence properties and a
brief discussion on a possible acceleration strategy. Finally a new iterative
strategy, based on a modified equations approach is described. Some examples
of application of the proposed algorithm are then presented in application of
problems of bridge engineering.

2 Introduction

The coupling between different physical phenomena constitute a classical chal-
lenge in many applications of practical interest. Empirical or analytical tech-
niques, which classically provide a satisfactory description of coupled phenom-
ena at the asymptotic limits, do not guarantee the necessary guidance when
the coupling becomes strong. The field of FSI (fluid-structure interaction) rep-
resents an important and active area of research due to its great economical
importance and its relevance in many practical problems in science and engi-
neering.

Until recent times the numerical simulation of strongly coupled FSI problems
was considered to be unviable. Experimental wind-tunnel testing constituted
for long the only real approach to the design of complex aeroelastic interaction-
sensitive structures such as bridge decks or slender towers. Although well estab-
lished, wind tunnel testing is often expensive and time-consuming. In addition
some concerns on the quality of its predictions may also arise when severe scale
reduction is needed to fit the model in the test facility.

The increasing maturity of numerical Finite Element (FE) techniques in
the fields of Computational Fluid Dynamics (CFD) and structural dynamics,
together with the increasing computational power start nowadays to make com-
petitive the purely numerical approach for solving FSI problems.

From a mathematical point a wide class of coupled problems can be repre-

1

rflores
Sello



sented symbolically in a form of the type

fS(x, y) = 0 (1)

fF (x, y) = 0 (2)

where fS(x, y) and fF (x, y) are functions that represent the behaviour of the
two coupled systems. which can be linearized following the Newton-Raphson
approach to give a system in the form

(

∂fS

∂x
∂fS

∂y
∂fF

∂y
∂fF

∂y

)

(

dx
dy

)

=

(

−fS(xk, yk)
−fF (xk, yk)

)

(3)

where the off-diagonal terms of the tangent (or Jacobian) stiffness matrix express
the dependency of one field on the variations of the second. This form guaran-
tees theoretically optimal quadratic convergence properties. In practice unfor-
tunately the two symbolic operators fS(x, y),fF (x, y) are not explicitly known
and the computation of the derivatives may be very difficult or indesiderable
for other reasons.

Even if theoretically possible, the linearization of the fluid field is usually
not performed, as it is often preferred to rely on fixed point type iterations to
solve the non linearities. This implies that the calculation of the jacobian in
Eqn(3) would involve a redefinition of the fluid strategy which is not desiderable
from the point of view of software modularity. This makes generally unattrac-
tive the use of full Newton schemes for the solution of FSI problems. Further
the resulting “monolithic” matrix, would inherit from the corresponding fluid
counterpart the same conditioning problems, making its inversion difficult using
any iterative technique.

Two main approaches exist for solving the impasse. The “purely algebraic”
one focuses on the techniques to solve iteratively Eqn(1) approaching as much
as possible the optimal behavior of the Newton system in Eqn(3). The second
focuses on “explicit” coupling techniques where convergence to the coupled so-
lution is guaranteed by a careful adjustment of the predicted variable and of the
data transferred between the domains.

The first approach has its easiest expression in the so called “Block-Jacobi”
or “Block-Seidel” iterations which consist in an iterative solution involving the
following steps

• fS(xk+1, yk) = 0 → yk+1

• fF (xk+1
ω , yk+1) = 0 → xk+1

The above scheme can be eventually modified to include a relaxation step such
as xk+1

w = ωxk+1 + (1 − ω)xk. This technique is very effective for some prob-
lems, nevertheless in some conditions it may not be computationally competitive
with the “explicit” technique. The choice of the “optimal” relaxation factor is
still matter of research. Particularly noteworthy is the work in [7],[19] which
advocates the use of the Aitken accelerator to improve the convergence of the

2



scheme. Alternatively a number of quasi-Newton techniques were presented
over the years in an effort of achieving the quadratic convergence behavior of
Eqn(3) without requiring the explicit calculation of the Jacobian matrix. An
interesting description can be found in [13],[12] where the use of iterative solvers
(for which exclusively the matrix-vector multiplication is needed) is exploited
for the solution of the coupled problem without building explicitely the Jacobian
matrix.

This matrix-free approach reveals to be optimal from the point of view of
software modularity, and naturally tends to the solution of the monolythic for-
mulation of which it inherits the stability properties. The typical disadvantage
is the high computational cost due to the need of solving the implicit system to
a very high degree of accuracy.

The “explicit” approach on the other hand relies on a careful design of the
prediction and correction phases in order to minimize the spurious energy intro-
duced in the system. Pioneering work on the subject was done by Farhat and
Piperno who developed explicit solution strategies for aeronautical applications
[23] [24]. Their work focused mainly on large scale computations with emphasis
on parallel solution issues.

Given the absence of a common mathematical formulation for the two cou-
pled fields the investigation of the stability properties of the different methods
is in this case extremely challenging. A 1D case is investigated in [23] (for a
compressible flow case) while in [24] a simple test is advocated to assess the
tendency of a given method to instability. Even if the proposed method has
no general mathematical validity it was shown to discriminate successfully sta-
ble methods from unstable techniques. The techniques proposed were tested
on large aeronautical examples (see [5]) and provided satisfactory results in de-
scribing experimental flutter envelopes on real aircrafts. They are believed to
be extremely effective in dealing with linear and non-linear problems as long
as the displacements involved are small. Some concern rises however regarding
their robustness in dealing with the interaction problem between highly flexible
structures and truly incompressible fluids (recents results seem however to prove
their applicability to general cases when using compressible flow solvers).

The application of space-time FE based approaches can be found in [10] and
[4] with reference to both civil and aeronautical applications. Finally some ex-
amples of applications to large scale cases of flexible civil engineering structures
can be found in [1],[9].

The objective of this work is to discuss a coupling procedure by consider-
ing both an “explicit” approach to the couping and a possible improvement by
iteration. The effort is to provide a framework to study the properties of the
coupling procedure proposed by evaluating the impact of different choices in the
structural time integration scheme. The layout of the paper is the following:
first a simple but representative 1D model problem is chosen. A coupling strat-
egy is identified and applied “symbolically” to the model problem, obtaining
the definition of an “error matrix” which depends on the choice of the time
integration scheme. The possibility of iterative improvement of the method is
then discussed and an estimate of the evolution of error with the iterations is

3



given. Finally the explicit technique proposed is applied to the solution of a
real problem in bridge aerodynamics, proving its efficiency and its ability to
reproduce satisfactorely wind tunnel results.

3 The Model Problem

Staggered or “explicit” coupling techniques are very appealing for the simulation
of coupled FSI problems as they allow the use of state-of-the-art single-field
solvers greatly easing the development and maintenance of coupling codes. As
such they are widely used in the literature, and represent an important tool
in many fields of application. The disadvantage is often connected to a lack
of robustness in dealing with some cathegory of problems, typically involving
truly incompressible fluids or requiring long-term analyses. Strong coupling
techniques on the other hand “guarantee” a convergence to the real, monolithic
solution by providing a completely “implicit” coupling between the different
fields. In the practice however, they tend to be costly and may experience
convergence difficulties in dealing with complex problems.

The aim of the paper is to investigate the reasons behind this difficulties.
The same effort was attempted in different works, see for example [24] for a
discussion of explicit methods or [18] for an analysis of a semi-implicit technique.
Both works present interesting results and allow the respective authors to define
satisfactory algorithms for application to the fields of interest.

The present article follows a slightly different path by considering a further
requirement: an ideal “coupling framework” should be robust upon changes
in the single-field solvers, in other words its properties should be independent
from the particular solver chosen for each of the fields involved. As an immediate
consequence, the particular features of the solvers used should not be exploited
in discussing a coupling algorithm, unless the interest focuses exclusively on a
very particular choice (as is the case for the articles mentioned). In order to
highlight our approach, a simple linearized model problem is chosen and the
coupling algorithm is applied to its solution.

The choice for such a simple model problem is unfortunately non univocal
in FSI, and needs to be justified. To do so we considered (see for example [22])
that in the “common” engineering practice the fluid solution is often avoided and
the interaction between a structure and the surrounding fluid is often described
by the exchange of a pressure force between the fluid and the structure. Such
pressure force is often modeled by expressing the fluid pressure “p” as

p = A(ω)ẋ + B(ω)x (4)

where the coefficients “A” and “B” generally depend on the frequency ω of the
motion. It is well known that a careful choice of such aeroelastic constants
(generally a good fit to wind tunnel data) can lead to an excellent description
of the most relevant features of the fluid action on the structure. This, in other
words, implies that this simple model reproduces correctly the coupling between
the structure and the fluid.

4



A load with the form of Eqn(4), which is naturally suited for the frequency
domain, needs to be transformed for use in the time domain. Such transforma-
tion is not trivial (see for example [17]) and will not be discussed in this article.
The interesting result is that Eqn(4) can be substituted in the time domain by
a relation of the type

p = Kfsix + Cfsiẋ + Mfsiẍ (5)

eventually generalized including history dependent terms. This implies that the
instantaneous force exerted by the fluid on the structure due to the interaction,
depends directly on the acceleration, velocity and displacement of the struc-
ture itself. The dependence on the acceleration in particular is crucial and the
corresponding “mass-like” term is known in the literature as “added mass”.

Interestingly enough a similar dependence of the interaction forces on the
structural motion cand be obtained (at least concerning the dependence on
the structural acceleration) from the analysis of the continuum problem [18]
or from a simple algebraic manipulation of the discrete Navier Stokes problem.
The important point is in any case that a simple model as the one described
in Eqn(5) captures satisfactorily the important features of the coupling, and is
thus appropriate to define a “test” problem.

The idea we will exploit in the following is now conceptually simple: let us
consider a 1D problem representing the interaction between a given structure
and the surrounding fluid. Without loss of generality we can assume that the
abstract problem defined by Eqn(1) can be particularized to:

fS(x, p) → Mẍ + Cẋ + Kx = p (6)

fF (x, p) → p = Kfsix + Cfsiẋ + Mfsiẍ (7)

Where “p” is a force that originates from the coupling (and that plays the role
of the “coupling variable” in the study of the interaction). We can now consider
that most explicit or iterative “coupling procedures” represent techniques for
solving the set of equations 1 (defined in implicit form) without taking advantage
on the knowledge of the mathematical structure of the different equations in-
volved. The performance of a given coupling algorithm can be therefore assessed
by applying it directly to the problem in Eqn(6) of which we know everything.

It is now intuitive that procedures that “behave well” on a test system in
the form of Eqn(6) for any physically relevant choice of the parameters Kfsi ,
Cfsi and Mfsi are idoneous to describe correctly the effect of the fluid on the
structure. In other words approximate procedures that solve accurately the test
system can be expected to be well suited for the simulation of the FSI interac-
tion for all cases where a model in the form p = A(ω)ẋ + B(ω)x is acceptable
for design purposes.
Before proceeding to the actual analysis it is convenient to highlight the final
goal. The crucial point is that the time discretization of Eqn( 6) implicitly
contains an error connected to the particular choice for the time integration
algorithm. This error has no interest for us as it does not depend on the way we
enforce the coupling. Our interest is rather connected to the error between the

5



approximate and exact discrete solution of the coupling problem. In other words
we assume that no error cancellation manifests due to the interaction of the dif-
ferent solving technologies. It should be noted that this is a strong assumption.
Different approaches, in particular the works of Farhat and Piperno [24] , ex-
ploit exactly the error cancellation to tune the features of their coupled solvers.
Not considering the error cancellation is however mandatory if the requirement
of “independence from the single-field solvers” needs to be enforced.

As a final comment we point out that necessary features for a “good” coupled
time integrators are (see Felippa [11])

1. preserve the stability of stable mathematical models

2. manifest the instability of unstable mathematical models.

Some effort will be therefore devoted to describing the damping properties of
the different coupling algorithms analysed.

3.1 A simple form for the analysis of the discrete coupling

problem

The system described by Eqn(6) can be rewritten as a modified “monolithic”
problem by simply substituting the second equation into the first. To simplify
the subsequent developments we will express the aeroelastic mass and stiffness
(Kfsi and Mfsi ) as a ratio to the correspondent structural quantities. This
gives

K = ω2 ; Kfsi = βK; (8)

C = 2ξω ; Cfsi = 2ξfsiω (9)

M = 1 ; Mfsi = αM (10)

where the mass is taken to be the unit without loss of generality.
Substituting the value of p in Eqn(7) in Eqn(6) and using Eqns(8) yelds

after collecting the similar terms the “monolithic” system

(1 − α) ẍ + 2ω (ξ − ξfsi) ẋ + (1 − β) ω2x = f (11)

which is equivalent to Eqn(6) and Eqn(7) and expresses synthetically the dy-
namic behaviour of the coupled problem. We are mostly interested in the case
where the presence of the fluid modifies sensibly the time behaviour of the
structure. We shall however assume that even in presence of a very important
coupling the mathematical behaviour of the coupled system is preserved, or, in
other words that the overall mass and stiffness are both non negative. Note
however that a negative aeroelastic damping Cfsi (leading to a divergent struc-
tural behaviour) can be considered and indeed it constitutes a very important
case. These considerations allows us to assume that

α < 1 (12)

6



β < 1 (13)

Note that in general we can expect the coupled system to be heavier than the
single system which suggests that the stricter condition α < 0 will hold.

Up to this point no approximation was introduced and Eqn(11) is still com-
pletely equivalent to the system described in Eqn(6) and Eqn(7). To proceed
in our analysis it is now necessary to discretize in time the equation of interest.
Without loss of generality we shall consider that a very general class of time
integrators can be expressed symbolically as

yn+1 = Ayn + Lnpn + Ln+1pn+1 ; yn =

(

xn

ẋn

)

(14)

where the choice of the linear operators A and Ln , Ln+1 defines the time
integrator used and the effect of external forces (note that the “exact” time
integrator can be expressed this way). Such form allows us to predict the evo-
lution of a system between the time stations “n” and “n+1” when subjected to
a force varying linearly between the values pn and pn+1. This defines a general
framework which simplifies studying the behavior of different time integration
schemes.

By defining the auxiliary vectors

G =
(

K C
)

Gfsi =
(

Kfsi Cfsi

)

(15)

it is possible to express the model problem of Eqn(11) in the simple matrix form

ẍ + Gy = Gfsiy + Mfsiẍ (16)

and the “pressure force” (the term exchanged between the first and second
equation in Eqns(6) and (7) ) at the initial and final time stations as

pn+1 = Mfsiẍn+1 + Gfsiyn+1 pn = Mfsiẍn + Gfsiyn (17)

This will suffice to express in matrix form both the exact solution and the
approximate one.

3.2 Discrete solution of the exact coupling problem

The evaluation of the exact coupled solution can be performed preserving the
matrix notation introduced in the previous section. To do so it is necessary
to express the link between the pressure and the structural motion. Dynamic
equilibrium (Eqn(6)) gives

ẍn+1 = pn+1 − Gyn+1 (18)

substituting back into Eqn(17) and using the definitions in Eqn(8), we recover
the relation

(1 − α) pn+1 = (Gfsi − αG)yn+1 (19)

7



On the other hand the structure is advanced in time following the time
integration rule in Eqn(14). Substituting Eqn(19) into Eqn(14) and collecting
terms we obtain

(

I −Ln+1

αG − Gfsi 1 − α

)(

yn+1

pn+1

)

=

(

A Ln

0 0

)(

yn

pn

)

(20)

which allows to write synthetically

zn+1 = Aexzn (21)

where

Aex :=

(

I −Ln+1

αG − Gfsi 1 − α

)−1(
A Ln

0 0

)

(22)

and

zn+1 :=

(

yn+1

pn+1

)

(23)

Eqn(21) yelds the amplification form of the “exact solution” for the coupled
problem.

3.3 Approximate solution of the coupled problem

In the previous section we expressed the exact solution in an amplification form,
relating pressures, velocities and displacements at two consecutive time steps.

Unfortunately in real life not all the information needed is available at the
same time (otherwise indeed the solution of the problem would be known).
Therefore an approximate coupling strategy needs to be devised. In this para-
graph we propose and analyse a “fractional step-like” approach to the solution
in the form

• predict the fluid forces acting on the structure

• advance in time the structure subjected to the predicted forces

• solve for the fluid domain according to the structural prediction

• correct the structural position according to the newly calculated fluid
forces

This simple strategy can be of course improved by successive corrections
leading to the definition of an iterative strategy which minimizes the coupling
error inside each time step. For such a strategy our interest focuses on the
convergence properties of the iteration sequence rather than on the stability of
the strategy which will be guaranteed if a a converged solution is achieved inside
each time step.

To ease the development it is useful to distinguish between a first prediction
phase and successive corrections.

8



Prediction phase In the prediction step the pressure is calculated as

pI
n+1 = ηpn + φpn−1 (24)

The structural prediction is performed by advancing in time the solution of the
structure under the predicted pressure. Taking into account the form assumed
for the structural integrator we obtain

yI
n+1 = Ayn + Lnpn + Ln+1p

I
n+1 (25)

grouping the two equations we get

(

I −Ln+1

0 1

)(

yI
n+1

pI
n+1

)

=

(

A Ln

0 η

)(

yn

pn

)

+

(

0 0
0 φ

)(

yn−1

pn−1

)

(26)

By introducing the auxiliary matrices

AI
1 := C

(

A Ln

0 η

)

AI
2 := C

(

0 0

0 φ

)

(27)

with

C :=

(

I −Ln+1

0 1

)−1

=

(

I Ln+1

0 1

)

(28)

we can express the prediction as

zI
n+1 = AI

1zn + AI
2zn−1 (29)

Correction phase The first step of the correction phase is the computation
of the corrected pressure field. To include this in our simplified model we need
to calculate the predicted accelerations. Dynamic equilibrium (see Eqn(6) )
gives

ẍI
n+1 = pI

n+1 − GyI
n+1 (30)

Using the definitions in Eqn(8) the corrected value for the pressure can be
expressed as

pII
n+1 = Mfsiẍ

I
n+1 + Gfsiy

I
n+1 = αpI

n+1 + (Gfsi − αG)yI
n+1 (31)

while the successive correction step for the structure takes the usual form

yII
n+1 = Ayn + Lnpn + Ln+1p

II
n+1 (32)

This can be rewritten in an amplification form as

zII
n+1 = B0z

I
n+1 + B1zn + B2zn−1 (33)

where

B0 := C

(

0 0
Gfsi − αG α

)

=

(

I Ln+1

0 1

)(

0 0
Gfsi − αG α

)

(34)

9



B1 := C

(

A Ln

0 0

)

=

(

I Ln+1

0 1

)(

A Ln

0 0

)

(35)

B2 := C

(

0 0

0 0

)

=

(

0 0

0 0

)

(36)

The matrix relative to the second backward step is empty and was included only
for generalization purposes. Substituting Eqn(29) into Eqn(33) we obtain

zII
n+1 = B0

(

AI
1zn + AI

2zn−1

)

+ B1zn + B2zn−1 (37)

which allows us to obtain the final amplification form for the fractional step
procedure as

zII
n+1 =

(

B0A
I
1 + B1

)

zn +
(

B0A
I
2 + B2

)

zn−1 (38)

This form will be used in the following to address the stability and accuracy of
the proposed formulation

3.4 Analysis of the truncation error

Assuming that the exact solution is known in the steps 1 to n, the truncation
error can be obtained by difference between the approximate and exact solutions.

The amplification form obtained in the previous section (Eqn(38)) allows
us the evaluation of this error. To perform this operation we observe that yn

and pn can not be prescribed independently as the exact solution is used as a
starting point. Typically only the displacements and velocities are prescribed
and the pressure is calculated subsequently. A dynamic equilibrium relation
necessarily holds relating pressures displacements and velocities in the initial
steps. The definition of zn implies

zn = Dyn (39)

with

D :=

(

I
1

1−α
(Gfsi − αG)

)

The definition of the exact amplification matrix on the other hand allows us to
write

zex
n = Aexz

ex
n−1 (40)

This together with Eqn(39) allows us to express the exact solution at step “n+1”
in the form

zex
n+1 = AexAexDyn−1 (41)

Following the same rationale, the approximate solution at the given step be-
comes

z
app
n+1 =

((

B0A
I
1 + B1

)

Aex +
(

B0A
I
2 + B2

))

Dyn−1 (42)

10



By subtracting Eqn(41) and Eqn(42) it is possible to define a “reduced” rect-
angular error matrix relating pressure and structural variables at the step n+1
with the structural variables at the former step. In symbols

zex
n+1 − z

app
n+1 = Eredyn−1 (43)

with

Ered :=
(

AexAex −
(

B0A
I
1 + B1

)

Aex +
(

B0A
I
2 + B2

))

Dyn−1 (44)

This last equation contains all the information needed concerning the order of
accuracy. The fact that Ered is not square indicates that for the exact solution
only the structural variables can be prescribed, as the pressure can be calculated
as a dependent variable.

3.5 Newmark and exact time integration

The results up to this point are still general and hold for any time integration
scheme with the form assumed (Eqn(14)). This allowed us to describe “sym-
bolically” an approximate fractional-step coupling procedure and to evaluate an
expression for its error matrix. To proceed further in our analysis it is necessary
to choose a time integration scheme and to evaluate how the symbolic relations
identified will behave depending on the choice. In the following we will consider
the “exact” time integrator and the Newmark time integrator and evaluate for
the two cases the behaviour of the error.

We highlight once again that the “exact” integrator should guarantee exact
results once provided the initial conditions and the values of the force at the
beginning and end of the step. Applying the exact time integrator inside an
approximate procedure for computing the solution of the system in Eqn(6) does
NOT guarantee an exact result. The interesting result is that the coupling error
obtained with both Newmark and the Exact integrator is very similar and can
be therefore considered to depend on the coupling procedure rather than on the
time integration method.

The amplification matrix and the force terms for the Newmark time inte-
gration scheme are widely known and can be found for example in [14]. In the
most general case they take the form

A := A−1
1 A2 (45)

with

A1 :=

(

1 + h2βnK h2βnC
hγnK 1 + hγnC

)

A2 :=

(

1 − h2

2 (1 − 2βn)K h(1 − h(1 − 2βn)C
2 )

−h(1 − γn)K 1 − h(1 − γn)C

)

and

Ln := A−1
1

(

h2

2 (1 − 2βn)
h(1 − γn)

)

11



Ln+1 := A−1
1

(

h2

2 (2βn)
hγn

)

where h represents the time step size. We will consider in the following exclu-
sively the second order accurate, non dissipative case.

By assuming that the forces vary linearly within the time step, it is possible
to work out a similar result corresponding to the exact time integrator (which
can be written in the form of Eqn(14)). In this case the amplification matrix
becomes.

A :=

(

cos(ωh) sin(ωh)
ω

−sin(ωh)ω cos(ωh)

)

and the force terms have the form

Ln+1 :=

(

ωh−sin(ωh)
ω3h

−−1+cos(ωh)
ω2h

)

Ln :=

(

−(−sin(ωh)+cos(ωh)ωh)
ω3h

(sin(ωh)ωh−1+cos(ωh))
(ω2h)

)

Substituting into Eqn(44) is straight-forward but implies some heavy alge-
braic calculations. Performing this operation in Maple or a similar Computer
Algebra System (CAS) program presents no particular difficulty even for the
general case. It is however interesting to focus on the undamped case (no struc-
tural damping) as this leads to simpler results. It can be verified that the
estimates obtained hold as well for the general damped case

An important (although not unexpected) result is that consistency requires
the condition 1 = η + φ for the “free” parameters in the prediction step (
Eqn(24) ). The two choices η = 1, φ = 0 and η = 2, φ = −1 are appealing
and correspond to first or second accuracy for the predicted force. The order
of this initial prediction determines the order of the overall approximate time
integration scheme for the coupled problem.

Table 1 contains the first non-zero terms for the Taylor expansion of the error
matrix. The analysis of these results shows how the same error estimates hold
for the Newmark and exact time integration schemes. This feature is desiderable
as it suggests that different choices for the time integration scheme can be taken
without affecting the coupling error.

The properties of the coupled fractional step depend however on the values
assumed by the aeroelastic mass and the damping term. For values of α > 1 or
β > 1 the mathematical structure of the problem changes as the overall coupled
problem assumes a negative mass matrix. By assuming α < 1 or β < 1 (see
remark 12 and 13) we obtain the inequalities

α2

α − 1
< 0

β − 1

α − 1
> 0

12



Table 1: Error matrix for the fractional step coupling procedure as a function
of the time integrator, the time step size “h” and the prediction order

FIRST ORDER PRESSURE PREDICTION η = 1 φ = 0
Exact time integration

Ered
1 :=

α2

α − 1

(α − β)

α







1
4

β−1
α−1ω4h4 − 1

6ω2h3

3
4

β−1
α−1ω4h3 − 1

2ω2h2

3
2

β−1
α−1ω4h2 −ω2h







Newmark time integration

Ered
1 :=

α2

α − 1

(α − β)

α







3
8

β−1
α−1ω4h4 − 1

4ω2h3

3
4

β−1
α−1ω4h3 − 1

2ω2h2

3
2

β−1
α−1ω4h2 −ω2h







SECOND ORDER PRESSURE PREDICTION η = 2 φ = −1
Exact time integration

EredExact
ord=2,it=0 :=

α2

α − 1

(α − β)

α

β − 1

α − 1





1
6ω4h4 − 1

6ω4h5

1
2ω4h3 − 1

2ω4h4

ω4h2 −ω4h3





Newmark time integration

EredExact
ord=2,it=0 :=

α2

α − 1

(α − β)

α

β − 1

α − 1





1
6ω4h4 − 1

6ω4h5

1
2ω4h3 − 1

2ω4h4

ω4h2 −ω4h3





which give some insight on the damping properties of the proposed fractional
step procedure. The exactness of these results was tested using the Newmark
scheme to verify that the theoretical predictions match the numerical values.
The numerical approach allows as well the direct assessment of the accuracy
order. The Figures (1) and (2) are obtained for the general case (including non
zero structural damping) and contain a log-log plot of the error for diminishing
time step size. It can be seen how the error on the pressure dominates the error,
which is not surprising as the pressure term depends on the acceleration.

It is of interest that these estimates hold in the general case. When the
aeroelastic mass is negligible the performance of the fractional step procedure
is greatly enhanced and the overall order of accuracy is 3. Using the exact time
integrator we obtain the error matrix

E :=





− 1
6ξω5(−1 + β)(β + 4ξ2)h5 − 1

3ξ2ω4(2β + 4ξ2 − 1)h5

− 1
2ξω5(−1 + β)(β + 4ξ2)h4 −ξ2ω4(2β + 4ξ2 − 1)h4

−ξω5(−1 + β)(β + 4ξ2)h3 −2ξ2ω4(2β + 4ξ2 − 1)h3



 (46)

13



Figure 1: First order fractional step. log-log error plot.

3.6 Stability issues

To complete the discussion we make some considerations on the stability of
the scheme proposed. Let us consider for simplicity the one-step (first order)
fractional step. We already know that the exact solution of the coupled problem
(including both the pressure and the structural variables) can be written as

zex
n+1 = Aexz

ex
n (47)

while the approximate solution, obtained via some coupling procedure one can
be expressed as

zn+1 = Aappzn + Ezn ; E := Aapp − Aex (48)

where we have introduced a new “complete” error matrix E which relates both
the structural variables and pressure. Some confusion might arise concerning
the amplification matrices used. Aex ,Aapp are here order three square matrices
and should not be confused with the “reduced” forms (rectangular) used for
assessing the accuracy.

A classical discussion of the stability is not trivial due to the complexity
of the approximate amplification matrix. We know however that stability is
governed by the spectral radius of the amplification matrix. For the one-step
fractional step procedure, the eigenvalues can be computed analytically. For the
general case the results are unfortunately very lenghty and difficult to handle.
Some useful information can however be obtained by expressing the eigenvalues
as functions of the auxiliary variable Ω := ωh which expresses a more adimen-
sional measure of the number of steps used for the integration of one structural

14



Figure 2: Second order fractional step. log-log error plot.

period. By expanding in Taylor series the expressions obtained for the eigenval-
ues , the leading terms of these series (which represents the results for the time
step size h tending to zero) give:

eI =
α − 1 + iΩ

√
1 − α

√
α − 2β + 1

α − 1
(49)

eI = abs (α) (50)

eIII =
α − 1 − iΩ

√
1 − α

√
α − 2β + 1

α − 1
(51)

where the index represents the eigenvalue number. A necessary requirement for
stability is that at the limit for Ω = ω

h
tending to zero, the spectral radius ρ

is lower or equal to one. By taking the limit for the simplified expressions we
obtain

ρmax = max (‖α‖, 1) (52)

which suggests that the stability is problem dependent and the proposed pro-
cedure is unconditionally unstable for α < −1.

We should remark that this definition of stability is not completely appro-
priate for the coupling problem of interest. For the FSI coupling both divergent
and convergent solutions are possible. This implies that the exact amplification
matrix may be characterized by eigenvalues of value greater than one. When,
as in the case we are treating here, no damping is considered, the target value
for the spectral radius is exactly one. A value greater than 1 (but tending to 1
for diminishing step size) may be accepted, even if it corresponds to a numeri-
cally divergent solution. When however the system is characterized by α < −1
even for little time steps the solution is divergent and the situation can not be
improved by reducing the time step. This leads to explosive instabilities.

15



3.7 Case of negligible aeroelastic mass

As a final consideration it is interesting to consider the behaviour of the algo-
rithm for α tending to zero. When the aeroelastic mass disappears the equations
simplify sensibly and one order of accuracy can be gained for the second order
prediction case.

When the aeroelastic damping is zero the equations simplify sensibly and the
stability conditions can be investigated analytically (for the first order prediction
case). Under these conditions the procedure is unconditionally stable if β > −1
and conditionally stable otherwise. For β < −1 it can be verified that the
stability condition is h ≤ 2

ω
√
−1−β

.

The general damped case, on the other hand, leads to very long expressions
which are not well suited for analytical treatment. The spectral radius can
be expressed in this case as ρ(ndiv, ξfsi, β) where ndiv = 2π

Ω represents the
number of time steps used for discretizing the natural period of the structure
alone. Useful informations concerning the behaviour of the procedure of interest
can be obtained by plotting the spectral radius versus ξfsi, β for an increasing
number of divisions of the structural period.

The analysis of Figure (3.7) shows clearly how the spectral radius is always
less than one when the aeroelastic damping constant is negative (which implies
a positive damping for the system). It can be also seen how the stability region
extends to the positive damping range for very low values of the parameters
ndiv. This suggests that the algorithmic damping is strong when the number of
divisions is very low. For “high” values of the number of divisions the isolines
of the ρ plot become straight and parallel which testifies how the additional
algorithmic damping vanishes.

The plots in Figure 3.7 show a measure of the algorithmic damping versus
the numerical one. The scale of the graphs changes as the error vanishes very
quickly. However the plots indicate the areas of the ξfsi, β plane where the
algorithmic damping is greater or lesser than that for the newmark scheme
applied to the exact case.

4 Iterative Enhancements

The “fractional step” procedue described, represents still an example of “ex-
plicit” coupling strategy. An appealing possibility is to attempt improving the
properties of the method by iterating through the different domains. Inter-
estingly the analysis framework introduced can be applied directly to such an
iterative “improvement” and allows to describe analytically the behaviour of
error during the iterations.

This is done in symbols by replacing the predicted value in Eqn(33) with
the last known approximation of the system variables, which gives

zi+1
n+1 = B0z

i
n+1 + B1zn + B2zn−1 (53)

where the upper index “i” identifies the iteration count. Note that simply

16



Table 2: Maple procedure for evaluating the “local” and “total” work difference
the first operation needed is to set the ratio between the natural

frequency of the structure and the frequency of the load. This is

needed only because the case of beta = 1(exact resonance) should

be treated as special

> Omega:=beta*omega; beta:=1; phi:=phi;

> pr := (t) -> p * sin(beta*omega*t + phi);

here we compute the "exact" structural solution by solving the

(undamped) single-DOF system described below, starting from a

static configuration

> eq1 := D(D( x ))(t)+omega^2*x(t) = pr(t)/m;

> init1 := x(0) = 0, D(x)(0) = 0;

> solution1:=dsolve({eq1,init1},x(t)):

> expr1 := subs(solution1,x(t)):

> x := a->subs(t=a,expr1); v := a->subs(t=a, diff(expr1,t));

The "guess" solution is calculated by starting from the "true"

solution of the previews time step and advancing in time with a

modified (delayed) load. This is achieved by calculating the

theoretical solution starting from a parametric value for the

initial displacement and velocity

> eq2 := D(D( y ))(t)+omega^2*y(t) = pguess/m;

> init2 := y(0) = xin, D(y)(0) = vin;

> solution2:=dsolve({eq2,init2},y(t)):

> expr2 := subs(solution2,y(t)):

> xaux := a -> subs([t=a],expr2);

> vaux := a -> subs([t=a], diff(expr2,t) );

>x1:=(t,h)->subs([xin=x(t-h),vin=v(t-h),pguess=pr(t-h)],xaux(h));

>x2:=(t,h)->subs([xin=x(t),vin=v(t),pguess=pr(t)],xaux(h));

Here we calculate the different "works", on the structural side

(true displacement and pressure) and on the fluid side (true

pressure but "guess" for the velocities). It is important to

calculate consistently the different works

> Wstruct := (t,h)->((x(t+h)-x(t))/h) * int ( pr(t),x=t..t + h);

> Wfluid := (t,h)->((x2(t,h)-x1(t,h))/h)*int pr(t),x = t..t+h);

> Wdiff := (t,h)->(Wstruct(t,h) - Wfluid(t,h));

> prova:=simplify(Wdiff(t,h));localdiff:=simplify(subs(t=k*h,prova));

here we evaluate the order of the LOCAL error

> simplify(taylor(localdiff,h,5));

> localexpansion:=factor(convert(%,polynom));

now we evaluate the sum of the errors after n steps, and finally

the order of approximation OF THE TOTAL ERROR

> TOT:=simplify(sum(localdiff,k=0..n));

> TOTexpansion:=simplify(taylor(TOT,h,5));

> TOTapprox := convert(TOTexpansion,polynom):

17



Table 3: Maple procedure for studying the accuracy and stability of the model
problem

> restart; DATA FOR ANALYSIS

> Mae := alpha;

> Kae := beta*omega^2;

> Cae := 0; #2*omega*xi_ae;

> K := omega^2; M := 1; C := 0;

DEFINITION OF INTEGRATOR and of auxiliary matrices

> Gae := Matrix([Kae,Cae]); G := Matrix([K,C]);

> > #NEWMARK

>#Ln1 := Matrix([[h^2/(4+2*h*C+h^2*K)], [2*h/(4+2*h*C+h^2*K)]]);

>#Ln :=Ln1;

>#A:=Matrix([[-(-4+h^2*K-2*h*C)/(4+2*h*C+h^2*K),4*h/(4+2*h*C+h^2*K)],

[-4*h*K/(4+2*h*C+h^2*K),-(h^2*K-4+2*h*C)/(4+2*h*C+h^2*K)]]);

> #EXACT (under the hypothesis of linearly varying pressures)

> A := Matrix([[cos(omega*h), sin(omega*h)/omega],

[-sin(omega*h)*omega, cos(omega*h)]]);

> Ln1 := Matrix([[(omega*h-sin(omega*h))/(omega^3*h)],

[-(-1+cos(omega*h))/(omega^2*h)]]);

>Ln:=Matrix([[-(-sin(omega*h)+cos(omega*h)*omega*h)/(omega^3*h)],

> [(sin(omega*h)*omega*h-1+cos(omega*h))/(omega^2*h)]]);

EXACT SOLUTION

> Aex_rhs := Matrix([[A[1,1],A[1,2],Ln[1,1]],

[A[2,1],A[2,2],Ln[2,1]],[0,0,0]]);

> Aex_lhs := Matrix([[1,0,-Ln1[1,1]],[0,1,-Ln1[2,1]],

[Mae*G[1,1]-Gae[1,1],Mae*G[1,2]-Gae[1,2],1-Mae]]);

> Aexact := Aex_lhs^(-1).Aex_rhs:

> Aexact := map(simplify,Aexact);

APPROX SOLUTION

>approx_lhs:=Matrix([[1,0,-Ln1[1,1]],[0,1,-Ln1[2,1]],[0,0,1]]);

first prediction step - different choices are left

> Aapprox_rhs1 := Matrix([[A[1,1],A[1,2],Ln[1,1]],

[A[2,1],A[2,2],Ln[2,1]],[0,0,eta]]);

> Aapprox_rhs2 := Matrix([[0,0,0],[0,0,0],[0,0,phi]]);

> Aapprox_1 :=map(simplify, approx_lhs^(-1).Aapprox_rhs1 );

> Aapprox_2 :=map(simplify, approx_lhs^(-1).Aapprox_rhs2 );

correction step

> temp1 := (Gae-Mae*G)*1;

> temp2 := (Gae-Mae*G)*0;

18



Bapprox_rhs0:=Matrix([[0,0,0],[0,0,0],[temp1[1,1],temp1[1,2],alpha]])

> Bapprox_rhs1 := Matrix([[A[1,1],A[1,2],Ln[1,1]],

[A[2,1],A[2,2],Ln[2,1]],[temp2[1,1],temp2[1,2],0]]);

> Bapprox_rhs2 := Matrix([[0,0,0],[0,0,0],[0,0,0]]);

> Bapprox_0 :=map(simplify, approx_lhs^(-1).Bapprox_rhs0);

> Bapprox_1 :=map(simplify, approx_lhs^(-1).Bapprox_rhs1);

> Bapprox_2 :=map(simplify, approx_lhs^(-1).Bapprox_rhs2);

composition of the first steps

>A1expanded:=map(simplify,Bapprox_0.Aapprox_1+Bapprox_1):

>A2expanded:=map(simplify,Bapprox_0.Aapprox_2+Bapprox_2):

other correction step (including fluid solution);

>#A1expanded:=map(simplify,Bapprox_0.A1expanded+Bapprox_1):

>#A2expanded:=map(simplify,Bapprox_0.A2expanded+Bapprox_2):

third correction step

>#A1expanded:=map(simplify,Bapprox_0.A1expanded+Bapprox_1):

>#A2expanded:=map(simplify,Bapprox_0.A2expanded+Bapprox_2):

ACCURACY STUDY matrix linking the exact pressure to the

displacements and velocities

> ttt := (Gae-alpha*G)/(1-alpha);

> Ap := Matrix([[1,0],[0,1],[ttt[1,1],ttt[1,2]]]);

matrix to extract displacements and velocities from the order-3

vector contag the pressures

> Aytransform := Matrix([[1,0,0],[0,1,0]]);

reduced matrices definition (to study accuracy)

> Aex := Aexact.Ap; A1 := A1expanded.Ap: A2 := A2expanded.Ap:

definition of multistep equivalent matrices to study the accuracy

> A1.Aytransform.Aex: Aapp_eq := A1.Aytransform.Aex + A2:

> Aex_eq := Aex.Aytransform.Aex:

definition and assessment of the "reduced" error matrix

> diff1 := map(simplify,Aapp_eq-Aex_eq):

> eta := 1; #2; phi := 0; #-1;

> map(simplify,diff1):

> differenza := map(simplify,map(series,diff1,h,6));

STUDY OF STABILITY: (only for first - 1step approximation)

> assume(alpha<1); assume(beta<1); omega:=Omega/h;

> eiga:=LinearAlgebra[Eigenvalues](A1expanded):

> e1 := simplify(convert(series(eiga[1],Omega,5),polynom));

> e2 := simplify(convert(taylor(eiga[2],Omega,5),polynom));

> e3 := simplify(convert(taylor(eiga[3],Omega,5),polynom));

> ro1 := factor(sqrt(e1*conjugate(e1)));

> ro2 := factor(sqrt(e2*conjugate(e2)));

> ro3 := factor(sqrt(e3*conjugate(e3)));

> simplify(eval(ro1,Omega=0));

> simplify(eval(ro2,Omega=0));

> simplify(eval(ro3,Omega=0));

19



using the last known values corresponds to a Jacobi type iteration and may not
converge in some situations.

Basing on the theoretical framework proposed above the error matrix corre-
sponding to the (unrelaxed) iterative application of the correction step can be
directly assessed. The result is simple and interesting. By identifying as Ered

the “reduced” error matrix containing the leading terms in the series expansion
for the error of the “basic” fractional step, the following relations hold

Ered
i=0 =

1

α
Ered (explicit prediction)

Ered
i=1 = Ered (end of basic fractional step procedure)

Ered
i=2 = αEred

Ered
i=3 = α2Ered

This result was verified using a CAS (Computer Algebra System) for the first 4
iterations, by induction we can assume

Ei = αi−1E (54)

This result is important as it states that the simple Jacobi iteration will NOT
converge when α < −1 which corresponds to a case in which the fluid is much
heavier than the structure (or more correctly a case for which the added mass
effect is crucial). Under these conditions an accelerator will be needed to ensure
convergence. This behavior is well known in many practical FSI applications.

It is also important to observe that for values of α ≈ −1, even on the “safe
side”, the simple iterative strategy will converge very slowly. Fast convergence
will on the other hand be achieved for cases in which the added mass effect
is not too important. The conclusion is thus that the basic iterative strategy
works well only when “explicit” schemes are effective, which indeed reduces its
practical importance.

In practice a relaxation factor ω is generally introduced to guarantee con-
vergence. The determination of the optimal value for this relaxation parameter
can be done by trial and error or eventually using some acceleration technique
for alternating vector series. Mok and Wall [7],[19] for example advocate the
use of the Aitken accelerator for FSI problems (the performance appears to be
comparable to the best gradient accelerated techniques). No theoretical justifi-
cation is however given for this behavior.
Interestingly, the optimal value of the relaxation factor appears to depend on
the aeroelastic mass. To show this let us consider first the definition of error

yi
n+1 − yex

n+1 ≈ αi−1Eyn (55)

by making the difference between successive iterations and pre-multiplying by
a given vector vT we obtain

vT
(

yi
n+1 − yi−1

n+1

)

≈ αi−2 (α − 1)vT Eyn (56)

20



and
vT
(

yi−1
n+1 − yi−2

n+1

)

≈ αi−3 (α − 1)vT Eyn (57)

The ratio between the two above equations gives finally an estimate for the
aeroelastic mass coefficient as

α =
vT
(

yi
n+1 − yi−1

n+1

)

vT
(

yi−1
n+1 − yi−2

n+1

) (58)

This estimate is useful for computing the “optimal” relaxation parameter. By
definition the relaxation takes the form

y∗ = ωyi + (1 − ω)yi−1 (59)

Using Eqn(55) and simplifying we obtain

y∗ ≈ yex + (ω + (ω − 1)α)Eyn (60)

which allows us to obtain the optimal relaxation factor as

ω =
α

1 + α
=

v
T (yi

n+1−y
i−1

n+1)
vT (yi−1

n+1
−y

i−2

n+1)

1 +
vT (yi

n+1
−y

i−1

n+1)
vT (yi−1

n+1
−y

i−2

n+1)

=
vT
(

yi
n+1 − yi−1

n+1

)

vT
(

yi−1
n+1 − yi−2

n+1

)

+ vT
(

yi
n+1 − yi−1

n+1

)

(61)
or simplifying.

ω =
vT
(

yi
n+1 − yi−1

n+1

)

vT
(

yi
n+1 − yi−2

n+1

) (62)

This expression allows us to reduce to zero the leading term of the error (on
the SDOF test system) which leads to a higher order of accuracy in time.

It is interesting to highlight how this estimation procedure delivers results
which are very similar to the so called Aitken acceleration (see for example
Eqn(5)) which justifies the success in its application to FSI.

4.1 On the use of dissipative algorithms for the structural

integration

All the results shown up to this moment refer to an exact or non-dissipative
(Newmark) time integration scheme. In many problems of practical interest it
becomes important the use of a dissipative solver to diminish the noise connected
to the high frequencies or simply to guarantee the stability of the time integrator
for non linear problems. Unfortunately the assumption in Eqn(14) is not valid
for various dissipative schemes which does not allow using this framework (which
could be however generalized for the purpose).

We would like however to remark that “surprises” may arise due to a per-
verse combination of errors between the coupling iterations and the structural
solution. This result can be reproduced easily on the test model problem by

21



choosing a rhs in the form RHS = αẍ and using a Bossak time integration
scheme. Even if this aspect is not studied in detail in this work we believe this
is a interesting problem to be addressed in the future.

The results in Fig. 6 shows results of the iterative coupled scheme vs the
ones obtained using the same integrator and a “monolithic” approach. It is clear
how the iterative solution exibits some spurios damping which is not present
when a non-dissipative algorithm is used. This spurious damping appears to
be proportional to the aeroelastic mass and disappears as the time steps tends
to zero. As a consequence, the importance of this effect is reduced as long as
the mass of the structure is sensibly greater than that of the surrounding fluid;
however the phenomena may become of major concern in dealing with heavy
fluids.

As a final comment we would like to point out that a very simple modification
allows to use the fractional step procedure in combination with a dissipative
algorithm. The accuracy can be recovered by using a undamped solver for
the structural prediction while keeping the numerically damped solver for the
solution of the correction step.

5 An improved Iterative Coupling Procedure

As discussed above the simple iterative strategy may encounter convergence
difficulties or even diverge depending on the features of the flow. Even relaxed
iterative strategies may be challenged for the solution of complex interaction
problems when the aeroelastic mass term becomes very important.

From an heuristic point of view this can be justified by considering that most
relaxation strategies perform a relaxation on the displacements term which in
turn reflects on some form of control over the acceleration dependent contri-
butions. Given the high dependency of the acceleration on small variations of
the displacements. This turns out to be ineffective to control the (aeroelastic)
mass-induced oscillations.

A natural solution for this problem is to control the variation of the accelera-
tion in order to improve the convergence of the terms that are most problematic
in the interaction. The idea is better expressed in mathematical terms. The dif-
ferential equations governing the dynamic equilibrium, follow a “basic” iterative
scheme of the form

Mẍi+1
n+1 + Dẋi+1

n+1 + Kxi+1
n+1 = pi

n+1 (63)

This equation can be modified symbolically to give

Mẍi+1
n+1 − αMẍi+1

n+1 + Dẋi+1
n+1 + Kxi+1

n+1 = pi
n+1 − αMẍi

n+1 (64)

where αi is a scalar term known from the i-th iteration. Clearly as
∥

∥ẍi+1 − ẍi
∥

∥→
0 the solution of this modified equation model tends to the original solution.
Nevertheless the parameter α has an important impact on how the modified
problem converges to the coupled solution.

22



Once again our simple model problem is of great help in investigating the
convergence properties for this modified equation. We already know that the
case p = Mfsiẍ is the main responsable of the convergence difficulties for the
iterative strategy. We will therefore develop our analysis on the simpler case

Mẍi+1
n+1 + Kxi+1

n+1 = αMẍi
n+1 (65)

which has the same convergence properties as the more general case. The mod-
ified problem becomes

(M − αM) ẍi+1
n+1 + Kxi+1

n+1 = (αex − α) Mẍi
n+1 (66)

by dividing by 1 − αi this can be recasted as

Mẍi+1
n+1 + Kxi+1

n+1 =
αex − α

1 − α
Mẍi

n+1 (67)

were we modified accordingly the stiffness term (which does not play a role in
the stability). The system assumes now the form of Eqn(65), of which it inherits
the same properties. The condition for convergence becomes

∣

∣

∣

∣

αex − α

1 − α

∣

∣

∣

∣

< 1 (68)

As observed before (see Eqn(12)) αex < 1. The parameter α is an approximation
of αex we can therefore take α < 1. Under this assumption the unequality can
be solved to give

α <
1

2
αex +

1

2
(69)

Basing on the results shown before we can conclude that for a system in the

form of Eqn(67) the error varies with iterations as Ei =
(

αex−α
1−α

)i−1

E0. It

follows that the optimal choice for the modified equation method is given by
α = αex, for which the spurious oscillations are immediately damped out.

The presence of the modification factor α affects sensibly the condition for
stability, hereby greatly increasing the “area” of convergence. Any choice of the
type α < αex guarantees stability and monothonic convergence (0 < αex−α

1−α
< 1)

while the choice αex < α < 1
2αex + 1

2 guarantees stability but oscillatory con-
vergence. Unfortunately the exact value for the term “alpha” is not known.
However Eqn(69) ensures that the convergence is robust and that a rough esti-
mation of the optimal parameter is sufficient to ensure convergence.

Before proceeding any further let’s make some heuristic considerations on
the properties of the iterative scheme proposed. The crucial point is that at
every iteration we solve a problem that is different from the original one and
which solution becomes increasingly similar to that of the original problem as
the iterative process converges. Even “at convergence”, an error exists which
implies that the solution found corresponds to a slightly different problem. The
choice of an error tolerance therefore imply how closely the modified equations
will “mimic” the real problem. The important point is however to guarantee “a
priori” the stability of the coupled procedure while improving the accuracy as
needed. Note that this is not the case for a general relaxation scheme.

23



5.1 Estimating alpha

The real interest of any acceleration scheme is of course in application to real
models. For such problems we can observe that the interface force should be
oriented as the normal to the interface and proportional to the surface area,
while an heuristic consideration tells us that only the acceleration normal to
the interface will play a role in the coupling. This suggests that Mfsi should
take, on each interface node, a form of the type Mfsi = αAnAT

n where An

represents the normal at one interface node multiplied by the corresponding
influence area.

Several possibilities exist for the practical evaluation of the parameter alpha.
A good estimation could be derived by physical reasoning or by considering the
actual choice of the flow solver.

An alternative procedure, which makes use exclusively of the data at different
iterations is derived next for the non-scalar case. Assuming αi to be constant,
the application of Eqn( 67) to two successive iterations gives

Mẍi+1
n+1 =

αex − α

1 − αi
Mẍi

n+1 −
1

1 − αi
Kxi+1

n+1 (70)

Mẍi
n+1 =

αex − α

1 − αi
Mẍi−1

n+1 −
1

1 − αi
Kxi

n+1 (71)

Subtracting the above equations and pre-multiplying by M−1 gives

ẍi+1
n+1 − ẍi

n+1 =
αex − α

1 − αi

(

ẍi
n+1 − ẍi

n+1

)

− 1

1 − αi
M−1K

(

xi+1
n+1 − xi

n+1

)

(72)

For small time steps the accelerations governs the phenomena (a small vari-
ation in displacements in a small time induces a high acceleration to rise). This
allows to neglect the term M−1K

(

xi+1
n+1 − xi

n+1

)

. Under this assumption, pre-
multiplying both sides by ẍi

n+1 − ẍi
n+1 we obtain the scalar relation

c =
αex − α

1 − αi
(73)

where

c :=

(

ẍi+1
n+1 − ẍi

n+1

)T (
ẍi+1

n+1 − ẍi
n+1

)

(

ẍi+1
n+1 − ẍi

n+1

)T (
ẍi

n+1 − ẍi−1
n+1

)

(74)

Eqn(73) can be solved for αex and used for for calculating αi+1 := αex

We remark that this procedure represents only one of the many possibilities
to obtain a value for alpha. In many cases it may be attractive to use aconstant
obtained by other sort or reasoning. In any case, once α has been estimated (by
any means) the relaxation method proposed can be easily implemented with a
minor modification to the structural solution code.

24



5.2 A simple example to verify the implementation

A very simple example can be used to verify the correctness of the implemen-
tation. This is obtained by taking a 1m cube of elastic material subjected to a
variable pressure on one side.

The external pressure is made dependent on the acceleration following a law
of the type p = Mfsiẍnorm. For this numerical setting, the proposed method
is expected to recover exactly the aeroelastic matrix and, apart for an initial
transient phase, to reproduce the analytical result in just one iteration (two
iterations are actually needed for convergence to be detected).

Taking ρ = 1000Kg
m3 , E = 5e9 N

m2 , ν = 0, t = 1m and using a lumped mass
matrix the actual system to be solved is equivalent to the scalar problem

1

2
Mẍ +

EA

L
x = Mfsiẍ (75)

Assuming Mfsi = −1000, for which the standard staggered approach would
not converge, the system takes the following form

500ẍ + 5000000x = 1000ẍ (76)

Fig. 7 shows a comparison between the exact and analytical results. Con-
vergence is obtained at the second iterations except during the first three steps.
A plot of the error norm

∥

∥ẍi+1 − ẍi
∥

∥ is given in Fig. 8

6 Restrictor Flap

This test was proposed by Wall and Mok [19] and [7], as a challenging test for the
stability of coupled procedures. The geometry is described in Fig. 9. The data
used for the analysis are ρF = 956Kg/m3, µ = 0.145Kg/ms, ρS = 1500Kg/m3,
E = 2.3MPa, ν = 2.3MPa. The resulting pressure histories are shown in Fig.
10 and directly compared with the results of the literature. The frames shown
in Fig. 11 show the evolution of the coupled fluid-structure deformation and
compare well with the results of the same example as reported in Mok [19]. A
second order fractional step solver is used in solving the problem. The resulting
pressure histories are shown in Fig. 10 and directly compared with the results
of the literature

7 Flag flutter

An interesting validation example is that of a square bluff body followed by
a flexible cantilever plate as shown in Fig. 6. The prescribed distribution
of velocities is shown in the same figure. The numerical setup is reproduced
following [4]. The fluid characteristics are ρf = 1.18Kg

m3 , µ = 1.8e − 5Kg
ms

the

structure has a elastic modulus of 200000 N
m2 and a density ρs = 2000Kg

m3 with
the first three natural frequencies at 0.61,3.8 and 10.6 Hz.

25



By applying a constant velocity at the inflow Uinflow = 0.315m
s
, the bluff

body sheds Von Karman vortices with a frequency of 3.7 Hz. (on the rigid sys-
tem) close to the second natural frequency of the structure. In the rigid case the
pressure oscillations are relatively small, consequently only small displacement
motion could be expected due to the vortex shedding.

Given the proximity between the shedding frequency and the structural fre-
quency on the other hand lock-in can manifest leading to large amplitude “res-
onant” motion. After a first phase of growth, the amplitude of vibration is
however expected to reach a “stable” solution with a peak amplitude of around
0.08m.

Loose coupling procedures based on high order prediction steps (see [24]) are
known to be unstable for this example. On the other hand, procedures based
on a first order prediction step enforce poorly the energy conservation at the
interface, leading to an important numerical positive damping (unless the time
step is very small). This example was in fact originally proposed as an argu-
ment for the necessity of implicit procedures for non-linear aeroelasticity. The
results shown were however obtained using the (loosely coupled) fractional step
procedure described in this work. The Fourier transform of the displacement
history is given in Fig. 6. The leading peak is found at a frequency of 3.04Hz
in good agreement with the value of 3.1Hz published in [4]. The displacement
history of the tip is reported in Fig. 6 on top of the history reported in the
reference article. The excellent agreement found with the literature proves the
effectivenes of our scheme even for challenging simulations.

8 A Practical example

To conclude this work we propose an example of application for the fractional
step algorithm proposed in the first part of the paper. The goal of this example
is twofold: from one side our interest is in showing that the algorithm actually
“works”, also we want to prove that the coupling error is dominated by the fluid
solution phase rather than by the coupling procedure.

To do so we will focus our attention on the calculation of the flutter deriva-
tives for a long span bridge deck (The Great Belt bridge section) subjected to
a constant wind speed. First we present briefly the engineering theory, then we
review two methods used for the experimental determination of the coefficients
needed, and finally we will show that the two techniques lead to similar results,
proving that the coupled procedure delivers satisfactory results.

Even if the final design still relies on experimental testing, a well established
theory of bridge aerodynamics [20] was developed in the early 70s and is still
used in engineering applications. In a modern revision [16] the theory is based
on the assumption of a mathematical model in the form

L(t) = ρ U2B

(

KH1 ẏ

U
+

KH2 Bα̇

U
+ K2H3 α +

K2H4 y

B

)

(77)

26



M(t) = ρ U2B2

(

KA1 ẏ

U
+

KA2 Bα̇

U
+ K2A3 α +

K2A4 y

B

)

(78)

where K = ωB
U

. Eqns(77) and (78) express the forces exerted by the fluid on
the structure due to the motion of the latter. The coefficients in these equa-
tions are known as “aeroelastic derivatives” and are obtained experimentally.
Interestingly enough this model can be shown to be equivalent to the model
A(ω)v + B(ω)x which we assumed for the analysis of our coupling algorithms.

All the coefficients in Eqns(77) and 78 need to be identified experimentally
through the analysis of sectional models.

The solution of the bridge aerodynamic problem has been addressed in many
CFD works over the past years, nevertheless the most frequent approach in
numerical analysis is focused on the direct determination of the flutter limit
[21, 25, 8, 15]. This is generally measured through the direct assesment of
the system’s energy, or possibly by the analysis of the displacement history.
Unfortunately many factors come into play in this process making difficult the
identification of the error sources. Even if in general these errors are on the
numerical side it is interesting that even the experimental results may be affected
by factors such as the correspondence of the numerical Reynolds to the real one,
or the blockage ratio for the model tested.

In the practice, at least two techniques exist for the experimental determi-
nation of the flutter derivatives. One based on the prescription of the section
motion and on the analysis of the history of the forces applied from the fluid to
the structure. The second one based on the analysis of the displacement history
of the section model mounted on springs. Details on the procedure used for the
identification of the aeroelastic derivatives in the two cases are prodvided in the
Appendix.

Both of those procedures can be reproduced numerically. The forced vibra-
tion approach does not involve any coupling error and can be considered as a
reference solution for the evaluation of the equivalent coupled approach. Its
performance is governed exclusively by the properties of the fluid solver and by
the computational mesh used.

In the hypothesis that the same initial solution, mesh and boundary con-
ditions are used, the aeroelastic derivatives computed using a “free vibration”
(coupled FSI) approach can be directly compared to the ones obtained from the
forced analysis. This comparison allows to isolate the coupling error from the
other error sources thus reaching the desired objective.

The advantages of this approach are self evident. A similar result could be
achieved by direct comparison with the experimental results once the ability of
the fluid solver to describe correctly the phenomena is guaranteed. This would
require fine meshes greatly increasing the computational cost, thus making the
testing procedure unsuitable for the study of different coupling strategies. On
the other hand by comparing two numerical results obtained under the same
condition we can directly asses the impact of the coupling on the final results,
which is the objective of current work.

27



Table 4: Description of the validation procedure

• Construct the model and compute a starting solution by keeping the sec-
tion fixed

• Prescribe the motion of the section and identify the aeroelastic derivatives
for different frequences

• Suspend the section on springs calculating the spring so to be in the range
of reduced velocities of interest.

• Calculate the aeroelastic derivatives in free motion

• Evaluate the coupling properties by comparing the two curves

8.1 Numerical Setup

The identification techniques described above were used for the identification of
the aeroelastic derivatives of a bridge cross-section. Due to the availability of
validation data the cross-section of the great belt suspension span in Denmark
was chosen for the benchmark exercise. This section, was studied numerically
and experimentally [15, 3, 2]. The experimental plots used for the comparison
were taken from [6].

The domain used in the simulation, as represented in Fig.( 8.1), was chosen
so to keep around 6% the ratio between the section chord and the vertical dimen-
sion of the domain in order to minimize the blockage effect. An unstructured
mesh composed of 9197 nodes and 17862 triangular elements with a minimum
element size (around the bridge deck) of 0.15m was used.

Only pressure force are transferred to the structure, negleting the contribu-
tion of viscous forces (which would be poorly approximated by a mesh as the
one described). This approximation is commonly accepted for bridges which
behave as bluff bodies.

The actual dimensions of the cross-section were used with a Reynolds num-
ber that was consequently far greater than the one reproduced in wind tunnel
testing. Even if this could theoretically lead to important discrepancies with
the experimental data, it is currently believed that for the case of interest the
derivatives are fairly independent of the Reynolds number of the flow. The inflow
velocity was therefore taken as 10m/s corresponding to a Re = v∞B

ν
≈ 2 ∗ 107.

No turbulence model was included in the simulation however a subgrid scale
stabilization was used.

The structural displacements were kept small with a maximum pitching an-
gle of 3deg and a maximum motion in heave of 1.57m in accordance to the values
reported in [20, 2]. The reduced frequency

Uinflow

nB
, was varied by changing the

value of the frequency n of the prescribed sectional motion. This allowed to start
all the simulations exactly from the same initial conditions. An initial velocity
was prescribed to the structure in order to study the decay or growth of the

28



initial solution. This velocity was chosen so to provide a maximum displacement
“in vacuo” corresponding to the one for the prescribed motion setting. This was
enforced by considering that in absence of fluid the system is conservative, from
which follows

1

2
Mv2

in =
1

2
Kx2

max → vin =

√

K

M
xmax (79)

This setup was used for the assessment of the explicit coupling procedures
implemented in Kratos, a Multi-Physics code developed at CIMNE (www.cimne.com)
. Both first and second order solvers were used, the latter being vastly superior
in reproducing the experimental curves. For the first order case, showed in Fig.
15 the mesh and step size are not sufficiently fine to reproduce the experimental
curves. The results of interest are however clearly met as the identified deriva-
tives follow a similar behavior using both identification techniques, proving that
the error is governed by the fluid solution and not by the coupling error. This
allows in the practice to use a much coarser mesh than that normally be needed
to get rid of the errors in the fluid solution, which in turn provides an important
advantage for the quick assesment of the performance of the coupling procedure.

We remark that the use of a second order solver for the fluid solution (on the
same computational setup) reproduces accurately the experimental curves using
the free vibration procedure (see Fig. 16). This confirms the good performance
of the coupling procedure used.

9 Conclusions

A simple model problem is presented and used to predict the behaviour of some
coupling algorithm for applications of FSI. In particular a “Fractional Step”
type algorithm and a coupling strategy based on the modification of the dynamic
equilibrium equations have been analysed. Although simple, the model allows
to justify the stability or instability of some coupled strategies and to justify the
success of some accelerators proposed in the literature. The effectivness of the
algorithms analysed is proved first by comparing their performance with other
results from the available literature and later by showing their effectiveness for
the solution of the problem of bridge aeroelasticity. This latter case is treated
using free and forced vibration approaches so to be able to assess the error
induced by the FSI coupling. The results confirm that the coupling error is
negligible when compared to the errors in the fluid solution.

10 Acknowledgements

Present work was partially supported under the auspices of the Beatriu de Pinos
Program of the Generalitat de Catalunya and by the SEDUREC project of the
Consolider Programme of the Ministerio of Educacion y Ciencia of Spain. The
authors would like to thank Dr. Lazzari, Prof. Saetta and all the group of Prof.
Vitaliani in Padova for the many helpful discussions on the topics analysed.

29



References

[1] M. Gluck A. Halfmann, E. Rank et al. A partitioned solution approach for
the fluid-structure interaction of wind and thin walled structures. Technical
report, TU Munchen, Universitat Erlangen-Nurnberg, 2000.

[2] J.H.Walther A.Larsen. Aeroelastic analysis of bridge girder sections based
on discrete vortex simulations. Journal of Wind Engineering and Industrial

Aerodynamics, 67:253–265, 1997.

[3] J.H.Walther A.Larsen. Discrete vortex simulation of flow around five
generic bridge deck sections. Journal of Wind Engineering and Industrial

Aerodynamics, 77:591–602, 1998.

[4] D. Dinkler B. Hubner, E. Walhorn. A monolithic approach to fluid-
structure interaction using space-time finite elements. CMAME, 2003.

[5] G. Brown C. Farhat, P. Geuzaine. Application of a three-field non-linear
fluid-structure formulation to the prediction of the aeroelastic parameters
of an f-16 fighter. Computers and Fluids, 32:3–29, 2003.

[6] D. Cobo del Arco and A.C. Aparicio Bengoechea. An analysis of wind
stability.improvements to the response of suspension bridges. Technical
report, CIMNE, 1999.

[7] W.A. Wall D.P. Mok. Partitioned analysis schemes for the transient inter-
action of incompressible flows and nonlinear flexible structures. In trends

in computational structural mechanics, Barcelona, 2001.

[8] S.Piperno E. Briand. Validacion du code nsi3fs sur des ecoulements tur-
bulents autour d’un tablier de pont elementaire. Technical report, INRIA,
2002.

[9] A.Halfmann E. Rank, D. Scholz et al. Fluid-structure interaction in civil
engineering. In Second MIT conference on Computational Fluid And Solid

Mechanics, 2003.

[10] B. Hubner E. Walhorn, A. Kolke and D. Dinkler. Fluid-structure coupling
within a monolithic model involving free surface flows. computers and

structures, submitted:2100–2111, 2005.

[11] C. Felippa. Fsi course: chapters 1 - 11.
http://www.colorado.edu/engineering/CAS/courses.d/FSI.d/Home.html,
2004.

[12] J. Steindorf H.G. Matthies. Partitioned strong coupling algorithms for
fluid-structure interaction. Technical report, Technical University Braun-
schweig, Brunswick, 2002.

[13] J. Steindorf H.G. Matthies. Strong coupling methods. Technical report,
Technical University Braunschweig, Brunswick, 2002.

30



[14] T.J.R. Hughes. The Finite Element Method. Dover, 2000.

[15] J.B.Frandsen. Simultaneous pressures and accelerations measured full-scale
on the great belt east suspension bridge. Journal of Wind Engineering and

Industrial Aerodynamics, 89:95–129, 2001.

[16] A. Larsen. Advances in aeroelastic analyses of suspension and cable stayed
bridges. Journal of Wind Engineering and Industrial Aerodynamics, 74:73–
90, 1998.

[17] M. Lazzari. Time domain modelling of aeroelastic bridge decks: a com-
parative study and an application. International Journal For Numerical

Methods in Engineering, 62, 2005.

[18] Celine Grandmont Miguel Angel Fernandez, Jean-Frederic Gerbeau. A
projection semi-implicit scheme for the coupling of an elastic structure with
an incompressible fluid. Technical report, INRIA, 2005.

[19] D.P. Mok. Partitionierte Lungsansze in der Strukturdynamik und der

Fluid-Struktur-Interaktion. PhD thesis, Institut fr Baustatik, Fakult
Bauingenieur- und Umweltingenieurwissenschaften, 2001.

[20] J.J. Tomko R. Scanlan. Airfoil and bridge deck flutter derivatives. J.

Mechanical Division, EM6, 1971.

[21] S.Govindaswamy R.P.Selvam. Aeroelastic analysis of bridge girder section
using computer modeling. Technical report, University Of Arkansas, 2001.

[22] R.Rossi. Ligh-weight structures - Numerical Analysis and Coupling Issues.
PhD thesis, University of Padova, Italy, 2005.

[23] B. Larroutorou S.Piperno, C.Farhat. Partitioned procedures for the tran-
sient solution of coupled aeroelastic problems - part1 - model problem,
theory and two dimensional applications. Computer Methods in Applied

Mechanics and Engineering, 124:79–112, 1995.

[24] C.Farhat S.Piperno. Partitioned procedures for the transient solution of
coupled aeroelastic problems - part2 - energy transfer analysis and three
dimensional applications. Computer Methods in Applied Mechanics and

Engineering, 190:3147–3170, 1995.

[25] E.Bournet. S.Piperno. Numerical simulation of wind effects on flexible civil
engineering structures. Technical report, INRIA, 1999.

11 Appendix

11.1 Forced motion procedure

One first approach is based on the application of a prescribed sinusoidal motion
to the bridge section which is then subjected to the fluid flow. A description

31



of the testing procedure can be found in [3] or, with a similar approach in [21].
The “experimental” setup can be expressed as follows:

• fix the horizontal and vertical motion of the cross section

• prescribe a sinusoidal pitching motion (a prescribed rotation) with a known
angular frequency

• measure the forces and moments on the section

• perform a (linear) least-square fitting of the measured forces with an equa-
tion in the form x(t) = Asin(ωt+φ) both for the moment history and lift
history.

• use the fitted values for A and φ to identify the coefficients as described
below

The identification is performed through a (linear) least square fit of the
recorded moment and lift histories using an expression of the form Asin(ωt+φ).
The simple trigonometric identity

Asin(ωt + φ) = Bsin(ωt) + Ccos(ωt)) ; A =
√

B2 + C2 , φ = tan−1

(

C

B

)

(80)
together with the auxiliary vectors (N is the number of measured time steps, δt
the stepsize)

vs =





sin(ωδt)
...

sin(ωNδt)



 vc =





cos(ωδt)
...

cos(ωNδt)



 (81)

allows to rewrite the fitting problem as

M = Bmvs + Cmvc ; (82)

L = Blvs + Clvc ; (83)

where the moment and lift histories are written in vector form as

M =





M(δt)
...

M(Nδt)



 L =





L(δt)
...

L(Nδt)



 (84)

by multiplying each of them once by vT
s and then by vT

c it is possible to obtain
the systems

(

vs • vs vs • vc

vs • vc vc • vc

)(

Bm

Cm

)

=

(

vs • M

vc • M

)

(85)

and
(

vs • vs vs • vc

vs • vc vc • vc

)(

Bl

Cl

)

=

(

vs • L

vc • L

)

(86)

32



Table 5: Relations for computing the aeroelastic derivatives: the upper index
indicates the prescribed sectional motion, the lower index the equation used in
fitting the load history

• Prescribed heave:

H4 =
Bheave

lift

ρ B2w2y0
; H1 =

Cheave
lift

ρ B2w2y0

A4 =
Bheave

mom

ρ B3w2y0
; A1 =

Cheave
mom

ρ B3w2y0

• Prescribed rotation:

H3 =
Bpitch

lift

ρ B3w2α0
; H2 =

Cpitch
lift

ρ B3w2α0

A3 =
Bpitch

mom

ρ B4w2α0
; A2 =

Cpitch
mom

ρ B4w2α0

which can be solved for the desired fitting coefficients. By considering further
that the measured load histories were obtained by prescribing a sinusoidal mo-
tion (pitching) of the type

α = α0sin(ωt) (87)

α̇ = α0ωsin(ωt) (88)

α̈ = −ω2α (89)

and substituting this in Eqn(78) we obtain

L = Blvs + Clvc = (ρB3ω2H3α0)vs + (ρB3ω2H2α0)vc (90)

M = Bmvs + Cmvc = (ρB4ω2A3α0)vs + (ρB4ω2A2α0)vc (91)

which links the fitting coefficients to the aeroelastic derivatives. By proceeding
in a totally analogous way prescribing a displacement history in the form

y = y0sin(ωt) (92)

ẏ = y0ωsin(ωt) (93)

ÿ = −ω2y (94)

which represents a heaving motion, it is possible to identify the remaining four
derivatives. Table (5) summarizes the relevant formulae for the calculation of
the aeroelastic derivatives.

33



11.2 Free vibration method

The second procedure for the determination of the aeroelastic coefficients is
based on the analysis of the displacement history of the sectional model mounted
on a set of springs of known stiffness. This testing procedure is more challenging
for the interaction as it involves a completely coupled analysis, which introduces
a further error source. An excellent example of application to bridges can be
found in [25, 8]. In these works however the free vibration procedure is used to
assess directly the flutter speed by evaluating the energy variation.

The original identification procedure as proposed by Scanlan [20], is based
on a three step analysis in which the cross section mounted on springs is first
restrained in heave, then in rotation and finally left completely free. This was
needed as the available setup allowed to record exclusively the displacement
history but not the restrain forces. The approach described in the following is
slightly different and it involves only two sets of simulations by making use of
both displacement histories and forces records.

The dynamical equation of motion in rotation for a bridge section subjected
to small displacements takes the form

Iα̈ + Cαα̇ + Kαα = M(t) (95)

In order to identify the first set of aeroelastic derivatives it is convenient to
restrain the motion in heave while leaving “free” the rotation. Under this as-
sumption, substituting Eqn( 78) into Eqn( 95) gives

Iα̈ + Cαα̇ + Kαα = ρB3w (BA2α̇ + wBA3α) (96)

which provides a description of the motion of the section in its interaction with
the fluid. Eqn(96)can be formally rewritten as

Iα̈ + 2Iωξα̇ + Iω2α = 0 (97)

with
2Iωξ = Cα − ρωB4A2 (98)

and
Iω2 = Kα − ρω2B4A3 (99)

The differential equations in the form described in Eqn(97) have an analytical
solution of the type.

αteo(t) = Ae−ξωtsin(ωt + φ) (100)

Assuming that the mathematical model proposed by Scanlan describes correctly
the real structural behaviour, it is possible to fit the “experimental” solution
with a mathematical expression given by Eqn(100). A non-linear fitting of the
motion history allows therefore computing the coefficients A, ξ, ω, φ. which can
be used for the determination of A2, A3 as

A2 = −−Cα + 2Iξω

ρB4ω
; A3 = −−Kα + Iω2

ρB4ω2
(101)

34



The derivatives H2 and H3 can be identified making use of the recorded lift
forces using a technique that is very similar to the one performed in the previous
section. The lift history can be seen as generated from an imposed displacement
in pitch described by an equation such as Eqn(97). The first step is therefore
to fit the lift history with the following function

Lfitted = Bpitch
lift e−ξωtsin(ωt + φ) + Cpitch

lift e−ξωtcos(ωt + φ) (102)

The second step is to substitute Eqn(100) into the moments equation to obtain
a theoretical expression in the form

Lteo = −ρB3ω2Ae−ξωt (H2ξ sin (ωt + φ) − H2 cos (ωt + φ) − H3 sin (ωt + φ))
(103)

by equating the last equations, collecting the “cos” and “sin” terms and equating
them to zero, we obtain

H2 =
Cpitch

lift

ρB3ω2
; H3 =

Bpitch
lift + Cpitch

lift ξ

ρB3ω2
(104)

which is the desired result.

11.3 Free heave

The identification of the remaining four derivatives follows a similar path. Once
the non linear fitting of the lift equation is performed, two of the aeroelastic
parameters can be identified as

H1 = −−Cy + 2mξω

ρB2ω
; H4 = −−Ky + mω2

ρB2ω2
(105)

The remaining two parameters, after fitting the moment equation as described
above, take the form

A1 =
Bheave

mom + Cheave
mom ξ

ρB3ω2
; A4 =

Cpitch
lift

ρB3ω2
(106)

The identification of the parameters can be performed by non linear fitting
techniques. The nonlinear fitting routines provided in “scipy” a scientific library
included in “python” (see www.python.org) were used in the computations. The
convergence of the fitting process was ensured by taking as initial value for the
fitting process an estimate for all the relevant parameters.

35



Figure 3: Plot of ρapprox − 1

-0,6

1 0,1

-0,4

0,5 0,05

-0,2

beta xi

0
00

-0,05 -0,5
-0,1 -1

(a) ndiv = 2

-0,25

1

-0,2

0,1

-0,15

0,5

-0,1

0,05

beta

-0,05

xi

0
00

0,05

0,1

-0,05 -0,5
-0,1

-1

(b) ndiv = 4

1 0,1

-0,06

-0,04

0,5 0,05

beta

-0,02

xi

0
00

0,02

-0,05

0,04

-0,5

0,06

-0,1 -1

(c) ndiv = 10

1
0,1

beta xi

-0,03

0,5 0,05

-0,02

-0,01

00
0

0,01

-0,05 -0,5

0,02

-0,1

0,03

-1

(d) ndiv = 20

1
0,1

beta xi

-0,015

0,5 0,05

-0,01

-0,005

00
0

0,005

-0,05 -0,5

0,01

-0,1

0,015

-1

(e) ndiv = 40

1
0,1

beta xi

-0,008

0,5 0,05

-0,004

00
0

-0,05

0,004

-0,5
-0,1

0,008

-1

(f) ndiv = 80

36



Figure 4: Plot of
ρapprox−ρexact

ρexact

-0,6

1 0,1

-0,4

0,5 0,05

-0,2

beta xi

0
00

-0,05 -0,5
-0,1 -1

(a) ndiv = 2

-0,25

1

-0,2

0,1

-0,15

0,5

-0,1

0,05

beta

-0,05

xi

0
00

0,05

0,1

-0,05 -0,5
-0,1

-1

(b) ndiv = 4

Figure 5: Error plot: Aitken Acceleration - red line, “Consistent Acceleration”
- green line. α = 0.5 , β = 0.0

-8e-12

-6e-12

-4e-12

-2e-12

0

2e-12

4e-12

6e-12

8e-12

0 1 2 3 4 5 6 7 8 9 10

alpha = -0.5 , beta = 0.0 

37



Figure 6: Comparison between exact and iterative coupled solutions using the
Bossak Algorithm. Bossak parameter = -0.1, period divided in 50 steps - Mono-
lithic solution is dashed while the solution of iterative coupling is represented
with a continuum line

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20 30 40 50 60 70 80

time

Monolithic and Iterative solution using Bossak algorithm: Mae = -0.5M

Figure 7: Comparison between analytical and numerical solution for the cube
model problem

Analytical VS Numerical Solutions

-0.00008

-0.00006

-0.00004

-0.00002

0

0.00002

0.00004

0.00006

0.00008

0 0.01 0.02 0.03 0.04 0.05

time

D
is

p
la

c
e
m

e
n

t

Analytical

Numerical

38



Figure 8: Acceleration error for the simple cube benchmark scheme

error plot

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1

1

0 500 1000 1500 2000

step number

e
rr

o
r 

o
n

 a
c
c
e
le

ra
ti

o
n

Figure 9: Restrictor flap - mesh of 7928 elements

39



Figure 10: Pressure vs time at mid-height (A) and at the tip (B)
, Results of pressure VS time are shown on the top of the curves found in the

literature

0

5

10

15

20

25

0 5 10 15 20 25

40



Figure 11: Analysis of a restrictor flap. Contours of velocity. Symmetry bound-
ary condition is used on the top boundary

(a) t = 5s

(b) t = 10s

(c) t = 15s

(d) t = 20s

(e) t = 25s

41



Figure 12: Flexible plate behind a square bluff body - view of the domain

Figure 13: Flexible plate, tip displacement history - Numerical results

flag flutter

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

0 5 10 15 20 25

time

ti
p

 d
is

p

42



Figure 14: Flexible plate, Fourier analysis of tip displacement

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 10 20 30 40 50 60 70 80 90 100

frequency [Hz]

Tip Displacement - FFT analysis

Figure 15: Fitting of experimental aeroelastic derivatives, using a first order
accurate solver for the fluid domain

43



Figure 16: Free rotation fitting of experimental aeroelastic derivatives using a
second order accurate solver for the fluid domain

Figure 17: Cross section of Great Belt suspension bridge. View of the mesh
used in the computations.

44


	Intro
	solver_tech_1
	Improvement of Tools for  Coupled Fluid
	trim_Kratos
	pics_kratos
	roberto



