Robust Stability Analysis: a Tool to Assess the Impact of Biodynamic Feedthrough on Rotorcraft

G. Quaranta¹, P. Masarati¹, J. Venrooij²,³

¹ Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, Italy
² Max Planck Institute for Biological Cybernetics, Tuebingen, Germany,
³ BioMechanical Engineering, Delft University of Technology, Delft, NL

AHS 68th Annual Forum, Fort Worth, Texas, May 1-3, 2012
Outline

- Aeroelastic Rotorcraft/Pilot Couplings
- Robust Stability Analysis
- Biodynamic Feedthrough
- Robust Stability of Aeroelastic Rotorcraft-Pilot Couplings
- Conclusions and Future Work
Outline

- **Aeroelastic Rotorcraft/Pilot Couplings**
 - Robust Stability Analysis
 - Biodynamic Feedthrough
 - Robust Stability of Aeroelastic Rotorcraft-Pilot Couplings
- Conclusions and Future Work
Aeroelastic A/RPC

Aircraft/Rotorcraft-Pilot Couplings are

“unintentional (inadvertent) sustained or uncontrollable vehicle oscillation characterized by a mismatch between the pilot’s mental model of the vehicle dynamics and the actual vehicle dynamics.” (Mc Ruer)

ARISTOTEL: research project sponsored by EC 7th FP led by TUDelft

Aircraft and Rotorcraft Pilot Couplings Tools and Techniques for Alleviation and Detection
http://www.aristotelproject.eu/

This presentation is related to research on aeroelastic RPC resulting from involuntary control inputs generated by the pilot as a consequence of vibrations of the vehicle
Aeroelastic A/RPC

- Voluntary interaction (PIO) “active” pilot
- Involuntary interaction (PAO) “passive” pilot (Biodynamic Feedthrough)
Aeroelastic A/RPC

Vehicle:
- Certain (deterministic): models available
- Assumed asymptotically stable (stabilized if needed)
Aeroelastic A/RPC

Pilot:
- Intrinsically uncertain
- Models often unavailable or unreliable
- Assumed intrinsically asymptotically stable

“uncertain”
Aeroelastic A/RPC

Biodynamic Feedthrough (BDFT)

- Cockpit vibration excites the pilot
- Pilot exerts involuntary controls
- BDFT is (device and) task dependent [1]

Aeroelastic A/RPC

Biodynamic Feedthrough (BDFT)

- Cockpit vibration excites the pilot
- Pilot exerts involuntary controls
- BDFT is (device and) task dependent [1]

Outline

- Aeroelastic Rotorcraft/Pilot Couplings
- **Robust Stability Analysis**
- Biodynamic Feedthrough
- Robust Stability of Aeroelastic Rotorcraft-Pilot Couplings
- Conclusions and Future Work
Robust Stability Analysis

Vehicle: linear time invariant (LTI), asymptotically stable system

\[u \rightarrow G'(s) \rightarrow y \]

Can be modified using Linear Fractional Transformation (LFT)

\[u \rightarrow G(s) \rightarrow y \]

- \(G'(s): \) vehicle (+ pilot)
- \(G(s): \) vehicle
- \(\Delta(s, p): \) pilot
- \(y: \) acceleration
- \(u: \) control input
- \(p: \) uncertain parameters (within bounds)
Robust Stability Analysis

Assumptions:
• The baseline system is stable (either the possibly augmented vehicle alone is stable, or a baseline pilot model stabilizes it)
• The nominal pilot transfer function is stable for allowable values of the uncertain parameters

\[
\begin{bmatrix} y \\ \eta \end{bmatrix} = \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix} \begin{bmatrix} u \\ \zeta \end{bmatrix} \quad \zeta = -\Delta \eta
\]

The coupled system

\[
y = \left(G_{11} - G_{12} \Delta \left(I + G_{22} \Delta \right)^{-1} G_{21} \right) u
\]

is stable when the loop transfer matrix

\[
H(s, p) = G_{22}(s) \Delta(s, p)
\]

is stable (Generalized Nyquist Criterion, GNC: Nyquist criterion applied to eigenvalues of \(H \)).
Nyquist eigenloci: distance of eigenvalues of nominal $H = G_{22} \Delta$ from point (-1, j*0) determines stability margin
Robust Stability Analysis

Distance of eigenvalues of $H = G_{22}\Delta$ from (-1, j*0):
- Magnitude: generalized gain margin
- Direction: generalized phase margin

Determine stability limits; can be mapped on value of uncertain parameters p

- When magnitude resulting from uncertain params envelope is below limit amplitude, instability is not possible
- Otherwise, instability occurs when phase matches direction towards (-1, j*0)
Outline

• Aeroelastic Rotorcraft/Pilot Couplings

• Robust Stability Analysis

• **Biodynamic Feedthrough**

• Robust Stability of Aeroelastic Rotorcraft-Pilot Couplings

• Conclusions and Future Work
Biodynamic Feedthrough

- Voluntary interaction (PIO)
- Involuntary interaction (PAO)

forces

involuntary forces
(admittance)

deflections
involuntary deflections
(BDFT)

Rotorcraft

Pilot

controls
device

vehicle acceleration
Biodynamic Feedthrough

SIMONA research simulator

- Control devices:
 - Electrically actuated coll. & cyclic
- Input signals:
 - Motion dist. (on sim): BDFT
 - Force dist. (on stick): admittance
- Results [1]:
 - Admittance estimate
 - BDFT estimate

Biodynamic Feedthrough

Admittance & BDFT are task dependent
Admittance not so important for collective

![Graphs showing admittance and BDFT](image-url)
Outline

- Aeroelastic Rotorcraft/Pilot Couplings
- Robust Stability Analysis
- Biodynamic Feedthrough
- Robust Stability of Aeroelastic Rotorcraft-Pilot Couplings
- Conclusions and Future Work
Robust Stability of RPC

Current focus: BDFT associated to collective bounce
- Vehicle TF: collective pitch to vertical acceleration of seat
- Pilot BDFT: vertical acceleration of seat to collective control inceptor

Loop TF:
\[H_L(j\omega) = -H_{\ddot{z}\theta}(j\omega) G_c H_{\ddot{\eta}}(j\omega) \]
\[G_{22}(j\omega) \]

Gearing ratio \(G_c \) logically belongs to vehicle, but is intrinsically related to haptics and ergonomy considerations

Reference pilot control TF is 0!:
- Free controls (no control input)
- Infinitely stiff pilot (no involuntary input)

Limits on pilot TF:
\[H_{\ddot{\eta}}(j\omega) = \frac{1}{G_c H_{\ddot{z}\theta}(j\omega)} \]
Robust Stability of RPC

- Stability limits of simplified heave models of helicopters
 - “rigid” (one dof)
 - “cone” (two dofs: rigid + rotor cone)
 - detailed (shown later)
- “ectomorphic” pilot BDFT function (Mayo, 1989)
- “bands”: half/double gearing ratio
Robust Stability of RPC

Detailed aeroservoelastic rotorcraft model obtained using MASST [1,2]

- Elastic airframe (normal modes)
- Aeroelastic rotors (linear, time-averaged, trimmed)
- Drive train dynamics
- Servoactuator dynamics
- Control system dynamics
- Pilot biodynamics
- Selected nonlinearities (time domain, descriptive function)

- Frequency and time domain analysis

Robust Stability of RPC

SA 330 TF between collective and vertical acceleration (0, 50, 100 kts) includes actuators delay but no FCS delay

Model much more complex, but same interface with pilot: complexity of analysis is identical
Robust Stability of RPC

Vertical axis BDFT compared to stability margins at 0 kts

[Graphs showing frequency response and phase characteristics for force, relax, and position tasks]
Robust Stability of RPC

Vertical axis BDFT compared to stability margins at 50 kts
Robust Stability of RPC

Vertical axis BDFT compared to stability margins at 100 kts
Robust Stability of RPC

Vertical axis BDFT compared to stability margins at 100 kts

- Line shows averaged BDFT
- Shades indicate variance (1, 2, 3 σ, ...)

Position task:
- At low frequency no specific problem arises
- At pilot BDFT resonance potential problem
- Mean amplitude at limit & 2σ phase crossing (no speculation because no cross-probability information available)

Other (less aggressive) tasks: no specific problem (force task not meaningful for collective)

FCS delays would bring the vehicle phase curve downwards, increasing the probability of crossing BDFT curves
Outline

- Aeroelastic Rotorcraft/Pilot Couplings
- Robust Stability Analysis
- Biodynamic Feedthrough
- Robust Stability of Aeroelastic Rotorcraft-Pilot Couplings
- Conclusions and Future Work
Conclusions & Future Work

Conclusions

• Robust stability analysis applied to RPC using BDFT data

• Powerful, simple and intuitive graphical approach presented

• Example application to vertical axis of conventional helicopter

• Effective tool for RPC proneness evaluation

Future work

• Multi-input multi-output problems (longitudinal and lateral axes)

• Further statistical interpretation of results

• Include control device dynamics in “certain” portion of model (friction, bobweights & other mechanical devices in uncertainty)
Acknowledgements

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement N. 266073
Thank you for your attention

Questions?