
Y POLITECNICO DI MILANO

Theoretical and Experimental Investigation of Aeroelastic Rotorcraft-Pilot Coupling

P. Masarati¹, G. Quaranta¹, L. Lu², M. Jump²

¹Dipartimento di Ingegneria Aerospaziale, **Politecnico di Milano**, Italy ²School of Engineering, **The University of Liverpool**, UK

AHS 68th Annual Forum, Fort Worth, Texas, May 1-3, 2012

- Aeroelastic Rotorcraft/Pilot Couplings
- Investigation Description
- Simplified Aeroelastic Model
- Experimental Activity
- Discussion of Results
- Conclusions

- <u>Aeroelastic Rotorcraft/Pilot Couplings</u>
- Investigation Description
- Simplified Aeroelastic Model
- Experimental Activity
- Discussion of Results
- Conclusions

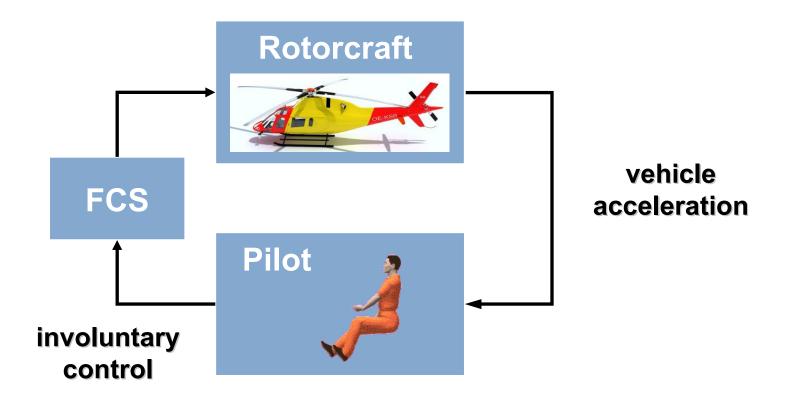
Aircraft/Rotorcraft-Pilot Couplings are

"unintentional (inadvertent) sustained or uncontrollable vehicle oscillation characterized by a mismatch between the pilot's mental model of the vehicle dynamics and the actual vehicle dynamics." (Mc Ruer)

ARISTOTEL: research project sponsored by EC 7th FP led by TUDelft

Aircraft and Rotorcraft Pilot Couplings Tools and Techniques for Alleviation and Detection http://www.aristotelproject.eu/

Δ


This presentation is related to experimental research on <u>aeroelastic RPC</u> resulting from <u>involuntary control inputs</u> generated by the pilot as a consequence of <u>vibrations of the vehicle</u> in pilot-in-the-loop conditions.

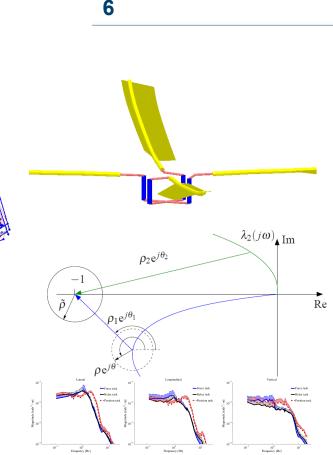
Aeroelastic Rotorcraft/Pilot Couplings

- Voluntary interaction (PIO)
- Involuntary interaction (PAO)

"active" pilot intervention "passive" pilot intervention (biodynamic feedthrough)

5

AHS 68th Annual Forum, Fort Worth, Texas, May 1-3, 2012

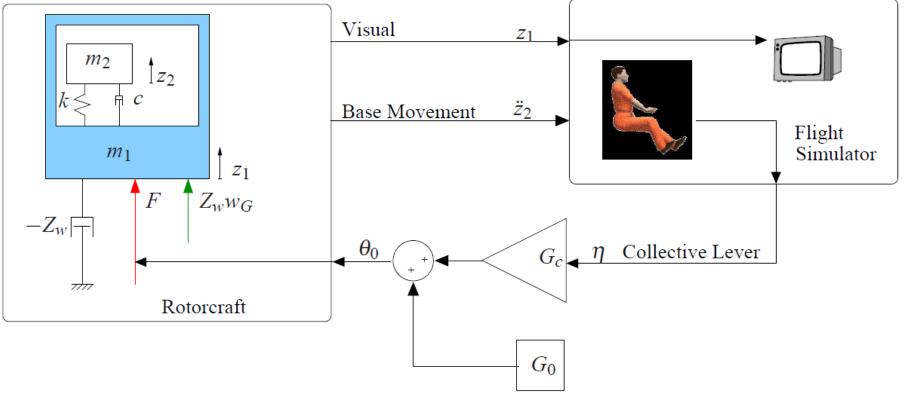

Aeroelastic Rotorcraft/Pilot Couplings

Within ARISTOTEL, aeroelastic RPCs:

- POLIMI working on
 - Vehicle modeling & fidelity requirements
 - Pilot biomechanics: detailed biom. models
 - Tools for prediction and means for prevention (robust stability)
- UoL working on
 - Flight simulation of aeroelastic rotorcraft
 - Experimental investigation of pilot BDFT

All activities in strict cooperation with the other partners.

AHS 68th Annual Forum, Fort Worth, Texas, May 1-3, 2012



- Aeroelastic Rotorcraft/Pilot Couplings
- Investigation Description
- Simplified Aeroelastic Model
- Experimental Activity
- Discussion of Results
- Conclusions

Investigation Description

- Implement simple "aeroelastic" flight mechanics model in flight sim.
 - restricted to heave only, with elastic degree of freedom
- Test with pilot-in-the-loop, to:
 - trigger bioaeroelastic instabilities
 - understand how the human operator interacts with true feedback
 - determine the influence of key parameters

AHS 68th Annual Forum, Fort Worth, Texas, May 1-3, 2012

POLITECNICO DI MILANO

Investigation Description

Investigated parameters include:

- stiffness and damping of elastic mode
- gearing ratio G_c (collective lever to blade pitch)

- presence/absence of (emulated) friction in collective control lever
- task

- Aeroelastic Rotorcraft/Pilot Couplings
- Investigation Description

Simplified Aeroelastic Model

- Experimental Activity
- Discussion of Results
- Conclusions

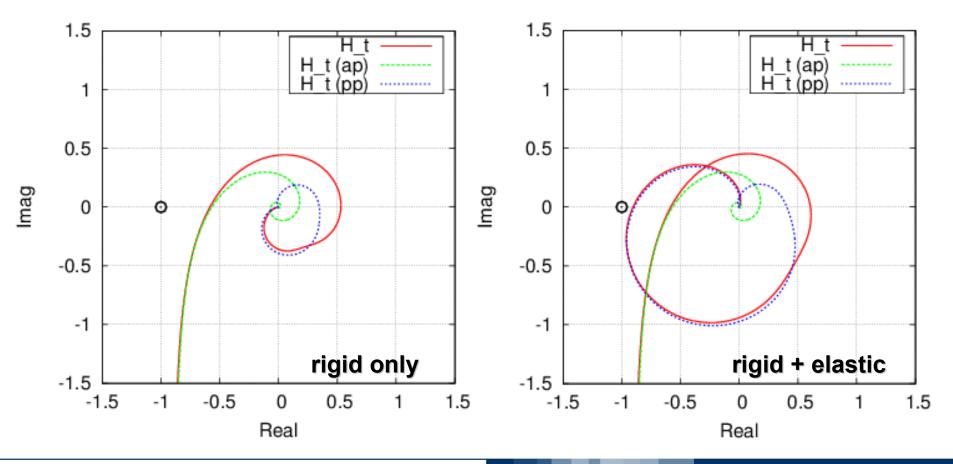
Simplified Aeroelastic Model

Heave degree of freedom only

$$m_t \dot{w} = Z$$

Aerodynamics linearized about hover condition

$$Z = Z_w(w - w_G) + Z_{\theta_0} \theta$$

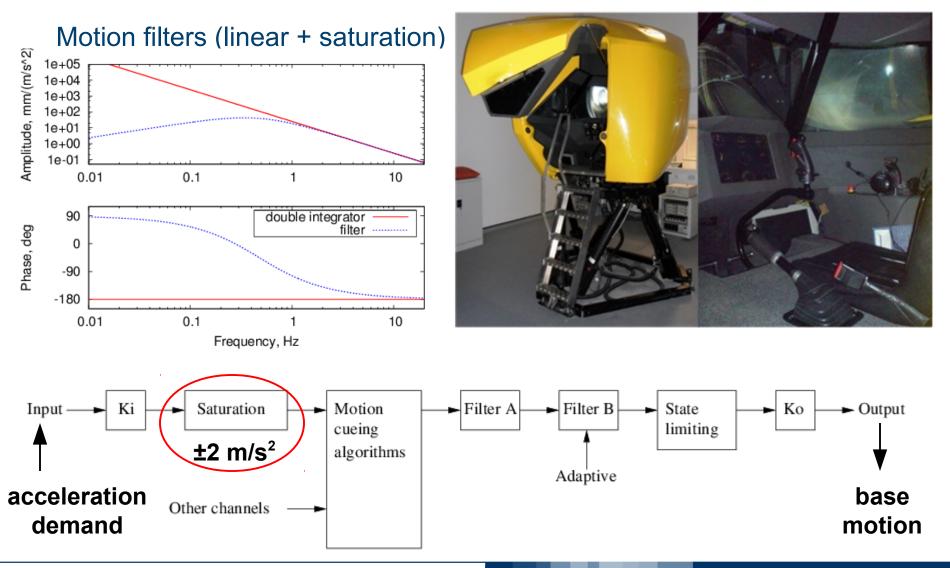

• Motion of pilot's seat associated with "elastic" degree of freedom

$$m_t \ddot{z}_1 - Z_w \dot{z}_1 = Z_{\theta_0} \theta - Z_w w_G$$

$$m_2 \ddot{z}_2 + c \dot{z}_2 + k z_2 = c \dot{z}_1 + k z_1$$

- "rigid" helicopter degree of freedom associated with visual demand
- "elastic" DOF associated with flight simulator motion demand
- collective control resulting from control inceptor (pilot-in-the-loop)
- gust velocity used to "disturb" the simulation

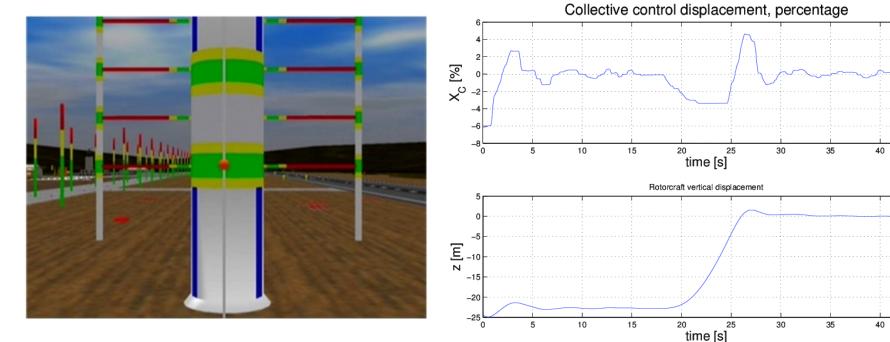
Simplified Aeroelastic Model


- Nyquist plot of loop TF (data representative of SA 330 Puma):
 - "active" pilot (Mc Ruer's "crossover" model + low-pass filter)
 - BDFT (Mayo's function adapted to UoL's cockpit layout + h.p.f.)
- Elastic mode tuned for marginal stability at about 3.5 Hz (as of BDFT)

AHS 68th Annual Forum, Fort Worth, Texas, May 1-3, 2012

- Aeroelastic Rotorcraft/Pilot Couplings
- Investigation Description
- Simplified Aeroelastic Model
- Experimental Activity
- Discussion of Results
- Conclusions

HELIFLIGHT simulation facility at The University of Liverpool



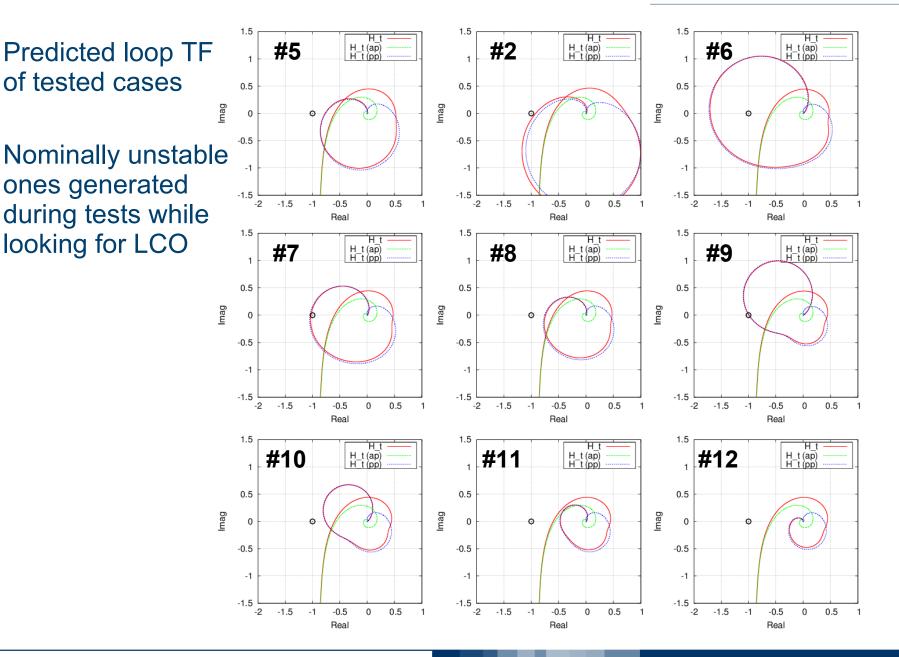
AHS 68th Annual Forum, Fort Worth, Texas, May 1-3, 2012

POLITECNICO DI MILANO

Vertical maneuver (ADS-33)

- Primary task: keep the red ball in the green band
- Secondary task: move to a different level (50 ft) when told (workload, trigger)
- Disturbance: oscillatory force with variable frequency and amplitude
- Visual: driven by "rigid body" state
- Motion: driven by "elastic" state

POLITECNICO DI MILANO


45

- Tested configurations
 - most planned
 - some designed to better understand incoming results

	#	Pilot	$k/k_{\rm ref}$	$c/c_{\rm ref}$	friction	freq.	damp.
						Hz	%
	1	2	0.50	0.15	on	2.53	4.29
	2	1,2,3,4	0.50	0.40	off	2.51	11.41
	3	2	1.00	0.10	on	3.58	2.02
	4	1	1.00	0.20	on	3.57	4.04
nominal — ►	5	1,2,3,4	1.00	1.00	off,on	3.50	20.15
	6	1,2	1.60	0.40	off	4.51	6.38
	7	2,3	1.60	0.70	off	4.50	11.15
	8	1,2	1.60	1.00	off	4.47	15.93
	9	2	2.80	0.35	off	5.98	4.22
	10	1,2,3	2.80	0.50	off	5.97	6.02
	11	1	2.80	1.00	off	5.94	12.04
	12	1,2,3	3.00	3.00	off,on	5.80	34.89

AHS 68th Annual Forum, Fort Worth, Texas, May 1-3, 2012

17

AHS 68th Annual Forum, Fort Worth, Texas, May 1-3, 2012

Test procedure:

- "pilot" (occupant) required to perform primary task (maintain altitude)
- "pilot" (occupant) occasionally instructed to perform secondary task (change altitude)
- disturbance force applied with arbitrary amplitude and frequency
- gearing ratio G modified without informing occupant
- increasingly high levels of G_c tested until LCO appears (and higher)
 - safety: motion base saturation, control release procedure
- 4 occupants: only one professional pilot (former helicopter test pilot)

task does not require specific piloting skills

AHS 68th Annual Forum, Fort Worth, Texas, May 1-3, 2012

- Aeroelastic Rotorcraft/Pilot Couplings
- Investigation Description
- Simplified Aeroelastic Model
- Experimental Activity
- Discussion of Results
- Conclusions

- Gearing ratio of LCO first appearance and corresponding frequency
- Nominal G_c is about 0.35 radian

		Pilot #1		Pilot #2		Pilot #3		Pilot #4	
k/k_{ref}	$c/c_{\rm ref}$	freq., Hz	G_c , radian	freq., Hz	G_c , radian	freq., Hz	G_c , radian	freq., Hz	G_c , radian
				F	Friction off				
3.0	3.0	3.95	∞^{a}	3.8-4.0	~	3.9-4.3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
1.0	1.0	3.47	0.7	3.0	0.6	3.2	1.1	2.8	2.5
1.6	1.0	3.93	0.8	3.3	∞				
0.5	0.4	2.56	0.7	2.41	0.4-0.6	2.45	0.7	2.63	0.1
1.6	0.4	3.98	0.4	3.8	1.2				
2.8	1.0	4.5	∞						
2.8	0.5	4.05	1.4	3.8	1.8	4.7	∞		
2.8	0.35			3.85	2.4				
1.6	0.7			4.0	1.6	4.1	2.0		
			Fri	ction off, no	close-in visua	al reference			
1.0	1.0			3.5-4.0	1.6-1.8				
	Friction on								
0.5	0.15			4.1	1.1				
1.0	0.1			3.5	0.1				
1.0	0.2	3.5	0.8						

 $^{a}\infty$ means that no instability was found.

- Gearing ratio of LCO first appearance and corresponding frequency
- Nominal G_c is about 0.35 radian

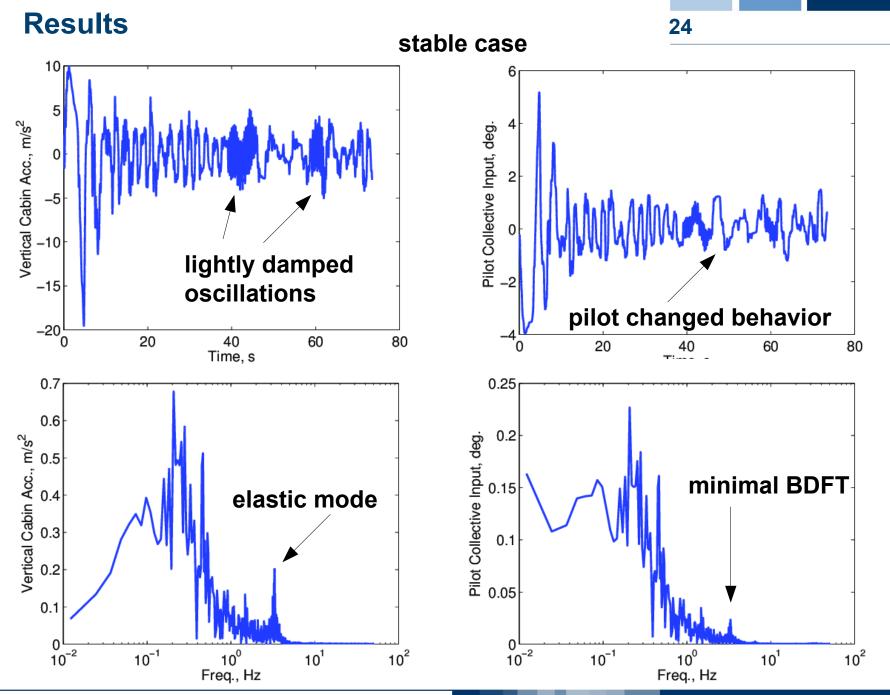
		Pilot #1		Pilot #2		Pilot #3		Pilot #4	
k/k_{ref}	$c/c_{\rm ref}$	freq., Hz	G _c , radian	freq., Hz	G_c , radian	freq., Hz	G _c , radian	freq., Hz	G_c , radian
				F	Friction off				
3.0	3.0	3.95	∞ ^a	3.8-4.0	∞	3.9-4.3	∞		
1.0	1.0	3.47	0.7	3.0	0.6	3.2	1.1	2.8	2.5
1.6	1.0	3.93	0.8	3.3	∞				
0.5	0.4	2.56	0.7	2.41	0.4-0.6	2.45	0.7	2.63	0.1
1.6	0.4	3.98	0.4	3.8	1.2				
2.8	1.0	4.5	∞						
2.8	0.5	4.05	1.4	3.8	1.8	4.7	∞		
2.8	0.35			3.85	2.4				
1.6	0.7			4.0	1.6	4.1	2.0		
			Fri	ction off, no	close-in visua	al reference			
1.0	1.0			3.5-4.0	1.6-1.8				
	Much stiffer (ideally rigid):								d).
0.5	0.15			4.1	1.1		•	carry rigi	мј.
1.0	0.1			3.5	0.1	• no L(
1.0	0.2	3.5	0.8			• differ	rent BDF1	frequer	ncies

 $^{a}\infty$ means that no instability was found.

- Gearing ratio of LCO first appearance and corresponding frequency
- Nominal G_c is about 0.35 radian

		Pilot #1		Pilot #2		Pilot #3		Pilot #4	
k/k_{ref}	$c/c_{\rm ref}$	freq., Hz	G_c , radian	freq., Hz	G_c , radian	freq., Hz	G_c , radian	freq., Hz	G_c , radian
				F	Friction off				
3.0	3.0	3.95	∞^{a}	3.8-4.0	∞	3.9-4.3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
1.0	1.0	3.47	0.7	3.0	0.6	3.2	1.1	2.8	2.5
1.6	1.0	3.93	0.8	3.3	∞				
0.5	0.4	2.56	0.7	2.41	0.4-0.6	2.45	0.7	2.63	0.1
1.6	0.4	3.98	0.4	3.8	1.2				
2.8	1.0	4.5	∞						
2.8	0.5	4.05	1.4	3.8	1.8	4.7	∞		
2.8	0.35			3.85	2.4				
1.6	0.7			4.0	1.6	4.1	2.0		
			Fri	ction off, no	close-in visua	al reference			
1.0	1.0			3.5-4.0	1.6-1.8				
				I	Friction on	Nomin	al.		
0.5	0.15			4.1	1.1	_	-		
1.0	0.1			3.5	0.1	• LCO			
1.0	0.2	3.5	0.8			 at ab 	out twice	nomina	۱G

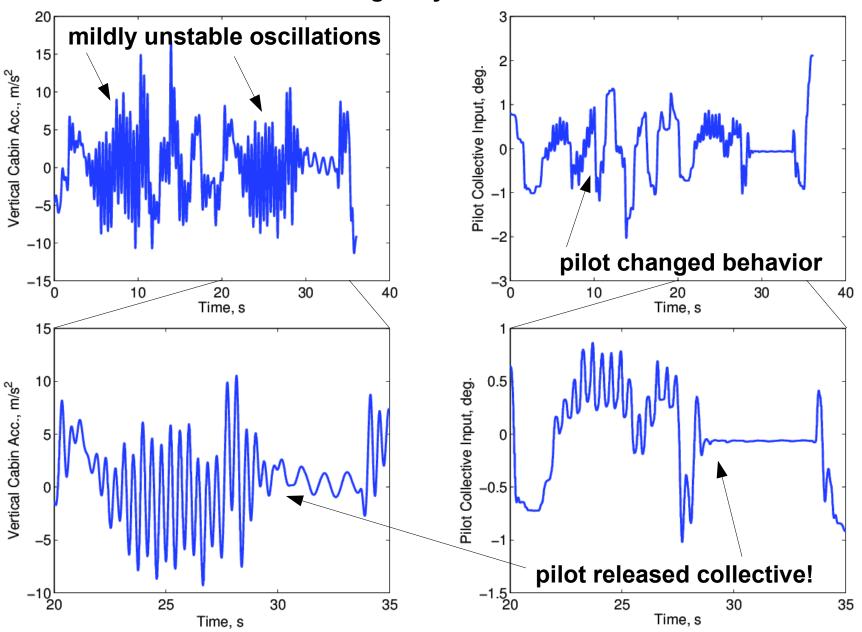
 $^{a}\infty$ means that no instability was found.



- Gearing ratio of LCO first appearance and corresponding frequency
- Nominal G_c is about 0.35 radian

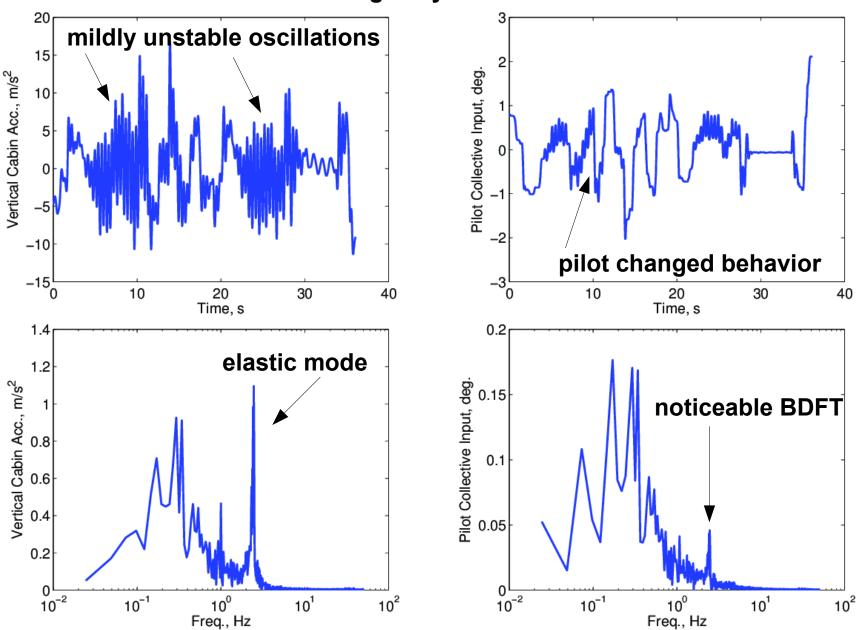
		Pilot #1		Pilot #2		Pilot #3		Pilot #4	
k/k_{ref}	$c/c_{\rm ref}$	freq., Hz	G_c , radian	freq., Hz	G_c , radian	freq., Hz	G_c , radian	freq., Hz	G _c , radian
				F	Friction off				
3.0	3.0	3.95	∞^{a}	3.8-4.0	∞	3.9-4.3	∞		
1.0	1.0	3.47	0.7	3.0	0.6	3.2	1.1	2.8	2.5
1.6	1.0	3.93	0.8	3.3	∞				
0.5	0.4	2.56	0.7	2.41	0.4-0.6	2.45	0.7	2.63	0.1
1.6	0.4	3.98	0.4	3.8	1.2				
2.8	1.0	4.5	∞						T
2.8	0.5	4.05	1.4	3.8	1.8	4.7	∞		
2.8	0.35			3.85	2.4				
1.6	0.7			4.0	1.6	4.1	2.0		
			Fri	ction off, no	close-in visua	al reference			
1.0	1.0			3.5-4.0	1.6-1.8				
	Friction on Low stiffness & damping:								a
0.5	0.15			4.1	1.1			-	9.
1.0	0.1			3.5	0.1	•	ounced L		
1.0	0.2	3.5	0.8			 quite 	variable	G __	

 a_{∞} means that no instability was found.


AHS 68th Annual Forum, Fort Worth, Texas, May 1-3, 2012

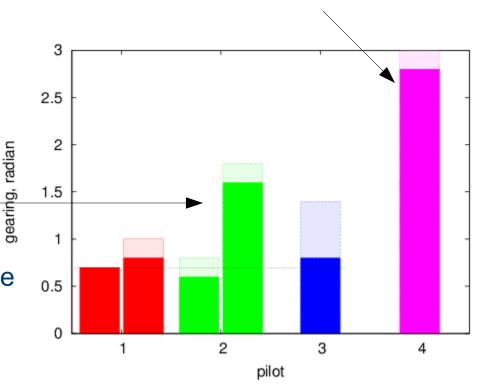
AHS 68th Annual Forum, Fort Worth, Texas, May 1-3, 2012

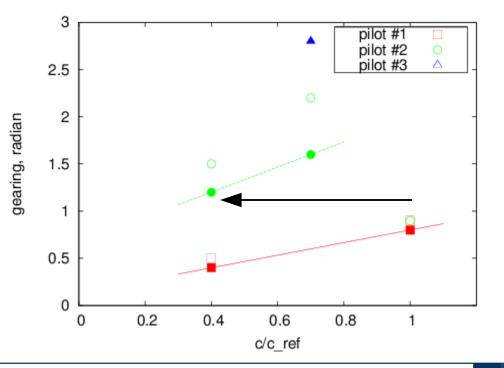
marginally stable case



AHS 68th Annual Forum, Fort Worth, Texas, May 1-3, 2012

marginally stable case

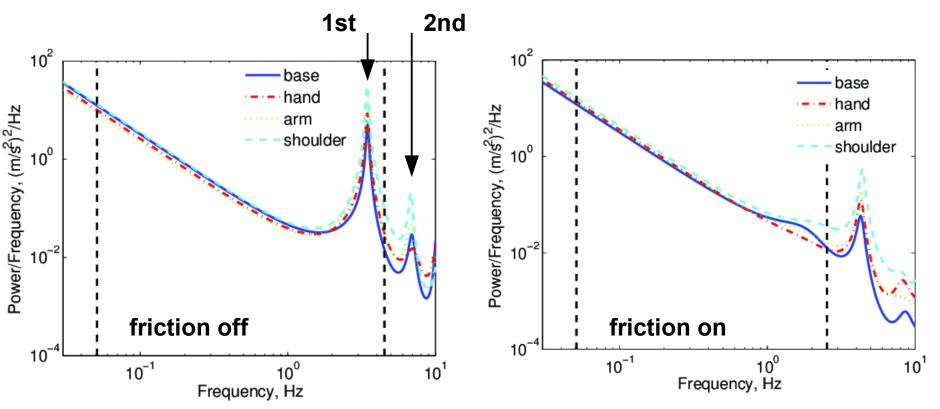



AHS 68th Annual Forum, Fort Worth, Texas, May 1-3, 2012

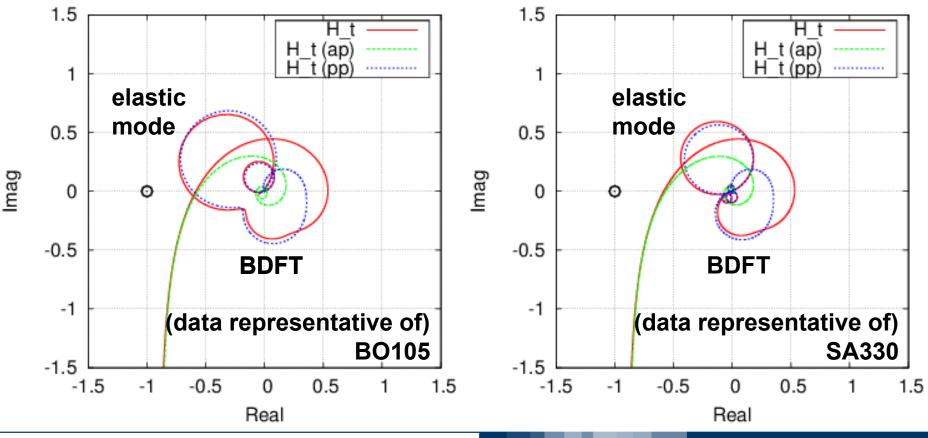
POLITECNICO DI MILANO

- Baseline case tested with all 4 occupants
- All non-professional pilots: LCO at about 3.5 Hz, G twice nominal
- Professional pilot (#4): LCO at about 2.8 Hz, blurred by intensive intentional activity (saturation? task dependent BDFT modification?)
- LCO at 2.8 Hz suggests biomechanic instability (elastic mode: 3.5 Hz)
- Pilot #2 shows instability at higher G_c when performing a similar task with different visual cueing environment (VCE): horizon instead of pole
- Pilot #1: LCO after alarm set by data acquisition system

- Stiffer elastic mode: $k/k_{ref} = 1.6$ and $c/c_{ref} = 0.4, 0.7, 1.0$ (about 4.5 Hz)
- nominally unstable
- In practice, always stable w/ nominal G
 - large variability amongst occupants
 - damping reduction result-driven



AHS 68th Annual Forum, Fort Worth, Texas, May 1-3, 2012


Effect of friction:

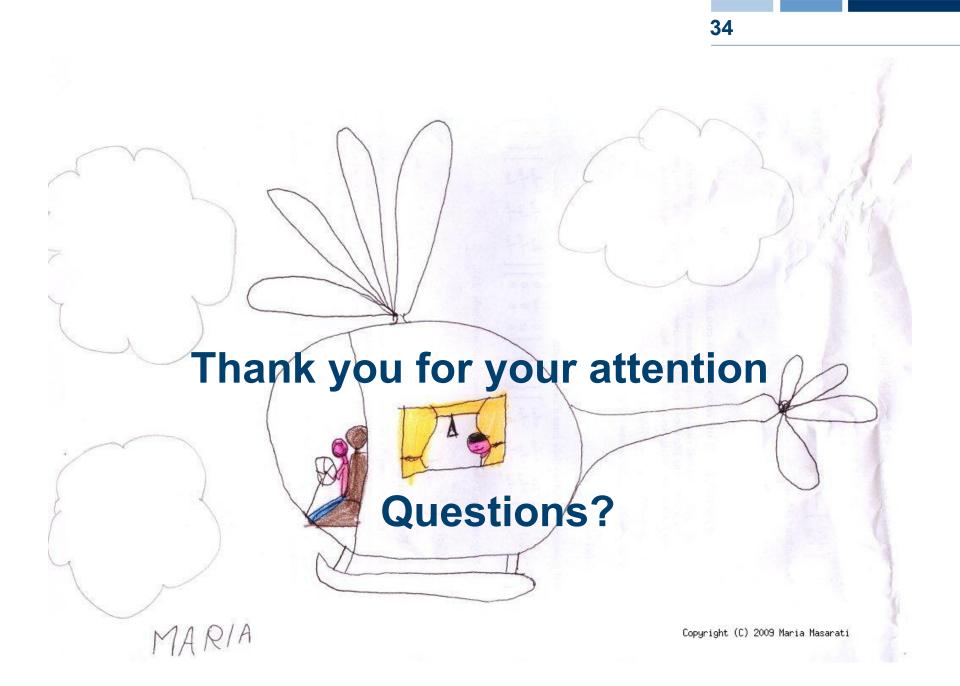
- very low structural damping required for LCO to appear
- without friction, second harmonic of biomechanical mode appears
- with friction, only a biomechanical mode appears
- in a quasi-linear dynamics sense, friction represents equiv. damping

Was this just a nice game? Analysis with deformable airframe model

- Clear similarities with simple aeroelastic model
- Typical light/medium helicopter relevant airframe dynamics show higher frequencies (6 to 9 Hz) than present (2.5 to 4.8 Hz)
- Interaction with pilot biomechanics less likely

AHS 68th Annual Forum, Fort Worth, Texas, May 1-3, 2012

- Aeroelastic Rotorcraft/Pilot Couplings
- Investigation Description
- Simplified Aeroelastic Model
- Experimental Activity
- Discussion of Results
- <u>Conclusions</u>


Conclusions

- Experimental investigation of helicopter pilot biomechanics
- Pilot-in-the-loop tests of simple marginally stable heave motion model
- Highlighted several aspects of helicopter-pilot interaction:
 - task dependence
 - variability among occupants, but clear common trends
 - instability caused by coupling of structural and biomech. modes
 - friction in control inceptor can alleviate but not eliminate the effect
 - results partially affected by saturation, especially at FM freq.
- Results partially scale on realistic airframe dynamics models

Acknowledgements

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement N. 266073

AHS 68th Annual Forum, Fort Worth, Texas, May 1-3, 2012