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Aeroelastic Rotorcraft/Pilot Couplings

Aircraft/Rotorcraft-Pilot Couplings are

“unintentional (inadvertent) sustained or uncontrollable vehicle oscillation 
characterized by a mismatch between the pilot’s mental model of the 

vehicle dynamics and the actual vehicle dynamics.” (Mc Ruer)

ARISTOTEL: research project sponsored by EC 7th FP led by TUDelft

Aircraft and Rotorcraft Pilot Couplings Tools
and Techniques for Alleviation and Detection
http://www.aristotelproject.eu/

This presentation is related to experimental research on aeroelastic RPC 
resulting from involuntary control inputs generated by the pilot as a 
consequence of vibrations of the vehicle in pilot-in-the-loop conditions.
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Aeroelastic Rotorcraft/Pilot Couplings

● Voluntary interaction (PIO) “active” pilot intervention
● Involuntary interaction (PAO) “passive” pilot intervention

(biodynamic feedthrough)

   Pilot 

FCS

Rotorcraft 

vehiclevehicle
accelerationacceleration

involuntary involuntary 
controlcontrol
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Aeroelastic Rotorcraft/Pilot Couplings

Within ARISTOTEL, aeroelastic RPCs:
● POLIMI working on

● Vehicle modeling
& fidelity requirements

● Pilot biomechanics:
detailed biom. models

● Tools for prediction and means
for prevention (robust stability)

● UoL working on
● Flight simulation of aeroelastic rotorcraft

● Experimental investigation of pilot BDFT

All activities in strict cooperation
with the other partners.
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Investigation Description

● Implement simple “aeroelastic” flight mechanics model in flight sim.
● restricted to heave only, with elastic degree of freedom

● Test with pilot-in-the-loop, to:
● trigger bioaeroelastic instabilities
● understand how the human operator interacts with true feedback
● determine the influence of key parameters
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Investigation Description

Investigated parameters include:
● stiffness and damping of elastic mode

● gearing ratio G
c
 (collective lever to blade pitch) 

● presence/absence of (emulated) friction in collective control lever

● task
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Simplified Aeroelastic Model

● Heave degree of freedom only

● Aerodynamics linearized about hover condition

● Motion of pilot's seat associated with “elastic” degree of freedom

● “rigid” helicopter degree of freedom associated with visual demand
● “elastic” DOF associated with flight simulator motion demand
● collective control resulting from control inceptor (pilot-in-the-loop)
● gust velocity used to “disturb” the simulation

mt ẇ=Z

Z=Z w (w−wG)+Z θ0
θ

mt z̈1−Z w ż1=Z θ0
θ−Z wwG

m2 z̈2+c ż2+k z2=c ż1+k z1
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Simplified Aeroelastic Model

● Nyquist plot of loop TF (data representative of SA 330 Puma):
● “active” pilot (Mc Ruer's “crossover” model + low-pass filter)
● BDFT (Mayo's function adapted to UoL's cockpit layout + h.p.f.)

● Elastic mode tuned for marginal stability at about 3.5 Hz (as of BDFT)

rigid onlyrigid only rigid + elasticrigid + elastic
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Experimental Activity

HELIFLIGHT simulation facility at The University of Liverpool

Motion filters (linear + saturation)

acceleration 
demand

base
motion

±2 m/s2
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Experimental Activity

Vertical maneuver (ADS-33)
● Primary task: keep the red ball in the green band
● Secondary task: move to a different level (50 ft) when told

(workload, trigger)
● Disturbance: oscillatory force with variable frequency and amplitude
● Visual: driven by “rigid body” state
● Motion: driven by “elastic” state
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Experimental Activity

● Tested configurations
● most planned
● some designed to better understand incoming results

nominal
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Experimental Activity

Predicted loop TF
of tested cases

Nominally unstable
ones generated
during tests while
looking for LCO

#5

#7

#10

#2 #6

#8 #9

#11 #12
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Experimental Activity

Test procedure:

● “pilot” (occupant) required to perform primary task (maintain altitude)

● “pilot” (occupant) occasionally instructed to perform secondary task 
(change altitude)

● disturbance force applied with arbitrary amplitude and frequency

● gearing ratio G
c
 modified without informing occupant

● increasingly high levels of G
c
 tested until LCO appears (and higher)

● safety: motion base saturation, control release procedure

● 4 occupants: only one professional pilot (former helicopter test pilot)

task does not require specific piloting skills
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Results

● Gearing ratio of LCO first appearance and corresponding frequency
● Nominal G

c
 is about 0.35 radian
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Results

● Gearing ratio of LCO first appearance and corresponding frequency
● Nominal G

c
 is about 0.35 radian

Much stiffer (ideally rigid):
• no LCO
• different BDFT frequencies
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Results

● Gearing ratio of LCO first appearance and corresponding frequency
● Nominal G

c
 is about 0.35 radian

Nominal:
• LCOs
• at about twice nominal G

c
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Results

● Gearing ratio of LCO first appearance and corresponding frequency
● Nominal G

c
 is about 0.35 radian

Low stiffness & damping:
• pronounced LCOs
• quite variable G

c
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Results

● XXX

stable case

lightly damped 
oscillations

elastic mode
minimal BDFT

pilot changed behavior
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● XXX

Results
marginally stable case

mildly unstable oscillations

pilot changed behavior

pilot released collective!
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● XXX

Results
marginally stable case

mildly unstable oscillations

pilot changed behavior

elastic mode

noticeable BDFT



27

AHS 68th Annual Forum, Fort Worth, Texas, May 1-3, 2012

Results

● Baseline case tested with all 4 occupants

● All non-professional pilots: LCO at about 3.5 Hz, G
c
 twice nominal

● Professional pilot (#4): LCO at about 2.8 Hz, blurred by intensive 
intentional activity (saturation? task dependent BDFT modification?)

● LCO at 2.8 Hz suggests
biomechanic instability
(elastic mode: 3.5 Hz)

● Pilot #2 shows instability at
higher G

c
 when performing

a similar task with different
visual cueing environment
(VCE): horizon instead of pole

● Pilot #1: LCO after alarm set
by data acquisition system
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Results

● Stiffer elastic mode: k/k
ref

 = 1.6 and c/c
ref

 = 0.4, 0.7, 1.0 (about 4.5 Hz)

● nominally unstable

● In practice, always stable w/ nominal G
c

● large variability amongst occupants
● damping reduction result-driven
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Results

Effect of friction:
● very low structural damping required for LCO to appear
● without friction, second harmonic of biomechanical mode appears
● with friction, only a biomechanical mode appears
● in a quasi-linear dynamics sense, friction represents equiv. damping

friction off friction on

1st 2nd
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Results

Was this just a nice game?  Analysis with deformable airframe model
● Clear similarities with simple aeroelastic model
● Typical light/medium helicopter relevant airframe dynamics

show higher frequencies (6 to 9 Hz) than present (2.5 to 4.8 Hz)
● Interaction with pilot biomechanics less likely

(data representative of) 
BO105

(data representative of) 
SA330

BDFT

elastic 
mode

BDFTBDFT

elastic 
mode
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Conclusions

● Experimental investigation of helicopter pilot biomechanics

● Pilot-in-the-loop tests of simple marginally stable heave motion model

● Highlighted several aspects of helicopter-pilot interaction:

● task dependence

● variability among occupants, but clear common trends

● instability caused by coupling of structural and biomech. modes

● friction in control inceptor can alleviate but not eliminate the effect

● results partially affected by saturation, especially at FM freq.

● Results partially scale on realistic airframe dynamics models
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Thank you for your attention

Questions?
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