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Aeroelastic Rotorcraft/Pilot Couplings

Aircraft/Rotorcraft-Pilot Couplings are

“unintentional (inadvertent) sustained or uncontrollable vehicle oscillation 
characterized by a mismatch between the pilot’s mental model of the 

vehicle dynamics and the actual vehicle dynamics.” (Mc Ruer)

ARISTOTEL: project sponsored by EC 7th FP led by TUDelft [1]

Aircraft and Rotorcraft Pilot Couplings Tools
and Techniques for Alleviation and Detection
http://www.aristotelproject.eu/

This presentation is related to research on biomechanical modeling of 
pilot's equivalent impedance.

[1] M. D. Pavel, J. Malecki, B. DangVu, P. Masarati, M. Gennaretti, M. Jump, H. Smaili, A. Ionita, L. 
Zaicek, "A Retrospective Survey of Adverse Rotorcraft Pilot Couplings in European Perspective", 68th 
AHS Forum, Fort Worth, Texas, May 1-3, 2012. 
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Aeroelastic Rotorcraft/Pilot Couplings

Approach within ARISTOTEL
● Develop aeroelastic models of aircraft (e.g. [1]) 

● multibody & linearized models

● Develop models of the voluntary/involuntary pilot action
● transfer functions identified from experiments
● multibody biomechanical models

● Couple vehicle and pilot models

● Predict impact of pilot interaction on stability and performance

● Determine design guidelines for RPC-free aircraft

● Substantial experimental activity (mostly in flight simulators)
in support to the project

[1] V. Muscarello, P. Masarati, G. Quaranta, "Multibody Analysis of Rotorcraft-Pilot Coupling", IMSD 
2012, Stuttgart, Germany, May 29-June 1, 2012.
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Aeroelastic Rotorcraft/Pilot Couplings

Approach within ARISTOTEL
● Detailed multibody and

linearized helicopter models

● Experimental pilot BDFT
Numerical & graphical criteria
for robust stability
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Modeling Approach

Multibody model of the upper limb
redundant coordinates approach
● 4 rigid bodies (24 variables):

● humerus, radius, ulna, hand (not detailed)

● articulations (17 passive constr.):
● shoulder complex: spherical joint (-3 dof)
● humeroulnar joint: revolute joint (-5 dof)
 humeroradial joint: spherical joint (-3 dof)
 proximal and distal radioulnar: inline (-2 dof)
 carpal complex: universal (-4 dof)

● muscles: 25 viscoelastic rods
(constitutive law derived from Pennestrì et al., 2007, [1])
for 7 motor joints

[1] E. Pennestrì, R. Stefanelli, P. P. Valentini, and L. Vita. Virtual musculo-skeletal model for the 
biomechanical analysis of the upper limb. Journal of Biomechanics, 40(6):1350–1361, 2007.

ϕ( x )=0

θ=θ( x ) ∖ ϕ / xθ / x
+ =0
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Modeling Approach

● Determine the kinematics of the limb for prescribed hand motion

 (underdetermined problem solved by local optimization)
● Inverse kinematics at positions level

● Inverse kinematics at velocity level

● Inverse kinematics at acceleration level

● Determine the motor torques (fully determined problem)

● Determine the muscular activations (minimal norm) for motor torques

● Determine the equivalent compliance (linearization, reduction)

ψ( x )=α(t)

J p( x )=V (θ( x))+λT ϕ( x )+μT (ψ( x)−α(t ))

J v( x )=( ẋ− ẋ r)
T M ( ẋ− ẋr )+2λ

T ϕ̇( x )+2μT ( ψ̇(x )−α̇ (t ))

J a( x)=( ẍ− ẍr)
T M ( ẍ− ẍ r)+2λ

T ϕ̈( x)+2μT ( ψ̈( x )−α̈(t))

ϕ / x
T λ+θ/ x

T c= f −M ẍ

c=(θ/ x
T )+ l / x

T f m(l ( x) , l̇ ( x , ẋ) , a)
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Modeling Approach

● prescribed hand motion

● ergonomy cost function subjected to passive
and prescribed motion constraints

● inverse kinetostatics at position level

● cost function penalizes distance from “maximum comfort”

● high-(even)-order plus quadratic terms for positive definiteness
and boundary avoidance

ψ( x )=α(t)

V / x (θ( x )−θr)+ϕ / x
T λ+ψ/ x

T μ= f
ϕ( x )=0
ψ( x )=α(t)

J p( x )=V (θ( x))+λT ϕ( x )+μT (ψ( x)−α(t ))

Δθ=θ−
θmax−θmin

2
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Modeling Approach

● passive constraints and prescribed hand motion first derivative

● least-squares distance from reference velocity

● inverse kinematics at velocity level

● reference velocity from numerical differentiation of position (BDF)

● linear problem

ϕ̇( x )=ϕ / x ẋ=0
ψ̇( x )=ψ/ x ẋ=α̇(t)

M ẋ+ϕ /x
T λ+ψ/ x

T μ=M ẋ r
ϕ / x ẋ=0
ψ / x ẋ=α̇(t )

ẋ r=
xk−xk−1

Δ t

J v( x )=( ẋ− ẋ r)
T M ( ẋ− ẋr )+2λ

T ϕ̇( x )+2μT ( ψ̇(x )−α̇ (t ))
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Modeling Approach

● passive constraints and prescribed hand motion second derivative

● least-squares distance from reference acceleration

● inverse kinematics at acceleration level

● reference acceleration from numerical differentiation of velocity (BDF)

● linear problem, same Jacobian matrix of velocity problem

ϕ̈( x )=ϕ / x ẍ+(ϕ/ x ẋ )/x ẋ=0
ψ̈( x )=ψ/ x ẍ+(ψ / x ẋ )/ x ẋ=α̈(t )

M ẍ+ϕ /x
T λ+ψ/ x

T μ=M ẍ r
ϕ / x ẍ=−(ϕ/ x ẋ )/ x ẋ
ψ / x ẍ=α̈(t )−(ψ /x ẋ)/ x ẋ

ẍ r=
ẋk− ẋk−1

Δ t

J a( x)=( ẍ− ẍr)
T M ( ẍ− ẍr)+2λ

T ϕ̈( x)+2μT ( ψ̈( x)−α̈(t))
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Modeling Approach

● motor torques (fully determined problem)

● Formally:

implies

i.e.

ϕ / x
T λ+θ/ x

T c= f −M ẍ

(θ / x
T )+ (ϕ/ x

T λ+θ /x
T c)=(θ / x

T )+( f −M ẍ )

(θ / x
T )+ϕ / x

T

⏟
0

λ+(θ / x
T )+θ / x

T

⏟
I

c=(θ / x
T )+( f −M ẍ )

c=(θ/ x
T )+( f −M ẍ)
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Modeling Approach

● muscular activation
● muscle model

“a” is the muscular activation 0 ≤ a ≤ 1

● minimal norm activation

● subjected to

namely

c=(θ/ x
T )+ l / x

T ( f m0+F ma)
0≤a≤1

f m= f 0 ( f 1( x ) f 2(v)a+ f 3( x)) x=l /l r v=l̇ /V r

J (a)=
1
2
aT a

Aa=b
0≤a≤1
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Modeling Approach

● muscle force verification (maximal isometric force vs. joint rotation)

shoulder abduction shoulder flexion elbow flexion

prono-supination wrist flexion wrist deviation
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Results

Vertical maneuver (inspired by Aircraft Design Specification ADS-33)
● primary task: keep the red ball in the green band
● secondary task: move to a different level (75 ft) when told

(workload, trigger)
● example trajectory (bottom) and control inceptor motion (top)

● collective down: start descent; collective up: stop descent
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Results

steady torques: gravity

        transient: maneuver
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Results

Muscular activations
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Results

Equivalent properties

10% 50% 90%

Equivalent mech. Properties

● configuration-dependent

● significant variability

● source of uncertainty
in coupled analysis
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Results

Predicted vs. measured mechanical properties from the literature

• frequency value OK
• frequency trend OK (increases when % collective increases)
• damping value often underestimated
• damping trend incorrect (reduces when % collective increases)
[17] P. Masarati, G. Quaranta, M. Jump. Experimental and numerical helicopter pilot characterization for 
aeroelastic rotorcraft-pilot couplings analysis. Proc. IMechE, Part G: J. Aerospace Engineering, 
available online December 16, 2011

[4] J. R. Mayo. The involuntary participation of a human pilot in a helicopter collective control loop. 15th 
European Rotorcraft Forum, pages 81.1–12, Amsterdam, The Netherlands, 12–15 September 1989.
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Results

δ f m= f m /x δ x+ f m/vδ v+ f m/aδa

Reflexive behavior needed to obtain reasonable equivalent properties
● muscular force perturbation

● quasi-steady approximation of reflexive activation perturbation

● quasi-steady approximation of reflexive muscular force perturbation

● approximation parameters estimated from [1] (“total” vs. “intrinsic”):

     Kp = 0.8     Kv = 0.003

● the force perturbation depends on the activation

[1] S. Stroeve. Impedance characteristics of a neuromusculoskeletal model of the human arm I. posture 
control. Biological Cybernetics, 81(5–6):475–494, 1999.

δ a=K pδ x+K vδ v

δ f m=( f m/ x+ f m/aK p)δ x+( f m/v+ f m/aK v)δ v

δ f m= f 0( f 2( f 1/ xa+ f 1K p)+ f 3 /x)δ x+ f 0 f 1( f 2 /va+ f 2 K v)δv
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Results

Aa=b

Torque-Less Activation Modes
● activation problem underdetermined

● SVD of matrix

● matrix U
2
 contains activation modes that do not alter the torques

● but a linear combination of U
2
 alters the equivalent compliance

● find u such that (componentwise)

● compute the activation as

● the resulting activation satisfies equilibrium but the equivalent 
compliance depends on the perturbation

●

A=U ΣV T
=[U 1U 2][Σ10 ]V T

=U 1Σ1V
T

U 2u>0

a=amin+U 2uΔ k
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Results

Example Torque-Less Activation Modes (TLAMs)
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Results

Equivalent (intrinsic) compliance properties with TLAMs

Contributes to task dependence and uncertainty in BDFT



26

2nd IMSD, Stuttgart, Germany, May 29-June 1, 2012

Outline

● Rotorcraft-Pilot Couplings

● Modeling Approach
● Inverse Kinematics
● Inverse Dynamics
● Muscle Model and Muscular Activation
● Equivalent Impedance

● Numerical Results

● Conclusions and Future Work



27

2nd IMSD, Stuttgart, Germany, May 29-June 1, 2012

Conclusions

● Set up of a biomechanical model of a helicopter pilot's upper limb
● within general-purpose multibody solver

● Muscular activation computation in configurations of interest

● Equivalent compliance correlated with experimental results

● Identification and analysis of possible sources of uncertainty
● possibility to structure and quantify uncertainty
● Torque-Less Activation Modes (TLAM) may change stiffness

and specifically damping

● Future work:
● better understand the potential of the model
● validate muscular activation using EMG
● improve and complete the model (both arms + torso)
● analyze different control inceptors layouts
● co-simulation of coupled pilot-vehicle
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Thank you for your attention

Questions?
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