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General information

• Marco Lovera

 Dipartimento di Scienze e Tecnologie Aerospaziali

 Tel. 02-23993592

 email marco.lovera@polimi.it

• Meeting hours: Tuesday 14.30-16.30

• Course web page: accessible from

http://www.aero.polimi.it/lovera
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Course schedule

• Schedule: 

 Monday 14.30-16.15     BL27.12

 Tuesday  9.30-11.15  BL27.17

 Thursday 9.30-11.15 L0.2

 Thursday 16.30-18.15 BL27.15

• Composition of the course:

50/55 lecture hours

20/25 exercises and worked examples

for a total of 8 CFU.
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Exam

Two options available for the exam: 
• oral exam
• a project. 

There is no mid-semester test. 
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Prerequisites

• Main prerequisite: Fondamenti di Automatica or a 
similar course covering

 System modeling: modelling concepts, state space models, 
examples.

 Dynamic behavior: differential equations, qualitative analysis, 
stability.

 Linear systems: matrix exponential, input/output response, 
linearisation.

 Transfer functions: frequency domain modelling, transfer 
function, block diagrams, Bode plots, Laplace transform.

 Frequency domain analysis: loop transfer function, Nyquist 
criterion, stability margins, generalised gain and phase.
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Prerequisites

• Main prerequisite: basic background in probability and 
statistics

 Random variable, probability, probability distribution and 
density functions.

 Functions of random variables, mean, variance and moments.
 Gaussian random variables.
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Teaching material

• Teaching material
• Slides are available for some (but not yet for all) 

topics
• References to some specific textbooks and selected 

book chapters will be provided.
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Motivation and objectives:
parameter estimation and model identification

• The Fondamenti di Automatica course presents:

 the basic methods and tools for mathematical 
modelling of dynamic systems

 the fundamental concepts underlying the operation of 
feedback control systems

 an introduction to the controller synthesis problem.

• The design of a control system however is a much more 
complex activity. 

• In particular, the design approach studied in FdA is model-
based, i.e., it assumes that a model of the system exists.
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Motivation and objectives:
parameter estimation and model identification

Where can such a model come from? 

Three typical situations that may occur:

• First principles modelling: basic laws of physics allow to derive a 
complete mathematical description of the system (white box 
modelling).

• First principle modelling with uncertain parameters: basic laws of
physics allow to derive a complete model but some parameters
are uncertain, e.g., damping ratios in a structure, aerodynamic
coefficients etc (grey box modelling).

• No prior knowledge is available (black-box modelling).

(many “shades of grey” can be defined between “grey” and “black”.)
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Motivation and objectives:
parameter estimation and model identification

In the second and third cases, DATA collected on the system 

can be used to obtain additional information and complete the 

model.

The question is: how does one find optimal models?

Parameter  
estimation
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Example: sensor calibration

• A (stationary) accelerometer will measure Earth's gravitational 
field due to the reaction force on the mass within the MEMS 
structure

• A magnetometer will measure the Earth's magnetic field 
compounded with local magnetic interference

• For a calibrated sensor, the measured magnitude will be 
constant for all orientations

: magnitude of the sensor's respective field
u:  raw sensor measurement

: matrix of calibration parameters
: vector of biases
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Example: sensor calibration
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Example: single axis UAV attitude dynamics 14

• Simplified linearized roll dynamics:

• Parameters to be identified:
Roll Inertia ,  Stability derivative
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15Example: rotorcraft model identification

• Consider the problem of characterizing helicopter dynamics near a given trim condition 

• For helicopters the six-DOF state-space model must be considered, because of the 
strong inter-axis couplings

• Furthermore, body roll and rotor flapping are coupled as well

• This leads to a very complex model with many parameters
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16Example: rotorcraft model identification

State space model

6-DOF dynamics

Forward flight at 80 knots
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17Example: rotorcraft model identification
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Motivation and objectives:
parameter estimation and model identification

Typical questions to be faced: 

• Grey box modelling: how do I derive a parametric model 
and how do I guarantee that the values of the parameters 
can be determined from data?

• Black-box modelling: how do I define the structure of the 
model and find the values of its parameters from data?
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Motivation and objectives:
parameter estimation and model identification

In the linear case problems can be formulated either in the 

time-domain or in the frequency-domain:

Both problems will be considered and extensions to nonlinear 

models will be studied (time-domain only).
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Motivation and objectives:
state estimation

In the elementary formulation of control design problems, it is 

assumed that the measured variable coincides with the 

controlled variable:

R(s) G(s)

n(t) d(t)

y(t)yo(t)

-

-++ + +
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Motivation and objectives:
state estimation

This however is not always true in practice. 

Actually, it is hardly ever true in aerospace applications.

Typical situation: 

design of flight control laws which aim at regulating

• attitude

• position

of an aircraft/rotorcraft/spacecraft using measurements of

• acceleration

• angular rate

• other variables such as magnetic field etc.
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Motivation and objectives:
state estimation
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Example: attitude estimation for UAVs

Typically available measurements are provided by 

• a tri-axial gyroscope, 

• a tri-axial accelerometer and 

• a tri-axial magnetometer

mounted on the platform.

Problems to be faced:

• Write a model for the kinematics of the UAV

• Write a measurement model for each sensor

• Work out an algorithm – to be run on-board – which
estimates the state variables in real time given the 
measurements.
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Example: attitude estimation for UAVs

Sample results using different state estimation methods
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Motivation and objectives:
fault detection

Another critical problem in aerospace engineering is the 

detection of faults in, e.g., control systems sensors.

The most common approach is physical redundancy, i.e.,

using two or more functionally equivalent devices the outputs 

of which can be compared to improve reliability.

Alternative approach: analytical redundancy, i.e., measured 

outputs are compared to model-based estimates and 

discrepancies are used to detect faults (or changes) in the 

system.
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An example

Consider the linear, discrete-time system given by

Now we have two sensors measuring x1. 

At time k=50, the second sensor becomes biased:
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An example (2)

Simulation results
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An example (3)

The problem with sensor 2 can be detected by 

monitoring {ek}2; 

The faulty sensor can then be switched off;

If needed, a warning can be sent to a supervision system. 
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Motivation and objectives

In view of this, the Estimation in Aerospace course has the 

following objectives:

• to provide an introductory exposition to estimation theory, with specific 
reference to parameter estimation, state estimation and model 
identification.

• To study in greater depth some specific topics, namely:

 Time-domain and frequency-domain parameter estimation for 
linear systems

 State estimation for linear systems

 Extensions to some classes of nonlinear systems. 

• To illustrate the above by means of detailed case studies from 
aeronautics and space engineering. 
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Course programme

Part 1: introduction to estimation in aerospace.

• Overview of estimation problems in aerospace: sensor calibration, 
parameter estimation, model identification, state estimation, 
navigation, fault detection, fault tolerant control.

• Introduction to the theory of estimation

• Introduction to model identification: problem statement; grey vs black 
box models; linear vs nonlinear models; the notions of structural and 
experimental identifiability.

• The model identification process: from experiment design to model 
validation.
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Course programme

Part 2: parameter estimation and output error model identification

• Estimation theory: the maximum likelihood method; least squares 
estimation.

• Time-domain output error identification of linear state space models.

• Frequency-domain output error identification of linear state space 
models.

• Time-domain output error identification of nonlinear state space 
models.

Grey-Box TD Model 
identification (OE)
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Course programme

Part 3: state estimation and equation error model identification

• Estimation theory: introduction to Bayesian estimation.

• Optimal state estimation for linear systems: the Kalman filter.

• Time-domain equation error identification of linear state space 
models.

• State estimation for nonlinear systems: the Extended Kalman filter; 
overview of more general estimation schemes.

• Kalman filters: implementation issues.
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Course programme

Part 4: black-box linear model identification

• Problem statement: structure selection vs parameter estimation.

• Time- and frequency-domain identification of SISO linear models.

• Identification of MIMO linear models: introduction to subspace 
methods.
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Course programme

Part 5: case studies

• Identification of control-oriented models for helicopter flight 
mechanics.

• Attitude determination for a quadrotor UAV.

• Model-based control law design for small-scale and full-scale 
rotorcraft.

Translational velocities

Angular velocities

Attitude angles

Linear accelerometers

Aerodynamic angles

Longitudinal cyclic

Lateral cyclic

Collective

Pedal


