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Summary of Kalman filtering
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The filtering problem

Given a dynamical system

and a measurement equation

where wk and vk are process and measurement noise, 

respectively. 

The filtering problem consists in estimating the state 

of the system at time k using measurements of z up to 

time k and the available mathematical model of the 

system.
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The Kalman filtering problem

Special case: 

the system is linear (possibly time-varying);

process and measurement noise are white noise 

processes;

The Kalman filter provides the optimal solution to 

the filtering problem, in the sense that it minimises 

the state estimation error variance.



9/9/2015 - 6-

System dynamic model

The system is linear, time-varying, in discrete-time:

Noise assumptions:

Initial conditions:
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Special case: the deterministic problem

The system is linear, time-invariant, in discrete-time:

Then the state can be recostructed using

provided that K is suitably chosen:

if K: (Φ-KH) asymptotically stable ) ek ! 0, k ! 1.

(always possible if (Φ,H) is observable)
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Optimal linear filter

In the stochastic case, the question is: how to choose 

the gain optimally in order to minimise the variance of 

the state estimation error?

Kk: is minimised.
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Summary of filter equations

State estimate and error covariance extrapolation:

State estimate observational update and error 

covariance update:

Gain update:
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Block diagram for the filter

The dynamics of the filter can be represented as
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An example

Consider the linear, discrete-time system given by
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An example (2)

Simulation results



Ill-conditioned Kalman filtering problems
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Ill-conditioning in Kalman filtering

Uncertainty in the values of Φ, Q, H and R;

Large ranges of values of parameters, state variables or 

measurements (poor scaling);

Ill-conditioning of HPHT+R for inversion;

Ill-conditioned theoretical solution of the solution of the ARE;

Large matrix dimensions;

Poor machine precision.
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Propagation of roundoff errors in KFs

Kalman filter data flow
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Propagation of roundoff errors in KFs (1)

Comments:

The estimation loop is a feedback loop )
roundoff errors are corrected by feedback as long as 

the gain is correct.

The gain loop has no feedback )
No way of detecting and correcting the effect of roundoff 

errors;

The gain loop also involved the largest number of roundoff-

sensitive operations.
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Propagation of roundoff errors in KFs (2)

Example: what happens if the sign of P changes?
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Error propagation models (1)

Numerical analysis of error propagation 
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Error propagation models (2)

Theoretical upper bounds of propagation error
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Examples of filter divergence (1)

Consider the estimation problem with Φ=I, H=1, 

Q=0, l=n=1, in which P0 >> R, in the sense that R < εP0.

Then the iteration of the KF gives
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Examples of filter divergence (2)

Consider the filtering problem with

where δ2< ε but δ> ε.

The we get

which is singular to machine precision.



Implementation methods for Kalman filtering
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Implementation issues

Symmetry of P:Joseph formula;

Scalar updates of the state estimate;

Symmetry, computational cost and roundoff error: 

factorisation methods;
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Symmetry of P: the Joseph form

The covariance propagation equations are given by

The first equation already guarantees symmetry. 

The second can be equivalently written as

which again guarantees symmetry.

NOTE: this is the least one can do in implementing a KF!
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Scalar updates of the state estimate (1)

Consider the measurement equation

and assume that Rk is diagonal, i.e., the measurements 

are statistically independent.

Then the computation of the gain and the update of 

the estimate can be carried out considering each 

measurement individually.



9/9/2015 - 26-

Scalar updates of the state estimate (2)

Advantages:

Reduced computational cost:

Vector implementation: cost grows as l^3;

Scalar implementation: cost grows as l;

Improved numerical accuracy: consider the 

computation of 

If zk is scalar then we avoid matrix inversion!
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Scalar updates formulas

for i=1, .., l

end for;
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Application: handling sensor faults

In many applications the operation of the KF must 

be guaranteed in the presence of sensor faults;

The scalar update allows to “switch off” a faulty 

sensor without affecting the operation of the filter 

(provided that the system remains observable).

Sensor faults can be detected by monitoring the 

innovation for each measured output:
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An example

Consider the linear, discrete-time system given by

Now we have two sensors measuring x1. 

At time k=50, the second sensor becomes biased:
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An example (2)

Simulation results
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An example (3)

The problem with sensor 2 can be detected by 

monitoring {ek}2; 

The faulty sensor can then be switched off;

If needed, a warning can be sent to a supervision 

system. 
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Overview of factorisation methods

Symmetry can be ensured and numerical stability can 

be improved by using one or more of the following ideas:

Factoring P into Cholesky (or UDU) factors;

Factoring R (to simplify observational update) and/or 

Q (to simplify temporal update);

Taking square roots of elementary matrices;

Using QR factorisations of general matrices;
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The Potter square root filter

Main idea: factor P(-) and P(+) according to:

so that the observational update

becomes
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The Potter square root filter (2)

Matrix 

is symmetric, so if we can factor it as WWT we can 

obtain the complete “square root” update:

Consider the special case of a scalar measurement z.

Then V=v=CT(-)HT is a column vector and WWT reduces to
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The Potter square root filter (3)

Computing the square root of

We have that

where

provided that 
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The Potter square root filter (4)

Therefore in our case we have that

) 

So the update is
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The Potter square root filter (5)

Main advantages:

Reduced computational cost (only “half” of the 

covariance is updated);

Inherent symmetry of the covariance matrix.


