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| Problem statement g
||

We start from the DT-DT problem, formulated as follows.
The system under study is given by

x(t+1)=Fx(t) +w(t), x(1)=ux1

y(t) = Hz(t) + v(t)
where:

 vand w are DT white Gaussian noise processes with
wr GO,W), v~ G0,V)
* X, is a Gaussian random variable:
x1 ~ G(0, P1)

* Vv, wand x, are independent.
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| Problem statement g
||

We want to define estimators for the state vector x on the
basis of measurements of the output y:

y = [y(1),y(2),...,y(N)].

« t>T: prediction problem.
o t=T: filtering problem.
0 <t<T:.smoothing problem.

We first consider the prediction problem, starting from one-
Step-ahead prediction.
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| Background on LTI DT systems g

Free response:

x(t+1) = Fx(t), z(1)=xq

x(2) = Fz(1l) = Fxq
2(3) = Fz(2) = F?z4

z(t) : Fx(t—1) = Fi~1z.

Marco Lovera - I POLITECNICO DI MILANO



| Background on LTI DT systems g
||

Forced response:

x(t+1)=Fx(t) +w(), x(1)=0

x(2) = Fx(1) + w(l) = w(l)
x(3) = Fx(2) +w(2) = Fw(l) + w(2)
2(4) = Fz(3) + w(3) = F?w(1) + Fw(2) + w(3)

t—1
z(t) = Y FFRuw(k).
k=1
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| Background on LTI DT systems g

Comments:

* The free response z(t) = Fz(t — 1) = Ft7 1z
IS linear in the initial state, so if the initial condition is
Gaussian the free response is also Gaussian for all .
t—1
* The forced response z(t) = Y F' Fw(k)
k=1
is linear in the samples of w(t), so if process noise is a
Gaussian RP, the forced response is Gaussian for all .

* Finally, since the system is linear, the response is the sum of
free and forced and therefore is also Gaussian.
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| Optimal one-step-ahead predictor =

Using Bayes rule we can express the optimal one-step-
ahead state and output predictors as

Z(N + 1\N) = E[z(N + 1)\y"']
G(N + 1\N) = E[y(N + 1)\y"].

We will use often the innovation

e(N+1)=y(N+1) — Ely(N + 1)\¢"]

and the state prediction error

v(N+1)=2(N+1) - Elz(N + D\y'"].
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| Optimal one-step-ahead predictor =

Consider first the output prediction:

§(N 4+ 1\N) = E[y(N + 1)\y"] =
= E[Hz(N + 1) +o(N + 1\yV] =
= HE[z(N + D\yV] + E[(N + 1)\y].

The second term is zero, as:

* y(N)is a function of v up to time N, of w up to time N-1 and of
Xy.

* Vv(N+1) is independent of
- previous samples of vand w
- the initial state x,.

In other words, v(N+1) is unpredictable based on past data.
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| Optimal one-step-ahead predictor =

Therefore we have
§(N 4+ 1\N) = HE[z(N + 1)\y"] = Hz(N + 1\N).
Note that as in the Luenberger observer the prediction of the

output is expressed in terms of the prediction of the state
through the output matrix H.
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| Optimal one-step-ahead predictor =

Consider now the state prediction:

Z(N + 1\N) = E[z(N + 1)\y"] =
= Elz(N + 1)\¢"V 1, y(\N)] =
= E[z(N + 1)\y™ 1 + E[z(N + D)\y(N)].

The second term can be written in terms of the innovation:
(N +1\N) = E[z(N + D\y" 1+ E[z(N + 1)\e(N)].

Next, we have to evaluate the two terms on the RHS.
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| Optimal one-step-ahead predictor =

The first term is given by:
E[lz(N 4+ 1)\y" 1 = E[Fz(N) +w(N)\y" 1.

Equivalently:

Elz(N 4+ 1)\y" 1 = FE[(N)\y" 1 + Elw(N)\y" 1].

Elw(N)\y"¥~1]is zero, as:
* y(N-1)is a function of v up to time N-1, of w up to time N-2 and
of x;.
* w(N) is independent of
- previous samples of vand w
- the initial state x;.

Therefore we get E[z(N + 1)\y"¥ 1] = FZ(N\N — 1).
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| Optimal one-step-ahead predictor =

Substituting:

Z(N +1\N) = FZ(N\N — 1) + E[z(N + 1)\e(N)].

Using the vector Bayes rule, the second term is given by

Ele(N + 1)\e(N)] = Ay(n+1)e( N)/\e—&\,)e( pyed)

and to make it explicit we have to compute the two variance
matrices:

Ap(N+1)e(v) = Elz(N + 1)e! (N)]
/\e(N)e(N) — E[e(N)eT(N)]
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| Computation of A, (ni1)ev) = Elz(N + el (N)]

For the covariance between x(N+1) and e(N) we have

Ap(N+1)e(n) = Elz(N 4+ 1)l (N)] =
= E[(Fz(N) + w(N))(Hz(N) + v(N) — HE(N\N — 1))'] =
= E[(Fz(N) + w(N))(H(@(N) — Z(N\N — 1)) +v(N))'].

Computing the products:

Ap(N+1)e(n) = EI(Fz(N) +w(N)(H(z(N) = 2(N\N - 1)) + v(N))'] =
= FE[z(N)(z(N) — &(N\N — 1)'1H" + FE[z(N)v" (N)]+
+ Elw(N)H(z(N) — (N\N — 1) + o(N))'].
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| Computation of A,y 1) vy = Elz(N + el ()]

Note that in

Ao(N+1)e(N) = FE[R(N)(2(N) = 2(N\N — 1)) 1H" + FE[z(N)v" (N)]+
+ E[w(N)H(z(N) — Z(N\N — 1) + v(N))T]

the second and the third terms are zero, so we have

Ap(N+1)e(n) = FE[z(N)(x(N) - 2(N\N — 1))"1H".
To evaluate the expectation we re-write it as

Ap(N+1)e(v) = FE[(@(N) £ 2(N\N — 1))(z(N) — 2(N\N — 1))"]H"

and compute the products.
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| Computation of A,(yi1)ey) = Elz(N + 1)e’ (V)]

We get

Ao(N+1)e(N) = FE[(z(N) £ 2(N\N — 1)) (z(N) - 2(N\N - 1)) |H" =
= FE[(z(N) — 2(N\N — 1))(z(N) — 2(N\N — 1)) ]1H  +
+ FE[E(N\N — 1)(z(N) — Z(N\N — 1)) 1H"

which can be written in terms of the prediction error:
Ap(N+1)e(v) = FE(N)v(N)T1H" + FE[E(N\N — 1)v(N)"1H".

The second term is zero: the prediction error at time N is the
unpredictable part of x(N) and therefore is independent of
the prediction of x(N).
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| Computation of A,(yi1yey) = Elz(N + 1)e’ (V)]

Therefore, we get

Ao(N+1)e(n) = FE(N)v(N) 1 H"

and letting P(N) = E[v(N)v(N)T]

we have the final result
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| Computation of A,(y).(n) = Ele(N)e (V)] )

For the covariance between e(N) and e(N), recalling
that

e(N) =y(N) —y(N\N — 1) = Hv(N)\N — 1) + v(N)

we have

Ne(nye(n) = Ele(N)e! (V)] =
= E[Hv(N\N — 1)vT(N\N — 1)HT] + E[v(N)vT(N)] + cross terms =
= HP(N)HT + V.
The cross-terms can be shown to be zero by means of the
usual arguments.

Marco Lovera - I POLITECNICO DI MILANO



| Optimal one-step-ahead predictor =

We now have:

Z(N + 1\N) = FZ(N\N — 1) + E[z(N + 1)\e(N)].
where

Ele(N + D\e(M)] = Ay(v11)e(m)Nogiye(vy¢ V)

and .
Np(N+1)e(N) = FP(N)H

/\e(N)e(N) — HP(N)HT+ Vv

therefore the complete predictor is

F(N + 1\N) = FZ(N\N — 1) + FP(N)HT (HP(N)HT 4+ V)~ Le(V).
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| Optimal one-step-ahead predictor =

Letting
K(N)=FP(NHT(HP(N)HT 4+ v)1
the gain of the predictor, we get

F(N + 1\N) = FZ(N\N — 1) 4+ K(N)e(N)
G(N\N — 1) = HZ(N\N — 1).

Recalling the definition of the innovation as
e(N) = y(N) —y(N\N - 1)

we recognize that the optimal predictor has the same
structure as the Luenberger observer.
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| Optimal one-step-ahead predictor =

Note however that unlike the Luenberger observer:

* The optimal gain K(N) determined using Bayes rule is
NOT constant.

* The definition of the gain is not yet complete as we still
need an update equation for P(N).
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| Optimal one-step-ahead predictor =

The update equation for P(N) can be derived starting from
the definition of prediction error:

V(N +1)=z(N+1)—3(N 4+ 1\N)

which can be also written as

WIN+1)=z(N+1)—F(N 4+ 1\N) =
= F(z(N) = 2(N\N — 1)) + w(N) — K(N)e(N)

and recalling e(N) = Hv(N) + v(N)

V(N 4+ 1) = (F — K(N)YH)v(N) + w(N) — K(N)v(N).
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| Optimal one-step-ahead predictor .

Squaring
v(N+1) =(F - KWN)H)v(N) +w(N) — K(N)v(N)
we get

v(N+ D! (N +1) = (F - K(N)H)v(N)vI(N)(F - K(N)H) '+
+ w(N)w! (N) — K(N)v(N)v! (N KT (N)+
+ cross products.

Taking expectations of both sides:

P(N+1)=(F - K(N)H)P(N)(F - K(N)H)' + W - K(N)VK!'(N)

as it can be shown that E[cross products] = 0.
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| Optimal one-step-ahead predictor =

The update equation for P(N)
P(N+1)=(F-KN)H)P(N)(F-K(NH)"+wW - K(N)VKT(N)

can be also written as
P(N+1)=FP(N)F' +w - FP(N)H'[HP(N)HT + V] tHP(N)FT
where K(N) = FP(N)H'(HP(N)H' + v)~1 has been used.

Or, equivalently, as
P(N+1)=FP(N)FI' 4+ W - K(N)[HP(N)H! + VIKT(IN).

This equation is known as the Difference Riccati Equation (DRE).
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| Optimal one-step-ahead predictor =

The last form
P(N4+1)=FP(N)F'+W — K(N)[HP(N)H! + V]1KT(N)

IS interesting as it allows a simple interpretation.
* P(N) is a variance matrix, so it is positive semidefinite.
* Indeed the RHS is a sum of positive sign-definite terms.

« The first two (positive: variance increase) correspond to
prediction, i.e., pure propagation of the variance on the
system’s state equation.

« The last term (negative: variance reduction) corresponds to the
correction, introduced by feedback of the innovation.
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| Optimal one-step-ahead predictor =

* The definition of the predictor is now complete.

« We just have to specify the initialisation for the prediction
and for the variance of the prediction error.

* For the prediction, at time 1 we should condition for data
at time 0, which is not available. Therefore

#(1\0) = E[z(1)\y’] = E[z(1)] = 0.
* For the Riccati equation:

P(1) = E[(z(1) — 2(1\0))?] = E[(z(1) — E[z(1)])?] = P1.
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| Optimal one-step-ahead predictor: summary e

¢ System:
x(t+1)=Fz(t) + w(t), =z(1)=uxq
y(t) = Hx(t) + v(t)
w~GO,W), v=GWO,V), x1=~G0,P;)
« State prediction:

F(N 4 1\N) = FE(N\N — 1) + K(N)(y(N) — H(N\N — 1)),  #(1\0) = a1
G(N\N — 1) = HZ(N\N — 1).

* Gain and prediction error variance update:

P(IN+1)=FP(NF'+w - FP(N)HT[HP(N)HT + V]71HP(N)FT, P(1) =P,
K(N) = FP(NHT(HP(N)HT +Vv)~1
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| Optimal r-step-ahead predictor =

We now turn to the problem of r-step-ahead prediction, i.e.,
the computation of

(N 4+ r\N) = E[z(N + r)\y"].

We have

(N +r\N) = E[z(N +r)\y"] =
= E[Fz(N+r—-1)+o(N+r—-1)\y'] =
= Fz(N +r — 1\N) + null terms.

Iterating down to N+1 we get

Z(N +r\N) = F' (N + 1\N)
y(N +r\N) = Hz(N + r\N).
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| Optimal r-step-ahead predictor =

As a particular case note that if we evaluate
Z(N 4+ r\N) = FZ(N +r — 1\N)

for =1 we get z(N + 1\N) = FZ(N\N).
Therefore:

« if Fis invertible we can easily solve the filtering problem from
the one-step-ahead prediction:

Z(N\N) = F~1Z(N + 1\N)

* On the contrary if the filtered estimate is available, the one-

step-ahead prediction is just a one-step propagation of the
state equation.
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Application of optimal prediction: MPC

In Model Predictive Control (MPC):

« At each time instant the current output is measured and the
state prediction is computed as function ot future outputs.

* A performance metric is optimised with respect to future control
samples.

PAST FUTURE

< A >

Reference Trajectory
—s— Predicted Output

« The first sample of the - Pedeted O
g . easured Output
computed control sequence / — Pradcted Contl
] ] ast Control Input
IS applied.

P— Prediction Horizon
< >

« The whole procedure is — >

-~
Sample Time

repeated at the subsequent ©R ke P
step (receding horizon principle).

——
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| Optimal filtering ——

 For conventional real-time control however we are not
interested in estimating the future state but rather the

current state.

« Therefore the problem we need to solve is filtering rather
than prediction.

» As we will see, filtering can be solved easily by building on
the optimal one-step-ahead predictor.
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| Optimal filtering E——

We want to compute z(N\N) = E[z(N)\y'"]:

F(N\N) = Elz(N)\y"] =
= Elz(NM)\y" L y(VN)] =
= Elz(N)\y" 1] + E[z(N)\e(N)]
= 2(N\N = 1) + Ay (nye(n)No(iyevy e V) =
= Fz(N —1\N — 1) + /\x(N)e(N)/\e_&V)e(N)e(N).

We have seen that

Ne(Mye(ny = Ele(N)e (N)] = HP(N)H" +V

and it can be proved that

Ao(Vye(ny = P(N)HT.
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| Optimal filtering ——

Therefore, the optimal filter update is given by

Z(N\N) = E[z(N)\y"] = FZ(N — 1\N — 1) + Kp(N)e(N)

where

Kp(N)=P(NHT(HP(N)HT +v)~ 1.
Note that

K(N) = FKp(N).
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| Optimal filter: (temporary) summary I ——

¢ System:
x(t+1)=Fz(t) + w(t), z(1)=mx
y(t) = Hz(t) + v(¢)
w~GO,W), v=GWO,V), x1~G0,P;)
« State filtering:

F(N\N) = FE(N — 1\N — 1) + Kp(N)(y(N) — H(N\N = 1)),  #(1\0) = 2
§(N\N) = HZ(N\N).

* Gain and prediction error variance update:

P(N+1)=FP(N)FI' +w - FP(N\)H'[HP(N)HT +V]"IHP(N)FT, PQ1)=P
Kp(N)=P(NHT'(HP(N)HT + V)~ L.
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| Optimal filtering ——

* The previous expression is somewhat hybrid, in the sense
that it involves both filtered and predicted quantities.

* An expression of the filter in terms of the filter error
vp(N) = z(N) — 2(N\N)
and its variance

Pp(N) = E[vp(N)v! (V)]

can be derived, but it is very complicated and not suitable
for implementation.
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| Optimal filtering

* In the following we will derive the so-called prediction-
correction form for the optimal filter.

* This form combines predicted and filtered quantities in a
systematic way.
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| Predictor/corrector Kalman filter .
||

Recall that

Z(N\N —1) = FZ(N — 1\N — 1)
SO we can obtain the prediction at N+1 from the filtered
estimate at time N.

The new filtered estimate can be seen as a correction based
on the measurement at time N.:

Z(N\N) = Z(N\N — 1) + Kp(N)(y(N) = g(N\N — 1))
G(N\N) = HZ(N\N).
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| Predictor/corrector Kalman filter :
||

For variances: we have from the Riccati equation that

P(N+1)=FPN)F'+W — K(N)[HP(N)H" + V]KT(N).
and using K(N) = FKp(N):
P(N+1)=FP(N)FI + W — FKp(N)[HP(N)H! + VIKLE(N)FT.
Based on
T(N\N) =Z(N\N — 1) + Kp(N)(y(N) — g(N\N — 1))
it can be proved that

Pp(N) = P(N) — Kp(N)(HP(N)HT + V)KE(N)
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| Predictor/corrector Kalman filter .
||

Therefore if the filter error variance from the previous time
iInstant is known, then the prediction error variance is

P(N) =FPpr(N-1DF' +w
and the updated filter error variance is:
Pp(N) = P(N) = Kp(N)(HP(N)H" + V)KE(N)
which recalling
Kp(N)=P(NHT(HP(N)HT +v)~1

can be simplified to
Pp(N) = P(N) - Kp(N)HP(N) = (I - Kp(N)H)P(N).
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| Optimal filtering ——

 In the predictor/corrector form a slightly different notation
IS used:

F(N\N -1) —  Z(N)(—)
Z(N\N) = 2(N)(+)

P(N) — P(N)(-)
Pp(N) — P(N)(+)
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| Predictor/corrector Kalman filter .
||

State estimate and error covariance extrapolation:

F(N)(=) = FZ(N — 1)(+)
P(N)(—) = FP(N — 1) (+)FI' +w

Gain update:

Kp(N) = P(N)()HT [HP(N) () HT + V]

State estimate update and error covariance update:

z(N)(+) = z(N)(=) + Kp(N) (y(N) — HZ(N)(—))
P(N)(+) =[I = Kp(N)H] P(N)(-)
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| Prediction and filtering: generalisations g

« The results on Kalman prediction and filtering have been
derived under some simplifying assumptions for the sake
of simplicity.

« Some of the assumptions can be removed, so that the
results have more general validity.
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| Including control inputs g
||

« Consider a plant model which includes a control input

x(t+1) = Fx(t) + Gu(t) + w(t), z(1)=xq
y(t) = Hz(t) + v(1).

* Then the input can be included in the prediction/filtering
approach developed so far just like in the Luenberger
observer problem.
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| Including control inputs: predictor =
||

¢ System:
x(t+1)=Fz(t)H+ Gu(@t) H+ w(t), =z=(1)=xq
y(t) = Hz(t) + v(t)
w~ GO, W), v=GWO,V), x1=~G(0,P;)
« State prediction:

Z(N + 1\N) = FZ(N\N — 1) i+ Gu(N) t+t K(N)(y(N) =g(N\N - 1)), Z(1\0) = z1
G(N\N — 1) = HF(N\N — 1).

* Gain and prediction error variance update:

PI(IN+ 1) =rP(NF'+w - rP(NMHTTHP(N)HT +V]71HP(NFT, P(1) =P,
K(N) = FP(NHT(HP(N)HT +Vv)~1
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| Including control inputs: filter g
||

State estimate and error covariance extrapolation:

T(N)(=) = Fz(N — 1)(+)[+ Gu(N — 1)

P(N)(-) = FP(N — 1) (+)Fl +w
Gain update:

Kp(N) = P(N)()HT [HP(N) () HT + V]

State estimate update and error covariance update:

F(N)(+) = 2(N) (=) + Gu(N — 1)|+ Kp(N) (y(N) — HZ(N)(-))
P(N)(+) = [I — Kp(N)H] P(N)(-)

Marco Lovera - I POLITECNICO DI MILANO



| Time-varying dynamics and noise variances

« The assumption of LTI dynamics can be relaxed.

« The above results on prediction/filtering hold unchanged
in the case of a time-varying linear system:
z(t+1) =F@)z() + G@ult) +w(@), =z(1) =z
y(t) = H(t)z(t) + v(¢)

w ~ G(07 W(t))a V= G(Oa V(t))a Tty ~ G(07 Ptl)'
 In particular, both time-varying dynamics and time-varying

noise variances can be handled in the Kalman filtering
framework.
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. . . . L
Time-varying dynamics and noise
variances: predictor

« State prediction:

F(N + 1\N) = F(N)Z(N\N — 1) + G(N)u(N) + K(N)e(N), 7(1\0) = z1
GIN\N — 1) = H(N)Z(N\N — 1)
e(N) = (y(N) = g(N\N —1)).

* Gain and prediction error variance update:
P(N 4 1) = F(N)P(N)F(N)" + W(N)+

— F(N)P(N)HN)TTHN)P(NYH(N)T + V()] H(N)P(N)F(N)T,  P(1) =Py
K(N) = F(N)P(N)H(N)T(H(N)P(N)H(N)T + v(N)~L.

Marco Lovera - l POLITECNICO DI MILANO



. . . . L
Time-varying dynamics and noise
variances: filter

State estimate and error covariance extrapolation:
Z(N)(=) =FN -1)z(N -1)(+) + G(N — Du(N - 1)
P(N)(=) = F(N)P(N — )(+H)F(N)' + W(N)
Gain update:

Kp(N) = P(NY(=)H(N)T [H(N)P(NY () HNT + V()]

State estimate update and error covariance update:

Z(N)(+) =z2(N)(-) + G(N — Du(N - 1)+
+ Kp(N) (y(N) — H(N)Z(N)(—))

P(N)(+) =[I - Kp(N)H(N)] P(N)(-)
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. L I
| Correlated noise processes
||

 In the derivation of the predictor and filter we assumed
that

E[o(N)w(N)] = 0.

» Also this assumption can be relaxed and the derived
solutions generalised to the case when

E[v(N)w(N)] = Z # 0.
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| Steady-state Kalman predictor/filter =

« The optimal solution derived so far has as main downside
that the gain K(N) is time-varying even in the LTI case.

* This implies that the implementation requires the
propagation of P(N) besides the propagation of the
estimate.

« There is evidence however that in many problems after a
transient the gain converges to a constant value.
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If the gain K(N) converges to a constant:

im K(N)=K

N—o0

then the predictor
Z(N + 1\N) = FZ(N\N — 1) + Gu(N) + Ke(N), z(1\0) =z
§(N\N — 1) = HZ(N\N — 1)
e(N) = (y(N) —g(N\N — 1))

Is called the steady-state predictor.
Note that substituting e(N) we have

#(N + 1\N) = (F - RKH)(N\N — 1) + Gu(N) 4+ Ry(N), (1\0) = a1

which is a LTI system.
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The following questions then arise:

» Under which conditions does the gain converge?
* Does the gain converge to a stabilising value?
 If it does, how do we compute the steady-state gain?

« What is the actual performance loss incurred by
considering the steady-state Kalman predictor/filter?

Recall that
K(N)=FP(N)H'(HP(N)HT + V)L,

Therefore the convergence of the gain depends on the
convergence of P(N).
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» Consider initially the case in which the system is
asymptotically stable.

* Then, we study the variance of the state sequence.

» Froma(N 4+ 1) = F(N)z(N) + w(N), (1) =1z

(N + 1)zl (N + 1) = Fa(N)a! (N)F! 4+ w(N)w! (N)+
+ Fe(N)w! (N) + w(N)zl (N)F!, 2(1) = 24

* And taking the expectation:

AN 4+ 1) = E[z(N+ Dzl (N+ 1] = FANF' +w, AQ) =Py
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Comparing

ANt+1)=E[lzt+ Dz ¢t+ D] =FAQOFI +WwW, AQ)=P;

to the Riccati equation

P(N+1)=FP(N)FI' 4+ W - K(N)[HP(N)H' + VIKT(N), PQ1) =P

we conclude that P(N) < A(N).
But if the system is stable then&@mA(N) = A

and therefore also Iim P(N) = P.
N —00
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Based on this argument it can be proved that:
If the system is asymptotically stable then

« The solution of the DRE converges to
Nl_i_r)noo P(N)=P>0

and the limit is independent of the initial condition.

* The corresponding steady-state predictor is asymptotically
stable.
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How does one compute the steady-state gain?

If Jim P(N) = P then by definition at steady state we have
P(N+1)=P(N)=P

and therefore the DRE

P(N+1)=FP(N)FI' 4+ W - K(N)[HP(N)H' + VIKT(N), PQ1) =P,

reduces to the Discrete Algebraic Riccati Equation (DARE):

P=FPF' +w - FPH'[HPH! + V] 1HPFT.

Marco Lovera - I POLITECNICO DI MILANO



| Steady-state Kalman predictor/filter =

Under stability assumptions, the DARE has a unique positive
definite solution from which the steady-state gain can be
computed:

P=rPF'+w —FPH'[HPH! + V]| tHPFT

K =FPH'(HPH' + V) L.

Marco Lovera - I POLITECNICO DI MILANO



| Steady-state Kalman predictor/filter =

Example: the scalar case.

In the case of a first order model, the DARE reduces to

F2[H2p2
H2Pp 4V

P=F°P4+W —
H?P?+ VP — (F°P+W)(H?P+ V) + F2H?P?2 =0
H?P? 4+ (V — F°V — H°W)P-WV =0

FHP

K = .
H2P4+V
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& 1| Settling time for the response of a first order g
DT system

The state equation z(k 4+ 1) = ax(k), z(0) ==z, O0<a<1

has a free response given by z(k) = a*zg

At At

which letting a =e™7 +=- 0.9 47
log(a) 0.8 22
_ kAt 0.7 14

becomes z(k) =e 7 zg
0.6 10
0.5 7
and therefore the settling time in 0.4 5
steps is 0.3 4
5 0.2 3

NANt=1 — tp~br=-— .

A== Tog(a) 0.1 2
0.01 1
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Example: the scalar case.

Fix for example F = 0.5, H =1 and study the effect of W

and V:
P? 4+ (0.75V - W)P—-WV =0
For W=1:
1.13 0.2656 0.2344
0.1 1.02 0.4555 0.0445 1.6
0.01 1.002 0.495 0.0049 0.94
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Example: the scalar case.

Fix for example F = 0.5, H =1 and study the effect of W

and V:
P? 4+ (0.75V - W)P—-WV =0
For V=1:
1.13 0.2656  0.2344
0.1 1.18 0.0569 0.4431 6.1
0.01 0.01 0.0066  0.4934 7
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* In many problems however the model is not asymptotically
stable.

* For example, in the single-axis attitude estimation problem
the dynamic matrix is given by

r=l 7

0O 1

which has both eigenvalues equal to 1.

* Nonetheless we have seen that the filter converges to a
stabilising gain.
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* As in the case of the Luenberger observer the structural
properties of the model play a role.

* It is intuitive that for closed-loop stability the observability
of (F, H) is important.

* This however is not the only condition: we look at this
using an example.
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Consider again the scalar case and assume that W=0 (no
process noise in the state equation) and P,=0.

The scalar DARE
H?P?+ (V- F?V — H°W)P-WV =0
In this case reduces to
H°P?+V(1-F>)P=0

which has as roots
V(F?2-1)
H2
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* For an unstable system the optimal solution is P=0.

« This is consistent with the assumptions: if the state
equation is deterministic then we expect null prediction
error.

« This however implies K=0 and therefore (F-KH)=F will be
unstable.

* |f however we add a small process noise then the null
solution of the DARE vanishes and we get a non-zero
gain.

Marco Lovera - I POLITECNICO DI MILANO



| Steady-state Kalman predictor/filter =

Based on these arguments it can be proved that:

If the (F, H) pair is observable and the (F, G) pair is
reachable, where ¢: w = gGT then

« The solution of the DRE converges to
lim P(N)=P >0

N—o0

and the limit is independent of the initial condition.

* The corresponding steady-state predictor is asymptotically
stable.
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| The CT-DT Kalman filter e

* We now turn to the case in which the system for which we
want to estimate the state has continuous-time dynamics
and a discrete-time measurement equation

z = Az + Bu+w, z(0) = xq
y=Cx—+ Du-+v
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| The CT-DT Kalman filter e

 To use the results on the DT solution we have to relate
the CT state equation and the DT one.

* We do it using simple Euler integration:

o z(N +1) —z(N)
o At

= Az(N) + v(N)

2(N + 1) = (In + AtA)z(N) 4+ Ato(N)

x(N+1)=Fxz(N)4+v(N), F=(U,+ AtA), v(N)= Atvi(N)
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