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Problem statement

We start from the DT-DT problem, formulated as follows.
The system under study is given by

where:

• v and w are DT white Gaussian noise processes with

• x1 is a Gaussian random variable:

• v, w and x1 are independent.
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Problem statement

We want to define estimators for the state vector x on the 
basis of measurements of the output y:

• t > T: prediction problem. 

• t = T: filtering problem. 

• 0 < t < T: smoothing problem. 

We first consider the prediction problem, starting from one-
step-ahead prediction.
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Background on LTI DT systems

Free response:
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Background on LTI DT systems

Forced response:
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Background on LTI DT systems

Comments:

• The free response
is linear in the initial state, so if the initial condition is
Gaussian the free response is also Gaussian for all t.

• The forced response

is linear in the samples of w(t), so if process noise is a 
Gaussian RP, the forced response is Gaussian for all t.

• Finally, since the system is linear, the response is the sum of 
free and forced and therefore is also Gaussian.  
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Optimal one-step-ahead predictor

Using Bayes rule we can express the optimal one-step-

ahead state and output predictors as

We will use often the innovation

and the state prediction error
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Optimal one-step-ahead predictor

Consider first the output prediction:

The second term is zero, as:
• y(N) is a function of v up to time N, of w up to time N-1 and of 

x1.
• v(N+1) is independent of

• previous samples of v and w
• the initial state x1.

In other words, v(N+1) is unpredictable based on past data.
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Optimal one-step-ahead predictor

Therefore we have

Note that as in the Luenberger observer the prediction of the 

output is expressed in terms of the prediction of the state 

through the output matrix H.
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Optimal one-step-ahead predictor

Consider now the state prediction:

The second term can be written in terms of the innovation:

Next, we have to evaluate the two terms on the RHS.
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Optimal one-step-ahead predictor

The first term is given by:

Equivalently:

is zero, as:
• y(N-1) is a function of v up to time N-1, of w up to time N-2 and 

of x1.
• w(N) is independent of

• previous samples of v and w
• the initial state x1.

Therefore we get
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Optimal one-step-ahead predictor

Substituting:

Using the vector Bayes rule, the second term is given by

and to make it explicit we have to compute the two variance

matrices:
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Computation of 

For the covariance between x(N+1) and e(N) we have

Computing the products:
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Computation of 

Note that in

the second and the third terms are zero, so we have

To evaluate the expectation we re-write it as

and compute the products.
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Computation of 

We get

which can be written in terms of the prediction error:

The second term is zero: the prediction error at time N is the 

unpredictable part of x(N) and therefore is independent of 

the prediction of x(N).

15



Marco Lovera

Computation of 

Therefore,  we get

and letting

we have the final result
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Computation of 

For the covariance between e(N) and e(N), recalling

that

we have

The cross-terms can be shown to be zero by means of the 

usual arguments.
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Optimal one-step-ahead predictor

We now have:

where

and

therefore the complete predictor is
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Optimal one-step-ahead predictor

Letting

the gain of the predictor, we get

Recalling the definition of the innovation as

we recognize that the optimal predictor has the same
structure as the Luenberger observer. 
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Optimal one-step-ahead predictor

Note however that unlike the Luenberger observer:

• The optimal gain K(N) determined using Bayes rule is
NOT constant. 

• The definition of the gain is not yet complete as we still
need an update equation for P(N).
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Optimal one-step-ahead predictor

The update equation for P(N) can be derived starting from 

the definition of prediction error:

which can be also written as

and recalling

21



Marco Lovera

Optimal one-step-ahead predictor

Squaring

we get

Taking expectations of both sides:

as it can be shown that

22



Marco Lovera

Optimal one-step-ahead predictor

The update equation for P(N)

can be also written as

where has been used. 

Or, equivalently, as

This equation is known as the Difference Riccati Equation (DRE).
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Optimal one-step-ahead predictor

The last form

is interesting as it allows a simple interpretation.

• P(N) is a variance matrix, so it is positive semidefinite.

• Indeed the RHS is a sum of positive sign-definite terms.

• The  first two (positive: variance increase) correspond to 
prediction, i.e., pure propagation of the variance on the 
system’s state equation.

• The last term (negative: variance reduction) corresponds to the 
correction, introduced by feedback of the innovation.
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Optimal one-step-ahead predictor

• The definition of the predictor is now complete.

• We just have to specify the initialisation for the prediction
and for the variance of the prediction error.

• For the prediction, at time 1 we should condition for data 
at time 0, which is not available. Therefore

• For the Riccati equation:
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Optimal one-step-ahead predictor: summary

• System:

• State prediction:

• Gain and prediction error variance update:
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Optimal r-step-ahead predictor

We now turn to the problem of r-step-ahead prediction, i.e., 

the computation of

We have

Iterating down to N+1 we get
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Optimal r-step-ahead predictor

As a particular case note that if we evaluate

for r=1 we get

Therefore: 

• if F is invertible we can easily solve the filtering problem from 
the one-step-ahead prediction: 

• On the contrary if the filtered estimate is available, the one-
step-ahead prediction is just a one-step propagation of the 
state equation. 
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Application of optimal prediction: MPC

In Model Predictive Control (MPC):

• At each time instant the current output is measured and the 
state prediction is computed as function ot future outputs.

• A performance metric is optimised with respect to future control 
samples.

• The first sample of the 
computed control sequence
is applied.

• The whole procedure is
repeated at the subsequent
step (receding horizon principle).  
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Optimal filtering

• For conventional real-time control however we are not
interested in estimating the future state but rather the 
current state.

• Therefore the problem we need to solve is filtering rather
than prediction.

• As we will see, filtering can be solved easily by building on 
the optimal one-step-ahead predictor.
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Optimal filtering

We want to compute                                 :

We have seen that

and it can be proved that
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Optimal filtering

Therefore, the optimal filter update is given by

where

Note that
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Optimal filter: (temporary) summary

• System:

• State filtering:

• Gain and prediction error variance update:
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Optimal filtering

• The previous expression is somewhat hybrid, in the sense
that it involves both filtered and predicted quantities.

• An expression of the filter in terms of the filter error

and its variance

can be derived, but it is very complicated and not suitable

for implementation.
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Optimal filtering

• In the following we will derive the so-called prediction-
correction form for the optimal filter.

• This form combines predicted and filtered quantities in a 
systematic way. 
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Predictor/corrector Kalman filter

Recall that

so we can obtain the prediction at N+1 from the filtered

estimate at time N. 

The new filtered estimate can be seen as a correction based

on the measurement at time N:
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Predictor/corrector Kalman filter

For variances: we have from the Riccati equation that

and using :

Based on

it can be proved that
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Predictor/corrector Kalman filter

Therefore if the filter error variance from the previous time 

instant is known, then the prediction error variance is

and the updated filter error variance is:

which recalling

can be simplified to
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Optimal filtering

• In the predictor/corrector form a slightly different notation
is used:
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Predictor/corrector Kalman filter

State estimate and error covariance extrapolation:

Gain update:

State estimate update and error covariance update:
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Prediction and filtering: generalisations

• The results on Kalman prediction and filtering have been
derived under some simplifying assumptions for the sake
of simplicity.

• Some of the assumptions can be removed, so that the 
results have more general validity.
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Including control inputs

• Consider a plant model which includes a control input

• Then the input can be included in the prediction/filtering
approach developed so far just like in the Luenberger
observer problem.

42



Marco Lovera

Including control inputs: predictor

• System:

• State prediction:

• Gain and prediction error variance update:
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Including control inputs: filter

State estimate and error covariance extrapolation:

Gain update:

State estimate update and error covariance update:
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Time-varying dynamics and noise variances

• The assumption of LTI dynamics can be relaxed.

• The above results on prediction/filtering hold unchanged
in the case of a time-varying linear system:

• In particular, both time-varying dynamics and time-varying
noise variances can be handled in the Kalman filtering
framework.
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Time-varying dynamics and noise
variances: predictor

• State prediction:

• Gain and prediction error variance update:
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Time-varying dynamics and noise
variances: filter

State estimate and error covariance extrapolation:

Gain update:

State estimate update and error covariance update:
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Correlated noise processes

• In the derivation of the predictor and filter we assumed
that

• Also this assumption can be relaxed and the derived
solutions generalised to the case when
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Steady-state Kalman predictor/filter

• The optimal solution derived so far has as main downside
that the gain K(N) is time-varying even in the LTI case.

• This implies that the implementation requires the 
propagation of P(N) besides the propagation of the 
estimate.

• There is evidence however that in many problems after a 
transient the gain converges to a constant value.
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Steady-state Kalman predictor/filter

If the gain K(N) converges to a constant:

then the predictor

is called the steady-state predictor. 

Note that substituting e(N) we have

which is a LTI system.

50



Marco Lovera

Steady-state Kalman predictor/filter

The following questions then arise:

• Under which conditions does the gain converge?

• Does the gain converge to a stabilising value?

• If it does, how do we compute the steady-state gain?

• What is the actual performance loss incurred by 
considering the steady-state Kalman predictor/filter?

Recall that

Therefore the convergence of the gain depends on the 
convergence of P(N).
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Steady-state Kalman predictor/filter

• Consider initially the case in which the system is
asymptotically stable.

• Then, we study the variance of the state sequence. 

• From

• And taking the expectation: 
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Steady-state Kalman predictor/filter

Comparing

to the Riccati equation

we conclude that

But if the system is stable then

and therefore also
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Steady-state Kalman predictor/filter

Based on this argument it can be proved that:

If the system is asymptotically stable then

• The solution of the DRE converges to

and the limit is independent of the initial condition.

• The corresponding steady-state predictor is asymptotically
stable.
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Steady-state Kalman predictor/filter

How does one compute the steady-state gain?

If then by definition at steady state we have

and therefore the DRE

reduces to the  Discrete Algebraic Riccati Equation (DARE):
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Steady-state Kalman predictor/filter

Under stability assumptions, the DARE has a unique positive 
definite solution from which the steady-state gain can be 
computed:
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Steady-state Kalman predictor/filter

Example: the scalar case.

In the case of a first order model, the DARE reduces to
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Settling time for the response of a first order
DT system

The state equation

has a free response given by

which letting

becomes

and therefore the settling time in 

steps is

a round(tA)

0.9 47

0.8 22

0.7 14

0.6 10

0.5 7

0.4 5

0.3 4

0.2 3

0.1 2

0.01 1
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Steady-state Kalman predictor/filter

Example: the scalar case.

Fix for example and study the effect of W 
and V: 

For W=1: 

V P K tA
1 1.13 0.2656 0.2344 3.4

0.1 1.02 0.4555 0.0445 1.6

0.01 1.002 0.495 0.0049 0.94
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Steady-state Kalman predictor/filter

Example: the scalar case.

Fix for example and study the effect of W 
and V: 

For V=1: 

W P K tA
1 1.13 0.2656 0.2344 3.4

0.1 1.18 0.0569 0.4431 6.1

0.01 0.01 0.0066 0.4934 7
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Steady-state Kalman predictor/filter

• In many problems however the model is not asymptotically
stable.

• For example, in the single-axis attitude estimation problem
the dynamic matrix is given by

which has both eigenvalues equal to 1.

• Nonetheless we have seen that the filter converges to a 
stabilising gain.
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Steady-state Kalman predictor/filter

• As in the case of the Luenberger observer the structural
properties of the model play a role.

• It is intuitive that for closed-loop stability the observability
of (F, H) is important.

• This however is not the only condition: we look at this
using an example.
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Steady-state Kalman predictor/filter

Consider again the scalar case and assume that W=0 (no 
process noise in the state equation) and P1=0.

The scalar DARE 

in this case reduces to

which has as roots
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Steady-state Kalman predictor/filter

• For an unstable system the optimal solution is P=0.

• This is consistent with the assumptions: if the state 
equation is deterministic then we expect null prediction
error.

• This however implies K=0 and therefore (F-KH)=F will be 
unstable.

• If however we add a small process noise then the null
solution of the DARE vanishes and we get a non-zero 
gain.
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Steady-state Kalman predictor/filter

Based on these arguments it can be proved that:

If the (F, H) pair is observable and the (F, G) pair is
reachable, where then

• The solution of the DRE converges to

and the limit is independent of the initial condition.

• The corresponding steady-state predictor is asymptotically
stable.
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The CT-DT Kalman filter

• We now turn to the case in which the system for which we
want to estimate the state has continuous-time dynamics
and a discrete-time measurement equation
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The CT-DT Kalman filter

• To use the results on the DT solution we have to relate 
the CT state equation and the DT one.

• We do it using simple Euler integration:
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