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Conditional probability

Consider a random experiment defined by {, C, P} and 

study the probabilities of two events A and C.

The conditional probability of A given C is defined as

P(AnC) = P (A \ C)

P (C)
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Conditional probability

Example: rolling a dice.

={1,2,3,4,5,6}

C= all subsets of 

Consider 

A={1,2,3,5} and C={2,4,6}.

Clearly P(A)=4/6=2/3 and P(C)=3/6=1/2.

P(AnC) = P (A \ C)

P (C)
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Conditional probability

AÅC= {2}, so P(AÅC)=1/6.

Therefore 

P(A\C)=1/3.

P(AnC) = P (A \ C)

P (C)
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Conditional probability

If now we fix C and consider the function

defined in C and taking values in [0,1], we have defined the 

probability of any event in C given event C.

It has to be checked that this function is a well-defined 

probability function, i.e., it satisfies the properties defined 

earlier on.

P (¢nC)
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P is a function mapping C  to the [0, 1] interval, satisfying:

• P() = 1: 

• If for N < 1 events A1, A2, ..., AN 2 C, and 

then

The second property holds as we have the following.

Conditional probability

Ai

\
Aj = 0; 8i; j

P (
[

i

Ai) =
X

i

P (Ai)

P (nC) = P ( \ C)

P (C)
=

P (C)

P (C)
= 1
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Conditional probability

P (
[

i

AinC) =
P (
S
i Ai \ C)

P(C)
=

P (
S
i(Ai \ C))

P(C)
=

=

P
i P ((Ai \ C))

P (C)
=
X

i

P(AinC)
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Constrained random experiment

We can now consider a constrained random experiment 

defined by 

{, C, P(¢\C)} 

as a random experiment constrained to the event C.
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Partition of 

A partition of  is defined as a set

with the following properties:

• The sets Ci are all disjoint 

• [i Ci = .

¦ = fC1; C2; : : : ; Cng; Ci µ 
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Total probability theorem

Given a random experiment and a partition ¦ such that

and

then we have

Proof: A can be written as

so in terms of probabilities 

¦ µ C

P (Ci) 6= 0

P (A) =
X

i

P (AnCi)P (Ci) 8A 2 C

A = A \ = A \ ([iCi) = [i(A \ Ci)

P(A) = P ([i(A \ Ci)) =
X

i

P (A \ Ci) =
X

i

P (AnCi)P(Ci)
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Bayes Theorem

For two events A and B 2 C with P(A), P(B)  0 it holds 

that

Proof: multiply both sides by P(B) to get P(A Å B) on both 

sides of the equation.

P(AnB) = P (BnA)P (A)
P (B)

11



Marco Lovera

Extension of Bayes Theorem

Let 

a partition of  and consider an event B 2 C.

Then 

Usual nomenclature:

• P(Ai): a priori probability 

• P(Ai\B): a posteriori probability

with respect to the conditioning to B.

P (AinB) =
P (BnAi)P (Ai)P
i P (BnAi)P (Ai)

:
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Independent events

Two events A and B 2 C are called independent if and only 

if 

Clearly for independent events we have, in terms of 

conditional probabilities

P (A \B) = P(A)P (B)

P (AnB) = P (A)

P (BnA) = P (B)
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Conditioning, distributions and densities

The above ideas can lead to the definition of conditional 

distributions and conditional densities, as follows.

Consider a random experiment and a random variable v

defined on it.

Then pick an event C 2 C: P(C)  0.

Then the distribution function for v conditional to C is defined 

as the distribution function for the constrained experiment.
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Conditional distribution function

Consider the random experiment {, C, P(¢\C)} and random 

variable v, then the conditional distribution is 

where we can write equivalently

F (qnC) = P (v · q; s 2 C)

P (C)
; 8q 2 ¹R

P (v · q; s 2 C) = P (Á¡1([¡1; q]) \ C)
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Conditional probability density function

A conditional probability density function for a given 

conditional distribution can be defined as

f(qnC) = dF (qnC)
dq
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Total probability theorem (for distributions)

Consider a partition

such that P(Ci)  0 8 i.

Then  

¦ = fC1; C2; : : : ; Cng; Ci µ C

F (q) =
X

i

F (qnCi)P (Ci); 8q 2 ¹R

17



Marco Lovera

More on conditional distributions

If the conditioning event is given by

then by definition

But clearly so

C = Á¡1([¡1; r]); r 2 ¹R

F (qnC) = P (v · q; v · r)

P (v · r)
=

P (v · q; v · r)

F (r)

P (v · q; v · r) = P (v · min(q; r))

F (qnC) =

8
<

:

F(q)
F(r)

q · r

1 q > r
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More on conditional densities

As a consequence, if

then in terms of densities we have

or equivalently  

F (qnC) =

8
<

:

F(q)
F(r)

q · r

1 q > r

f(qnC) = dF (qnC)
dq

=

8
<

:

f(q)
F(r)

q · r

0 q > r

f(qnC) = dF (qnC)
dq

=

8
<

:

f(q)R r
¡1 f(w)dw

q · r

0 q > r
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More on conditional distributions and densities

For a generic conditioning event E we have the conditional

density

and the corresponding distribution

f(qnE) =

8
<

:

f(q)R
E f(w)dw

q =2 E

0 q 2 E

F (qnv 2 E) =
Z q

¡1
f(rnv 2 E)dr:

20



Marco Lovera

Conditional expectation

Given a real random variable v and the conditional density 

function f(q\C) the conditional expectation of v given C is 

defined as

Furthermore, if C is defined on v, we have

E[vnC] =
Z +1

¡1
qf(qnC)dq:

E[vnv 2 E] =
Z +1

¡1
qf(qnv 2 E)dq =

Z

E
qf(qnv 2 E)dq =

=

R
E qf(q)dq
R
E f(q)dq

:
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Vector conditional distribution

Consider the random experiment {, C, P(¢\C)} and a vector 

random variable v, then the conditional distribution is 

where we can write equivalently

F (qnC) = P (v1 · q1; : : : ; vn · qn; s 2 C)

P (C)
; 8q 2 ¹Rn

P (v1 · q1; : : : ; vn · qn; s 2 C) =

=P (Á¡1(v1 · q1; : : : ; vn · qn) \ C)
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Similarly, for the conditional density function we get

and if the event C is defined on v as v 2 E we get

Vector conditional density

f(q1; : : : ; qnnC) =
@F(q1; : : : ; qnnC)

@q1 : : : @qn
:

f(q1; : : : ; qnnC) =

8
<

:

f(q1;:::;qn)R
E f(q1;:::;qn)dq1;:::;dqn

q =2 E

0 q 2 E
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Vector conditional density: a particular case 

What if the conditioning event corresponds to a line?

We get a conditional density given by (n=2 case)
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Total probability and Bayes Theorems

At the level of vector conditional densities they can be stated 

as
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Bayesian estimation

The basic estimation problem can be formulated as follows.

• We have two random variables θ and d:
• d is the observed variable
• θ is the unknown we want to estimate.

• The value of the two variables is defined by a joint random 
experiment,

• We want to estimate the value of θ given a sample x of d.

• To solve the problem we need prior knowledge about the joint 
probability density function of the two variables, which will be 
defined in the following.
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Bayesian estimation

We define an estimator for θ as a function h(d).

Our problem is to find the estimator ho(d) such that

The solution to the problem is given by the following

Theorem: function is given by 
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Bayesian estimation

Proof. 

Let and denote the joint probability

density function of θ and d as

Then can be written explicitly as

where

• q1 is the running variable for d

• q2 is the running variable for θ.
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Bayesian estimation

Recall now that

therefore substituting we have

The inner integral is the conditional expectation of g(d,θ) 

given d, so  

which in turn can be computed explicitly.
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Bayesian estimation

Recall now that

Expanding the square,                                  becomes

and recalling that

we get
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Bayesian estimation

Finally, completing the square we get

and

So our performance criterion becomes

which is clearly minimised by 
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Bayesian estimation: the scalar Gaussian case

Consider now the particular case in which θ and d are scalar 

and jointly Gaussian:

The conditional density of θ given d is given by

where
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Bayesian estimation: the scalar Gaussian case

The inverse of the covariance is given by

or equivalently

where (               ) 

We also have
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Bayesian estimation: the scalar Gaussian case

Substituting in the joint density we get

The conditional density of θ given d is given by

which is a Gaussian: 

34



Marco Lovera

Bayesian estimation: the scalar Gaussian case

Therefore the Bayesian estimator for θ is given by

It is easy to verify that :    
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Bayesian estimation: the scalar Gaussian case

In Bayesian estimation we use a priori knowledge to model the 
unknown and the measured variable, so we can distiguish
between

• The a priori estimate, which we could make based on the prior
knowledge alone. In our case:

• The a posteriori estimate, which we can make exploting also
the measurement of d. In our case:

• Note that by construction
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Bayesian estimation: the scalar Gaussian case

Note further that

so if the measurement is poorly informative then the a 
posteriori estimate converges to the a priori one.

Finally, the variance can be written in terms of the correlation
coefficient between θ and d:
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Bayesian estimation: the scalar Gaussian case

It is interesting to look at the extreme cases:

If then so d does not provide
any information on θ.

If then so measuring d is
equivalent to measuring θ.

38



Marco Lovera

Example: high positive correlation
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Example: high positive correlation
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Example: moderate positive correlation
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Example: moderate positive correlation
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Example: negative correlation
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Example: negative correlation
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Bayesian estimation: the scalar Gaussian case

If θ and d have known non-zero mean, then it is sufficient to 
define

and apply Bayes rule to the new variables

to finally get
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Bayesian estimation: the vector Gaussian case

Consider now the more general case in which θ and d are 

vectors and jointly Gaussian:

One can follow the same derivation to get

and 
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Recursive Bayesian estimation

In view of the application to real-time prediction and filtering

we have to study the recursive problem, i.e., how to update 

the estimate when new measurements of d arrive.

Consider the setting

and:

• Compute a first estimate of θ given only d(1)

• Update it using the information provided by d(2).
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Recursive Bayesian estimation

At time 1 we get

While at time 2, having two samples of d we have

We can now expand this expression to relate the two

estimates.
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Recursive Bayesian estimation

Computing the inverse we get

where

Expanding the products we get
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Recursive Bayesian estimation 50
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Recursive Bayesian estimation 51
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Recursive Bayesian estimation

The quantity

is called the innovation of d(2) with respect to d(1).

It is defined as the difference between d(2) and its estimate 

based on d(1).

In terms of the innovation
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Recursive Bayesian estimation

Properties of the innovation:

• Expected value: 

• Variance:

•
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Recursive Bayesian estimation

Reformulate the problem considering d(1) and e as data:

This conclusion is not surprising, as from the definition of e 

we get
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Recursive Bayesian estimation: vector case

Consider the setting

then the estimate of θ is given by
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