

Marco Lovera
Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano

Consider a random experiment defined by $\{\Omega, \mathrm{C}, \mathrm{P}\}$ and study the probabilities of two events A and C.

The conditional probability of A given C is defined as

$$
P(A \backslash C)=\frac{P(A \cap C)}{P(C)}
$$

Conditional probability

Example: rolling a dice.

$$
P(A \backslash C)=\frac{P(A \cap C)}{P(C)}
$$

$\Omega=\{1,2,3,4,5,6\}$
$\mathbf{C =}$ all subsets of Ω

Consider
$A=\{1,2,3,5\}$ and $C=\{2,4,6\}$.

Clearly $P(A)=4 / 6=2 / 3$ and $P(C)=3 / 6=1 / 2$.

Conditional probability
$A \cap C=\{2\}$, so $P(A \cap C)=1 / 6$.

$$
P(A \backslash C)=\frac{P(A \cap C)}{P(C)}
$$

Therefore
$P(A \mid C)=1 / 3$.

If now we fix C and consider the function

$$
P(\cdot \backslash C)
$$

defined in \mathbf{C} and taking values in $[0,1]$, we have defined the probability of any event in \mathbf{C} given event \mathbf{C}.

It has to be checked that this function is a well-defined probability function, i.e., it satisfies the properties defined earlier on.
P is a function mapping C to the $[0,1]$ interval, satisfying:

- $\mathrm{P}(\Omega)=1: P(\Omega \backslash C)=\frac{P(\Omega \cap C)}{P(C)}=\frac{P(C)}{P(C)}=1$
- If for $\mathrm{N}<\infty$ events $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{N}} \in \mathbf{C}$, and

$$
\begin{aligned}
& A_{i} \bigcap A_{j}=0, \quad \forall i, j \\
& P\left(\bigcup_{i} A_{i}\right)=\sum_{i} P\left(A_{i}\right)
\end{aligned}
$$

then

The second property holds as we have the following.

Conditional probability

$$
\begin{aligned}
P\left(\bigcup_{i} A_{i} \backslash C\right) & =\frac{P\left(\bigcup_{i} A_{i} \cap C\right)}{P(C)}=\frac{P\left(\bigcup_{i}\left(A_{i} \cap C\right)\right)}{P(C)}= \\
& =\frac{\sum_{i} P\left(\left(A_{i} \cap C\right)\right)}{P(C)}=\sum_{i} P\left(A_{i} \backslash C\right)
\end{aligned}
$$

Constrained random experiment

We can now consider a constrained random experiment defined by
$\{\Omega, \mathrm{C}, \mathrm{P}(\cdot \mid \mathrm{C})\}$
as a random experiment constrained to the event C.

A partition of Ω is defined as a set

$$
\Pi=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}, \quad C_{i} \subseteq \Omega
$$

with the following properties:

- The sets C_{i} are all disjoint
- $U_{i} C_{i}=\Omega$.

Given a random experiment and a partition Π such that

$$
\Pi \subseteq \mathbf{C}
$$

and

$$
P\left(C_{i}\right) \neq 0
$$

then we have

$$
P(A)=\sum_{i} P\left(A \backslash C_{i}\right) P\left(C_{i}\right) \quad \forall A \in \mathbf{C}
$$

Proof: A can be written as

$$
A=A \cap \Omega=A \cap\left(\cup_{i} C_{i}\right)=\cup_{i}\left(A \cap C_{i}\right)
$$

so in terms of probabilities

$$
P(A)=P\left(\cup_{i}\left(A \cap C_{i}\right)\right)=\sum_{i} P\left(A \cap C_{i}\right)=\sum_{i} P\left(A \backslash C_{i}\right) P\left(C_{i}\right)
$$

For two events A and $B \in \mathbf{C}$ with $\mathrm{P}(A), \mathrm{P}(B) \neq 0$ it holds that

$$
P(A \backslash B)=\frac{P(B \backslash A) P(A)}{P(B)}
$$

Proof: multiply both sides by $\mathrm{P}(B)$ to get $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$ on both sides of the equation.

Let

$$
\Pi=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}, \quad A_{i} \subseteq \mathbf{C}
$$

a partition of Ω and consider an event $\mathrm{B} \in \mathbf{C}$.

Then

$$
P\left(A_{i} \backslash B\right)=\frac{P\left(B \backslash A_{i}\right) P\left(A_{i}\right)}{\sum_{i} P\left(B \backslash A_{i}\right) P\left(A_{i}\right)} .
$$

Usual nomenclature:

- $\mathrm{P}\left(\mathrm{A}_{\mathrm{i}}\right)$: a priori probability
- $P\left(A_{i} \mid B\right)$: a posteriori probability
with respect to the conditioning to B.

Two events A and $\mathrm{B} \in \mathbf{C}$ are called independent if and only if

$$
P(A \cap B)=P(A) P(B)
$$

Clearly for independent events we have, in terms of conditional probabilities

$$
\begin{aligned}
& P(A \backslash B)=P(A) \\
& P(B \backslash A)=P(B)
\end{aligned}
$$

The above ideas can lead to the definition of conditional distributions and conditional densities, as follows.

Consider a random experiment and a random variable v defined on it.

Then pick an event $C \in C: P(C) \neq 0$.

Then the distribution function for v conditional to C is defined as the distribution function for the constrained experiment.

Consider the random experiment $\{\Omega, \mathbf{C}, \mathrm{P}(\cdot \mathrm{IC})\}$ and random variable v, then the conditional distribution is

$$
F(q \backslash C)=\frac{P(v \leq q, s \in C)}{P(C)}, \quad \forall q \in \overline{\mathbb{R}}
$$

where we can write equivalently

$$
P(v \leq q, s \in C)=P\left(\phi^{-1}([-\infty, q]) \cap C\right)
$$

Conditional probability density function

A conditional probability density function for a given conditional distribution can be defined as

$$
f(q \backslash C)=\frac{d F(q \backslash C)}{d q}
$$

Consider a partition

$$
\Pi=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}, \quad C_{i} \subseteq \mathbf{C}
$$

such that $P\left(C_{i}\right) \neq 0 \forall i$.

Then

$$
F(q)=\sum_{i} F\left(q \backslash C_{i}\right) P\left(C_{i}\right), \quad \forall q \in \overline{\mathbb{R}}
$$

If the conditioning event is given by

$$
C=\phi^{-1}([-\infty, r]), \quad r \in \overline{\mathbb{R}}
$$

then by definition

$$
F(q \backslash C)=\frac{P(v \leq q, v \leq r)}{P(v \leq r)}=\frac{P(v \leq q, v \leq r)}{F(r)}
$$

But clearly $P(v \leq q, v \leq r)=P(v \leq \min (q, r))$ so

$$
F(q \backslash C)=\left\{\begin{array}{cc}
\frac{F(q)}{F(r)} & q \leq r \\
1 & q>r
\end{array}\right.
$$

As a consequence, if

$$
F(q \backslash C)=\left\{\begin{array}{cc}
\frac{F(q)}{F(r)} & q \leq r \\
1 & q>r
\end{array}\right.
$$

then in terms of densities we have

$$
f(q \backslash C)=\frac{d F(q \backslash C)}{d q}=\left\{\begin{array}{cc}
\frac{f(q)}{F(r)} & q \leq r \\
0 & q>r
\end{array}\right.
$$

or equivalently

$$
f(q \backslash C)=\frac{d F(q \backslash C)}{d q}=\left\{\begin{array}{c}
\frac{f(q)}{J_{-\infty}^{r} f(w) d w} \quad q \leq r \\
0 \quad q>r
\end{array}\right.
$$

For a generic conditioning event E we have the conditional density

$$
f(q \backslash E)=\left\{\begin{array}{cl}
\frac{f(q)}{\int_{E} f(w) d w} & q \notin E \\
0 \quad q \in E
\end{array}\right.
$$

and the corresponding distribution

$$
F(q \backslash v \in E)=\int_{-\infty}^{q} f(r \backslash v \in E) d r
$$

Given a real random variable v and the conditional density function $\mathrm{f}(\mathrm{q} \backslash \mathrm{C})$ the conditional expectation of v given C is defined as

$$
E[v \backslash C]=\int_{-\infty}^{+\infty} q f(q \backslash C) d q
$$

Furthermore, if C is defined on v, we have

$$
\begin{aligned}
E[v \backslash v \in E] & =\int_{-\infty}^{+\infty} q f(q \backslash v \in E) d q=\int_{E} q f(q \backslash v \in E) d q= \\
& =\frac{\int_{E} q f(q) d q}{\int_{E} f(q) d q} .
\end{aligned}
$$

Consider the random experiment $\{\Omega, \mathbf{C}, \mathrm{P}(\cdot \mid \mathrm{C})\}$ and a vector random variable v, then the conditional distribution is

$$
F(q \backslash C)=\frac{P\left(v_{1} \leq q_{1}, \ldots, v_{n} \leq q_{n}, s \in C\right)}{P(C)}, \quad \forall q \in \overline{\mathbb{R}}^{n}
$$

where we can write equivalently

$$
\begin{aligned}
& P\left(v_{1} \leq q_{1}, \ldots, v_{n} \leq q_{n}, s \in C\right)= \\
= & P\left(\phi^{-1}\left(v_{1} \leq q_{1}, \ldots, v_{n} \leq q_{n}\right) \cap C\right)
\end{aligned}
$$

Similarly, for the conditional density function we get

$$
f\left(q_{1}, \ldots, q_{n} \backslash C\right)=\frac{\partial F\left(q_{1}, \ldots, q_{n} \backslash C\right)}{\partial q_{1} \ldots \partial q_{n}}
$$

and if the event C is defined on v as $v \in E$ we get

$$
f\left(q_{1}, \ldots, q_{n} \backslash C\right)=\left\{\begin{array}{c}
\frac{f\left(q_{1}, \ldots, q_{n}\right)}{\int_{E} f\left(q_{1}, \ldots, q_{n}\right) d q_{1}, \ldots, d q_{n}} \\
0 \quad q \in E
\end{array} \quad q \notin E\right.
$$

What if the conditioning event corresponds to a line?

We get a conditional density given by ($n=2$ case)

$$
f\left(q_{1} \backslash v_{2}=q_{2}\right)=\frac{f\left(q_{1}, q_{2}\right)}{f\left(q_{2}\right)}
$$

At the level of vector conditional densities they can be stated as

$$
f\left(q_{1}\right)=\int_{-\infty}^{+\infty} f\left(q_{1} \backslash q_{2}\right) f\left(q_{2}\right) d q_{2}
$$

$$
f\left(q_{1} \backslash q_{2}\right)=\frac{f\left(q_{2} \backslash q_{1}\right) f\left(q_{1}\right)}{f\left(q_{2}\right)}
$$

The basic estimation problem can be formulated as follows.

- We have two random variables θ and d :
- d is the observed variable
- θ is the unknown we want to estimate.
- The value of the two variables is defined by a joint random experiment,
- We want to estimate the value of θ given a sample x of d.
- To solve the problem we need prior knowledge about the joint probability density function of the two variables, which will be defined in the following.

We define an estimator for θ as a function $h(d)$.

Our problem is to find the estimator $h^{\circ}(d)$ such that

$$
E\left[\left(\theta-h^{o}(d)\right)^{2}\right] \leq E\left[(\theta-h(d))^{2}\right], \quad \forall h(\cdot)
$$

The solution to the problem is given by the following

Theorem: function $h^{o}(\cdot)$ is given by

$$
h^{o}(d)=E[\theta \backslash d=x] .
$$

Proof.

Let $E\left[(\theta-h(d))^{2}\right]=E[g(d, \theta)]$ and denote the joint probability density function of θ and d as

$$
f\left(q_{1}, q_{2}\right) .
$$

Then $E[g(d, \theta)]$ can be written explicitly as

$$
E[g(d, \theta)]=\iint g\left(q_{1}, q_{2}\right) f\left(q_{1}, q_{2}\right) d q_{1} d q_{2}
$$

where

- q_{1} is the running variable for d
- q_{2} is the running variable for θ.

Recall now that

$$
f\left(q_{1}, q_{2}\right)=f\left(q_{2} \backslash q_{1}\right) f\left(q_{1}\right)
$$

therefore substituting we have

$$
\begin{aligned}
E[g(d, \theta)] & =\iint g\left(q_{1}, q_{2}\right) f\left(q_{1}, q_{2}\right) d q_{1} d q_{2}= \\
& =\iint\left[g\left(q_{1}, q_{2}\right) f\left(q_{2} \backslash q_{1}\right) d q_{2}\right] f\left(q_{1}\right) d q_{1} .
\end{aligned}
$$

The inner integral is the conditional expectation of $g(d, \theta)$ given d, so

$$
\int g\left(q_{1}, q_{2}\right) f\left(q_{2} \backslash q_{1}\right) d q_{2}=E\left[g(d, \theta) \backslash d=q_{1}\right]
$$

which in turn can be computed explicitly.

Recall now that

$$
E\left[g(d, \theta) \backslash d=q_{1}\right]=E\left[(\theta-h(d))^{2} \backslash d=q_{1}\right]
$$

Expanding the square, $E\left[(\theta-h(d))^{2} \backslash d=q_{1}\right]$ becomes

$$
E\left[\theta^{2} \backslash d=q_{1}\right]+E\left[-2 \theta h(d) \backslash d=q_{1}\right]+E\left[h(d)^{2} \backslash d=q_{1}\right]
$$

and recalling that

$$
E[f(w) \backslash w=z]=f(z)
$$

we get
$E\left[(\theta-h(d))^{2} \backslash d=q_{1}\right]=E\left[\theta^{2} \backslash d=q_{1}\right]-2 h\left(q_{1}\right) E\left[\theta \backslash d=q_{1}\right]+h\left(q_{1}\right)^{2}$.

Bayesian estimation

Finally, completing the square we get

$$
E\left[\theta^{2} \backslash d=q_{1}\right]-2 h\left(q_{1}\right) E\left[\theta \backslash d=q_{1}\right]+h\left(q_{1}\right)^{2} \pm E\left[\theta \backslash d=q_{1}\right]^{2}
$$

and
$E\left[(\theta-h(d))^{2} \backslash d=q_{1}\right]=\left(E\left[\theta \backslash d=q_{1}\right]-h\left(q_{1}\right)\right)^{2}+$ terms indep. from h.
So our performance criterion becomes

$$
E\left[(\theta-h(d))^{2}\right]=\int\left(E\left[\theta \backslash d=q_{1}\right]-h\left(q_{1}\right)\right)^{2} f\left(q_{1}\right) d q_{1}+\ldots
$$

which is clearly minimised by

$$
h^{o}(d)=E[\theta \backslash d=x] .
$$

Consider now the particular case in which θ and d are scalar and jointly Gaussian:

$$
\left[\begin{array}{l}
d \\
\theta
\end{array}\right] \approx G\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
\lambda_{d d} & \lambda_{d \theta} \\
\lambda_{\theta d} & \lambda_{\theta \theta}
\end{array}\right]\right)
$$

The conditional density of θ given d is given by

$$
f(\theta \backslash d)=\frac{f(d, \theta)}{f(d)}
$$

where

$$
\begin{gathered}
f(d)=c_{1} e^{-\frac{1}{2} \frac{d^{2}}{d d}} \\
f(d, \theta)=c_{2} e^{-\frac{1}{2}\left[\begin{array}{ll}
d & \theta
\end{array}\right]\left[\begin{array}{cc}
\lambda_{d d} & \lambda_{d \theta} \\
\lambda_{\theta d} & \lambda_{\theta \theta}
\end{array}\right]^{-1}\left[\begin{array}{l}
d \\
\theta
\end{array}\right] .} .
\end{gathered}
$$

The inverse of the covariance is given by

$$
\left[\begin{array}{ll}
\lambda_{d d} & \lambda_{d \theta} \\
\lambda_{\theta d} & \lambda_{\theta \theta}
\end{array}\right]^{-1}=\frac{1}{\lambda_{d d} \lambda_{\theta \theta}-\lambda_{\theta d}^{2}}\left[\begin{array}{cc}
\lambda_{\theta \theta} & -\lambda_{d \theta} \\
-\lambda_{\theta d} & \lambda_{d d}
\end{array}\right]
$$

or equivalently

$$
\left[\begin{array}{ll}
\lambda_{d d} & \lambda_{d \theta} \\
\lambda_{\theta d} & \lambda_{\theta \theta}
\end{array}\right]^{-1}=\frac{1}{\lambda^{2}}\left[\begin{array}{cc}
\frac{\lambda_{\theta \theta}}{\lambda_{d d}} & -\frac{\lambda_{d \theta}}{\lambda_{d d}} \\
-\frac{\lambda_{\theta d}}{\lambda_{d d}} & 1
\end{array}\right]
$$

where $\left(\lambda_{d \theta}=\lambda_{\theta d}\right) \lambda^{2}=\lambda_{\theta \theta}-\frac{\lambda_{\theta d}^{2}}{\lambda_{d d}}$.
We also have

$$
f(d)=c_{1} e^{-\frac{1}{2} \frac{d^{2}}{d d}}=c_{1} e^{-\frac{1}{2 \lambda^{2}} \frac{d^{2} \lambda^{2}}{\lambda_{d d}}}=c_{1} e^{-\frac{1}{2 \lambda^{2}}\left(\frac{\lambda_{\theta \theta}}{\lambda_{d d}}-\frac{\lambda_{\theta d}^{2}}{\lambda_{d d}^{2}}\right) d^{2}}
$$

Substituting in the joint density we get

$$
f(d, \theta)=c_{2} e^{-\frac{1}{2}\left[\begin{array}{ll}
d & \theta
\end{array}\right]\left[\begin{array}{ll}
\lambda_{d d} & \lambda_{d \theta} \\
\lambda_{\theta d} & \lambda_{\theta \theta}
\end{array}\right]^{-1}\left[\begin{array}{c}
d \\
\theta
\end{array}\right]}=c_{2} e^{-\frac{1}{2 \lambda^{2}}\left(\frac{\lambda_{\theta \theta}}{\lambda_{d d}} d^{2}-2 \frac{\lambda_{\theta d}}{\lambda_{d d}} \theta d+\theta^{2}\right)}
$$

The conditional density of θ given d is given by

$$
\begin{gathered}
f(\theta \backslash d)=\frac{f(d, \theta)}{f(d)}=c_{3} e^{-\frac{1}{2 \lambda^{2}}\left(\frac{\lambda_{\theta}}{\partial d d} d d^{2}-2 \frac{\lambda_{\theta d}}{\lambda_{d d}} \theta d+\theta^{2}-\frac{\lambda_{\theta \theta}}{\lambda d d} / d^{2}+\frac{\lambda_{\theta d}^{2}}{\lambda_{d d}} d^{2}\right)} \\
f(\theta \backslash d)=c_{3} e^{-\frac{1}{2 \lambda^{2}}\left(\theta-\frac{\lambda_{\theta d}}{\lambda_{d d}} d\right)^{2}}
\end{gathered}
$$

which is a Gaussian:

$$
f(\theta \backslash d) \approx\left(\frac{\lambda_{\theta d}}{\lambda_{d d}} d, \lambda^{2}\right)
$$

Therefore the Bayesian estimator for θ is given by

$$
\widehat{\theta}=E[\theta \backslash d]=\frac{\lambda_{\theta d}}{\lambda_{d d}} d
$$

It is easy to verify that $\operatorname{Var}[\hat{\theta}-\theta]=\lambda^{2}$:

$$
\begin{aligned}
\operatorname{Var}[\hat{\theta}-\theta] & =\operatorname{Var}\left[\frac{\lambda_{\theta d}}{\lambda_{d d}} d-\theta\right]= \\
& =\frac{\lambda_{\theta d}^{2}}{\lambda_{d d}^{2}} \operatorname{Var}[d]+\operatorname{Var}[\theta]-2 \frac{\lambda_{\theta d}}{\lambda_{d d}} \mathrm{E}[\theta d]= \\
& =\frac{\lambda_{\theta d}^{2}}{\lambda_{d d}^{2}} \lambda_{d d}+\lambda_{\theta \theta}-2 \frac{\lambda_{\theta d}}{\lambda_{d d}} \lambda_{\theta d}=\lambda^{2} .
\end{aligned}
$$

Bayesian estimation: the scalar Gaussian case

In Bayesian estimation we use a priori knowledge to model the unknown and the measured variable, so we can distiguish between

- The a priori estimate, which we could make based on the prior knowledge alone. In our case:

$$
\hat{\theta}=E[\theta]=0, \quad \operatorname{Var}[\hat{\theta}-\theta]=\lambda_{\theta \theta}
$$

- The a posteriori estimate, which we can make exploting also the measurement of d. In our case:

$$
\hat{\theta}=E[\theta \backslash d]=\frac{\lambda_{\theta d}}{\lambda_{d d}} d, \quad \operatorname{Var}[\hat{\theta}-\theta]=\lambda^{2}
$$

- Note that by construction $\lambda^{2}=\lambda_{\theta \theta}-\frac{\lambda_{\theta d}^{2}}{\lambda_{d d}} \leq \lambda_{\theta \theta}$.

Note further that

$$
\lim _{\lambda_{d d} \rightarrow \infty} \lambda^{2}=\lambda_{\theta \theta}
$$

so if the measurement is poorly informative then the a posteriori estimate converges to the a priori one.

Finally, the variance can be written in terms of the correlation coefficient between θ and d :

$$
\lambda^{2}=\lambda_{\theta \theta}-\frac{\lambda_{\theta d}^{2}}{\lambda_{d d}}=\lambda_{\theta \theta}\left(1-\rho^{2}\right), \quad \rho=\frac{\lambda_{\theta d}}{\sqrt{\lambda_{\theta \theta} \lambda_{d d}}} .
$$

It is interesting to look at the extreme cases:

If $\rho=0$ then $\lambda^{2}=\lambda_{\theta \theta}\left(1-\rho^{2}\right)=\lambda_{\theta \theta}$ so d does not provide any information on θ.

If $\rho= \pm 1$ then $\lambda^{2}=\lambda_{\theta \theta}\left(1-\rho^{2}\right)=0$ so measuring d is equivalent to measuring θ.

Example: high positive correlation

$$
\left[\begin{array}{l}
d \\
\theta
\end{array}\right] \approx G\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
1 & 0.9 \\
0.9 & 1
\end{array}\right]\right)
$$

Example: high positive correlation

$$
\left[\begin{array}{l}
d \\
\theta
\end{array}\right] \approx G\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
1 & 0.9 \\
0.9 & 1
\end{array}\right]\right)
$$

Example: moderate positive correlation

$$
\left[\begin{array}{l}
d \\
\theta
\end{array}\right] \approx G\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
1 & 0.5 \\
0.5 & 1
\end{array}\right]\right)
$$

Example: moderate positive correlation

$$
\left[\begin{array}{l}
d \\
\theta
\end{array}\right] \approx G\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
1 & 0.5 \\
0.5 & 1
\end{array}\right]\right)
$$

Example: negative correlation

$$
\left[\begin{array}{l}
d \\
\theta
\end{array}\right] \approx G\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
1 & -0.7 \\
-0.7 & 1
\end{array}\right]\right)
$$

Example: negative correlation

$$
\left[\begin{array}{l}
d \\
\theta
\end{array}\right] \approx G\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
1 & -0.7 \\
-0.7 & 1
\end{array}\right]\right)
$$

If θ and d have known non-zero mean, then it is sufficient to define

$$
\tilde{\theta}=\theta-\theta_{m}, \quad \tilde{d}=d-d_{m}
$$

and apply Bayes rule to the new variables

$$
\tilde{\tilde{\theta}}=E[\tilde{\theta} \backslash \tilde{d}]=\frac{\lambda_{\theta d}}{\lambda_{d d}} \tilde{d}, \quad \operatorname{Var}[\hat{\theta}-\theta]=\lambda^{2}
$$

to finally get

$$
\widehat{\theta}=\theta_{m}+\frac{\lambda_{\theta d}}{\lambda_{d d}}\left(d-d_{m}\right)
$$

Consider now the more general case in which θ and d are vectors and jointly Gaussian:

$$
\left[\begin{array}{c}
d \\
\theta
\end{array}\right] \approx G\left(\left[\begin{array}{c}
d_{m} \\
\theta_{m}
\end{array}\right],\left[\begin{array}{ll}
\Lambda_{d d} & \Lambda_{d \theta} \\
\Lambda_{\theta d} & \Lambda_{\theta \theta}
\end{array}\right]\right)
$$

One can follow the same derivation to get

$$
\begin{gathered}
\hat{\theta}=\theta_{m}+\wedge_{\theta d} \wedge_{d d}^{-1}\left(d-d_{m}\right) \\
\operatorname{Var}[\hat{\theta}-\theta]=\wedge_{\theta \theta}-\wedge_{\theta d} \wedge_{d d}^{-1} \wedge_{d \theta}
\end{gathered}
$$

and

$$
\operatorname{Var}[\hat{\theta}-\theta]=\wedge_{\theta \theta}-\wedge_{\theta d} \wedge_{d d}^{-1} \wedge_{d \theta} \leq \wedge_{\theta \theta} .
$$

In view of the application to real-time prediction and filtering we have to study the recursive problem, i.e., how to update the estimate when new measurements of d arrive.

Consider the setting

$$
\left[\begin{array}{c}
\theta \\
d(1) \\
d(2)
\end{array}\right] \approx G\left(\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{ccc}
\lambda_{\theta \theta} & \lambda_{\theta d(1)} & \lambda_{\theta d(2)} \\
\lambda_{d(1) \theta} & \lambda_{d(1) d(1)} & \lambda_{d(1) d(2)} \\
\lambda_{d(2) \theta} & \lambda_{d(2) d(1)} & \lambda_{d(2) d(2)}
\end{array}\right]\right)
$$

and:

- Compute a first estimate of θ given only $d(1)$
- Update it using the information provided by $d(2)$.

Recursive Bayesian estimation

At time 1 we get

$$
E[\theta \backslash d(1)]=\frac{\lambda_{\theta d(1)}}{\lambda_{d(1) d(1)}} d(1), \quad \operatorname{Var}[\hat{\theta}-\theta]=\lambda^{2}
$$

While at time 2, having two samples of d we have
$E[\theta \backslash d(1), d(2)]=\wedge_{\theta d} \wedge_{d d}^{-1}\left[\begin{array}{l}d(1) \\ d(2)\end{array}\right]=$

$$
=\left[\begin{array}{ll}
\lambda_{\theta d(1)} & \lambda_{\theta d(2)}
\end{array}\right]\left[\begin{array}{ll}
\lambda_{d(1) d(1)} & \lambda_{d(1) d(2)} \\
\lambda_{d(2) d(1)} & \lambda_{d(2) d(2)}
\end{array}\right]^{-1}\left[\begin{array}{l}
d(1) \\
d(2)
\end{array}\right] .
$$

We can now expand this expression to relate the two estimates.

Computing the inverse we get

$$
E[\theta \backslash d(1), d(2)]=\frac{1}{\lambda_{d(1) d(1) \lambda^{2}}}\left[\begin{array}{ll}
\lambda_{\theta d(1)} & \lambda_{\theta d(2)}
\end{array}\right]\left[\begin{array}{cc}
\lambda_{d(2) d(2)} & -\lambda_{d(2) d(1)} \\
-\lambda_{d(1) d(2)} & \lambda_{d(1) d(1)}
\end{array}\right]\left[\begin{array}{l}
d(1) \\
d(2)
\end{array}\right]
$$

where

$$
\lambda^{2}=\lambda_{d(2) d(2)}-\frac{\lambda_{d(1) d(2)}^{2}}{\lambda_{d(1) d(1)}}
$$

Expanding the products we get

$$
E[\theta \backslash d(1), d(2)]=\frac{1}{\lambda_{d(1) d(1) \lambda^{2}}}\left[\begin{array}{ll}
\lambda_{\theta d(1)} & \lambda_{\theta d(2)}
\end{array}\right]\left[\begin{array}{c}
\lambda_{d(2) d(2)} d(1)-\lambda_{d(2) d(1)} d(2) \\
-\lambda_{d(1) d(2)} d(1)+\lambda_{d(1) d(1)} d(2)
\end{array}\right]
$$

$$
\begin{aligned}
E[\theta \backslash d(1), d(2)] & =\frac{1}{\lambda_{d(1) d(1)} \lambda^{2}}\left(-\lambda_{\theta d(1)} \lambda_{d(2) d(1)}+\lambda_{\theta d(2)} \lambda_{d(1) d(1)}\right) d(2)+ \\
& +\frac{1}{\lambda_{d(1) d(1)} \lambda^{2}}\left(\lambda_{\theta d(1)} \lambda_{d(2) d(2)}-\lambda_{\theta d(2)} \lambda_{d(1) d(2)}\right) d(1) \\
E[\theta \backslash d(1), d(2)] & =\frac{1}{\lambda^{2}}\left(\lambda_{\theta d(2)}-\lambda_{\theta d(1)} \frac{\lambda_{d(2) d(1)}}{\lambda_{d(1) d(1)}}\right) d(2)+ \\
& +\frac{1}{\lambda_{d(1) d(1)} \lambda^{2}}\left(\lambda_{\theta d(1)} \lambda_{d(2) d(2)}-\lambda_{\theta d(2)} \lambda_{d(1) d(2)}\right) d(1) \pm \frac{\lambda_{\theta d(1)}}{\lambda_{d(1) d(1)}} d(1)
\end{aligned}
$$

$$
E[\theta \backslash d(1), d(2)]=\frac{1}{\lambda^{2}}\left(\lambda_{\theta d(2)}-\lambda_{\theta d(1)} \frac{\lambda_{d(2) d(1)}}{\lambda_{d(1) d(1)}}\right) d(2)+
$$

$$
+\frac{1}{\lambda_{d(1) d(1)} \lambda^{2}}\left(\lambda_{\theta d(1)} \lambda_{d(2) d(2)}-\lambda_{\theta d(2)} \lambda_{d(1) d(2)}-\frac{\lambda_{\theta d(1)}}{\lambda_{d(1) d(1)}} \lambda^{2}\right) d(1)+\frac{\lambda_{\theta d(1)}}{\lambda_{d(1) d(1)}} d(1)
$$

Recursive Bayesian estimation

$$
\begin{aligned}
& E[\theta \backslash d(1), d(2)]=\frac{1}{\lambda^{2}}\left(\lambda_{\theta d(2)}-\lambda_{\theta d(1)} \frac{\lambda_{d(2) d(1)}}{\lambda_{d(1) d(1)}}\right) d(2)+ \\
& \\
& +\frac{1}{\lambda_{d(1) d(1) \lambda^{2}}}\left(\lambda_{\theta d(1)} \lambda_{d(2) d(2)}-\lambda_{\theta d(2)} \lambda_{d(1) d(2)}-\frac{\lambda_{\theta d(1)}}{\lambda_{d(1) d(1)}} \lambda^{2}\right) d(1)+\frac{\lambda_{\theta d(1)}}{\lambda_{d(1) d(1)}} d(1) \\
& E[\theta \backslash d(1), d(2)]= \\
& \quad+\frac{\lambda_{\theta d(1)}}{\lambda_{d(1) d(1)}} d(1)+\frac{1}{\lambda^{2}}\left(\lambda_{\theta d(2)}-\lambda_{\theta d(1) d(2)}^{\lambda_{d(1) d(1)}}\left(-\lambda_{\theta d(2)}+\lambda_{\theta d(1)} \frac{\lambda_{d(1) d(1)}}{\left.\lambda_{d(1) d(1) d(1)}\right) d(2)+}\right.\right. \\
& E[\theta \backslash d(1), d(2)]=\frac{\lambda_{\theta d(1)}}{\lambda_{d(1) d(1)}} d(1)+\frac{1}{\lambda^{2}}\left(\lambda_{\theta d(2)}-\lambda_{\theta d(1)} \frac{\lambda_{d(2) d(1)}}{\lambda_{d(1) d(1)}}\right)\left(d(2)-\frac{\lambda_{d(1) d(2)}}{\lambda_{d(1) d(1)}} d(1)\right) .
\end{aligned}
$$

Recursive Bayesian estimation

The quantity

$$
e=d(2)-\frac{\lambda_{d(1) d(2)}}{\lambda_{d(1) d(1)}} d(1)=d(2)-E[d(2) \backslash d(1)]
$$

is called the innovation of $d(2)$ with respect to $d(1)$.

It is defined as the difference between $d(2)$ and its estimate based on $d(1)$.

In terms of the innovation

$$
E[\theta \backslash d(1), d(2)]=\frac{\lambda_{\theta d(1)}}{\lambda_{d(1) d(1)}} d(1)+\frac{1}{\lambda^{2}}\left(\lambda_{\theta d(2)}-\lambda_{\theta d(1)} \frac{\lambda_{d(2) d(1)}}{\lambda_{d(1) d(1)}}\right) e .
$$

Properties of the innovation:

- Expected value: $E[e]=0$
- Variance: $\lambda_{e e}=\operatorname{Var}[e]=E\left[e^{2}\right]=E\left[\left(d(2)-\frac{\lambda_{d(1) d(2)}}{\lambda_{d(1) d(1)}} d(1)\right)^{2}\right]=\ldots=\lambda^{2}$
- $\lambda_{\theta e}=E[\theta e]=E[\theta d(2)]-\frac{\lambda_{d(1) d(2)}}{\lambda_{d(1) d(1)}} E[\theta d(1)]=\lambda_{\theta d(2)}-\frac{\lambda_{d(1) d(2)}}{\lambda_{d(1) d(1)}} \lambda_{\theta d(1)}$

Reformulate the problem considering $d(1)$ and e as data:

$$
\begin{aligned}
E[\theta \backslash d(1), e] & =\left[\begin{array}{ll}
\lambda_{\theta d(1)} & \lambda_{\theta e}
\end{array}\right]\left[\begin{array}{cc}
\lambda_{d(1) d(1)} & 0 \\
0 & \lambda_{e e}
\end{array}\right]\left[\begin{array}{c}
d(1) \\
e
\end{array}\right]= \\
& =\frac{\lambda_{\theta d(1)}}{\lambda_{d(1) d(1)}} d(1)+\frac{\lambda_{\theta e}}{\lambda_{e e}} e= \\
& =E[\theta \backslash d(1)]+E[\theta \backslash e] .
\end{aligned}
$$

This conclusion is not surprising, as from the definition of e we get

$$
d(2)=E[d(2) \backslash d(1)]+e .
$$

Consider the setting

$$
\left[\begin{array}{c}
\theta \\
d(1) \\
d(2)
\end{array}\right] \approx G\left(\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{ccc}
\wedge_{\theta \theta} & \wedge_{\theta d(1)} & \wedge_{\theta d(2)} \\
\Lambda_{d(1) \theta} & \wedge_{d(1) d(1)} & \Lambda_{d(1) d(2)} \\
\Lambda_{d(2) \theta} & \wedge_{d(2) d(1)} & \Lambda_{d(2) d(2)}
\end{array}\right]\right)
$$

then the estimate of θ is given by

$$
\hat{\theta}=E[\theta \backslash d(1), d(2)]=\wedge_{\theta d(1)} \wedge_{d(1) d(1)}^{-1} d(1)+\wedge_{\theta e} \wedge_{e e}^{-1} e .
$$

