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Overview of the process

The FRF estimation process consists of the following steps:

1. Estimation and removal of mean values from input and 
output data.

2. Estimation of 

from time-domain data.

3. Computation of Fourier transforms, to get

4. Estimation of the FRF using
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Mean values estimation and removal

• Experimental data are not zero-mean most of the time. 

• Example: trim values of controls and velocities/attitude in 
aircraft data.

• Assuming that the measured input and output data are 
realisations of stationary, ergodic RPs we can use the 
sample mean to estimate input and output mean values.

• The mean values are then removed from the 
measurements and zero-mean data are then employed.
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Estimation of the correlation functions

• The starting point is a collection of N samples of u(t) and 
y(t) collected with uniform sampling at times

• By 

• we denote the sampling period

• we denote the sampling frequency.
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Estimation of the correlation functions

• Care must be taken in defining correlation functions, as we want
to estimate continuous correlation functions using discrete data.

• Given the discrete nature of data, we can only time-shift by 
multiples of the sampling period.

• In particular, we can estimates samples of the correlation
functions only at time-shifts given by

where the index is an integer. 

• In the following are used
interchangeably.    
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Estimation of the correlation functions

• The exact expression for the correlation is

• So in costructing estimators we have to make a number of 
approximations:

• Finite duration of the data-set: the limit operation can 
be only approximated by taking long datasets.

• Sampling: integrals must be approximated by 
summations. 
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Estimation of the correlation functions

• Based on these assumptions, an estimator can be defined
as

• It is possible to study unbiasdness, as follows:
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Estimation of the correlation functions

• We will sometimes use the alternative estimator

• This estimator has a simpler expression, but it is biased:
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Estimation of the correlation functions

• In terms of variance, it can be shown that

• From which we can see that

• And same for the second estimator.
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Estimation of the correlation functions

• For cross-correlations similar definitions can be used:

• Identical conclusions can be reached for bias and 
variance.
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Fourier transforms of the correlations

• The exact definition of the autospectrum is given by

• This has, again, to be approximated to account for

• Finite duration of the correlation interval

• Finite sampling.

• This gives
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Fourier transforms of the correlations

• It is convenient to write this expression in terms of the 
normalised frequency

• Recall that due to sampling the frequency f is limited to 
the range

• Therefore the normalised frequency is limited to the range
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Fourier transforms of the correlations

• Starting from 

• And recalling that

• We get
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Estimation of the auto- and cross-spectra

• This approximate expression for the autospetrum defines
estimators as soon as we «plug» estimates of the 
correlation in it:

• These estimators are sometimes called periodograms or 
rough spectral estimators.
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Estimation of the auto- and cross-spectra

• Are these estimators unbiased?

• For the first one, we get

• Which converges to the true autospectrum for fast sampling
and long datasets.

• For finite samples however the estimate is biased.
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Estimation of the auto- and cross-spectra

• Are these estimators unbiased?

• For the second one, on the other hand

• Again, the estimate converges to the true autospectrum
for fast sampling and long datasets, but is otherwise
biased.
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Estimation of the auto- and cross-spectra

• A better understanding of the bias in periodograms can be 
gathered thinking in terms of windows, as follows.

• For the estimators

• We have proved
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Estimation of the auto- and cross-spectra

• Focus now on

• And note that it can be equivalently written as

where

is the so-called rectangular window of width N.
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Estimation of the auto- and cross-spectra

• Similarly for the second estimator

• We have that it can be equivalently written as

where

is the so-called Bartlett (or triangular) window of width N.
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Estimation of the auto- and cross-spectra

• Therefore, windows capture precisely the bias intrinsic in 
the use of periodograms.

• A better insight in the role of windows is obtained by 
looking at the estimators in the frequency domain.

• For this we need to define and use the Fourier transform
for discrete signals.
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Interlude: Fourier transform for discrete 
signals

• Consider a signal defined over discrete-time n, v(n).

• If the series

exists at least for some values of     then it defines the  
Fourier Transform of v(n).

• The discrete angular frequency is such that

• Sometimes we will use frequency as independent
variable:
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Interlude: Fourier transform for discrete signals

• Existence of the FT implies that the signal in the time 
domain can be expressed as

• As in continuous-time, the IFT can be interpreted as a 
decomposition of the signal into an infinite number of 
harmonics, with amplitude and phase given at each
frequency by the magnitude and phase of the complex
number . 
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Interlude: Fourier transform for discrete signals

• For a large class of signals the FT can be computed in 
closed form. Here are some notable signals we will use in 
the following.

• Impulse:

• Delayed impulse:

• Constant:
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Interlude: Fourier transform for discrete signals

• Finally, we need the discrete version of the complex
convolution theorem.

• For a discrete signal h(n) given by

letting

we have
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Estimation of the auto- and cross-spectra

• In the case of the spectral estimators we have

therefore letting

we have
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Estimation of the auto- and cross-spectra

• Introducing the change of variable

we have

from which we see that

• The autospectrum is no longer equal to the FT of the 
correlation…

• …but rather is a weighted average where weights are 
given by the FT of the window function.
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Estimation of the auto- and cross-spectra

Consider again the rectangular and Bartlett windows. 

• We have for the Bartlett window:

• And for the rectangular window:
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Estimation of the auto- and cross-spectra

Rectangular window for increasing N:
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Estimation of the auto- and cross-spectra

• In the limit case, if we choose

then we have

• Therefore a constant window leads to an estimate which
is as accurate as the autocorrelation estimate.
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Estimation of the auto- and cross-spectra

Therefore:

• Bias can be interpreted in the frequency-domain as a 
smoothing effect introduced by the windows.

• The windows become narrower for increasing N.

• Asymptotically for large N the considered windows
converge to impulses.
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Estimation of the auto- and cross-spectra

• Variance of the estimates: it can be proved that for both
estimators

• Therefore the variance of these estimators is very large, 
which makes their application critical.

• Another issue is so-called asymptotic incorrelation, 
namely the fact that

even for arbitrarily close pairs of frequencies.
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Estimation of the auto- and cross-spectra

• Therefore we must find a way to

• Reduce the variance

• Reduce the effect of asymptotic incorrelation.

• Two approaches have been developed to improve the 
performance of the periodogram:

• Averaging

• Windowing.
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Averaging

The averaging, or Bartlett’s, method proceeds as follows.

• The dataset of N samples is divided in K sequences of M
samples each, so that N=KM.

• For each of the K sequences a periodogram is computed:

• The averaged estimate is defined as
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Averaging

• In terms of variance, assuming that the K estimates are 
independent we have that

• So by averaging it is possible to reduce the variance, but it
must be observed that each of the K estimators will have
a larger bias

• Indeed each is based on 1/K fraction of the entire dataset
so corresponds to the application of a wider window.

• Therefore, a bias/variance tradeoff is necessary.
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Overlapped averaging

• The adverse effect of averaging on bias can be mitigated
by means of overlapped averaging.

• The idea is to define subsequences with partial overlap
among consecutive ones.

• Clearly the higher the percentage of overlap the longer will
be each subsequence for given K.

• A typical choice is 50% overlap.
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Windowing

• Consider again the estimators

• And recall we have proved that
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Windowing

• These observation lead to the definition of a more general 
estimator in the form

• In which the window function w(n) can be suitably
designed to improve the quality of the estimate.

• The problem of designing the window function can be 
formalised using the Fourier transform for discrete signals.
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Windowing

• For this generic estimator we have

• Key idea: the width of the window does not have to 
coincide with the length of the dataset.

• For example we can consider the triangular window

for M < N.
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Windowing

• In terms of variance it can be shown that

where

• For example, for the triangular window

so a reduction in variance can be obtained just by   

rescaling the window length.
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Windowing

• Furthermore, the shape of the window can be modified, 
with respect to rectangular or triangular, to improve its
performance.

• Many window designs have been proposed over the 
years, aimed at solving specific problems in spectral
estimation.

• The most frequenly used in the Hanning window, which is
a modification of the triangular one.

• Windows can be analysed using the Matlab wintool GUI.
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Example: triangular vs Hanning window 42
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The Welch spectral estimator

• The most popular approach to the problem is the so-called
Welch method, which consists of the following steps:

1. The original dataset of length N is broken into K datasets
of length M each, usually with 50% overlap.

2. Then K windowed estimates are computed, to get

3. Finally, the K estimates are averaged:
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Resolution of spectral estimates

• By resolution we mean the smallest difference in 
frequencies which can be seen in the spectral estimate.

• For example, if a signal is given by

what is the smallest difference which can be    

resolved in the  spectral estimate?

• Accurate evaluation of the resolution is a non-trivial task.
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Resolution of spectral estimates

• Roughly, for a sequence of length N with sampling period
, the resolution is equal to 

i.e., the inverse of the length of the sequence in seconds.

• Clearly, if averaging is used and each subsequence is of length
M then

• Therefore averaging reduces the variance but leads to a loss of 
resolution.

• The effect of windowing is harder to assess, but it generally
leads to a small improvement in resolution. 
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Example: gyro data

N=25991, sampling frequency approx 50 Hz, res. 0.002 Hz.
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Example: gyro data

Nominal sampling frequency: 50 Hz. What we actually get is:

fsamp=1./diff(dati(:,2))*1e3;

fsampm=mean(fsamp(1:25500));

plot(fsamp),grid
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Example: gyro data

%

% PSD analysis

%

na=1;

[Pxx,f,fbin] = pwelchrun(dati(:,3)-mean(dati(:,3)),na,fsampm);

[Pyy,f,fbin] = pwelchrun(dati(:,4)-mean(dati(:,4)),na,fsampm);

[Pzz,f,fbin] = pwelchrun(dati(:,5)-mean(dati(:,5)),na,fsampm);

subplot(311)

loglog(f,sqrt(Pxx)),grid

ylim([1e-6,1e-2])

xlim([1e-3,1e2])

title('Spectral density of measured angular velocity')

ylabel('[(rad/s)/sqrt(Hz)]')
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Example: gyro data

function [Pxx,f,fbin] = pwelchrun(x,na,fsamp)
%
% Calls pwelch to compute the one-sided PSD of signal x, 

with an averaging
% factor of na and a sampling frequency fsamp.
%

%Window
nx = max(size(x));
w = hanning(floor(nx/na));

[Pxx,f] = pwelch(x,w,0,[],fsamp,'onesided');

fbin = f(2) - f(1);
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Example: gyro data

Without averaging:
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Example: gyro data

With K=5 averaging:
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Example: gyro data

With K=10 averaging:
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Example: gyro data

Comments:

• In the time-domain we see faster drift in the x-axis
measurement, this is apparent also from the spectral
density.

• All three axes seem to have the same ARW.

• The numerical value of ARW can be read directly from the 
plot (but recall this is a one-sided PSD).
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Frequency response function estimation

• Finally, when the estimates of the input auto-spectrum
and input-output cross-spectrum have been computed, 
the point estimate of the FRF can be obtained as

• Frequency by frequency the qualityof the estimate can be 
assessed using the coherence function:

which can be estimated using the estimates of the    
spectra:
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Case study: 
FRF estimation for a variable pitch quadrotor

• MTOW = 5 kg

• Variable collective pitch (fixed
RPM)

• Arms length = 0.415 m

• Rotors radius = 0.27 m
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Case study

• Input signal: difference between collective pitch command % of back and
front rotors → u

• Output signal: measured pitch angular velocity →

• PRBS (Pseudo Random Binary Sequences) excitation sequences

• Sampling frequency:

• Time of record:

• Number of samples:

• Output delay:
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Case study 57
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Case study

• Data of interest are measurements of two continuous random
processes and , which are assumed to be stationary

• Introducing an additional variable, i.e., a time shift between u
and , the correlation functions between u and for any time
delay are defined as follows.
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Case study

%% Correlation function

N = length(t);                  % [-] number of samples

%% Subtracting means from original time data

x = u-mean(u);
y = q-mean(q);

%% Compute R_x, R_y, R_xy and R_yx

R_xx = zeros(N,1);
R_yy = zeros(N,1);
R_xy = zeros(N,1);
R_yx = zeros(N,1);

for n_tau = 1:N-1
for n = 1:N-abs(n_tau)-1

R_xx(n_tau) = R_xx(n_tau)+(sum(x(n)*x(n+n_tau)))/(N-abs(n_tau));
R_yy(n_tau) = R_yy(n_tau)+(sum(y(n)*y(n+n_tau)))/(N-abs(n_tau));
R_xy(n_tau) = R_xy(n_tau)+(sum(x(n)*y(n+n_tau)))/(N-abs(n_tau));
R_yx(n_tau) = R_yx(n_tau)+(sum(y(n)*x(n+n_tau)))/(N-abs(n_tau));

end
end
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Overlapped windowing

N = length(t);                  % [-] number of samples

T_rec = t(end);                 % [s] records time

T_s = 0.02;                     % [s] sampling time

f_s = 1/T_s;                    % [Hz] sampling frequency

output_delay = 0.06;            % [s] output delay

% Subtracting means from original time history data

x_withoutmean = u-mean(u);

y_withoutmean = q-mean(q);

% Input variables

x_frac = 0.5;                   % overlap fraction

K = 111;                        % intervals in which dividing the records

% Window length

T_win = T_rec/((K-1)*(1-x_frac)+1); 

% Number of samples in each window

N_win = round(N/((K-1)*(1-x_frac)+1)); 
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Overlapped windowing

%% Subdivision of data into K records of individual length T_win

x_int = cell(1,K);              % preallocation

y_int = cell(1,K);              % preallocation

t_int = cell(1,K);              % preallocation

for k=2:K-1

x_int{1} = x_withoutmean(1:N_win);

x_int{k} = x_withoutmean((1-x_frac)*(k-1)*N_win:(1-x_frac)*(k-1)*N_win+N_win);

x_int{K} = x_withoutmean(end-N_win:end);

y_int{1} = y_withoutmean(1:N_win);

y_int{k} = y_withoutmean((1-x_frac)*(k-1)*N_win:(1-x_frac)*(k-1)*N_win+N_win);

y_int{K} = y_withoutmean(end-N_win:end);

t_int{1} = t(1:N_win);

t_int{k} = t((1-x_frac)*(k-1)*N_win:(1-x_frac)*(k-1)*N_win+N_win);

t_int{K} = t(end-N_win:end);

end

%% Windowing

x_window = cell(1,K);           % preallocation

y_window = cell(1,K);           % preallocation

for k=1:K

x_window{k} = x_int{k}.*bartlett(length(x_int{k}));

y_window{k} = y_int{k}.*bartlett(length(y_int{k}));

end
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Overlapped windowing 63
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Fourier Transforms and rough estimates

%% Discrete Fourier transform

X1 = cell(1,K);                 % preallocation

X = cell(1,K);                  % preallocation

Y1 = cell(1,K);                 % preallocation

Y = cell(1,K);                  % preallocation

for k=1:K  

X1{k} = fft (x_window{k},N);

X{k} = X1{k}(1:(N+1)/2);

Y1{k} = fft (y_window{k},N);

Y{k} = Y1{k}(1:(N+1)/2);

end

%% Frequency 

f = ((0:(N-1)/2)*f_s/N)';

%% Rough estimate

G_xx_rough = cell(1,K);         % preallocation

G_yy_rough = cell(1,K);         % preallocation

G_xy_rough = cell(1,K);         % preallocation

for k=1:K

G_xx_rough{k} = abs(X{k}).^2*2/T_win;

G_yy_rough{k} = abs(Y{k}).^2*2/T_win;

G_xy_rough{k} = conj(X{k}).*Y{k}*2/T_win;

end
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Smooth estimates

%% Smooth estimate

G_xx_mat = cell2mat(G_xx_rough); %converts a cell array into an ordinary array
G_xx = mean(G_xx_mat,2);         %computes mean

G_yy_mat = cell2mat(G_yy_rough); %converts a cell array into an ordinary array
G_yy = mean(G_yy_mat,2);         %computes mean

G_xy_mat = cell2mat(G_xy_rough); %converts a cell array into an ordinary array
G_xy = mean(G_xy_mat,2);         %computes mean

%% Smooth estimate-iterative procedure

G_xx = cell(1,K);               % preallocation
G_yy = cell(1,K);               % preallocation
G_xy = cell(1,K);               % preallocation

for k=2:K
G_xx{1} = G_xx_rough{1};
G_xx{k} = G_xx{k-1}+1/k*(G_xx_rough{k}-G_xx{k-1});
G_yy{1} = G_yy_rough{1};
G_yy{k} = G_yy{k-1}+1/k*(G_yy_rough{k}-G_yy{k-1});
G_xy{1} = G_xy_rough{1};
G_xy{k} = G_xy{k-1}+1/k*(G_xy_rough{k}-G_xy{k-1});

end
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Smooth estimates 66
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Smooth estimates 67
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Non-parametric frequency response
function estimation

68



Marco Lovera

Coherence function 69



Marco Lovera

Effect of output measurement noise 70


