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Introduction

• So far we have considered only estimation problems in 
the OE framework.

• This setting is very restrictive and we should move to a 
more general formulation in which systems are driven
both:

• By deterministic inputs (e.g., pilot controls)

• By «random» inputs (e.g., disturbances such as
turbulence).
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Introduction

• More precisely, we need to define a unified modelling
framework in which deterministic and stochastic inputs
can be modelled consistently…

• …with the additional requirement that the methods we use 
should be suitable for data-based estimation.

• This framework will then be used to study two major 
problems:

• Estimation of the frequency response function of a LTI 
system from time-domain data.

• Estimation of the state vector for a linear system.
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Random processes

• In terms of modelling of randomness, so far we have
studied random variables, i.e., variables the value of 
which depends on the outcome of a random experiment.

• We now turn to random processes, which can be defined
as functions the value of which depends on the outcome
of a random experiment.

• Formally, for a random variable the definition is in terms
of 

Á(¢) : ­! V
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Random processes

• For a random process, on the other hand, the definition is
in terms of 

where time can be both real or natural, leading to the   

definition of continuous (         ) and discrete (         )   

random processes.

• Therefore a RP is a function of the outcome of the 
experiment (s) and of time (t): v(s,t).
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Random processes

• Therefore a RP is a function of the outcome of the 
experiment (s) and of time (t): v(s,t) and we can think of 
this from different perspectives.

• If we then consider a specific outcome then the function

is a fixed function of time, called a realisation of the RP.

• The set of relisations (time functions) obtained by 
evaluating v(s,t) for all possible outcomes is an ensemble
and is an explicit description of the RP.
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Random processes

• If on the other hand we consider a specific time instant
then

is a random variable. 

• In particular, if we know the density of v at time   we can 
define the expected value and the variance in the usual
way:

and similarly for higher order moments.
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Random processes

• Finally, if we fix both the outcome and the time instant
then

reduces to a numerical value.
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Random processes

• Defining a RP is much more complex than defining a RV 
as we have to specify the joint probability distribution (or 
density) function for all times.

• Indeed the collection of the individual probability density
functions at all times would not be sufficient.

• A general definition would require to specify

for all possible choices of n and 
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Correlation and covariance functions

Consider now the random variables

corresponding to same RP evaluated at different time 

instants.  

Denoting

we can define the correlation and the covariance between

the two variables in the usual sense.

The covariance is defined as:
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Correlation and covariance functions

Similarly, the correlation is defined as:

Note that both the covariance and the correlation are 

functions of the two time indices at which they are evaluated.
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Stationarity

• The problem of defining a RP becomes simpler if
stationarity is assumed.

• A (strongly) stationary RP is a RP whose probabilistic
properties are invariant with respect to time-shifts, i.e., 

have the same joint probability density function as

for all possible choices of n,                           and time shift
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Stationarity

• For a stationary RP, the expected value and the variance
must be constant:

• Similarly, the correlation and the covariance are not
functions of the two time instants but just of the time shift.

• Stationarity is in many sense analogous to time-invariance
for dynamical systems.
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Stationarity

More precisely, for the covariance:

And similarly for the correlation:
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Weak stationarity

• A RP is called weakly stationary if the expected value is
constant and the covariance and correlation functions
depend only on the time-shift.

• Clearly strong stationarity implies weak stationarity, but
the converse is not true.

• For Gaussian RPs the two properties are equivalent.
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Gaussian random processes

• Indeed, for a Gaussian RP the joint probability density
function is given by

where
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Gaussian random processes

• Therefore the joint density of a Gaussian RP is completely
determined by the expected value and the covariance
function, so strong and weak stationarity coincide.

• To define a Gaussian RP v we have to assign the 
expected value and either the covariance or the 
correlation function:
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Cross-correlation and cross-covariance

• Two RPs v and w are called jointly weakly stationary if
they are both weakly stationary and if their cross-
correlation and cross covariance functions depend only on 
the time shift:
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Example: discrete-time Gaussian white noise

As a first example let’s look at the definition of discrete-time 

white noise.

In the OE framework we modelled measurement noise as

Let’s now study this set of random variables as one random 

process.
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Example: discrete-time Gaussian white noise

• To this purpose, we pick n time instants and study the 
expected value and the covariance:

• Clearly this holds for all choices of n and of the time 
instants, therefore this is a stationary Gaussian RP.
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Example: discrete-time Gaussian white noise

• This RP is zero-mean, so correlation and covariance
coincide. 

• What is the expression of the two functions?

• By definition of correlation:

• And recalling the definition of the OE noise process:

• We have
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Example: continuous-time Gaussian white noise

• The definition is the same, except that now time is defined
on the real axis. 

• For each time t we have, as in discrete-time

• The correlation function, on the other hand, is given by

where is the Dirac Delta function.
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Ergodicity

• We have seen that we can think of a RP as a collection of 
RVs indexed by time.

• Is there any relation between time-sample properties and 
averages?

• I.e., is it possible to estimate ensemble averages from 
time averages?
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Ergodicity

Ensemble average

Time average
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Ergodicity

• This question leads to the definition of ergodicity.

• A RP is called ergodic if data averages converge 
asymptotically to ensemble averages.

• Ergodic processes are necessarily stationary, though the 
converse is not true in general.

• In the following only ergodic processes will be considered. 
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Ergodicity

• A major consequence of ergodicity is that it is possible to 
estimate correlation and covariance functions by 
generalising results for random variables.

• Indeed for random variables we know that
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Ergodicity

• Therefore, for ergodic RPs in discrete-time:

where the time-shift is an integer.

28



Marco Lovera

Ergodicity

• And similarly, for ergodic RPs in continuous-time:
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Intepretation of autocorrelations: 
a «slow» process
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Intepretation of autocorrelations: 
a «fast» process
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Intepretation of autocorrelations: 
an «oscillating» process
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An important comment

• Note that the expressions for correlations and covariances
obtained thanks to ergodicity

can be computed also for deterministic signals.

• Therefore this modelling approach can be applied both to 
RPs and deterministic signals, thus fulfilling the last of our
requirements for our modelling framework.
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Example: noise modelling for a rate gyro

• Let’s look at measurements provided by the rate gyro of a 
smartphone.

• The device is not moving, so the reading should be 0 on 
all axes.

• We focus initially on a short data record (10 s, sampling at
50 Hz) for a single axis. 

• Data collected on a Samsung S4 Mini using the «Sensor 
Monitor» app.
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Example: noise modelling for a rate gyro 35
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Example: noise modelling for a rate gyro

• The measurements «look like» white noise.

• The mean however is clearly non-zero, so the sensor is at
least affected by bias (the device is not rotating!).

• Let’s now look at a histogram of the data record.
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Example: noise modelling for a rate gyro 37
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Example: noise modelling for a rate gyro

• The measurements «look» Gaussian.

• So it looks like we could model this noise process using a 
white Gaussian RP.

• But let’s now consider a longer record (approximately 8.6 
minutes). 
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Example: noise modelling for a rate gyro 39
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Example: noise modelling for a rate gyro

• The measurements clearly show a slow drift.

• Repeating the experiment one would find out that the drift
rate is also random.

• Therefore, a model for rate gyro noise should as a 
minimum account for 

• Bias

• Drift

• «White-like» noise.
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Example: noise modelling for a rate gyro

• A typical model for rate gyro noise looks like this:

where

• is the angular rate measurement

• is the true rate

• is the drift

• is a white noise called Angular Random Walk (ARW)

• is a white noise called Rate Random Walk (RRW)
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Example: noise modelling for a rate gyro

• A typical model for rate gyro noise looks like this:

• The bias is implicitly defined as the initial condition for 
drift.

• RPs like drift in the above model (i.e., integrals of white
noise) are called random walks or Wiener processes.

• Note: we will NOT touch the mathematical issues involved
in the definition of the solution of differential equations
driven by random processes.

42



Marco Lovera

Sample realisation of random walk

Same variance of the driving white noise, different realisations
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Sample realisation of random walk

Same realisation of the driving white noise, different variance
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Example: noise modelling for a rate gyro

• A typical model for rate gyro noise looks like this:

• ARW and RRW are completely defined by their variances, 
which represent figures of merit for the sensor.

• In particular:
• The smaller ARW, the less will be the white noise on the 

measurement.
• The smaller RRW the slower will be the drift.

• Accurate knowledge of these parameters is very important – we
will look at the problem of estimating them later on.
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Example: noise modelling for a rate gyro

• A typical model for rate gyro noise looks like this:

• Formally:
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Example: noise modelling for a rate gyro

• Why model the noise processes in continuous-time if we
deal with sampled data?

• A real rate gyro operates at an extremely high frequency
(order of 100 kHz)

• Measurements however are just a sampling of this fast-
rate response

• The measurement rate is usually selectable, so it makes
sense to have a characterisation of noise which is
independent of the eventual sampling process.
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Example: noise modelling for a rate gyro

• How does one compute the properties of the actual noise
processes obtained after sampling?

• The computation can be done analytically under some 
assumptions.
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Random processes in the frequency domain

• The most powerful tools to manipulate RPs are defined in 
the frequency domain.

• To formulate them we need to review basic facts about
the Fourier Transform.

• We will start from the Fourier Transform for continuous-
time signal and eventually we will use also the discrete 
counterpart.
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Fourier Transform

• We consider a signal x(t), define on the continuous-time 
axis.

• If the integral

exists at least for some values of     then it defines the  

Fourier Transform of x(t).

• Sometimes we will use frequency f as independent
variable:
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Inverse Fourier Transform

• Existence of the FT implies that the signal in the time 
domain can be expressed as

• The IFT can be interpreted as a decomposition of the 
signal into an infinite number of harmonics, with amplitude
and phase given at each frequency f by the magnitude
and phase of the complex number X(f). 
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Finite Fourier Transform

• In pratical problems we have to compute the FT starting
from a record of finite length T of the signal.

• This leads to the definition of the Finite Fourier Transform:
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Some significant FTs

• For a large class of signals the FT can be computed in 
closed form. Here are some notable signals we will use in 
the following.

• Dirac Delta (impulse):

• Complex harmonic:
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Some significant FTs

• x(t) given by

• x(t) given by
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Frequency-domain representation of 
stationary RPs

• The covariance and correlation functions for a stationary
RP can be represented in terms of their FTs.

• For a stationary RP x with correlation the two-
sided autospectrum or power spectral density (PSD) is
defined as
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Frequency-domain representation of 
stationary RPs

• Similarly, for two stationary RPs x and y with cross-
correlation the two-sided cross-spectrum is defined
as
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Symmetries

• Note that by definition the correlation and cross-
correlation functions have the following properties

• Taking these into account in the definition of the spectra
one gets
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One-side auto- and cross- spectra

• In practice it is more common to work with the so-called
one-sided cross-spectra, defined as

• And similarly for the one-sided auto-spectra, which can be 
defined using the even nature of the auto-correlation:
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One-side auto- and cross- spectra

• Note that in the case of the auto-spectrum one can even
restrict the integration to the positive half-axis to get

• The definition of one-sided auto- and cross-spectra is little
more than a convention, but it is an important one.
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Auto- and cross-spectra from FTs

• Auto- and cross-spectra can be also defined starting from 
the FTs of time-domain realisations of the relevant
(stationary, ergodic) RPs.

• To this purpose assume that a sample of length T of a 
single realisation for two RPs x and y is available and 
compute their finite FTs:
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Auto- and cross-spectra from FTs

• Then it can be proved that the cross- and auto-spectra
can be equivalently computed as

• Similar expressions hold for the one-sided spectra.

• The above identities are known as the Wiener-Khinchin
identities. 
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Intepretation of auto-spectra

We have defined the autospectrum as

Therefore if we use the inverse FT we get

If we now focus on           we have
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Intepretation of auto-spectra

Clearly, for a RP x with expected value we have that

so 

is the second moment of the probability density function of 

the process and the variance is given by
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Intepretation of auto-spectra

• So up to the mean value the variance of the RP is given
by the area of the autospectrum.

• In particular, each harmonic in the spectrum will give a 
different contribution to the variance.

• This allows to associate the variability of the RP to specific
frequency ranges.
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Intepretation of auto-spectra 65
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Example: continuous-time white noise

We have seen that for continuous-time white noise

therefore applying the definition of the auto-spectrum and 

using the known properties of the Delta function we have

Note that the corresponding one-sided auto-spectrum is
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Linear systems and random processes

Consider now a  LTI system in state space form

And recall that its forced response is given by

Defining the impulse response function

we can write the forced response as
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Linear systems and random processes

A LTI system is called Bounded-Input/Bounded-Output 

(BIBO) stable if

For such a system, assuming

we can define the frequency response function as
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Linear systems and random processes

It is well known that if

then at steady-state

where

For general Fourier-transformable inputs

and therefore
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Linear systems and random processes

We can then define the transfer function as the Laplace 

transform of the impulse response function:
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Linear systems and random processes

We now apply as input a realisation of a stationary ergodic

RP and compute finite FTs of input and steady-state output.

We get

and taking the conjugate

and squaring
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Linear systems and random processes

Similarly, starting again from 

and multiplying both sides by

we get
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Linear systems and random processes

We now take the two relations

apply the expectation operator, take limits in T and use the 

Wiener-Khinchin identifies to get
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Linear systems and random processes

• The same relations hold for the one-sided spectra.

• It appears clearly that choosing

• arbitrary stable linear systems

• and/or input RPs

one can generate output RPs with arbitrary spectra.

• This level of generality is however un-necessary as the 
same result can be obtained

• fixing the input autospectrum

• and modifying the transfer function.
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Rational stationary RPs

• Based on the previous comment, the class of rational
stationary RPs is defined as the class of RPs obtained by 
filtering white noise with a stable rational transfer function.

• Formally:

and therefore
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Intepretation of autocorrelations and spectra: 
a «slow» process
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Intepretation of autocorrelations and spectra: 
a «fast» process
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Intepretation of autocorrelations and spectra: 
an «oscillating» process
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Computing autospectra for rational RPs

Very simple if the underlying transfer function, usually called

spectral factor, is known.
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Measurement units

• It is easy to get confused with measurement units for 
correlations and spectra… here is a summary.

• Assume we use seconds for time and Hertz for frequency.

• Then, for a process expressed in, e.g., Volts, we have
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Power spectral densities and spectral densities

• In practice it is frequent to use and represent the square
root of the PSD:

• This is often denoted as «spectral density», causing
significant confusion. A practical reason to work with                            
the square root is that it can be plotted as a conventional
Bode magnitude plot:  

• Always check the measurement units…
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Example: noise modelling for a rate gyro

• Back to the model for rate gyro noise:

• Formally:

• Units: 
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Example: noise modelling for a rate gyro

• Back to the model for rate gyro noise:

• The overall noise affecting the measurements is given by 
two components, respectively

• So in the Laplace domain:
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Example: noise modelling for a rate gyro

• Therefore the autospectra of the two contributions are 
given by

• Finally, assuming that the white noise processes are 
independent the overall (two-sided) auto-spectrum is

and the one-sided one
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Example: noise modelling for a rate gyro

• Using numerical values for ARW and RRW for space-
grade high accuracy rate gyros

we can construct a magnitude plot of the one-sided noise

auto-spectrum as a function of frequency.

ARW RRW

Astrix 120 4.65 × 10ି଻ 𝑟𝑎𝑑/ 𝑠   2.6 × 10ିଵ଴ 𝑟𝑎𝑑/𝑠ଷ/ଶ

Astrix 200 2.90 × 10ି଼ 𝑟𝑎𝑑/ 𝑠 1.29 × 10ିଵଵ 𝑟𝑎𝑑/𝑠ଷ/ଶ
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Example: noise modelling for a rate gyro 86
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Remark: state-space models

• Consider the problem of characterising the stationary RP 
obtained by forcing a stable LTI system of order n in state-
space form with a white noise process.

• Formally we have

• Then the PSD of the steady-state response of y is simply
given by
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Remark: discrete-time models

• All of the above provides a complete framework to model 
stationary rational RPs in continuous-time.

• A completely analogous framework can be derived to 
model stationary rational RPs in discrete-time.

• Only changes are:

• The use of the Fourier Transform for discrete-time 
signals to define auto- and cross-spectra

• The use of discrete-time models
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Coherence function

• The coherence function ௨௬
ଶ is defined as:

௨௬
ଶ ௨௬

ଶ

௨௨ ௬௬

௨௬
ଶ

௨௨ ௬௬

• It can be interpreted physically as the fraction of the output spectrum ௬௬
that is linearly attributable to the input spectrum ௨௨ at frequency .

• Thanks to the cross-spectrum inequality, for which:

௨௬
ଶ

௨௨ ௬௬

the values of ௨௬
ଶ will range between 0 and 1.
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Coherence function

• If the output process y is the response of a LTI system to the input u, then
the coherence is constant and equal to 1.

• In practical applications, there are several reasons why the coherence
function will always be less than 1:

• Extraneous noise is present in the measurements
• Errors are present in the spectral estimates
• There are nonlinearities in the system that cannot be described by the

frequency response
• The output is due to other inputs besides

• As long as ௨௬
ଶ and it is not oscillating, the frequency response will

have acceptable accuracy. A rapid drop or oscillation in the coherence
function for a particular range of frequencies indicates poor frequency
response identification in that region.
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Effect of output measurement noise

• If we consider a model with negligible input noise and uncorrelated output noise, where the input
𝑥(𝑡) and the total output 𝑦(𝑡) are measured, 𝐻(𝑓) is given by:

𝐻 𝑓 =
𝐺௨௬ 𝑓

𝐺௨௨ 𝑓

with

𝐺௩௩ 𝑓 = 𝐻 𝑓 ଶ𝐺௨௨ 𝑓 = 𝛾௨௬
ଶ 𝑓  𝐺௬௬ 𝑓

• Thus, the quantity 𝐺௩௩ 𝑓 can be calculated from u 𝑡 and 𝑦(𝑡) even though 𝑣(𝑡) cannot be
measured. Also, the output noise spectrum 𝐺௡௡(𝑓) can be calculated without measuring 𝑛(𝑡),
since:

𝐺௡௡ 𝑓 = 𝐺௬௬ 𝑓 − 𝐺௩௩ 𝑓 = 1 − 𝛾௨௬
ଶ 𝑓  𝐺௬௬ 𝑓

• Furthermore, we can define the output noise-to-signal ratio by:

𝛽 𝑓 =
𝐺௡௡ 𝑓

𝐺௩௩ 𝑓
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Application: turbulence models

• The representation of turbulence in aircraft simulation 
environments is a major problem that concern all the 
phases of an aircraft design, starting from the structural 
design to the definition of the handling qualities.

• The MIL-STD-1797 standard proposes several models to 
represent turbulence during flight.

• The most used and refined is the Von Karman model for 
continuous gust.
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Application: turbulence models

• The gust is defined as linear and angular velocity 
components of the wind along the vehicle axes.

• The modelling of the turbulence acting on the aircraft is 
performed summing the wind turbulence gust components 
directly to the body linear and angular velocities 
components.
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Application: turbulence models

• The Von Karman model treats the linear and angular 
velocity components of continuous gusts as spatially 
varying stochastic processes and specifies the power 
spectral density of each component.

• The mathematical model for the continuous gust has been 
developed with a series of assumptions:

• A Gaussian, stationary, ergodic process

• Homogeneous, so the statistics do not depend on the 
vehicle path

• Isotropic at high altitude, so the statistics do not 
depend on the vehicle attitude

• Varying in space but frozen in time.
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Application: turbulence models

• The Von Karman model is characterized by irrational power 
spectral densities for gusts' three linear velocity components 
(ug, vg, wg) and gusts' three angular velocity components (pg, 
qg, rg). 

• Different models are proposed in function of altitude, but all of 
them are defined in terms of the same parameters:
• b : aircraft wingspan (or rotor diameter)
• Li : turbulence scale length
• σi : turbulence scale intensity
• Ω: turbulence spatial frequency
• V : vehicle speed through the gust velocity field. 

The vehicle speed permits the conversion of the spatial 
frequency:
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Application: turbulence models

• To generate a signal with the same spectral features 
dened by the Von Karman model equations, a band 
limited white noise is passed through forming filters.

• The forming filters are approximations of the Von Karman 
velocity spectra which are valid in a range of normalized 
frequencies of less than 50 radians.

• The filters described by the military reference are reported 
in the following slide.
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Application: turbulence models 97
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A side comment… 98


