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The OE method for LTI systems

• For linear time-invariant systems the OE problem can be 
formulated either in the time-domain or in the frequency-
domain.

• For the time-domain case, simplifications to the general 
approach can be made by exploiting linearity.

• While the frequency-domain approach is conceptually
possible also in the nonlinear case, it is usually
considered practical in the LTI case only.
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The OE method for LTI systems

Model class:

Assumptions:

• The model class is structurally identifiable

• or equivalently

•

• The available dataset guarantees experimental identifiability. 
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The OE method for LTI systems: time-domain

Measurement model: 

• Measurements are discrete

• Sampling is uniform and defined by

• Measurement equation:

•

•
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The OE method for LTI systems: time-domain

• The general derivation of the OE method can be repeated, 
to get to the same cost function:. 

• Linearity of the model class makes the computations more 
efficient during the optimisation, as sensitivities can be 
computed analytically.
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The OE method for LTI systems: time-domain

Indeed, following the analytical approach, starting from the 

model equations:

and differentiating with respect to a component of the 

parameter vector we get for the state equation
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An optimization scheme for the OE method

Interchanging derivatives on the left-hand side we get:

and similarly for the output equation

Therefore, it is possible to compute the required sensitivities

by simulating the state space models defined by the above

state and output equations.
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The OE method for LTI systems: time-domain

Note that:

is a set of      LTI models, with inputs x and u in which:

• u is measured;

• x can be obtained by simulation of the identified model;

• sensitivities of A, B, C, D can be computed before the fact;

• LTI simulations can be carried out efficiently and (almost) 
exactly.
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Practical issues

In multiple-output problems, scaling is an important factor
which has been already mentioned.

Other important issues:

• Choice of sampling interval

• Prefiltering

• Stability
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Choice of sampling interval

The discrete measurement model

assumes a suitable choice for the sampling interval used in 

collecting data.

Therefore, guidelines for the choice of this parameter are 

needed.
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Choice of sampling interval

As a minimum sampling must be «fast» with respect to the 

relevant dynamics (Shannon-Nyquist Theorem).

In practice this means Ts should be 5-10 times shorter than

the fastest dynamics of interest.

Choosing Ts arbitrarily small is not necessarily a good idea 

as this:

• Increases the number of data-points to be processed;

• With little or no gain in terms of information on the 
parameters.
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Choice of sampling interval

Note that in some problems multirate sampling may occur, 

i.e., measurements form different sensors are received at

different sampling rates.

Example: in flight control

• IMU measurements at 100 Hz (or more)

• GPS measurements at 10 Hz (or less).

The OE algorithm must be modified to compute the 
contributions to the cost at the appropriate rate.
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Prefiltering

• The main weakness of the OE method is the assumption

which is hardly ever true in practice.

• Therefore, if the data contains contributions from modes
or dynamics not included in the model class, bias in the 
estimates can be expected.

• A way of mitigating this issue is by introducing error
prefiltering, which corresponds to a modification of the 
cost function as follows.
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Prefiltering

• Instead of minimising the cost

• We define the modified cost

• Where the filtered error is defined as

• And L(z) is a linear digital filter design to attenuate the 
contribution of undesired dynamics.

14



Marco Lovera

Prefiltering

Example: the true system is 

with frequency response function 
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Prefiltering

The model class is instead defined as

The contribution of the underdamped mode can be reduced

by using a prefilter such that
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From error prefiltering to data prefiltering

• Error filtering as we defined it should be repeated at every
evaluation of the cost function.

• Therefore it represents a significant increase in the cost of 
the optimisation procedure.

• For linear systems however filtering can be carried out 
before the fact on the data, and the filter can be removed
from the optimisation process, as follows. 
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From error prefiltering to data prefiltering

Consider the block diagram:

Then the filtered error can be written as:
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From error prefiltering to data prefiltering

But all the blocks are linear so they can be interchanged:

Therefore instead of filtering e one can just filter the data 

before starting the optimisation and apply the usual OE 

method to the filtered data.
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From error prefiltering to data prefiltering

• Caveat: data and error prefiltering are equivalent only in 
the linear case.

• Using data prefiltering in nonlinear problems can lead to 
unpredictable results.

• Note that some existing software tools for system
identification allow you to do it!
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Stability

The model class is given by

and we have seen that at each iteration simulations of the 

model evaluated for different choices of the parameter must 

be carried out.

Assume now that the true system is asymptotically stable. 

Clearly, if the parameter is such that the model becomes

unstable at some point during the optimisation, this is likely

to lead to numerical issues and failure of the algorithm.
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Stability

The problem can be handled in many different ways:

• Use a constrained optimisation algorithm to enforce
bounds on the parameters.

• Check stability at each iteration and modify the current
estimates to lead to a stable system.

Note that the problem exists also in the nonlinear version of 
OE but it is a lot harder to handle.

This issue with time-domain OE is the main argument used
by proponents of frequency-domain versions. 
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The frequency-domain OE method

Time-domain OE has two main downsides: 

• a large number of data-points need to be processed.
• Potential stability issues may arise in the optimisation.

In many applications however it is possible to:

• test the true system using individual sinusoids, or sums of sinusoids or 
sine sweeps;

• construct point-wise estimates of the frequency response function of the 
system;

• treat the estimated samples of the frequency response function as if they
were measurements.

This leads to the formulation of the frequency-domain OE method.

For the moment we will consider the estimated frequency response function
as data, this estimation problem will be studied separately later.
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The frequency-domain OE method 24
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The frequency-domain OE method 25



Marco Lovera

The frequency-domain OE method 26
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The frequency-domain OE method 27
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The frequency-domain OE method 28
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The frequency-domain OE method 29
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The frequency-domain OE method 30
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The frequency-domain OE method 31
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The frequency-domain OE method 32
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Example 1 33
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Example 1

Parameter
True
Value

Estimated 
Value

1.4 1.39999 0.00017 0.01202

• No. iterations: 7
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Example 2

Parameter
True
Value

Estimated
Value

2 1.99991 7.89189x10-5 0.003946

0.35 0.35002 4.35355x10-5 0.012438

• No. iterations: 10
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Example 3

Aircraft flight dynamics can be described using a nonlinear, 6 

degrees of freedom model, given by the equations:
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Example 3

In order to focus on particular aircraft motions, we can linearize 
the system using as reference condition steady, wings-level flight 
with no sideslip. 

We can also decouple the system into the longitudinal and the 
lateral motion:
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Example 3

Parameter
True
Value

Estimated
Value

-1.589 -1.5976 0.0036 0.2236

-0.038 -0.0379 0.0002 0.4991

-5.245 -5.2345 0.0045 0.0861

-2.598 -2.5907 0.0043 0.1665

-7.852 -7.8202 0.0179 0.2294

• No. of iterations: 7
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Example 4

Paramete
r

Real 
Value

Estimated
Value

0.01000 0.01002 0.00003 0.26676

0.10000 0.10035 0.00047 0.46413

1.20000 1.19894 0.00082 0.06824

2.00000 1.99776 0.00172 0.08630

• No. of iterations: 10
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