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| The OE method for LTI systems g

* For linear time-invariant systems the OE problem can be
formulated either in the time-domain or in the frequency-
domain.

* For the time-domain case, simplifications to the general
approach can be made by exploiting linearity.

« While the frequency-domain approach is conceptually
possible also in the nonlinear case, it is usually
considered practical in the LTI case only.
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| The OE method for LTI systems g

Model class:

= A(0)x+ B(O)u, x(0) =z

MO c0)e + DO

Assumptions:

 The model class is structurally identifiable

« Se€M(0) orequivalently 3¢9*: S = M(6%)
° 6 cR".

* The available dataset guarantees experimental identifiability.
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| The OE method for LTI systems: time-domain .

Measurement model:

« Measurements are discrete
« Sampling is uniform and defined by

+1 _+
U —

~ 4 LT L. — 1 K
IC UU | ll/J.é, Iv L,...,J.L.

 Measurement equation:

ym (k) = y(k) +v(k)

o y(k) =y(kTs)
.« v(k) =G(0,0%), E@GE)v()] =0, i#j
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| The OE method for LTI systems: time-domain .

* The general derivation of the OE method can be repeated,
to get to the same cost function..

T(0) —
\V )

J

(Y — (-
\"vJ \v

0))2 =
JJ)

 Linearity of the model class makes the computations more
efficient during the optimisation, as sensitivities can be
computed analytically.
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| The OE method for LTI systems: time-domain

Indeed, following the analytical approach, starting from the
model equations:

i = A0z 4 B(Mu. 2(0) = zn
\)x +— L\0)u, x(V)=x0
y=C(0)x+ D(O)u

and differentiating with respect to a component of the

parameter vector we get for the state equation
o d OA(H oB(0 oz (0
L A6 )_ (0) " (9) z(0)

_ u, = 0.
893' dt 89j 8(9]' 8(9j
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| An optimization scheme for the OE method g

Interchanging derivatives on the left-hand side we get:

0B(0) 0x(0)
u, =

NN . ) anN . anN .
0 7 UU] UUJ UUJ

0
v

1 ) N
Ao o o o 10U

J—
y J T

and similarly for the output equation

oy L 9C(O) 9D ()
(ae) C” o0, " o0, "1 o, "

Therefore, it is possible to compute the required sensitivities
by simulating the state space models defined by the above
state and output equations.

Marco Lovera - I POLITECNICO DI MILANO



| The OE method for LTI systems: time-domain .

Note that:
d [ Oz ox 0A(0) 0B(0) 0x(0)
I(Q/\ ) =A(0)Qn -I_ [aYa) :C-I_ QN u, QN =O’ ]=1’ ’ne
alt \\UU]'// UUj UU]' UUj UUj
[0y () Ox n oC(0) n oD(0) 1
— xr u, — 1, , N
\o0;,) ~— a0, T o8, o0; 7 0

Is a set of ny LTI models, with inputs x and u in which:

* U IS measured,;

« X can be obtained by simulation of the identified model;

» sensitivities of A, B, C, D can be computed before the fact;

« LTI simulations can be carried out efficiently and (almost)
exactly.
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. . [ | .
| Practical issues
||

In multiple-output problems, scaling is an important factor
which has been already mentioned.

Other important issues:

* Choice of sampling interval

 Prefiltering

. Stability
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| Choice of sampling interval =

The discrete measurement model
tr,=to+ kTs, k=1,..., K.
ym(k) = y(k) + v(k)
y(k) = y(kTs)
assumes a suitable choice for the sampling interval used in
collecting data.

Therefore, guidelines for the choice of this parameter are
needed.
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| Choice of sampling interval =

As a minimum sampling must be «fast» with respect to the
relevant dynamics (Shannon-Nyquist Theorem).

In practice this means T, should be 5-10 times shorter than
the fastest dynamics of interest.

Choosing T arbitrarily small is not necessarily a good idea
as this:

* |ncreases the number of data-points to be processed;

« With little or no gain in terms of information on the
parameters.
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| Choice of sampling interval =

Note that in some problems multirate sampling may occuir,
I.e., measurements form different sensors are received at
different sampling rates.

Example: in flight control
* IMU measurements at 100 Hz (or more)
 GPS measurements at 10 Hz (or less).

The OE algorithm must be modified to compute the
contributions to the cost at the appropriate rate.

1 X .
Ji(0) = T‘Ql; 1: ei(k;0)%, i=1,...,p.
1 =
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| Prefiltering g

* The main weakness of the OE method is the assumption

S e M(0)
which is hardly ever true in practice.

* Therefore, if the data contains contributions from modes
or dynamics not included in the model class, bias in the
estimates can be expected.

* A way of mitigating this issue is by introducing error
prefiltering, which corresponds to a modification of the
cost function as follows.
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| Prefiltering g

Instead of minimising the cost

1 X Y
J(0) = ?‘ngl(ym(k) —y(k; 0))% = 272;;::1 e(k; 0)2.

We define the modified cost

1 X 5
Ji(0) = =5 3 e;(k; 0)2.
k=1

LU

>
~—
|

T.(?’\p(k" Q\
_I_J\N/L/\IU’ V/

Where the filtered error is defined as ey (k;

And L(z) is a linear digital filter design to attenuate the
contribution of undesired dynamics.
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Prefiltering

- 2
H “n

N 75 + 152 + 2fwps + w2
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Prefiltering
The model class is instead defined as M(s; u,7) = TSIL-|L- -

The contribution of the underdamped mode can be reduced
by using a prefilter such that

Bode Diagram
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| From error prefiltering to data prefiltering ]

 Error filtering as we defined it should be repeated at every
evaluation of the cost function.

« Therefore it represents a significant increase in the cost of
the optimisation procedure.

* For linear systems however filtering can be carried out
before the fact on the data, and the filter can be removed
from the optimisation process, as follows.
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| From error prefiltering to data prefiltering ]

Consider the block diagram:

Y ym ym y f
O a

V5

v

— M(0)

A 4
v

Then the filtered error can be written as:

er(k;0) = L(2)e(k; 0) = L(2)ym(k) — L(2)y(k;0) =
= Y, (k) —yp(k;0)
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| From error prefiltering to data prefiltering ]

But all the blocks are linear so they can be interchanged:

(¥

Ym,f

4
U Ym

uf yr
> M(60)

) F

Therefore instead of filtering e one can just filter the data
before starting the optimisation and apply the usual OE
method to the filtered data.
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| From error prefiltering to data prefiltering ]

« (Caveat: data and error prefiltering are equivalent only in
the linear case.

« Using data prefiltering in nonlinear problems can lead to
unpredictable results.

* Note that some existing software tools for system
identification allow you to do it!
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| Stability —

The model class is given by

- z=A0)z+ B(0)u, x(0)==xg
M(0): y=C(0)x+ D(O)u

and we have seen that at each iteration simulations of the
model evaluated for different choices of the parameter must
be carried out.

Assume now that the true system is asymptotically stable.

Clearly, if the parameter is such that the model becomes
unstable at some point during the optimisation, this is likely
to lead to numerical issues and failure of the algorithm.
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| Stability T

The problem can be handled in many different ways:

» Use a constrained optimisation algorithm to enforce
bounds on the parameters.

* Check stability at each iteration and modify the current
estimates to lead to a stable system.

Note that the problem exists also in the nonlinear version of
OE but it is a lot harder to handle.

This issue with time-domain OE is the main argument used
by proponents of frequency-domain versions.
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| The frequency-domain OE method g

Time-domain OE has two main downsides:

« alarge number of data-points need to be processed.
« Potential stability issues may arise in the optimisation.

In many applications however it is possible to:

- test the true system using individual sinusoids, or sums of sinusoids or
sine sweeps;

« construct point-wise estimates of the frequency response function of the
system;

« treat the estimated samples of the frequency response function as if they
were measurements.

This leads to the formulation of the frequency-domain OE method.

For the moment we will consider the estimated frequency response function
as data, this estimation problem will be studied separately later.
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| The frequency-domain OE method )

The model class is a MIMO model structure in state space form:

x=A@)x +B(O)u
y=C@)x+D(6O)u

Where the A4, B, C, D matrices depend on the vector of parameters 6.

From the state space form, we are able to get the frequency response function
matrix:

G(w,B) € CP*™M
Which we consider in this framework as the “true output”.
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The frequency-domain OE method

We have K measured samples of the frequency response function for a generic
MIMO LTI system with p outputs and m inputs:

G,(wy) as k=1,..,K

G, (jw,) € CPZ*™M
Data is corrupted by circular white Gaussian measurement noise:

Gm(jwk) = G(ja)k) + V(ja)k) where V(ja)k) € CpPxm
and
E[VGjwg)]=0ask =1,2,..

E[V(jw,)V(jw,)] = A? (diagonal real matrix)as k = 1,2, ..., K
ElV(jw)V(jw)]l =0 Vi #i
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| The frequency-domain OE method )

In order to build the Likelihood function we have to organize the
transfer matrices in row vectors:

—911(1'001() glm(ja’k)_
G(jwy) = : :
_gpl(ja’k) gpm(ja)k)_
" g11 Jwg)
912(jwy)
6w =|
a gpm—l(ja’k)
i gpm(jwk) ]
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| The frequency-domain OE method )

And we double each vector in order to separate the real from the

Imaginary part of each element:

" g11 Jwg) ]
912(jwy)

G(jwy) = 5

e gpm—l(ja’k)

| Ipmwi)

v = [RQ{GOCUR)}
“TIMm{G(jwy)}
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| The frequency-domain OE method )

We do the same thing with measurements:
V.. — [Re{am(jwk)}
mk Im{Gm(jwk)}

And we organize the noise variance matrix A? as:

.
2

R = A2
0 =]

So we can write that:
- E|Y,,k] = Yy (because the noise is zero mean)
« Var(You) =R
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The frequency-domain OE method

We assumed Gaussian noise, so

Ymi~G Yk, R)
and the probability density function of the data is
o=t 3@ TR @Y
mk

\/ detR (2m)
Hence, we are able to find the Likelihood function:

K 1 ¢k 1 _ _ ~
L (Ymk ll \ 9) = 7 e Zk=12(ymk Yk)TR 1(Ymk Yk)
(det R (2m)X)2

We have to find that value of the parameter 6 that maximises L, which is equivalent to
minimizing the cost function:

K
1
J©) =5 D (omic = TR Ui = Yi)
k=1
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| The frequency-domain OE method )

The goal of our process is to find:

mgin](@)
In order to minimize the cost function, we may apply the so called
modified Newton Raphson Method.

For the sake of simplicity we rename:
e(k) = Ypr — Y

And we estimate the R matrix:
K
1
R = Ez e(kK)e(k)T
k=1

Only the diagonal elements of R are estimated, enforcing an
assumption that the measurement noise sequences for the
measured outputs are uncorrelated with one another.
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The frequency-domain OE method

To get the minimum value of J we run the iterative algorithm:

1. Choose an initial guess 6,
2. Compute G = [](9)|9 90]
9°](6)
3. Compute H = [aeafﬂ‘ IQ:QOI
4. Getthe incrementA8 = —H™1G
5. Getthe updated 6,,, = 6, + A8
6. Update the R matrix
Stopping criteria:
0,.1—0
101 = 0ull s
| 10|l
0 —J(6
J(Or+1) —J( k)”<10_5
ICHI
1G]l < 107°
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| The frequency-domain OE method )

lll-conditioning of the Hessian may occur, due to:

1. Overparameterization
2. Mis-specification of the model class
3. Insufficient information content in the data

Main consequences:

1. M (the information matrix) may be negative definite. This
results in a cost increase: J(0y+1) > J(0k)

2. The step size A8 can be large in one or more directions

Treatment: regularisation
M_l — (MO + kA)_l
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Example 1

We have a mass-spring-damper linear SISO system.
In state-space form:

[F] | X

0
1
m

[-|-k <

y =100[%] = 100 [(1) (1)] M

In practice, we are able to easily compute the mass and the spring stiffness.
However, the parameter c is representative of many effects which can be only
estimated through experiments.

To this purpose measure the system response and we apply the output error
process to estimate that parameter.
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Example 1

14 T 101 r T T T T T
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-—
o
[=]
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N Example 1 36

True Estimated 1005(9)
Parameter
Value Value

1.39999 0.00017 0.01202

No. iterations: 7 1

09f
08
0.7f
08
Sos
04
03f
02+

0.1

0 1 1 1 1 1
1.3994 1.3996 1.3998 1.4 1.4002 1.4004 1.4006
q
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Example 2

We can conveniently rewrite the system of Example 1 using w,,
(natural frequency) and ¢ (damping):

(=10 abel |2
y=100f3] =100} 9|

Suppose that we do not know w,, and é. We are able to identify
them using the output error method.

The only difference with the previous case is that we have to
estimate two parameters instead than just one.
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Example 2
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N Example 2 40

True Estimated 1003(9)
Parameter
Value Value

1.99991 7.89189x10> 0.003946
f 0.35 0.35002 4.35355x10> 0.012438

No. iterations: 10
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Example 2

1,00E+00

10 100 1000 5000
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Example 3

Force equations:
qS . T
i = rv—qw—i—q—Cx —gsinf+—
m m
. gs .
v=pw —ru+-—Cy+ g cosfsing
m

o
W = qu —pv+q—Cz + g cos fcos ¢
m
Moment equations:

I ‘}Sb (Iz _ 1)) Ixa

A L L A A
gsc I, —-1I) - ’
i=ZEc, - pr—2" =)+
5 7 I
I . gSh i, -1 1 1
) :_—Cn— B, E _ _op
Fe=g B 1. P 7 qr 7 Qg

Kinematic equations:

d=p+tand(g sing+r cos ¢)

=¢ cosd—r sing

- g sing+r cos ¢
4[:
cos

Aircraft flight dynamics can be described using a nonlinear, 6
degrees of freedom model, given by the equations:
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Example 3

In order to focus on particular aircraft motions, we can linearize
the system using as reference condition steady, wings-level flight

with no sideslip.
We can also decouple the system into the longitudinal and the
lateral motion:

Longitudinal equations: Lateral equations:
V=— o (CDV A + Cp, A + = V -|— CDaAa)ACD B= mV (CYBB il 2, A= CY; 2V, + Cys0
cos 6,
—gcosyo(AG—Aa)—T"Sma"Aa +p sinao—rcosa,,-i—g 7 ¢
m o
. _ _ 4.5 Av c Leo @,5b pb rb )
a iV (CLV V. + Cp Aa + CLa 2V, i CLq 2V + CLSAB) D I, r= I CigB + Ci 2V, TGl = V. + Ci;
gsinvy, T, cos a, I q,5b pb rb
+q—8% Ag_ pg)— ey % Cyig
1=, B e OF P B ="y ( "ﬂﬁ"'C"sz Cre v, ¥ Cns
q,5¢ AV C gc .
=-—=—|C, LA = tan 6, r
Iy ( VV +C a+Cma2V +Cmq2V+C AS) (b p+ o
§=gq Y =sech, r
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| Example 3 .

We focus on the linearized longitudinal equations:

a@=Zoga+ (1+2Z,)q+Zs6
g = Mga+ Mgq + M6

V
a, = 50 (Zoa + Zyq + Zs6)

where all the states are perturbation quantities.
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| Example 3 .

In state space form:

4=l L]+ 2]

a
=] =l o+

The goal is to estimate the following parameters

0 = [Z(;r Z(g Ma: Mq M@]T
from samples of the freqeuncy response function.
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Example 3
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Residual variance

101 3

10™ ;

102
1

102:

100 ¢

3900

3800

3700

3600

1
Cost function J
8 * &
o [=] o
o o o

3200

3100

3000

Example 3
||
2 3 p
no. iteration

2900

no. interation

POLITECNICO DI MILANO



N Example 3 48

True Estimated 1005(9)
Parameter
Value Value

-1.589 -1.5976 0.0036 0.2236
Zg -0.038 -0.0379 0.0002 0.4991
M, -5.245 -5.2345 0.0045 0.0861
M, -2.598 -2.5907 0.0043 0.1665
Mg -7.852 -7.8202 0.0179 0.2294

No. of iterations: 7
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| Example 4 .

A DC Motor can be modeled as shown in the picture below.
v and i are the tension and the current within the motor armature.
R and L are the circuit resistance and inductance

er is the so called counter-electromotive force. It is such that: e, =
K;w where w is the motor rotating speed

C, = K¢ is the motor torque
C, = hw is the torque due to friction
C, is the resisting torque
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| Example 4 g

For the sake of semplicity, let us make a change of variables.
Choose:

R K, 1
X1 . L L X1 z
[le o Kt h X'z] T A
_ [1 0 [
0=1] h K; |
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Example 4
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Residual variance
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Example 4
N

Paramete Real Estimated 1005(9)
Value Value

0.01000
0.10000
1.20000
2.00000

No. of iterations: 10

0.01002
0.10035
1.19894
1.99776
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0.00003
0.00047
0.00082
0.00172

0.26676
0.46413
0.06824
0.08630

53




