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The output-error method

Model class:

Assumptions:

• y is a scalar measurement

• u(t) piece-wise constant with period Ts

• or equivalently

•
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The output-error method

Measurement model: 

• Measurements are discrete

• Sampling is uniform and defined by

• Measurement equation:

•

•
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The output-error method

• Under the previous assumptions the samples of the 
measured output are such that

as y(k) is a deterministic sequence.

• In terms of variance we have

• Therefore
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The output-error method

• We have to check independence of the measurements, 
which, under Gaussianity assumptions, reduces to 
checking incorrelation:

• Expanding the product:

• And recalling that samples of  y are deterministic:

• Therefore
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• Block diagram:

• Hence the name output-error for this set-up:

• Only measurement noise is considered

• No disturbances acting on the plant are included in the 
model.

• In other words, the map from u to y is deterministic.
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The output-error method

The joint density of the data can then be written as

so the logarithm of the joint density is
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The output-error method

• Therefore the log-likelihood can be obtained by plugging 
the measurements in place of the running variables, to get

• Note now that maximizing the log-likelihood is equivalent 
to the minimisation of
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The output-error method

• Note that defining

we have that

• Therefore the cost function is equal to the sum of the 
squares of the deviations between the measured outputs
and the model outputs.

• This is a particular case of ML estimation known as Least
Squares (LS) estimation.
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The output-error method

• Note further that under the assumption

we have that

• Therefore if then

and the cost converges to

• The optimal cost is zero only in the noise-free case.
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An optimization scheme for the OE method

Consider a starting value     for the parameter and a 

perturbation

Taking a second order approximation imposing stationarity

we get 
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An optimization scheme for the OE method

Solving for the increment in the parameter we get

Therefore if the cost is truly quadratic then starting from the 
initial guess we find the minimum in one iteration.
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An optimization scheme for the OE method

If the cost is not quadratic we can use this result to set up an 

iterative optimisation scheme:

Iteration is repeated until convergence of the cost function

and/or convergence of the parameter

is reached.
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An optimization scheme for the OE method

This simple iterative scheme is known as the Newton-
Raphson method.

Other possible convergence criteria include:

• Relative rather than absolute changes in cost and/or 
parameters.

• Gradient of the cost sufficiently close to zero.
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An optimization scheme for the OE method

How do we compute the gradient and the hessian of the 
cost?

Recall that 

and therefore
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An optimization scheme for the OE method

This is a vector with components given by 

As for the second derivative, element-wise we get
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An optimization scheme for the OE method

For the sake of simplicity in the expression of the second 
derivative

the  second term is often neglected (this avoids the need to 
compute the second derivative of the model output), so that

Note that the approximate hessian is still symmetric.

The resulting approximate algorithm is called Gauss-Newton.
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An optimization scheme for the OE method

To complete the definition of the method we need a scheme
to compute the sensitivities of the model output with respect
to the parameters. 

This can be done either numerically or analytically.

The numerical approach is unavoidable whenever nonlinear
models are considered.

Sensitivities can be computed

• Using forward differences

• Using central differences.
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An optimization scheme for the OE method

Using forward differences we get

the perturbation should be small – general guideline: 1% of 
the current value of the parameter component. 

Clearly the computation of the vector of sensitivities requires

simulations of the response of the model to the sampled 
input. 
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An optimization scheme for the OE method

Using central differences instead we get

In this case the computation of the vector of sensitivities 
requires

simulations of the response of the model to the sampled 
input, but the computed sensitivities are significantly more 
accurate. 
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An optimization scheme for the OE method

The analytical approach, on the other hand, starts from the 

model equations:

Differentiating with respect to a component of the parameter 

vector we get for the state equation

and note that
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An optimization scheme for the OE method

Interchanging derivatives on the left had side we get:

and similarly for the output equation

Therefore, it is possible to compute the required sensitivities 

by simulating the state space models defined by the above 

state and output equations.
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Local and global minima

• The developed optimisation scheme is local, in the sense 
that at each iteration only point-wise information on the 
derivatives of the cost are used.

• This means that in general the algorithm may converge to 
a different solution depending on the initial guess for the 
parameters.

• This is a key issue with the OE method: 

• a reliable initial guess for the parameters is necessary

• careful inspection of the computed estimates is also 
necessary, to ensure they are physically meaningful. 
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Asymptotic variance of the OE estimates

ML estimators are efficient, so we expect that

where

How can we evaluate M? 

We reason as follows:

• The estimate has been chosen so as to maximise the likelihood
of the data;

• Therefore maximal probability (corresponding to the expected
value) should be attained at the optimal likelihood.
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Asymptotic variance of the OE estimates

As a consequence we can make the following

approximation:

Note that for the OE problem
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Asymptotic variance of the OE estimates

Therefore we can evaluate M as

Finally, note that the noise variance is also needed.

If it is not known, it can be estimated using the sample 

variance, as in the preliminary examples on ML estimation:
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Confidence intervals for the estimates

• The theory of ML estimation ensures that, asymptotically,  
estimates are unbiased and achieve the C-R variance 
bound.

• Therefore, asymptotically

• As a consequence, having obtained an estimate from a 
given dataset, we can define confidence intervals using 
properties of Gaussian densities.

27



Marco Lovera

Confidence intervals for the estimates

• More precisely, letting

• We have, element-wise, that

• And in terms of probabilities:
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Multiple output case

• So far only the case of a scalar measurement has been 
considered, for the sake of simplicity.

• In real problems, however, vectors of measurements must 
be used, so the output equation is

• And the measurement model becomes
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Multiple output case

• Depending on the specific problem, the noise variance R can 
range from

• A diagonal matrix, in the case of uncorrelated
measurements (individual components of the output 
provided by p different sensors)

• A block-diagonal matrix, in the case of partially correlated
measurements (subvectors of the output provided by 
different sensors)

• Full matrix, in the case of fully correlated measurements.

• The first two cases are the most common in practice.
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Multiple output case

• Therefore, the density of the measurement noise is given
by

and following the same derivation as in the scalar output   

case, the density of the measurements results
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Multiple output case

• The likelihood is constructed as before, to get

and the cost function to be minimised becomes
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Multiple output case

• Note that if R is diagonal the cost reduces to the sum of p 
costs for each component of the output:

where

• This highlights the importance of proper scaling of the 
measurements in the formulation of the problem.
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Multiple output case

• Finally, the gradient and the hessian of the cost ans the 
Fischer information matrix can be generalised as
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