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Problem statement

• Assume that N independent identically distributed
observations

are available.

• The measurements are distributed according to 

• Then, the likelihood function is defined as the joint 
probability of the observed data-set:
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Maximum likelihood principle

• The ML principle consist in choosing as estimate of the 
parameter the one which makes the likelihood as large as 
possibile:

• Intuitive intepretation: 

• the drawn sample was «the most probable» one; 

• so the value of the estimate which makes the 
probability of the dataset as large as possible must be 
close to the true value of the parameter.

• This intuitive idea leads to a systematic approach to 
estimator design, with many useful properties.
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Example

We measure samples drawn from

and  we want to estimate the expected value from a single 

observation.

The likelihood in this case is simply
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Example

• Note that now the data point is fixed and the likelihood is a 
function of the parameter:

• This function can be interpreted as a Gaussian density 
with expected value equal to the data point. 

• As the expected value of a Gaussian is its maximum, we 
see that the maximum likelihood estimator is 
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Example

• What if we now have N samples

drawn independently from the same density:

• and  we want to estimate the expected value from the N
observations.
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Example

The likelihood of the data set can then be written as
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Example

• Note now that maximising the likelihood is the same as
maximising its logarithm.

• Indeed is a monotonic transformation which
does not change the location of maxima.

• The logarithm of the likelihood is

and its derivative with respect to the parameter:
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Example

• Therefore imposing stationarity we have

• The sample mean is a maximum likelihood estimator…
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Determination of maximum likelihood 
estimators

• Generally difficult to find closed forms

• Easier if L is twice differentiable with respect to the 
parameter.

• In this case stationary points are given by

• And the sufficient condition for local maxima

can be used.
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Determination of maximum likelihood 
estimators

• As in the previous example, it is frequently easier to work 
with the logarithm of L (recall that L > 0 by definition).  

• Therefore letting

we seek estimators such that
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Example

We measure a sample of N i.i.d. data drawn from

and  we want to estimate the expected value AND the 

variance from the available dataset.

The likelihood is the same as in the previous example:
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Example

• The logarithm of the likelihood is

and its derivative with respect to the parameters:
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Example

• So the maximum likelihood solution to the problem is

• Recall that we have seen that this estimator for the 
variance is biased for finite samples:

• Therefore the ML estimate is only asymptotically 
unbiased.
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Properties of ML estimators

• ML estimators have a number of useful properties, which 
motivate their widespread use in applications.

• ML estimators are asymptotically unbiased:

• BUT they may be biased for finite N.

• ML estimators are consistent:
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Properties of ML estimators

• ML estimators are efficient:

• And finally, ML estimators are asymptotically Gaussian:
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