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The system identification 

We have a system identification problem every time that for 

a given system

• we have a mathematical model which contains one or 
more parameters which are either uncertain or unknown

• It is possible to carry out experiments on the system to 
collect data, through which uncertainty on the parameters 
can be reduced.
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The system identification problem 

Solving a system identification problem means finding a way 

of «incorporating» in the model information coming from 

data.

Typical example: identification of aircraft flight dynamics.

Parameter  
estimation
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The system identification problem 

In a more abstract sense, we have: 

• a system     generating the data

• a model class         depending on a parameter

Parameter  
estimation
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The system identification problem

In a realistic situation

as the model class is defined using simplified physics to 

avoid undue complexity.

For example: rigid body model for flight dynamics, which 

neglects structural response.

Equivalently:
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The system identification problem

For analysis purposes, however, things are simpler if we 

consider the assumption

or, equivalently, that 

so that we know that a solution can be actually found.
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The system identification problem

Typical approach to the solution of the problem:

• Define a metric function of

• the data

• the model class

• Solve the optimisation problem

Note that the solution of the optimisation problem defines an 
estimator!

7



Marco Lovera

The system identification problem

As an example, an intuitive choice for the cost function

could be the following:

where:

• samples of the measured output;

• samples of the model output.
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The system identification problem

In this form the problem appears trivial, that is, simply a 

matter of writing a model, gathering data and minimising a 

function.

However:

• Do we have any requirement on the data and the model 
class for the process to be successful?

• Can we guarantee anything about the quality of the 
estimates (bias, variance…)?
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The model class

Example: we have a system given by

and we want to estimate the four parameters from 

measurements of u and y.

Is this possible?
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The model class

Re-write the system as the cascade connection of the two 

blocks

where the connection constraint is 

11



Marco Lovera

The model class

The transfer functions of the two blocks are

so the cascade connection is

Now the answer to the question is clearly visible… 
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Structural identifiability

• A model class is locally structurally identifiable at

if in a neighborhood of     we have that

• A model class is globally structurally identifiable if it is
locally for all values of the parameter.

• Examples of structurally identifiable model structures:

• SISO transfer functions parameterised by numerator 
and denominator coefficients

• SISO state space models in canonical form.

13



Marco Lovera

Structural identifiability

Critical cases:

• Physically-motivated parameterisations

• Structured models (interconnected systems as in the 
previous case)

• MIMO models.
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Data

Example: consider the (stable) system

and assume the goal is to estimate the gain of the transfer 

function using as data the steady-state part of the step 

response.

This is clearly possible as

so  the gain can be estimated as
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Data

Example: consider the (stable) system

and assume the goal is to estimate the gain AND the time 

constant of the pole using as data the steady-state part of 

the step response.

Is the answer the same as in the previous case?

16



Marco Lovera

Data
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Data

Example: consider the (stable) system

and assume the goal is to estimate the damping ratio using 

as data the steady-state part of response to a sinusoidal 

input:

By inspection of the frequency response function one sees 

immediately that the choice of    is critical.
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Data 19
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Data

Indeed if the excitation frequency is chosen too low or too 

high the sensitivity of the frequency response to changes in 

the damping ratio is negligible.

Note also that the steady-state response to a sinusoidal 

input:

provides two scalar constraints to be applied to the model to 

determine the value of the parameters.

20



Marco Lovera

Data

Generalising, one can say that an input given by a sum of N

sinusoids

provides 2N scalar constraints to be applied to the model to 

determine the value of the parameters.

Clearly, in view of Fourier series and Fourier transform 

theory this result can be significantly generalised.
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Experimental identifiability

• Experimental identifiability will be define formally later.

• Informally, we can say that to achieve experimental 
identifiability the dataset must be «sufficiently informative» 
with respect to the parameters of interest.

• Qualitatively, as the steady-state response to a single 
sinusoid provides two constraints on the model’s 
frequency response function, we can anticipate that sums 
of an increasing number of  sinusoids will lead to 
increasingly informative datasets.
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Verification of identifiability properties

• How can one verify, at least after the fact, that a given 
model class and data set satisfy identifiability conditions?

• Consider the cost function, assume the minimum is at

• and compute a local second order expansion, to get
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Verification of identifiability properties

• How can one verify, at least after the fact, that a given
model class and data set satisfy identifiability conditions?

• At the minimum 

• Therefore

is a quadratic form in            . 
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Verification of identifiability properties

• Matrix

is symmetric and positive semi-definite by definition, there

are two possible situations.

• The matrix is positive definite: 

• The matrix is just positive semi-definite: 
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Verification of identifiability properties

• Positive definite hessian: in this case, all the eigenvalues
of 

are strictly positive, therefore the function is locally

increasing along all directions in the parameter space:
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Verification of identifiability properties

• Positive semi-definite hessian: in this case, not all the 
eigenvalues of 

are strictly positive, therefore the function admits, locally,     

directions in the parameter space along which it is non-

increasing:
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Verification of identifiability properties

• Therefore, if the matrix is positive definite we have a well-
posed problem, as perturbing the parameter from the 
optimal value leads to an increased cost.

• If the matrix is just positive semi-definite, there are 
directions along which we can perturb the parameter 
without affecting the cost, so the problem does not admit a 
unique solution even locally.

• The latter case corresponds to lack of either  structural or 
experimental identifiability.

28



Marco Lovera

Classification of model identification problems

• Besides the already defined categories of grey-box and 
black-box, identification problems can be classified in 
many different respects.
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Classification of model identification problems

• Continuous-time vs discrete-time: the models we want to 
obtain may be formulated

• in continuous time (differential equations) 

• in discrete-time (difference equations).

• In grey-box modelling, as the model structure is
physically-motivated, continuous-time models are usually
considered.

• In black-box modelling, discrete time models are the 
common choice, reflecting the discrete nature of sampled
data.
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Classification of model identification problems

• Linear vs nonlinear models: depending on the application, 
we might be interested in estimating: 

• linear models: for example, to capture flight dynamics
near a given trim condition

• nonlinear models: for example if dynamics involving
large angles and/or fast maneuvering flight are to be 
captured.
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The model identification process

• No matter what specific application one is facing, the 
process is characterised by the same steps.

• Definition of the model class: depending

• on the intended application of the identified model 
(simulation, prediction, control law design…)

• on the specific requirements of the application (flight
control, aeroelastic analysis…)

appropriate modelling choices and assumptions are 
made and the parameters to be estimated are defined.

Structural identifiability must be verified if the considered
model class is «non-standard».
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The model identification process

• Experiment design:

• The input sequence used to excite the system must 
ensure experimental identifiability (so it must be 
«exciting» in a suitable sense)

• On the other hand, the experiment must be safe and 
repeatable, therefore:

• The response to the applied input must not lead the system 
into unsafe conditions

• The shape of the input sequence must be suitable for

• Either repeatable manual application

• Or easy automatic implementation.
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The model identification process

• Experiment design:

• Depending on the specific application, identification 
experiments are carried out in open-loop:

• Or in closed-loop, to guarantee stability during tests:

u(t) y(t)

u(t) y(t)Control 
system
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Examples of input sequences for flight testing

Sine sweep
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Examples of input sequences for flight testing

3211 sequence
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Examples of input sequences for flight testing

Doublet
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The model identification process

• Parameter estimation:

• Assuming a suitable estimator is available for the 
specific problem, parameter estimates are computed. 

• As discussed previously, estimators should have small 
or null bias and variance as small as possible (C-R 
bound). 
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The model identification process

• Parameter uncertainty analysis:

• For the computed estimates, the relevant theoretical 
results must be applied to check after the fact that

• The problem was indeed well-posed.

• Bias is indeed negligible 

• Variance is suitably small.

• If the results are not satisfactory, a second iteration on 
the design and/or execution of the experiment must be 
carried out. 
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The model identification process

• Model (in)validation:

• checking model characteristics to ensure they are 
compatible with prior knowledge (in the linear case, 
poles, zeros, frequency response function)

• verifying the performance of the model using data not
employed for the estimation of the parameters.

• Example:

Longitudinal control

Pitch angle

Pitch rate

Pitch acceleration
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The model identification process 41
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The model identification process
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Conclusion

• Following this brief overview of the model identification 
process we may now turn to the question of designing
estimators for specific problem.

• The cornestone of the methods we will develop is the so-
called maximum likelihood principle, which will be our next 
topic.
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