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The estimation problem

We have an estimation problem every time that

• we want to gather information about an unknown or 
uncertain parameter (scalar or vector)

• by means of experimental observations.
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Parameter

The parameter, denoted as ϑ, can be 

• either constant 

• or time-varying: ϑ(t).
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Data

Data points are represented as a function of an index t

belonging to the set of observation instants:

so the entire data set is given by

d(t); t 2 T = ft1; t2; : : : ; tNg

d = fd(t1); d(t2); : : : ; d(tN)g
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Estimator

An estimator is a function f(¢) which returns a value for the 

parameter to be estimated, as a function of data:

is called an estimate of µ.

µ̂ = f(d):

µ̂
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Parametric vs non-parametric estimation

If µ is constant the estimation problem is called 

• parametric if µ is finite-dimensional, e.g., 

• non-parametric if µ is infinite-dimensional, e.g., 

µ 2 Rnµ

µ = G(j!); 0 · ! <+1
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Prediction, filtering, smoothing

If µ is time-varying, the estimation problem is called 

• a prediction problem if given d we want to estimate µ(t) 
for t > tN

• a filtering problem if given d we want to estimate µ(t) for 
t = tN

• a smoothing problem if given d we want to estimate µ(t) 
for t1 < t < tN.

In all cases, we will denote the estimate as µ̂(tjT):
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The data-generation mechanism

To formulate problems of estimator analysis and design we 

need assumptions on the data-generation mechanism, i.e., 
the connection between µ and d.

Two viewpoints can be taken:

• deterministic viewpoint

• stochastic viewpoint.
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Deterministic data-generation mechanism

• Assume you can change the value of µ and generate 
different data sets d1, d2, ... corresponding to µ=µ1, µ=µ2, ...

• Then if the data-generation mechanism is deterministic, 
repeated experiments corresponding to the same value of 
µ will yield the same data.

(think of using a scale to measure your weight)
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Deterministic data-generation mechanism

• Is this sensible? 

• Most of the time it is not entirely so, for a number of 
reasons:  

• noise affecting the measurement process
• other factors besides the value of µ affecting the data-

generation mechanism (e.g., disturbances affecting a 
dynamic system). 

• As will be discussed in the following, we refer 

• to the first effect as measurement noise

• to the second effect as process noise.
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Stochastic data-generation mechanism

The stochastic framework assumes that there is some 

randomness in the data-generation mechanism.

This framework for estimation aims at matching our 

experience of real processes and measurements, which in 

the best conditions are repeatable only up to a point.
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Stochastic data-generation mechanism

In a stochastic data-generation mechanism:

• data is modelled as a random variable, the probability 
distribution of which depends on the value of µ.

• µ in turn can be seen in different ways depending on the 
specific formulation:

• in Maximum Likelihood estimation µ is treated as an 
unknown (constant or time-varying) parameter;

• in Bayesian estimation, on the other hand, µ is also 
treated as a random variable.
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Recap on random variables and probability

Regardless of the specific approach to estimation, some 

background on random variables and probability is needed 

to formulate and solve problems.
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Back to estimation theory

It is now possible to formalise the estimation problem using
the developed theoretical background.

In the following it will be assumed that

• The data generation mechanism is a random experiment

• The random experiment depends on a parameter denoted
µo

• Data is modelled as a random variable

• As a consequence, the estimate is also a random
variable.
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Back to estimation theory

More formally:

• we denote as dN a data set composed of N samples

• we denote as f(¢) the estimator and

• as the estimate of µo computed on the basis 
of an N samples data set.

First objective: define desirable properties for a generic 

estimators which can be used to quantify its performance.

µ̂N = f(dN)
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Back to estimation theory

Intuitively, as the estimate is a random variable which should 

approximate reliably a constant parameter we would like it to 

have:

• an expected value either equal to µo or which approaches 
it for increasing N.

• A small variance, possibly decreasing for increasing N.

• Is there such a thing as the smallest possible variance?

In the following we will address these questions.
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Consistency

We say that an estimator is consistent if

Consistency is a useful property but meaningful only for 

large samples.

For example, given a consistent estimator       then for fixed 

a and b also  

is consistent, but behaves very differently for finite N.

plimN!1µ̂N = µo

N ¡ a

N ¡ b
µ̂N

µ̂N
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Bias

The bias of an estimator is defined as

so it represents a measure of the average estimation error, 

for finite N.  

Can we quantify for a given estimator whether it will have a 

bias?

bias = E[µ̂N ]¡ µo
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Unbiasdness

We say that an estimator is unbiased if

We say that it is asymptotically unbiased if  

E[µ̂N ] = µo

lim
N!1

E[µ̂N ] = µo
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Consistency vs unbiasedness

• Consistency does not imply unbiasdness for finite N.

• However, a consistent estimator having an asymptotic 
distribution with finite expected value will be unbiased.

• Unbiasedness, in turn, does not in general imply 
consistency.
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Sufficient conditions for consistency

An estimator is consistent if it is asymptotically unbiased, 

i.e.,

and 

lim
N!1

E[µ̂N ] = µo

lim
N!1

Var[µ̂N ] = 0
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Example: bias analysis for the sample mean

Data xi, i=1, ..., N drawn independently from

We consider the sample mean

as an estimator for ¹. We get

so the sample mean is an unbiased estimator.

x » G(¹; ¾2)

¹̂N =
1

N

NX

i=1

xi

E[¹̂N ] = E[
1

N

NX

i=1

xi] =
1

N
E[

NX

i=1

xi] =

=
1

N

NX

i=1

E[xi] =
1

N
N¹= ¹
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Example: bias analysis for the sample variance

Data xi, i=1, ..., N drawn independently from

We consider the sample variance

as an estimator for ¾2. We get

so in this case the estimator is biased.

¾̂2N =
1

N

NX

i=1

(xi ¡ ¹̂N)
2

E[¾̂2N ] =
1

N

NX

i=1

(xi ¡ ¹̂N)
2 =

=
1

N

NX

i=1

(xi ¡
1

N

NX

j=1

xj)
2 = : : : =

N ¡ 1
N

¾2
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Estimator variance

Within the class of unbiased estimators for a given problem, 

we anticipate that different estimators will lead to estimates 

with different variances.

We are interested in making the variance of the estimate as 

small as possible.

Questions: 

• can we make the estimator variance arbitrarily small by 
picking a suitable estimator?

• If not, can we compute the smallest achievable variance?
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Example: variance analysis for linear 
estimators

Consider the following problem: 

• data di, i=1, ..., N is provided

• the dis are independent but NOT identically distributed:

Problem: design an estimator for µo.

di » D(µo;Var[di]); i = 1; : : : ; N
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Example: 
variance analysis for linear estimators

We compare three estimators, defined as follows:

1. Sample mean:

2. First sample: 

3. General linear estimator:  

µ̂N =
1

N

NX

i=1

di

µ̂N = d1

µ̂N =
1

N

NX

i=1

®
(N)
i di
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Example: 
variance analysis for linear estimators

Bias analysis:

1. Sample mean:

2. First sample: 

3. General linear estimator:

So 1 and 2 are unbiased; 3 is unbiased if

E[µ̂N ] =
1

N

NX

i=1

E[di] = µo

E[µ̂N ] = E[d1] = µo

E[µ̂N ] =
1

N

NX

i=1

®
(N)
i E[di] = [

NX

i=1

®
(N)
i ]µo

NX

i=1

®
(N)
i = 1
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Example: 
variance analysis for linear estimators

Variance analysis:

1. Sample mean:

2. First sample: 

3. General linear estimator:

we now have to determine the set of ®is leading to the 
minimum variance subject to

Var[µ̂N] =
1

N2

NX

i=1

Var[di] ¡!
N!1

0

NX

i=1

®
(N)
i = 1

Var[µ̂N ] = Var[d1]

Var[µ̂N ] =
NX

i=1

®
(N)2
i Var[di]
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Example: 
variance analysis for linear estimators

Consider the cost function

where ¸ is a Lagrange multiplier.

We seek optimal ®is by imposing stationarity

@J

@®
(N)
i

= 0 ) ®
(N)
i =

¸

2Var[di]

J = Var[µ̂N ] + ¸(1¡ [
NX

i=1

®
(N)
i ])
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Example: 
variance analysis for linear estimators

Substituting in the constraint

one gets 

and finally 

NX

i=1

®
(N)
i = 1

¸ =
2

P
i

1
Var[di]

®
(N)
i =

1

Var[di]
®; ® =

1
P
i

1
Var[di]
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Example: 
variance analysis for linear estimators

• We have constructed the MV linear estimator.

• Is it possible to find an estimator with smaller variance by 
enlarging the class of estimators?

• And if so, is it possible to reduce the variance arbitrarily in 
this way?
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The Cramer-Rao bound

• The answer to the question is no: there is an intrinsic level 
of uncertainty in estimation problems which cannot be 
removed completely.

• The optimal performance of an estimator, in terms of 
variance, is quantified by the Cramer-Rao bound.
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The Cramer-Rao bound

Consider the following problem: 

• data di, i=1, ..., N is provided

• the dis are independent, and

so that the joint density for 

is given by

Problem: design an estimator for µo.
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The Cramer-Rao bound

Theorem (Cramer-Rao inequality):

For any unbiased estimator     of    we have that 
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The Cramer-Rao bound

Proof.

By definition of pdf we have that

So differentiating with respect to   we have

which is equivalent to
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The Cramer-Rao bound

We now use the unbiasedness assumption:

and again differentiating we get
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The Cramer-Rao bound

Now recall that

and use the fact that   is constant to write:

We have also proved that

So by subtraction we have 
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Cauchy-Schwartz inequality

For any pair of functions g(x) and h(x) for which the involved 

integrals exist, we have that
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The Cramer-Rao bound

In our case letting

we get

So finally we get 
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The Cramer-Rao bound

As a final step note that

and differentiating

therefore

So finally we get 
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The Cramer-Rao bound: example

Consider the following problem: 

• data di, i=1, ..., N is provided

• the dis are independent, and

so that the joint density for 

is given by

Problem: compute the C-R bound for estimates of µ.
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The Cramer-Rao bound: example

The joint density can be written as

so the logarithm of the joint density is
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The Cramer-Rao bound: example

Taking the first and second derivatives we get

and therefore

Note that but is always non-zero for 

finite N.
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When is the minimum variance attained?

• Theorem: a necessary and sufficient condition for the 
minimum variance to be attained is that there exists a 
function        such that 

for all sets of observations.
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Example

Consider the following problem: 

• data di, i=1, ..., N is provided

• the dis are independent, and

so that the joint density for 

is given by

Problem: estimate  µ using
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Example

Computing the derivative of log f we get

and plugging the observations in place of the running 

variables:

which can be written as
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The Cramer-Rao bound for vectors of 
parameters

In most problems of practical interest we have to estimate a 

vector of parameters:

The Cramer-Rao bounds generalises to
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The Fischer information matrix  

The quantity

is known as the  Fischer information matrix.

In terms of M the bound can be written as

Clearly, letting G the inverse of M we have that
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Efficiency

An estimator is called efficient if it is unbiased and it reaches 

the Cramer-Rao bound for all values of the parameter.

An estimator is called asymptotically efficient if it is unbiased 

and it reaches the Cramer-Rao bound for all values of the 

parameter, at least when N goes to infinity.
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Variance, bias and mean-square error

Consider a generic estimator      not necessarily unbiased:

Then the mean square error 

will be different from the variance

In particular, we have that
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Variance, bias and mean-square error

In other words, the MSE equals the sum of variance and 

squared bias.

For unbiased estimators, MSE and variance coincide.

In some applications, (biased) minimum MSE estimators are 

used, rather than minimum variance ones.
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