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Recap on random variables and probability

Regardless of the specific approach to estimation, some 

background on random variables and probability is needed 

to formulate and solve problems.
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Random experiment

We start by introducing the concept of a random experiment, 

which has the following three components 

• Sample space: 

• Events of interest: C

• Probability function: P. 
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Sample space

The sample space  is defined as the set of outcomes of an 

experiment.

Example: tossing a coin twice (H=Heads, T=Tails).  

= {HH; HT; TT; TH}

An event is a subset of . 

Examples: 

• event “at least one head" is {HH; HT; TH}

• event “no more than one head" is {HT; TH; TT}.
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Events of interest

We need to enumerate the set of events of interest

that can occur when carrying out an experiment. 

In probability theory, this set is defined based on the 

following properties: 

• the “empty set” belongs to C
• If event A 2 C, then its complement  Ac =(-A) 2 C

• If for N < 1 events A1, A2, ..., AN 2 C, then
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Probability

Finally, a probability function P assigns a number

(probability) to each event in C.

P is a function mapping C to the [0, 1] interval, satisfying:

• P() = 1

• If for N < 1 events A1, A2, ..., AN 2 C, and 

then

Ai

\
Aj = 0; 8i; j

P (
[

i

Ai) =
X

i

P (Ai)
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Random variable

A variable v is called a random variable if its value depends 

on the outcome of a random experiment.

Formally v is defined as the output of a function Á(¢) mapping 

the sample space  into the range space V of v:

Á(¢) : ! V
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Probability of a random variable

For a subset D of V, how can we compute                ?

The image of D through Á-1(¢) is needed, so that we can 

define

This calls for some attention, as P(¢) is defined only on 

the elements of C, so the above makes sense provided that 

P (v 2 D)

P (v 2 D) = P (Á¡1(D)):
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Example 9
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Real random variables

A random variable v is called real if

Therefore in view of the previous definitions

and we must ensure that all the intervals [a,b] belong to C.

V = ¹R = f¡1;R;+1g

P (v 2 [a; b]) = P (Á¡1([a; b]))
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Real random variables

For this to hold, we only need to define

as the probability for an arbitrary [a,b] interval follows by 

intersection.

So, we need to ensure that 

P (v 2 [¡1; q]) = P (Á¡1([¡1; q])); 8q 2 R

11



Marco Lovera

Real random variables

As a conclusion, for a given random experiment, we say that 

v is a well defined real random variable if

v = Á(s); Á(¢) : ! ¹R

P (Á¡1(¡1)) = P (Á¡1(+1)) = 0

12



Marco Lovera

Probability distribution

By definition, the probability distribution of a random 

variable v is a function 

given by

F (q) = P (v · q) = P (Á¡1([¡1; q]))

F (¢) : ¹R! [0;1]
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Probability distributions

Main properties of probability distribution functions

•

•

• F(¢) monotonically increasing.

• F(¢) right-continuous.

•

• F(¢) piece-wise continuous.

F (¡1) = 0

F (+1) = 1

lim
q!1F (q) = 1
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Probability distributions

Main use of probability distribution functions: probabilities 

can be easily expressed in terms of their values, i.e.,

and

P (v 2 (a; b]) = F (b)¡ F (a)

P (v 2 [a; b]) = F (b)¡ F (a¡)
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Continuous vs discrete random variables

A real random variable is called

• continuous if F(q) is a continuous function

• discrete if F(q) is a step-wise function.
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Probability density functions

In view of the above properties we have that F(¢) is 

differentiable almost everywhere (a.e.), i.e., for all q except 

for discontinuities.

Therefore dF(q)/dq is well defined a.e. and we can let

almost everywhere.

In the sense of generalised derivatives, the above holds also 

for discontinuities, leading to impulses in the derivative.

f(q) =
dF (q)

dq

17



Marco Lovera

Probability density functions

Recalling that

and the definition

we have in turn that 

P (v 2 [a; b]) = F (b)¡ F (a¡)

f(q) =
dF (q)

dq

P (v 2 [a; b]) =
Z b

a
f(q)dq

18



Marco Lovera

Expected value

The expected value of a random variable is defined as

(and does not necessarily exist for all f).

If it exists it denotes the “center of mass” of the density 

function. 

If f(q) is symmetric around   , then 

E[v] =
Z +1

¡1
qf(q)dq

¹q ¹q = E[v]:
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Variance and standard deviation

The variance of a random variable is defined as

(and does not necessarily exist for all f).

As f(q) ¸ 0, then also Var[v] ¸ 0.

The standard deviation (root mean square) of a random 

variable is given by 

Var[v] = ¾2(v) =
Z +1

¡1
(q ¡E[v])2f(q)dq

¾[v] =
q
Var[v]:
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Interpretation of ¾

The Chebyshev inequality states that

Therefore, letting ² = 2¾[v] we get 

so regardless of the distribution the interval centered in E[v] 
with half-width 2¾[v] covers at least 0.75 probability.

P (jv ¡ E[v]j > ²) · ¾2[v]

²2
;8² > 0:

P (jv ¡ E[v]j > 2¾[v]) · ¾2[v]

4¾2[v]
= 0:25
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Moments

The order k moment of a random variable is defined as

and clearly

mk[v] =
Z +1

¡1
qkf(q)dq

m0[v] =
Z +1

¡1
f(q)dq = 1

m1[v] =
Z +1

¡1
qf(q)dq = E[q]:
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Variance and second order moment

The second order moment 

is related to the variance and the expected value as follows:

m2[v] =
Z +1

¡1
q2f(q)dq
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Functions of random variables

Consider a random variable v and let

where 

It can be shown that if v is a well defined random variable 

then so is w.

In terms of expected value we have

w = g(v)

g(¢) : ¹R! ¹R

E[w] =
Z +1

¡1
qfw(q)dq =

Z +1

¡1
g(q)fv(q)dq
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Functions of random variables: 
variance and moments

Letting

we have that

and similarly

In the same way we have that (as the expectation operator 

is linear): 

w = g(v) = (v ¡ E[v])2

E[w] = E[(v ¡ E[v])2] =
Z 1

¡1
(q ¡ E[v])2fv(q)dq = Var[v]:

w = vk ) E[w] = E[vk] = mk[v]:

w = ®v ) E[w] = E[®v] = ®E[v]
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Scalar Gaussian random variables

A Gaussian (normal) random variable has a density function 

of the form

and ®, ¯ such that the density function has unit area.

Gaussian densities can be more effectively expressed in 

terms of expected value and variance.

f(q) = ®e¡¯q
2
; ®; ¯ > 0
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Scalar Gaussian random variables

Indeed letting

it can be shown that

Shorthand notation:   

¹ = E[v]; ¾2 = Var[v]

f(q) =
1

¾
p
2¼

e
¡(q¡¹)2
2¾2 :

v » G(¹; ¾2) v » N(¹; ¾2)
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Linear propagation and standard Gaussian 

Linear propagation: given and w=a+bv then

Based on this, for a generic we can define

for which clearly

The corresponding density function is

which is known as the standard Gaussian. 

v » G(¹; ¾2)

w » G(a+ b¹; b2¾2)

v » G(¹; ¾2)

w =
v ¡ ¹

¾

w » G(0;1)

f(q) =
1p
2¼

e
¡q2
2
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Example: the standard Gaussian
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Example: ¹=1, ¾=2 and ¾=4
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Example: random data
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Problem: density estimation

Assumption: data are extractions from a random variable 
with Gaussian density with unknown ¹ and ¾.

Problem: estimating the density from data.

Possible approaches: 

• Nonparametric: try to reconstruct the value of f(q) 8 q

• Parametric: try to estimate ¹ and ¾ and then “plug” the 
estimates in place of the true values.
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Data histogram
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Nonparametric approach

If the dataset is very long then accurate nonparametric 

estimates can be built
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Parametric approach

Suitable estimators for ¹ and ¾ must be devised.

Let’s pick the intuitive ones:

and see what happens.

¹̂ =
1

N

X

i

vi

¾̂2 =
1

N

X

i

(vi ¡ ¹̂)2
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Parametric approach

For the original dataset of 100 samples:

True values:

¹̂= 1:2781 ¾̂2 = 9:578

¹= 1 ¾2 = 9
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Estimated density
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Open questions

We can think about this result in many different ways 

(keeping in mind that in real problems the true values are 

unknown!):

• What happens if the esperiment is repeated?

• How accurate are these estimates?

• What happens if the length of the dataset increases?
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Repeated experiment

¹̂= 1:2461 ¾̂2 = 8:4484

¹̂= 0:7302 ¾̂2 = 9:4722

¹̂= 1:1630 ¾̂2 = 9:8497
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Statistics for the estimates of ¹ and ¾2

We now repeat the experiment many times (M=100) and 
look at the outcomes in terms of estimates of ¹ and ¾2

0 10 20 30 40 50 60 70 80 90 100

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60 70 80 90 100
7.5

8

8.5

9

9.5

10

10.5

Experiment

40



Marco Lovera

Statistics for the estimates of ¹ and ¾2

Comments on the results:

• As expected the estimates of ¹ and ¾2 are also random 
variables

• We can then study the repeated estimates as data, 
looking at their properties.

• Mean of the estimates: 

1

M

X

i

¹̂i = 1:0136
1

M

X

i

¾̂2i = 8:9788
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Statistics for the estimates of ¹ and ¾2

Comments on the results:

• Standard deviation of the estimates:

• So in conclusion

• On average the estimators seem to provide correct 
results

• However the estimates are random, so the standard 
deviation provides information about the probability of 
errors (remember Chebyshev inequality).

0:1509 0:6232
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Increasing data length

What happens to the estimates if the length of the data set 

increases?
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Increasing data length: different experiments
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Vectors of random variables

A vector

is a well-defined random variable with respect to a random 

experiment (, C, P) subject to suitable extensions of the 

conditions defined in the scalar case.

Let first 

v =

2

6664

v1
v2
...
vn

3

7775

q =

2

6664

q1
q2
...
qn

3

7775
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Vectors of random variables

Then v is a well defined random variable if it depends on the 

outcomes of the experiment via a function 

such that

and if

v = Á(s); Á(¢) : ! ¹Rn

P (vi = §1) = 0 i = 1; : : : ; n:
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Vector probability distribution function

The (joint) probability distribution for the vector random 

variable v is defined as

If one is interested in the (marginal) distribution of a single 

component qi, then it can be obtained as

Note that in general the joint distribution cannot be 

reconstructed from the sole knowledge of the marginals.

F (q1; q2; : : : ; qn) = P (v1 · q1; v2 · q2; : : : ; vn · qn)

Fi(qi) = F (1; : : : ;1; qi;1; : : : ;1)
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Vector probability density function

By generalising the scalar definition we have that

and the individual marginal densities can be obtained as

where integration is carried out over all components except 

the ith one.

f(q1; q2; : : : ; qn) =
@nF (q1; q2; : : : ; qn)

@q1@q2 : : : @qn

fi(qi) =
Z +1

¡1
: : :

Z +1

¡1
f(q1; q2; : : : ; qn)dq1 : : : dqn
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Expected value: vector case

By extending the scalar definition we have

which can be equivalently written as

E[v] =
Z

¹Rn
qf(q)dq =

Z +1

¡1
: : :

Z +1

¡1

2

6664

q1
q2
...
qn

3

7775 f(q1; q2; : : : ; qn)dq1 : : : dqn

E[v] =

2

666664

R+1
¡1 q1f1(q1)dq1R+1
¡1 q2f2(q2)dq2

...
R+1
¡1 qnf2(qn)dqn

3

777775
=

2

6664

E[v1]
E[v2]
...

E[vn]

3

7775
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Vector functions

Consider a vector random variable v and let

where 

Then in terms of expected value we have

w = g(v)

g(¢) : ¹Rn ! ¹Rn

E[w] =
Z

¹Rn
qfw(q)dq =

Z

¹Rn
g(q)fv(q)dq
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Linearity of expected value: 
vector case

Given a vector random variable v let

then

Similarly, column-wise we have 

w = Av =

2

64
a11 : : : a1n
...

an1 : : : ann

3

75

2

64
v1
...
vn

3

75

E[w] = E[Av] = AE[v]

w = Av;A =
h
®1 : : : ®n

i

E[w] = E[Av] = AE[v] =
h
®1 : : : ®n

i
E[v] =

nX

i=1

®iE[vi]:

51



Marco Lovera

Covariance matrix

The variance of a vector random variable is defined as

Clearly Var[v] is a square n£n matrix, which can be 

equivalently defined as

It appears from both expressions that Var[v] is a symmetric 

positive semi-definite matrix.

Var[v] =
Z

¹Rn
(q ¡ E[v])(q ¡ E[v])T f(q)dq

Var[v] = E[(v ¡ E[v])(v ¡ E[v])T ]
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Covariance matrix

In scalar form we have

where

• is the variance of vi

• is the covariance index 
between vi and vj.  

Var[v] =

2

64
c11 : : : c1n
...

cn1 : : : cnn

3

75

cii = Var[vi]

cij = E[(vi ¡ E[vi])(vj ¡ E[vj])]
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Covariance and second order moment

As in the scalar case, defining the second order moment as

we have

m2[v] =
Z

¹Rn
qqT f(q)dq

Var[v] = E[vvT ]¡ E[v]E[v]T = m2[v]¡E[v]E[v]T :
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Correlation matrix (normalised covariance)

The correlation matrix is defined as

where

It follows from the definition that             and              . 

½[v] =

2

64
¹c11 : : : ¹c1n
...
¹cn1 : : : ¹cnn

3

75

¹cij =
cij

p
ciicjj

:

¹cii = 1 j¹cijj · 1
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Incorrelation and independence

Two random variables v1 and v2 are said to be incorrelated if 

for the vector random variable 

we have that 

v =

"
v1
v2

#

¹c12[v] = 0:
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Incorrelation and independence

Theorem: random variables v1 and v2 are incorrelated if and 

only if

To prove it we compute c12:

Therefore 

E[v1v2] = E[v1]E[v2]:

c12 = E[(v1 ¡E[v1])(v2 ¡ E[v2])]

= E[v1v2] + E[E[v1]E[v2]]¡ E[v1E[v2]]¡ E[v2E[v1]] =

= E[v1v2]¡ E[v1]E[v2]

c12 = 0 , E[v1v2] = E[v1]E[v2]:
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Incorrelation and independence

Two random variables v1 and v2 are said to be independent if

Theorem: two independent random variables are also
incorrelated.

To prove it we compute E[v1v2]:

(the converse is not true in general)

f(q1; q2) = f1(q1)f2(q2):

E[v1v2] =
Z +1

¡1

Z +1

¡1
q1q2f(q1; q2)dq1dq2 =

=
Z +1

¡1
q1f1(q1)dq1

Z +1

¡1
q2f2(q2)dq2 =

= E[v1]E[v2]:
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Linear propagation: expected value and variance

Consider two random variables v1 and v2 and their sum w:

Clearly for the expected value we have 

but for the variance:

w = v1 + v2

E[w] = E[v1] +E[v2]

Var[w] = E[(w ¡ E[w])2] = E[(v1 + v2 ¡ E[v1]¡ E[v2])
2] =

= E[(v1 ¡ E[v1])
2 + (v2 ¡ E[v2])

2]+

+ 2E[(v1 ¡ E[v1])(v2 ¡ E[v2])] =

= Var[v1] + Var[v2] + 2c12
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Linear propagation: expected value and variance

For arbitrary linear combinations of v1 and v2

For the expected value we have 

but for the variance:

z = ®1v1 + ®2v2

E[z] = ®1E[v1] + ®2E[v2]

Var[z] = ®21Var[v1] + ®22Var[v2] + 2®1®2c12
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Vector Gaussian random variables

A vector of random variables 

is said to be Gaussian (or, equivalently, its components are 

said to be jointly Gaussian) if it has a density function 

of the form

f(q) = ®e¡q
TBq; ® > 0; B = BT > 0

v =

2

6664

v1
v2
...
vn

3

7775
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Vector Gaussian random variables

As in the scalar case, letting

it can be shown that

Shorthand notation:   

¹ = E[v]; C = Var[v]

f(q) =
1

q
det[C](2¼)n=2

e
1
2(q¡¹)

TC¡1(q¡¹):

v » G(¹; C) v » N(¹;C)
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Properties of vector Gaussian random variables

Consider a vector Gaussian random variable such that

then

i.e., the components of a vector Gaussian random variable 

are in turn Gaussian random variables.

The converse is not true in general.

v » G(¹;C)

vi » G(¹i; Cii)
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Properties of vector Gaussian random variables

Consider a set of independent Gaussian random variables 

such that

then
v » G(¹;C)

vi » G(¹i; Cii)
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Properties of vector Gaussian random variables

If v1 and v2 are Gaussian and incorrelated then they are 

also independent.

Proof: follows from properties of the exponential.
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Properties of vector Gaussian random variables

Consider a n-dimensional vector Gaussian random variable

and apply the linear transformation 

where 

• A m£n, m · n and rank(A)=m

• b m£1

v » G(¹v; Cv)

w = Av+ b

66



Marco Lovera

Properties of vector Gaussian random variables

Then w is Gaussian and

where 
w » G(¹w;Cw)

¹w = A¹v + b

Cw = ACvA
T
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Properties of vector Gaussian random variables

If v1 and v2 are jointly Gaussian such that

then their linear combination

is also Gaussian and such that

w = ®1v1 + ®2v2

¹w = ®1¹1 + ®2¹2

¾2w = ®21¾
2
1 + ®22¾

2
2 + 2®1®2c12

v1 » G(¹1; ¾
2
1)

v2 » G(¹2; ¾
2
2)
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Sequences of random variables

For a given random experiment we have a sequence o

random variables defined as

v1, v2, ..., vt

and we want to define notions of asymptotic limit for the 

sequence, i.e.,

lim
t!1

vt
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Sequences of random variables

Example: the study of the properties of an estimator for 

increasing data lenghts. 

Critical issue: 

the sequence depends on the outcome of the experiment!
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Sequences of random variables: 
sure convergence

Various notions of convergence can be defined.

Main distinction between sure and almost sure convergence.

Sure (or strong) convergence:

is equivalent to 

lim
t!1

vt = a

8² > 0 9t² : jvt ¡ aj < ² 8t > t² 8s 2 
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Sequences of random variables: 
almost sure convergence

Almost sure convergence is defined in terms of the set A of 

outcomes of the experiment for which the sequence

converges:

If P(A)=1 then with probability 1 (almost surely). lim
t!1

vt = a

A=

½
s 2  : lim

t!1
vt = a

¾
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Sequences of random variables: 
convergence in probability

Consider the limit value a, define an interval [a-², a+²] and 

consider the set of events

B1 is in turn an event so we can compute its probability:

Repeating the process for increasing t we have the 

numerical sequence g1, g2, ..., gt

P (B1(²)) = g1(²)

B1(²) = fs 2  : jv1(s)¡ aj < ²g
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Sequences of random variables: 
convergence in probability

Then, we say that vt converges in probability to a

if  

plimt!1vt = a

lim
t!1

gt(²) = 1 8² > 0:
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Sequences of random variables: 
mean and mean square convergence

Let

then we say that the sequence convergence in mean if

Similarly, let 

then we say that the sequence has mean square 

convergence, denoted as 

if

¹t = E[vt]

lim
t!1

¹t = a

ht = E[(vt ¡ a)2]

lim
t!1

ht = 0

l.i.m.t!1vt = a
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Properties of mean and mean square 
convergence

The following implications hold:

If l.i.m.t!1vt = a) lim
t!1

E[vt] = a

If lim
t!1

E[vt] = a and lim
t!1

V ar[vt] = a

) l.i.m.t!1vt = a

If lim
t!1

E[vt] = a then

lim
t!1

V ar[vt] = a, l.i.m.t!1vt = a
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Sequences of random variables: 
convergence in distribution

Up to now convergence to a constant value has been 

considered.

What if a is a random variable, with distribution F(a)?

Denoting with F(q,t) the distribution of vt, if

then we say that  

in distribution.

plimt!1vt = a

lim
t!1

F (q; t) = Fa(q); 8q

lim
t!1

vt = a
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Sequences of random variables: 
convergence in distribution

In the Gaussian case:

if 

then we say that vt is asymptotically Gaussian: 

a » G(¹; ¾2)

vt » AsG(¹; ¾2)
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Sequences of random variables: 
summary

Summing up, the following implications hold.

Sure convergence ) A.s. convergence

A. s. convergence ) Convergence in prob. 

Convergence in prob. ) Convergence in distr. 
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Sequences of random variables: 
summary

But also...

Mean square convergence ) Convergence in prob.

Mean square convergence ) Convergence in mean
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Law of large numbers

Consider N independent real random variables vi such that

and their sum

Then the following results hold.

E[vi] = ¹; 8i

xN =
X

i

vi
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Law of large numbers

Theorem 1:

if the vi are identically distributed then 

lim
N!1

xN
N
= ¹; a.s. and m.s.
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Law of large numbers

Theorem 2:

if the vi are such that 

then 

V ar[vi] · C; 8i

lim
N!1

1

N
(xN ¡ E[xN ]) = 0; a.s. and m.s.

83



Marco Lovera

Central limit theorem

Consider N independent and identically distributed real 

random variables vi such that

then their sum

is such that

and   

E[vi] = ¹; 8i

V ar[vi] = ¾2; 8i

xN =
X

i

vi

E[xN ] = N¹; V ar[xN ] = N¾2

yN =
xN ¡N¹p

N¾2
» AsG(0;1):
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Conditional probability

Consider a random experiment defined by {, C, P} and 

study the probabilities of two events A and C.

The conditional probability of A given C is defined as

P(AnC) = P (A \ C)

P (C)
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Conditional probability

Example: rolling a dice.

={1,2,3,4,5,6}

C= all subsets of 

Consider 

A={1,2,3,5} and C={2,4,6}.

Clearly P(A)=4/6=2/3 and P(C)=3/6=1/2.

P(AnC) = P (A \ C)

P (C)
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Conditional probability

AÅC= {2}, so P(AÅC)=1/6.

Therefore 

P(A\C)=1/3.

P(AnC) = P (A \ C)

P (C)
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Conditional probability

If now we fix C and consider the function

defined in C and taking values in [0,1], we have defined the 

probability of any event in C given event C.

It has to be checked that this function is a well-defined 

probability function, i.e., it satisfies the properties defined 

earlier on.

P (¢nC)
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P is a function mapping C  to the [0, 1] interval, satisfying:

• P() = 1: 

• If for N < 1 events A1, A2, ..., AN 2 C, and 

then

The second property holds as we have the following.

Conditional probability

Ai

\
Aj = 0; 8i; j

P (
[

i

Ai) =
X

i

P (Ai)

P (nC) = P ( \ C)

P (C)
=

P (C)

P (C)
= 1
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Conditional probability

P (
[

i

AinC) =
P (
S
i Ai \ C)

P(C)
=

P (
S
i(Ai \ C))

P(C)
=

=

P
i P ((Ai \ C))

P (C)
=
X

i

P(AinC)
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Constrained random experiment

We can now consider a constrained random experiment 

defined by 

{, C, P(¢\C)} 

as a random experiment constrained to the event C.

91



Marco Lovera

Partition of 

A partition of  is defined as a set

with the following properties:

• The sets Ci are all disjoint 

• [i Ci = .

¦ = fC1; C2; : : : ; Cng; Ci µ 
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Total probability theorem

Given a random experiment and a partition ¦ such that

and

then we have

Proof: A can be written as

so in terms of probabilities 

¦ µ C

P (Ci) 6= 0

P (A) =
X

i

P (AnCi)P (Ci) 8A 2 C

A = A \ = A \ ([iCi) = [i(A \ Ci)

P(A) = P ([i(A \ Ci)) =
X

i

P (A \ Ci) =
X

i

P (AnCi)P(Ci)
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Bayes Theorem

For two events A and B 2 C with P(A), P(B)  0 it holds 

that

Proof: multiply both sides by P(B) to get P(A Å B) on both 

sides of the equation.

P(AnB) = P (BnA)P (A)
P (B)
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Extension of Bayes Theorem

Let 

a partition of  and consider an event B 2 C.

Then 

Usual nomenclature:

• P(Ai): a priori probability 

• P(Ai\B): a posteriori probability

with respect to the conditioning to B.

¦ = fC1; C2; : : : ; Cng; Ci µ C

P (AinB) =
P (BnAi)P (Ai)P
i P (BnAi)P (Ai)

:
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Independent events

Two events A and B 2 C are called independent if and only 

if 

Clearly for independent events we have, in terms of 

conditional probabilities

P (A \B) = P(A)P (B)

P (AnB) = P (A)

P (BnA) = P (B)
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Conditioning, distributions and densities

The above ideas can lead to the definition of conditional 

distributions and conditional densities, as follows.

Consider a random experiment and a random variable v

defined on it.

Then pick an event C 2 C: P(C)  0.

Then the distribution function for v conditional to C is defined 

as the distribution function for the constrained experiment.
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Conditional distribution function

Consider the random experiment {, C, P(¢\C)} and random 

variable v, then the conditional distribution is 

where we can write equivalently

F (qnC) = P (v · q; s 2 C)

P (C)
; 8q 2 ¹R

P (v · q; s 2 C) = P (Á¡1([¡1; q]) \ C)
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Conditional probability density function

A conditional probability density function for a given 

conditional distribution can be defined as

f(qnC) = dF (qnC)
dq
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Total probability theorem (for distributions)

Consider a partition

such that P(Ci)  0 8 i.

Then  

¦ = fC1; C2; : : : ; Cng; Ci µ C

F (q) =
X

i

F (qnCi)P (Ci); 8q 2 ¹R
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More on conditional distributions

If the conditioning event is given by

then by definition

But clearly so

C = Á¡1([¡1; r]); r 2 ¹R

F (qnC) = P (v · q; v · r)

P (v · r)
=

P (v · q; v · r)

F (r)

P (v · q; v · r) = P (v · min(q; r))

F (qnC) =

8
<

:

F(q)
F(r)

q · r

1 q > r
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More on conditional densities

As a consequence, if

then in terms of densities we have

or equivalently  

F (qnC) =

8
<

:

F(q)
F(r)

q · r

1 q > r

f(qnC) = dF (qnC)
dq

=

8
<

:

f(q)
F(r)

q · r

0 q > r

f(qnC) = dF (qnC)
dq

=

8
<

:

f(q)R r
¡1 f(w)dw

q · r

0 q > r
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More on conditional distributions and densities

For a generic conditioning event E we have the conditional 

density

and the corresponding distribution

f(qnE) =

8
<

:

f(q)R
E f(w)dw

q =2 E

0 q 2 E

F (qnv 2 E) =
Z q

¡1
f(rnv 2 E)dr:
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Conditional expectation

Given a real random variable v and the conditional density 

function f(q\C) the conditional expectation of v given C is 

defined as

Furthermore, if C is defined on v, we have

E[vnC] =
Z +1

¡1
qf(qnC)dq:

E[vnv 2 E] =
Z +1

¡1
qf(qnv 2 E)dq =

Z

E
qf(qnv 2 E)dq =

=

R
E qf(q)dq
R
E f(q)dq

:
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Vector conditional distribution

Consider the random experiment {, C, P(¢\C)} and a vector 

random variable v, then the conditional distribution is 

where we can write equivalently

F (qnC) = P (v1 · q1; : : : ; vn · qn; s 2 C)

P (C)
; 8q 2 ¹Rn

P (v1 · q1; : : : ; vn · qn; s 2 C) =

=P (Á¡1(v1 · q1; : : : ; vn · qn) \ C)
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Similarly, for the conditional density function we get

and if the event C is defined on v as v 2 E we get

Vector conditional density

f(q1; : : : ; qnnC) =
@F(q1; : : : ; qnnC)

@q1 : : : @qn
:

f(q1; : : : ; qnnC) =

8
<

:

f(q1;:::;qn)R
E f(q1;:::;qn)dq1;:::;dqn

q =2 E

0 q 2 E

106



Marco Lovera

Vector conditional density: a particular case 

What if the conditioning event corresponds to a line?

We get a conditional density given by (n=2 case)

f1(q1nv2 = q2) =
f(q1; q2)

f2(q2)
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Total probability and Bayes Theorems

At the level of vector conditional densities they can be stated 

as

f1(q1) =
Z +1

¡1
f1(q1nq2)f2(q2)dq2

f1(q1nq2) =
f2(q2nq1)f1(q1)

f2(q2)
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