

Marco Lovera
Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano

Regardless of the specific approach to estimation, some background on random variables and probability is needed to formulate and solve problems.

We start by introducing the concept of a random experiment, which has the following three components

- Sample space: Ω
- Events of interest: C
- Probability function: P.

The sample space Ω is defined as the set of outcomes of an experiment.

Example: tossing a coin twice ($\mathrm{H}=\mathrm{Heads}, \mathrm{T}=$ Tails).
$\Omega=\{\mathrm{HH} ; \mathrm{HT} ; \mathrm{TT} ; \mathrm{TH}\}$

An event is a subset of Ω.

Examples:

- event "at least one head" is $\{\mathrm{HH} ; \mathrm{HT} ; \mathrm{TH}\}$
- event "no more than one head" is $\{\mathrm{HT} ; \mathrm{TH} ; \mathrm{TT}\}$.

We need to enumerate the set of events of interest that can occur when carrying out an experiment.

In probability theory, this set is defined based on the following properties:

- the "empty set" belongs to \mathbf{C}
- If event $A \in \mathbf{C}$, then its complement $A_{c}=(\Omega-A) \in \mathbf{C}$
- If for $\mathrm{N}<\infty$ events $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{N}} \in \mathbf{C}$, then

$$
\bigcup_{i} A_{i} \in \mathbf{C}
$$

Finally, a probability function P assigns a number (probability) to each event in \mathbf{C}.
P is a function mapping \mathbf{C} to the $[0,1]$ interval, satisfying:

- $\mathrm{P}(\Omega)=1$
- If for $N<\infty$ events $A_{1}, A_{2}, \ldots, A_{N} \in \mathbf{C}$, and

$$
\begin{gathered}
A_{i} \bigcap A_{j}=0, \quad \forall i, j \\
P\left(\bigcup_{i} A_{i}\right)=\sum_{i} P\left(A_{i}\right)
\end{gathered}
$$

then

A variable v is called a random variable if its value depends on the outcome of a random experiment.

Formally v is defined as the output of a function $\phi(\cdot)$ mapping the sample space Ω into the range space V of v :

$$
\phi(\cdot): \Omega \rightarrow V
$$

For a subset D of V , how can we compute $P(v \in D)$?

The image of D through $\phi^{-1}(\cdot)$ is needed, so that we can define

$$
P(v \in D)=P\left(\phi^{-1}(D)\right)
$$

This calls for some attention, as $P(\cdot)$ is defined only on the elements of \mathbf{C}, so the above makes sense provided that

$$
\phi^{-1}(D) \in \mathbf{C} .
$$

Example

A random variable v is called real if

$$
V=\overline{\mathbb{R}}=\{-\infty, \mathbb{R},+\infty\}
$$

Therefore in view of the previous definitions

$$
P(v \in[a, b])=P\left(\phi^{-1}([a, b])\right)
$$

and we must ensure that all the intervals $[a, b]$ belong to \mathbf{C}.

Real random variables

For this to hold, we only need to define

$$
P(v \in[-\infty, q])=P\left(\phi^{-1}([-\infty, q])\right), \quad \forall q \in \mathbb{R}
$$

as the probability for an arbitrary [a,b] interval follows by intersection.

So, we need to ensure that

$$
\phi^{-1}([-\infty, q]) \in \mathbf{C}, \quad \forall q \in \mathbb{R}
$$

As a conclusion, for a given random experiment, we say that v is a well defined real random variable if

$$
\begin{gathered}
v=\phi(s), \quad \phi(\cdot): \Omega \rightarrow \overline{\mathbb{R}} \\
\phi^{-1}([-\infty, q]) \in \mathbf{C}, \quad \forall q \in \overline{\mathbb{R}} \\
P\left(\phi^{-1}(-\infty)\right)=P\left(\phi^{-1}(+\infty)\right)=0
\end{gathered}
$$

By definition, the probability distribution of a random variable v is a function

$$
F(\cdot): \overline{\mathbb{R}} \rightarrow[0,1]
$$

given by

$$
F(q)=P(v \leq q)=P\left(\phi^{-1}([-\infty, q])\right)
$$

Main properties of probability distribution functions

- $F(-\infty)=0$
- $F(+\infty)=1$
- $F(\cdot)$ monotonically increasing.
- $F(\cdot)$ right-continuous.
- $\lim _{q \rightarrow \infty} F(q)=1$
- $F(\cdot)$ piece-wise continuous.

Main use of probability distribution functions: probabilities can be easily expressed in terms of their values, i.e.,

$$
P(v \in(a, b])=F(b)-F(a)
$$

and

$$
P(v \in[a, b])=F(b)-F\left(a^{-}\right)
$$

A real random variable is called

- continuous if $F(q)$ is a continuous function
- discrete if $F(q)$ is a step-wise function.

In view of the above properties we have that $F(\cdot)$ is differentiable almost everywhere (a.e.), i.e., for all q except for discontinuities.

Therefore $\mathrm{d} F(q) / \mathrm{d} q$ is well defined a.e. and we can let

$$
f(q)=\frac{d F(q)}{d q}
$$

almost everywhere.

In the sense of generalised derivatives, the above holds also for discontinuities, leading to impulses in the derivative.

Recalling that

$$
P(v \in[a, b])=F(b)-F\left(a^{-}\right)
$$

and the definition

$$
f(q)=\frac{d F(q)}{d q}
$$

we have in turn that

$$
P(v \in[a, b])=\int_{a}^{b} f(q) d q
$$

Expected value

The expected value of a random variable is defined as

$$
E[v]=\int_{-\infty}^{+\infty} q f(q) d q
$$

(and does not necessarily exist for all f).

If it exists it denotes the "center of mass" of the density function.

If $f(q)$ is symmetric around \bar{q}, then $\bar{q}=E[v]$.

The variance of a random variable is defined as

$$
\operatorname{Var}[v]=\sigma^{2}(v)=\int_{-\infty}^{+\infty}(q-E[v])^{2} f(q) d q
$$

(and does not necessarily exist for all f).

As $f(q) \geq 0$, then also $\operatorname{Var}[v] \geq 0$.

The standard deviation (root mean square) of a random variable is given by

$$
\sigma[v]=\sqrt{\operatorname{Var}[v]} .
$$

The Chebyshev inequality states that

$$
P(|v-E[v]|>\epsilon) \leq \frac{\sigma^{2}[v]}{\epsilon^{2}}, \forall \epsilon>0
$$

Therefore, letting $\epsilon=2 \sigma[v]$ we get

$$
P(|v-E[v]|>2 \sigma[v]) \leq \frac{\sigma^{2}[v]}{4 \sigma^{2}[v]}=0.25
$$

so regardless of the distribution the interval centered in $\mathrm{E}[v]$ with half-width $2 \sigma[\mathrm{v}]$ covers at least 0.75 probability.

The order k moment of a random variable is defined as

$$
m_{k}[v]=\int_{-\infty}^{+\infty} q^{k} f(q) d q
$$

and clearly

$$
\begin{gathered}
m_{0}[v]=\int_{-\infty}^{+\infty} f(q) d q=1 \\
m_{1}[v]=\int_{-\infty}^{+\infty} q f(q) d q=E[q] .
\end{gathered}
$$

The second order moment

$$
m_{2}[v]=\int_{-\infty}^{+\infty} q^{2} f(q) d q
$$

is related to the variance and the expected value as follows:

$$
\begin{aligned}
\operatorname{Var}[v] & =\int_{-\infty}^{+\infty}(q-E[v])^{2} f(q) d q= \\
& =\int_{-\infty}^{+\infty}\left(q^{2}+E[v]^{2}-2 q E[v]\right) f(q) d q= \\
& =m_{2}[v]+E[v]^{2}-2 E[v] E[v]=m_{2}[v]-E[v]^{2}
\end{aligned}
$$

Consider a random variable v and let

$$
w=g(v)
$$

where

$$
g(\cdot): \overline{\mathbb{R}} \rightarrow \overline{\mathbb{R}}
$$

It can be shown that if v is a well defined random variable then so is w.

In terms of expected value we have

$$
E[w]=\int_{-\infty}^{+\infty} q f_{w}(q) d q=\int_{-\infty}^{+\infty} g(q) f_{v}(q) d q
$$

Letting

$$
w=g(v)=(v-E[v])^{2}
$$

we have that

$$
E[w]=E\left[(v-E[v])^{2}\right]=\int_{-\infty}^{\infty}(q-E[v])^{2} f_{v}(q) d q=\operatorname{Var}[v]
$$

and similarly

$$
w=v^{k} \quad \Rightarrow \quad E[w]=E\left[v^{k}\right]=m_{k}[v] .
$$

In the same way we have that (as the expectation operator is linear):

$$
w=\alpha v \quad \Rightarrow \quad E[w]=E[\alpha v]=\alpha E[v]
$$

A Gaussian (normal) random variable has a density function of the form

$$
f(q)=\alpha e^{-\beta q^{2}}, \quad \alpha, \beta>0
$$

and α, β such that the density function has unit area.

Gaussian densities can be more effectively expressed in terms of expected value and variance.

Indeed letting

$$
\mu=E[v], \quad \sigma^{2}=\operatorname{Var}[v]
$$

it can be shown that

$$
f(q)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(q-\mu)^{2}}{2 \sigma^{2}}}
$$

Shorthand notation:

$$
v \sim G\left(\mu, \sigma^{2}\right) \quad v \sim N\left(\mu, \sigma^{2}\right)
$$

Linear propagation: given $v \sim G\left(\mu, \sigma^{2}\right)$ and $w=a+b v$ then

$$
w \sim G\left(a+b \mu, b^{2} \sigma^{2}\right)
$$

Based on this, for a generic $v \sim G\left(\mu, \sigma^{2}\right)$ we can define

$$
w=\frac{v-\mu}{\sigma}
$$

for which clearly $w \sim G(0,1)$
The corresponding density function is $f(q)=\frac{1}{\sqrt{2 \pi}} e^{\frac{-q^{2}}{2}}$ which is known as the standard Gaussian.

Example: the standard Gaussian

Example: $\mu=1, \sigma=2$ and $\sigma=4$

Example: random data

Assumption: data are extractions from a random variable with Gaussian density with unknown μ and σ.

Problem: estimating the density from data.

Possible approaches:

- Nonparametric: try to reconstruct the value of $f(q) \forall q$
- Parametric: try to estimate μ and σ and then "plug" the estimates in place of the true values.

Data histogram

If the dataset is very long then accurate nonparametric estimates can be built

Suitable estimators for μ and σ must be devised.

Let's pick the intuitive ones:

$$
\begin{gathered}
\widehat{\mu}=\frac{1}{N} \sum_{i} v_{i} \\
\widehat{\sigma}^{2}=\frac{1}{N} \sum_{i}\left(v_{i}-\widehat{\mu}\right)^{2}
\end{gathered}
$$

and see what happens.

For the original dataset of 100 samples:

$$
\hat{\mu}=1.2781 \quad \hat{\sigma}^{2}=9.578
$$

True values:

$$
\mu=1 \quad \sigma^{2}=9
$$

Estimated density

We can think about this result in many different ways (keeping in mind that in real problems the true values are unknown!):

- What happens if the esperiment is repeated?
- How accurate are these estimates?
- What happens if the length of the dataset increases?

$$
\begin{array}{ll}
\widehat{\mu}=1.2461 & \widehat{\sigma}^{2}=8.4484 \\
\widehat{\mu}=0.7302 & \widehat{\sigma}^{2}=9.4722 \\
\widehat{\mu}=1.1630 & \widehat{\sigma}^{2}=9.8497
\end{array}
$$

We now repeat the experiment many times ($M=100$) and look at the outcomes in terms of estimates of μ and σ^{2}

Comments on the results:

- As expected the estimates of μ and σ^{2} are also random variables
- We can then study the repeated estimates as data, looking at their properties.
- Mean of the estimates:

$$
\frac{1}{M} \sum_{i} \widehat{\mu}_{i}=1.0136 \frac{1}{M} \sum_{i} \widehat{\sigma}_{i}^{2}=8.9788
$$

Comments on the results:

- Standard deviation of the estimates:

$$
0.1509 \quad 0.6232
$$

- So in conclusion
- On average the estimators seem to provide correct results
- However the estimates are random, so the standard deviation provides information about the probability of errors (remember Chebyshev inequality).

What happens to the estimates if the length of the data set increases?

Increasing data length: different experiments

A vector

$$
v=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

is a well-defined random variable with respect to a random experiment ($\Omega, \mathbf{C}, \mathrm{P}$) subject to suitable extensions of the conditions defined in the scalar case.

Let first

$$
q=\left[\begin{array}{c}
q_{1} \\
q_{2} \\
\vdots \\
q_{n}
\end{array}\right]
$$

Then v is a well defined random variable if it depends on the outcomes of the experiment via a function

$$
v=\phi(s), \quad \phi(\cdot): \Omega \rightarrow \overline{\mathbb{R}}^{n}
$$

such that

$$
\phi^{-1}\left(v_{1} \leq q_{1}, v_{2} \leq q_{2}, \ldots, v_{n} \leq q_{n}\right) \in \mathbf{C}, \quad \forall q \in \overline{\mathbb{R}}^{n}
$$

and if

$$
P\left(v_{i}= \pm \infty\right)=0 \quad i=1, \ldots, n
$$

The (joint) probability distribution for the vector random variable v is defined as

$$
F\left(q_{1}, q_{2}, \ldots, q_{n}\right)=P\left(v_{1} \leq q_{1}, v_{2} \leq q_{2}, \ldots, v_{n} \leq q_{n}\right)
$$

If one is interested in the (marginal) distribution of a single component q_{i}, then it can be obtained as

$$
F_{i}\left(q_{i}\right)=F\left(\infty, \ldots, \infty, q_{i}, \infty, \ldots, \infty\right)
$$

Note that in general the joint distribution cannot be reconstructed from the sole knowledge of the marginals.

By generalising the scalar definition we have that

$$
f\left(q_{1}, q_{2}, \ldots, q_{n}\right)=\frac{\partial^{n} F\left(q_{1}, q_{2}, \ldots, q_{n}\right)}{\partial q_{1} \partial q_{2} \ldots \partial q_{n}}
$$

and the individual marginal densities can be obtained as

$$
f_{i}\left(q_{i}\right)=\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} f\left(q_{1}, q_{2}, \ldots, q_{n}\right) d q_{1} \ldots d q_{n}
$$

where integration is carried out over all components except the $\mathrm{i}_{\text {th }}$ one.

Expected value: vector case

By extending the scalar definition we have

$$
E[v]=\int_{\overline{\mathbb{R}}^{n}} q f(q) d q=\int_{-\infty}^{+\infty} \ldots \int_{-\infty}^{+\infty}\left[\begin{array}{c}
q_{1} \\
q_{2} \\
\vdots \\
q_{n}
\end{array}\right] f\left(q_{1}, q_{2}, \ldots, q_{n}\right) d q_{1} \ldots d q_{n}
$$

which can be equivalently written as

$$
E[v]=\left[\begin{array}{c}
\int_{-\infty}^{+\infty} q_{1} f_{1}\left(q_{1}\right) d q_{1} \\
\int_{-\infty}^{+\infty} q_{2} f_{2}\left(q_{2}\right) d q_{2} \\
\vdots \\
\int_{-\infty}^{+\infty} q_{n} f_{2}\left(q_{n}\right) d q_{n}
\end{array}\right]=\left[\begin{array}{c}
E\left[v_{1}\right] \\
E\left[v_{2}\right] \\
\vdots \\
E\left[v_{n}\right]
\end{array}\right]
$$

Consider a vector random variable v and let

$$
w=g(v)
$$

where

$$
g(\cdot): \overline{\mathbb{R}}^{n} \rightarrow \overline{\mathbb{R}}^{n}
$$

Then in terms of expected value we have

$$
E[w]=\int_{\overline{\mathbb{R}}^{n}} q f_{w}(q) d q=\int_{\overline{\mathbb{R}}^{n}} g(q) f_{v}(q) d q
$$

Given a vector random variable v let

$$
w=A v=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]
$$

then

$$
E[w]=E[A v]=A E[v]
$$

Similarly, column-wise we have

$$
\begin{aligned}
w & =A v, A=\left[\begin{array}{lll}
\alpha_{1} & \ldots & \alpha_{n}
\end{array}\right] \\
E[w]=E[A v] & =A E[v]=\left[\begin{array}{lll}
\alpha_{1} & \ldots & \alpha_{n}
\end{array}\right] E[v]=\sum_{i=1}^{n} \alpha_{i} E\left[v_{i}\right]
\end{aligned}
$$

The variance of a vector random variable is defined as

$$
\operatorname{Var}[v]=\int_{\overline{\mathbb{R}}^{n}}(q-E[v])(q-E[v])^{T} f(q) d q
$$

Clearly $\operatorname{Var}[v]$ is a square $n \times n$ matrix, which can be equivalently defined as

$$
\operatorname{Var}[v]=E\left[(v-E[v])(v-E[v])^{T}\right]
$$

It appears from both expressions that $\operatorname{Var}[v]$ is a symmetric positive semi-definite matrix.

In scalar form we have

$$
\operatorname{Var}[v]=\left[\begin{array}{ccc}
c_{11} & \ldots & c_{1 n} \\
\vdots & & \\
c_{n 1} & \ldots & c_{n n}
\end{array}\right]
$$

where

- $c_{i i}=\operatorname{Var}\left[v_{i}\right]$ is the variance of v_{i}
- $c_{i j}=E\left[\left(v_{i}-E\left[v_{i}\right]\right)\left(v_{j}-E\left[v_{j}\right]\right)\right]$ is the covariance index between v_{i} and v_{j}.

As in the scalar case, defining the second order moment as

$$
m_{2}[v]=\int_{\mathbb{\mathbb { R }}^{n}} q q^{T} f(q) d q
$$

we have

$$
\operatorname{Var}[v]=E\left[v v^{T}\right]-E[v] E[v]^{T}=m_{2}[v]-E[v] E[v]^{T}
$$

The correlation matrix is defined as

$$
\rho[v]=\left[\begin{array}{ccc}
\bar{c}_{11} & \ldots & \bar{c}_{1 n} \\
\vdots & & \\
\bar{c}_{n 1} & \ldots & \bar{c}_{n n}
\end{array}\right]
$$

where $\bar{c}_{i j}=\frac{c_{i j}}{\sqrt{c_{i i} c_{j j}}}$.
It follows from the definition that $\bar{c}_{i i}=1$ and $\left|\bar{c}_{i j}\right| \leq 1$.

Two random variables v_{1} and v_{2} are said to be incorrelated if for the vector random variable

$$
v=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

we have that

$$
\bar{c}_{12}[v]=0 .
$$

Theorem: random variables v_{1} and v_{2} are incorrelated if and only if

$$
E\left[v_{1} v_{2}\right]=E\left[v_{1}\right] E\left[v_{2}\right]
$$

To prove it we compute c_{12} :

$$
\begin{aligned}
c_{12} & =E\left[\left(v_{1}-E\left[v_{1}\right]\right)\left(v_{2}-E\left[v_{2}\right]\right)\right] \\
& =E\left[v_{1} v_{2}\right]+E\left[E\left[v_{1}\right] E\left[v_{2}\right]\right]-E\left[v_{1} E\left[v_{2}\right]\right]-E\left[v_{2} E\left[v_{1}\right]\right]= \\
& =E\left[v_{1} v_{2}\right]-E\left[v_{1}\right] E\left[v_{2}\right]
\end{aligned}
$$

Therefore $c_{12}=0 \quad \Leftrightarrow \quad E\left[v_{1} v_{2}\right]=E\left[v_{1}\right] E\left[v_{2}\right]$.

Two random variables v_{1} and v_{2} are said to be independent if

$$
f\left(q_{1}, q_{2}\right)=f_{1}\left(q_{1}\right) f_{2}\left(q_{2}\right)
$$

Theorem: two independent random variables are also incorrelated.

To prove it we compute $E\left[\mathrm{v}_{1} \mathrm{v}_{2}\right]$:

$$
\begin{aligned}
E\left[v_{1} v_{2}\right] & =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} q_{1} q_{2} f\left(q_{1}, q_{2}\right) d q_{1} d q_{2}= \\
& =\int_{-\infty}^{+\infty} q_{1} f_{1}\left(q_{1}\right) d q_{1} \int_{-\infty}^{+\infty} q_{2} f_{2}\left(q_{2}\right) d q_{2}= \\
& =E\left[v_{1}\right] E\left[v_{2}\right] .
\end{aligned}
$$

(the converse is not true in general)

Consider two random variables v_{1} and v_{2} and their sum w :

$$
w=v_{1}+v_{2}
$$

Clearly for the expected value we have

$$
E[w]=E\left[v_{1}\right]+E\left[v_{2}\right]
$$

but for the variance:

$$
\begin{aligned}
\operatorname{Var}[w] & =E\left[(w-E[w])^{2}\right]=E\left[\left(v_{1}+v_{2}-E\left[v_{1}\right]-E\left[v_{2}\right]\right)^{2}\right]= \\
& =E\left[\left(v_{1}-E\left[v_{1}\right]\right)^{2}+\left(v_{2}-E\left[v_{2}\right]\right)^{2}\right]+ \\
& +2 E\left[\left(v_{1}-E\left[v_{1}\right]\right)\left(v_{2}-E\left[v_{2}\right]\right)\right]= \\
& =\operatorname{Var}\left[v_{1}\right]+\operatorname{Var}\left[v_{2}\right]+2 c_{12}
\end{aligned}
$$

For arbitrary linear combinations of v_{1} and v_{2}

$$
z=\alpha_{1} v_{1}+\alpha_{2} v_{2}
$$

For the expected value we have

$$
E[z]=\alpha_{1} E\left[v_{1}\right]+\alpha_{2} E\left[v_{2}\right]
$$

but for the variance:

$$
\operatorname{Var}[z]=\alpha_{1}^{2} \operatorname{Var}\left[v_{1}\right]+\alpha_{2}^{2} \operatorname{Var}\left[v_{2}\right]+2 \alpha_{1} \alpha_{2} c_{12}
$$

A vector of random variables

$$
v=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

is said to be Gaussian (or, equivalently, its components are said to be jointly Gaussian) if it has a density function of the form

$$
f(q)=\alpha e^{-q^{T} B q}, \quad \alpha>0, \quad B=B^{T}>0
$$

As in the scalar case, letting

$$
\mu=E[v], \quad C=\operatorname{Var}[v]
$$

it can be shown that

$$
f(q)=\frac{1}{\sqrt{\operatorname{det}[C]}(2 \pi)^{n / 2}} e^{\frac{1}{2}(q-\mu)^{T} C^{-1}(q-\mu)}
$$

Shorthand notation:

$$
v \sim G(\mu, C) \quad v \sim N(\mu, C)
$$

Consider a vector Gaussian random variable such that

$$
v \sim G(\mu, C)
$$

then

$$
v_{i} \sim G\left(\mu_{i}, C_{i i}\right)
$$

i.e., the components of a vector Gaussian random variable are in turn Gaussian random variables.

The converse is not true in general.

Consider a set of independent Gaussian random variables such that

$$
v_{i} \sim G\left(\mu_{i}, C_{i i}\right)
$$

then

$$
v \sim G(\mu, C)
$$

If v_{1} and v_{2} are Gaussian and incorrelated then they are also independent.

Proof: follows from properties of the exponential.

Consider a n-dimensional vector Gaussian random variable

$$
v \sim G\left(\mu_{v}, C_{v}\right)
$$

and apply the linear transformation

$$
w=A v+b
$$

where

- A $m \times n, m \leq n$ and $\operatorname{rank}(\mathrm{A})=m$
- b $m \times 1$

Then w is Gaussian and

$$
w \sim G\left(\mu_{w}, C_{w}\right)
$$

where

$$
\begin{gathered}
\mu_{w}=A \mu_{v}+b \\
C_{w}=A C_{v} A^{T}
\end{gathered}
$$

If v_{1} and v_{2} are jointly Gaussian such that

$$
\begin{aligned}
& v_{1} \sim G\left(\mu_{1}, \sigma_{1}^{2}\right) \\
& v_{2} \sim G\left(\mu_{2}, \sigma_{2}^{2}\right)
\end{aligned}
$$

then their linear combination

$$
w=\alpha_{1} v_{1}+\alpha_{2} v_{2}
$$

is also Gaussian and such that

$$
\begin{gathered}
\mu_{w}=\alpha_{1} \mu_{1}+\alpha_{2} \mu_{2} \\
\sigma_{w}^{2}=\alpha_{1}^{2} \sigma_{1}^{2}+\alpha_{2}^{2} \sigma_{2}^{2}+2 \alpha_{1} \alpha_{2} c_{12}
\end{gathered}
$$

For a given random experiment we have a sequence o random variables defined as
$\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{t}}$
and we want to define notions of asymptotic limit for the sequence, i.e.,

$$
\lim _{t \rightarrow \infty} v_{t}
$$

Example: the study of the properties of an estimator for increasing data lenghts.

Critical issue:
the sequence depends on the outcome of the experiment!

Various notions of convergence can be defined.

Main distinction between sure and almost sure convergence.

Sure (or strong) convergence:

$$
\lim _{t \rightarrow \infty} v_{t}=a
$$

is equivalent to

$$
\forall \epsilon>0 \quad \exists t_{\epsilon}:\left|v_{t}-a\right|<\epsilon \quad \forall t>t_{\epsilon} \quad \forall s \in \Omega
$$

Almost sure convergence is defined in terms of the set A of outcomes of the experiment for which the sequence converges:

$$
A=\left\{s \in \Omega: \lim _{t \rightarrow \infty} v_{t}=a\right\}
$$

If $\mathrm{P}(A)=1$ then $\lim _{t \rightarrow \infty} v_{t}=a$ with probability 1 (almost surely).

Consider the limit value a, define an interval $[a-\epsilon, a+\epsilon]$ and consider the set of events

$$
B_{1}(\epsilon)=\left\{s \in \Omega:\left|v_{1}(s)-a\right|<\epsilon\right\}
$$

B_{1} is in turn an event so we can compute its probability:

$$
P\left(B_{1}(\epsilon)\right)=g_{1}(\epsilon)
$$

Repeating the process for increasing t we have the numerical sequence $g_{1}, g_{2}, \ldots, g_{t}$

Then, we say that v_{t} converges in probability to a

$$
\operatorname{plim}_{t \rightarrow \infty} v_{t}=a
$$

if

$$
\lim _{t \rightarrow \infty} g_{t}(\epsilon)=1 \quad \forall \epsilon>0
$$

Let

$$
\mu_{t}=E\left[v_{t}\right]
$$

then we say that the sequence convergence in mean if

$$
\lim _{t \rightarrow \infty} \mu_{t}=a
$$

Similarly, let

$$
h_{t}=E\left[\left(v_{t}-a\right)^{2}\right]
$$

then we say that the sequence has mean square convergence, denoted as

$$
\text { l.i.m. } \cdot t \rightarrow \infty v_{t}=a
$$

if $\lim _{t \rightarrow \infty} h_{t}=0$

The following implications hold:
If \quad I.i.m. $t \rightarrow \infty v_{t}=a \Rightarrow \lim _{t \rightarrow \infty} E\left[v_{t}\right]=a$
If $\quad \lim _{t \rightarrow \infty} E\left[v_{t}\right]=a \quad$ and $\quad \lim _{t \rightarrow \infty} \operatorname{Var}\left[v_{t}\right]=a$

$$
\Rightarrow \text { I.i.m.t } \cdot t \rightarrow v_{t}=a
$$

If $\quad \lim _{t \rightarrow \infty} E\left[v_{t}\right]=a \quad$ then

$$
\lim _{t \rightarrow \infty} \operatorname{Var}\left[v_{t}\right]=a \Leftrightarrow \text { I.i.m. } \cdot t \rightarrow \infty v_{t}=a
$$

Up to now convergence to a constant value has been considered.

$$
\operatorname{plim}_{t \rightarrow \infty} v_{t}=a
$$

What if a is a random variable, with distribution $F(a)$?

Denoting with $F(q, t)$ the distribution of v_{t}, if

$$
\lim _{t \rightarrow \infty} F(q, t)=F_{a}(q), \quad \forall q
$$

then we say that

$$
\lim _{t \rightarrow \infty} v_{t}=a
$$

in distribution.

In the Gaussian case:
if $a \sim G\left(\mu, \sigma^{2}\right)$
then we say that v_{t} is asymptotically Gaussian:

$$
v_{t} \sim A s G\left(\mu, \sigma^{2}\right)
$$

Summing up, the following implications hold.

Sure convergence \Rightarrow A.s. convergence
A. s. convergence \Rightarrow Convergence in prob.

Convergence in prob. \Rightarrow Convergence in distr.

But also...

Mean square convergence \Rightarrow Convergence in prob.

Mean square convergence \Rightarrow Convergence in mean

Law of large numbers

Consider N independent real random variables v_{i} such that

$$
E\left[v_{i}\right]=\mu, \quad \forall i
$$

and their sum

$$
x_{N}=\sum_{i} v_{i}
$$

Then the following results hold.

Law of large numbers

Theorem 1:
if the v_{i} are identically distributed then

$$
\lim _{N \rightarrow \infty} \frac{x_{N}}{N}=\mu, \quad \text { a.s. and m.s. }
$$

Law of large numbers

Theorem 2:
if the v_{i} are such that

$$
\operatorname{Var}\left[v_{i}\right] \leq C, \quad \forall i
$$

then

$$
\lim _{N \rightarrow \infty} \frac{1}{N}\left(x_{N}-E\left[x_{N}\right]\right)=0, \quad \text { a.s. and m.s. }
$$

Consider N independent and identically distributed real random variables v_{i} such that

$$
\begin{gathered}
E\left[v_{i}\right]=\mu, \quad \forall i \\
\operatorname{Var}\left[v_{i}\right]=\sigma^{2}, \quad \forall i
\end{gathered}
$$

then their sum

$$
x_{N}=\sum_{i} v_{i}
$$

is such that $E\left[x_{N}\right]=N \mu, \quad \operatorname{Var}\left[x_{N}\right]=N \sigma^{2}$
and $y_{N}=\frac{x_{N}-N \mu}{\sqrt{N \sigma^{2}}} \sim \operatorname{As} G(0,1)$.

Consider a random experiment defined by $\{\Omega, \mathrm{C}, \mathrm{P}\}$ and study the probabilities of two events A and C.

The conditional probability of A given C is defined as

$$
P(A \backslash C)=\frac{P(A \cap C)}{P(C)}
$$

Conditional probability

Example: rolling a dice.

$$
P(A \backslash C)=\frac{P(A \cap C)}{P(C)}
$$

$\Omega=\{1,2,3,4,5,6\}$
$\mathbf{C =}=$ all subsets of Ω

Consider
$A=\{1,2,3,5\}$ and $C=\{2,4,6\}$.

Clearly $P(A)=4 / 6=2 / 3$ and $P(C)=3 / 6=1 / 2$.

Conditional probability
$A \cap C=\{2\}$, so $P(A \cap C)=1 / 6$.

$$
P(A \backslash C)=\frac{P(A \cap C)}{P(C)}
$$

Therefore
$P(A \mid C)=1 / 3$.

If now we fix C and consider the function

$$
P(\cdot \backslash C)
$$

defined in \mathbf{C} and taking values in $[0,1]$, we have defined the probability of any event in \mathbf{C} given event \mathbf{C}.

It has to be checked that this function is a well-defined probability function, i.e., it satisfies the properties defined earlier on.
P is a function mapping C to the $[0,1]$ interval, satisfying:

- $\mathrm{P}(\Omega)=1: P(\Omega \backslash C)=\frac{P(\Omega \cap C)}{P(C)}=\frac{P(C)}{P(C)}=1$
- If for $\mathrm{N}<\infty$ events $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{N}} \in \mathbf{C}$, and

$$
\begin{aligned}
& A_{i} \bigcap A_{j}=0, \quad \forall i, j \\
& P\left(\bigcup_{i} A_{i}\right)=\sum_{i} P\left(A_{i}\right)
\end{aligned}
$$

then

The second property holds as we have the following.

Conditional probability

$$
\begin{aligned}
P\left(\bigcup_{i} A_{i} \backslash C\right) & =\frac{P\left(\bigcup_{i} A_{i} \cap C\right)}{P(C)}=\frac{P\left(\bigcup_{i}\left(A_{i} \cap C\right)\right)}{P(C)}= \\
& =\frac{\sum_{i} P\left(\left(A_{i} \cap C\right)\right)}{P(C)}=\sum_{i} P\left(A_{i} \backslash C\right)
\end{aligned}
$$

We can now consider a constrained random experiment defined by
$\{\Omega, \mathrm{C}, \mathrm{P}(\cdot \mid \mathrm{C})\}$
as a random experiment constrained to the event C .

A partition of Ω is defined as a set

$$
\Pi=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}, \quad C_{i} \subseteq \Omega
$$

with the following properties:

- The sets C_{i} are all disjoint
- $U_{i} C_{i}=\Omega$.

Given a random experiment and a partition Π such that

$$
\Pi \subseteq \mathbf{C}
$$

and

$$
P\left(C_{i}\right) \neq 0
$$

then we have

$$
P(A)=\sum_{i} P\left(A \backslash C_{i}\right) P\left(C_{i}\right) \quad \forall A \in \mathbf{C}
$$

Proof: A can be written as

$$
A=A \cap \Omega=A \cap\left(\cup_{i} C_{i}\right)=\cup_{i}\left(A \cap C_{i}\right)
$$

so in terms of probabilities

$$
P(A)=P\left(\cup_{i}\left(A \cap C_{i}\right)\right)=\sum_{i} P\left(A \cap C_{i}\right)=\sum_{i} P\left(A \backslash C_{i}\right) P\left(C_{i}\right)
$$

For two events A and $B \in \mathbf{C}$ with $\mathrm{P}(A), \mathrm{P}(B) \neq 0$ it holds that

$$
P(A \backslash B)=\frac{P(B \backslash A) P(A)}{P(B)}
$$

Proof: multiply both sides by $P(B)$ to get $P(A \cap B)$ on both sides of the equation.

Let

$$
\Pi=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}, \quad C_{i} \subseteq \mathbf{C}
$$

a partition of Ω and consider an event $\mathrm{B} \in \mathbf{C}$.

Then

$$
P\left(A_{i} \backslash B\right)=\frac{P\left(B \backslash A_{i}\right) P\left(A_{i}\right)}{\sum_{i} P\left(B \backslash A_{i}\right) P\left(A_{i}\right)} .
$$

Usual nomenclature:

- $\mathrm{P}\left(\mathrm{A}_{\mathrm{i}}\right)$: a priori probability
- $P\left(A_{i} \backslash B\right)$: a posteriori probability
with respect to the conditioning to B.

Two events A and $\mathrm{B} \in \mathbf{C}$ are called independent if and only if

$$
P(A \cap B)=P(A) P(B)
$$

Clearly for independent events we have, in terms of conditional probabilities

$$
\begin{aligned}
& P(A \backslash B)=P(A) \\
& P(B \backslash A)=P(B)
\end{aligned}
$$

The above ideas can lead to the definition of conditional distributions and conditional densities, as follows.

Consider a random experiment and a random variable v defined on it.

Then pick an event $C \in C: P(C) \neq 0$.

Then the distribution function for v conditional to C is defined as the distribution function for the constrained experiment.

Consider the random experiment $\{\Omega, \mathbf{C}, \mathrm{P}(\cdot \mid \mathrm{C})\}$ and random variable v, then the conditional distribution is

$$
F(q \backslash C)=\frac{P(v \leq q, s \in C)}{P(C)}, \quad \forall q \in \overline{\mathbb{R}}
$$

where we can write equivalently

$$
P(v \leq q, s \in C)=P\left(\phi^{-1}([-\infty, q]) \cap C\right)
$$

Conditional probability density function

A conditional probability density function for a given conditional distribution can be defined as

$$
f(q \backslash C)=\frac{d F(q \backslash C)}{d q}
$$

Consider a partition

$$
\Pi=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}, \quad C_{i} \subseteq \mathbf{C}
$$

such that $P\left(C_{i}\right) \neq 0 \forall i$.

Then

$$
F(q)=\sum_{i} F\left(q \backslash C_{i}\right) P\left(C_{i}\right), \quad \forall q \in \overline{\mathbb{R}}
$$

If the conditioning event is given by

$$
C=\phi^{-1}([-\infty, r]), \quad r \in \overline{\mathbb{R}}
$$

then by definition

$$
F(q \backslash C)=\frac{P(v \leq q, v \leq r)}{P(v \leq r)}=\frac{P(v \leq q, v \leq r)}{F(r)}
$$

But clearly $P(v \leq q, v \leq r)=P(v \leq \min (q, r))$ so

$$
F(q \backslash C)=\left\{\begin{array}{cc}
\frac{F(q)}{F(r)} & q \leq r \\
1 & q>r
\end{array}\right.
$$

As a consequence, if

$$
F(q \backslash C)=\left\{\begin{array}{cc}
\frac{F(q)}{F(r)} & q \leq r \\
1 & q>r
\end{array}\right.
$$

then in terms of densities we have

$$
f(q \backslash C)=\frac{d F(q \backslash C)}{d q}=\left\{\begin{array}{cc}
\frac{f(q)}{F(r)} & q \leq r \\
0 & q>r
\end{array}\right.
$$

or equivalently

$$
f(q \backslash C)=\frac{d F(q \backslash C)}{d q}=\left\{\begin{array}{c}
\frac{f(q)}{J_{-\infty}^{r} f(w) d w} \quad q \leq r \\
0 \quad q>r
\end{array}\right.
$$

For a generic conditioning event E we have the conditional density

$$
f(q \backslash E)=\left\{\begin{array}{cl}
\frac{f(q)}{\int_{E} f(w) d w} & q \notin E \\
0 \quad q \in E
\end{array}\right.
$$

and the corresponding distribution

$$
F(q \backslash v \in E)=\int_{-\infty}^{q} f(r \backslash v \in E) d r
$$

Given a real random variable v and the conditional density function $\mathrm{f}(\mathrm{q} \backslash \mathrm{C})$ the conditional expectation of v given C is defined as

$$
E[v \backslash C]=\int_{-\infty}^{+\infty} q f(q \backslash C) d q
$$

Furthermore, if C is defined on v, we have

$$
\begin{aligned}
E[v \backslash v \in E] & =\int_{-\infty}^{+\infty} q f(q \backslash v \in E) d q=\int_{E} q f(q \backslash v \in E) d q= \\
& =\frac{\int_{E} q f(q) d q}{\int_{E} f(q) d q} .
\end{aligned}
$$

Consider the random experiment $\{\Omega, \mathbf{C}, \mathrm{P}(\cdot \mid \mathrm{C})\}$ and a vector random variable v, then the conditional distribution is

$$
F(q \backslash C)=\frac{P\left(v_{1} \leq q_{1}, \ldots, v_{n} \leq q_{n}, s \in C\right)}{P(C)}, \quad \forall q \in \overline{\mathbb{R}}^{n}
$$

where we can write equivalently

$$
\begin{aligned}
& P\left(v_{1} \leq q_{1}, \ldots, v_{n} \leq q_{n}, s \in C\right)= \\
= & P\left(\phi^{-1}\left(v_{1} \leq q_{1}, \ldots, v_{n} \leq q_{n}\right) \cap C\right)
\end{aligned}
$$

Similarly, for the conditional density function we get

$$
f\left(q_{1}, \ldots, q_{n} \backslash C\right)=\frac{\partial F\left(q_{1}, \ldots, q_{n} \backslash C\right)}{\partial q_{1} \ldots \partial q_{n}}
$$

and if the event C is defined on v as $v \in E$ we get

$$
f\left(q_{1}, \ldots, q_{n} \backslash C\right)=\left\{\begin{array}{c}
\frac{f\left(q_{1}, \ldots, q_{n}\right)}{\int_{E} f\left(q_{1}, \ldots, q_{n}\right) d q_{1}, \ldots, d q_{n}} \\
0 \quad q \in E
\end{array} \quad q \notin E\right.
$$

What if the conditioning event corresponds to a line?

We get a conditional density given by ($n=2$ case)

$$
f_{1}\left(q_{1} \backslash v_{2}=q_{2}\right)=\frac{f\left(q_{1}, q_{2}\right)}{f_{2}\left(q_{2}\right)}
$$

At the level of vector conditional densities they can be stated as

$$
\begin{gathered}
f_{1}\left(q_{1}\right)=\int_{-\infty}^{+\infty} f_{1}\left(q_{1} \backslash q_{2}\right) f_{2}\left(q_{2}\right) d q_{2} \\
f_{1}\left(q_{1} \backslash q_{2}\right)=\frac{f_{2}\left(q_{2} \backslash q_{1}\right) f_{1}\left(q_{1}\right)}{f_{2}\left(q_{2}\right)}
\end{gathered}
$$

