
Advanced Aerospace Control:
gain scheduling

Marco Lovera
Dipartimento di Scienze e Tecnologie Aerospaziali
Politecnico di Milano
marco.lovera@polimi.it



6/7/2017 - 2-

Outline

Preliminaries: LTI design in a state-space perspective

Gain scheduling design: an example

The velocity algorithm: derivation from the example

General formulation

Velocity algorithm for the observer+integrator scheme;

Simulation example
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Design via linearisation

Local results can be obtained via liearisation. 
Some classical problems:

State feedback stabilisation

Output feedback stabilisation

Regulation using integral action
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Stabilisation

Consider the system

for which is an equilibrium. 

A stabilizing control law can be obtained via linearisation. 

Indeed letting
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Stabilisation

We can use the control law u=Kx and choose K to asign
the eigenvalues of (A+BK) 
(Assumption: (A,B) controllable).

We get the feedback system

which by definition has an asymptotically stable
equilibrium at x=0. 
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Stabilisation

It is also possible to obtain a Lyapunov function to 
estimate the region of attraction of the equilibrium.

Indeed, for Q=QT>0, the solution P of the equation

defines the Lyapunov function
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Stabilisation

If only an output y is measurable

with an equilibrium, we can extend the 
linearization approach as follows.
Let
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Stabilisation

and consider the dynamic controller

(Assumptions: (A,B) controllable, (A,C) observable).

A common special case is the one in which the 
dynamics of the controller is given by a state observer:
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Stabilisation

with K and H chosen, respectively, to stabilise
(A+BK) and  (A+HC).

We get the feedback system

which, again, has an asymptotically stable equilibrium
at x=0.
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Stabilisation

Also in this case, a Lyapunov function for the 
equilibrium can be constructed. 

One has to solve a Lyapunov equation for the dynamic
matrix

which defines the local dynamics in the neighborhood
of the equilibrium.
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Zero-error regulation using integral action

Consider the system

with equilibrium, and a constant set-point 
yR for output y.

We want to design a controller such that zero error is 
obtained at least asymptotically.

As is well known, to achieve this we need integral
action in the control law.
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Zero-error regulation using integral action

In terms of the original nonlinear system we have to 
obtain that

The feedback system has an equilibrium xss, uss such 
that

The equilibrium must be asymptotically stable. 
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Zero-error regulation using integral action

Approach:

Define the control error e=y-yR;

Augment the system with an integrator for e:

Linearise the system in the neighborhood of x=xss, 
=ss
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Zero-error regulation using integral action

Letting

we obtain the linearised model
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Zero-error regulation using integral action

Now choose K: (A + BK) is asymptotically stable;

Write the control law as

Choose the value of ss as

from which
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Zero-error regulation using integral action

Then the closed-loop dynamics is

And it has the equilibrium (xss, ss) with local
dynamics given by (A + BK). 
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Limitations of the linearisation approach

Obtained results are only local;

They are valid only for a single operating point, as

Possibile solutions:
Full nonlinear synthesis;
Parameterise operating points as functions of 
scheduling variables;
Use controllers which adapt to the present operating
point.
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Gain scheduling: problem statement

Goal: to overcome the limitations of the 
linearisation approach, which leads to control laws 
valid for a single equilibrium (trim point)

Idea:
Parameterise the trim points by means of scheduling 
variables
Design a linear controller for each trim point
Implement the entire familiy of linear controllers as a 
unique linear controller, with parameters depending 
on the scheduling variables.
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Main difficulties

Ensure that the scheduled controller works exactly 
like the individual local controllers in each trim 
point

Ensure that the control system is «well behaved» 
also during transients between trim points 
(manoeuvres).
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Gain scheduling: applications

These techniques originate from aerospace control; some examples:

B. Clement, G. Duc, S. Mauffrey,
Aerospace launch vehicle control: a gain scheduling approach
Control Engineering Practice, Vol. 13, N. 3, pp. 333-347, 2005. 

W. Siwakosit, S. Snell, R. Hess,
Robust flight control design with handling qualities constraints using 
scheduled linear dynamic inversion and loop-shaping
IEEE Transactions on Control Systems Technology, Vol. 8, N. 3, pp. 
483-494, 2000. 

R. Hyde, K. Glover
The application of scheduled H∞ controllers to a VSTOL aircraft, 
IEEE Transactions on Automatic Control, Vol. 38, N. 7, pp. 1021-1039, 
1993. 
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Gain scheduling: applications

Other application examples:
C. Bohn, A. Cortabarria, V. Hartel et al.
Active control of engine-induced vibrations in automotive vehicles using 
disturbance observer gain scheduling,
Control Engineering Practice, Vol. 12, N. 8, pp. 1029-1039, 2004. 
K. Hong, H. Sohn, J. Hedrick,
Modified skyhook control of semi-active suspensions: A new model, gain 
scheduling, and hardware-in-the-loop tuning,
Journal of Dynamic Systems, Measurement and Control-Transactionsof the ASME 
Vol. 124, N. 1, pp. 158-167, 2002. 
J. Carusone, G. Deleuterio, 
Tracking control for end-effector position and orientation of structurally flexible 
manipulators,
Journal of Robotic Systems, Vol. 10, N. 6, pp. 847-870, 1993. 
F. Previdi, E. Carpanzano, 
Design of a gain scheduling controller for knee-joint angle control by using 
functional electrical stimulation,
IEEE Transactions on Control Systems Technology, 
Vol. 11, N. 3, pp. 310–324, 2003.

Gain scheduling has always been used by practitioners, but its formal study is 
recent.
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An example

Consider the system

and the set of equilibria given by 

(x=x0>0, u=-x0|x0|, d=0).

We want to design a control system to regulate x to a 
desired value xo.
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An example

Linearising in the neighborhood of a generic
equilibrium we get

and for the generic equilibrium we can choose the 
linear controller

(note that it depends on x0).
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An example

The local closed-loop system is given by

from which

and

so we have a solution for each trim point.
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An example

Let’s now turn to the gain-scheduling implementation
of the controller. 
A possibility is to go from the local controller

to the scheduled one (using =y as a scheduling
variable)

What happens?
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An example

Let’s close the loop between the original system and 
the scheduled controller: 

and linearise; we get

Let’s now analyse the local dynamics.
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An example

The closed-loop characteristic polynomial is

and the closed-loop transfer functions are

Therefore: 

The gain scheduled controller does not guarantee
the desired closed-loop poles;

The closed-loop transfer functions may also be 
different from the desired ones.
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An example

A possible improvement could be to schedule with the 
set-point rather than with y. 

This however does not solve all the problems, as the 
closed-loop system is
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An example

And linearising we get

so 

the closed-loop poles now coincide with the desired ones

but the closed-loop transfer functions do not coincide 
with the desired ones also in this case.
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An example

How can the problem be solved?

We have to ensure that the transition from constant 
to the scheduling variable does not alter the dynamics 
of the system.
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The velocity algorithm

The so-called velocity implementation can solve the 
problem:

Advantage: it solves the problems caused byt the 
previous implementation (verify!);

Disadvantage: it requires the calculation of the 
derivative of y, but this is a problem which can be 
overcome (more on this later).  
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Interpretation of velocity algorithm

The controller integrator is moved “before” the 
plant

This ensures that:
the control variable does not depend directly on the 
scheduling variable;
The linearisation of the controller does not introduce 
additional dynamics.

Block diagrams.
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Outline of the design procedure

Linearise the plant in the neighborhood of the trim points, 
parameterised by the scheduling variables.

Design a parametric set of linear controllers which guarantees 
the desired performance in each trim point.

Build the gain-scheduled controller to obtain, in each trim 
point:

Zero error regulation
Local dynamics for the nonlinear closed-loop identical to 
the desired one.

Verify (in simulation) the local behaviour of the control 
system.
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Scheduling for the integrator/observer scheme

Consider the system

where w is a scheduling variable.
We want to design a controller to make the error 
e=y-yR small with respect to the input

We formulate the problem by trying to obtain e=0 
when v==constant.
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Parameterisation of the equilibria

Let

and assume that there exist a unique pair of functions X
and U such that

i.e., we parameterise the equilibria as functions of the 
set-point yR and of the scheduling variable w.



6/7/2017 - 36-

Linearisation

Under the previous assumption, we consider the  
equilibria

and the  parametric class of linearised models

where
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Linearisation

with the variables for the linearised models defined as

Finally, let
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Gain scheduling design

We use the approach to regulation with integral 
action for LTI systems;

More precisely, we choose K() and H() such that 
(A()+B()K()) and (A()+H()C()) are 
asymptotically stable for all the values of interest 
for  (more on this later).

And we consider the linear controller
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Gain scheduling design

Clearly for all constant values of  the gain 
scheduled controller ensures:

Asymptotic stability (local);
Null tracking error;

We then adopt as gain scheduled controller the 
following:
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Properties of the obtained closed-loop system

Closed-loop dynamics

It can be verified that the equilibria of the feedback 
system coincide with the desired ones (v=);
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Properties of the obtained closed-loop system

The linearised closed-loop systems have the 
following properties:

Local stability is guaranteed;
Zero tracking error is also guaranteed;
The transfer functions from r and w to y may be 
different from the desired ones. 

Therefore a general form for the velocity algorithm 
must be worked out.
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General form for the velocity algorithm

As in the preliminary example, we assume that the 
derivative of y is measurable.

Consider the  state equation for the observer:

And write it as:
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General form for the velocity algorithm

The transfer function from  to u is given by

This function may be also written by moving the 
integrator forward:

which corresponds to the realisation
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General form for the velocity algorithm

As in the preliminary example, it can be shown that 
the desired local behaviour is obtained.

Estimate of the derivative of y: the approximate 
differentiator

can be used. Its transfer function is
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What happens when v is not constant?

The feedback system becomes time-varying;

Prectice shows that gain scheduling works as long as 
the variation of v is “sufficiently slow”;

Given bounds on the rate of change of v it is 
possible to guarantee: 

Bounded tracking error during transients;
Null tracking error when v is constant. 

Rigorous treatment: see Khalil, chapters 5 and 11.
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Simulations (=2): step-wise set-point
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Simulations (=2): local step responses
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Simulations (=2): sinusoidal set-point
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Further references

I. Kaminer, A. Pascoal, P. Khargonekar, E. Coleman, A 
velocity algorithm for the implementation of gain-
scheduled controllers, Automatica, Vol. 31, N. 8, 
pp. 1185-1191, 1995.

D. Lawrence, W. Rugh, Gain scheduling dynamic 
linear controllers for a nonlinear plant, Vol. 31, N. 
3, pp. 381-390, 1995.

D. Leith, W. Leithead, Survey of gain-scheduling 
analysis and design, International Journal of 
Control, Vol. 73, N. 11, pp. 1001-1025, 2000. 


