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Design via linearisation

Local results can be obtained via liearisation.
Some classical problems:

e State feedback stabilisation
e Output feedback stabilisation

e Regulation using integral action
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Stabilisation

Consider the system

= f(x,u)

for which z = 0,7 = 0 is an equilibrium.
A stabilizing control law can be obtained via linearisation.

Indeed letting

_ 97 (x,u) o Of ()
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x=0,u=0
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x=0,u=0
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Stabilisation

We can use the control law u=Kx and choose K to asign
the eigenvalues of (A+BK)

(Assumption: (A,B) controllable).

We get the feedback system
z = f(z, Kz)

which by definition has an asymptotically stable
equilibrium at x=0.
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Stabilisation

It is also possible to obtain a Lyapunov function to
estimate the region of attraction of the equilibrium.

Indeed, for Q=QT>0, the solution P of the equation
P(A+ BK)+ (A+BK)'P=—-Q

defines the Lyapunov function

1
Viz) = EwTPsc
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Stabilisation

If only an output y is measurable
z = f(z,u)
y = h(z)
withz = 0,2 = 0 an equilibrium, we can extend the
linearization approach as follows.
Let

_ Of(z,u)
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Stabilisation

and consider the dynamic controller
z=Fz+4 Gy
w= Lz+ My

(Assumptions: (A,B) controllable, (A,C) observable).

A common special case is the one in which the
dynamics of the controller is given by a state observer:

t:=Az+Bu+ H(Cz—y)=(A+ BK+ HC)z — Hy
u= Kz
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Stabilisation

with K and H chosen, respectively, to stabilise
(A+BK) and (A+HC).

We get the feedback system

= f(x,Lz+ Mh(z))

z2=Fz+4+ Gh(z)
which, again, has an asymptotically stable equilibrium
at x=0.
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Stabilisation

Also in this case, a Lyapunov function for the
equilibrium can be constructed.

One has to solve a Lyapunov equation for the dynamic
matrix

A [A—|—BMC BL]

GC F

which defines the local dynamics in the neighborhood
of the equilibrium.
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Lero-error regulation using integral action

Consider the system

z = f(z,u)

y = h(z)
withz = 0,2 = 0 equilibrium, and a constant set-point
yg for output y.

We want to design a controller such that zero error is
obtained at least asymptotically.

As is well known, to achieve this we need integral
action in the control law.
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Lero-error regulation using integral action

In terms of the original nonlinear system we have to
obtain that

e The feedback system has an equilibrium x., u. such
that

0= f(sts; Uss)
0= h(xss) — YR

e The equilibrium must be asymptotically stable.
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Lero-error regulation using integral action

Approach:
e Define the control error e=y-y;

e Augment the system with an integrator for e:
= f(z,u)
c=c¢=h(x) —yp

e Linearise the system in the neighborhood of x=x,
0= O
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Lero-error regulation using integral action

e Letting

_ 95w L 0f (W)
- ox ’ o ou

I=—Tss, U—Uss

A

LT=Tgs,U—Ugs

_ Oh(x)

C
Ox

L==Tgs

we obtain the linearised model

e ferlfemsrm o[z

O — Oss
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Lero-error regulation using integral action

e Now choose K: (# + &K) is asymptotically stable;

e Write the control law as

u= K= Ki(x — xss) + Ko(o — 0ss)

e Choose the value of o as

Oss — K2_1(U,35 — Kqxss)

from which
u= Kix 4+ Koo
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Lero-error regulation using integral action

e Then the closed-loop dynamics is
r = f(x, K1z + Koo)

o =e=h(z) —yp

e And it has the equilibrium (X, o) with local
dynamics given by (4 + 8K).
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Limitations of the linearisation approach

e Obtained results are only local;

e They are valid only for a single operating point, as

_ ofaw) L O
o ox ’ du

LT=Tss, U=—Ugs LT=Tss,U=—Uss

A

e Possibile solutions:
» Full nonlinear synthesis;

» Parameterise operating points as functions of
scheduling variables;

» Use controllers which adapt to the present operating
point.
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Gain scheduling: problem statement

e Goal: to overcome the limitations of the
linearisation approach, which leads to control laws
valid for a single equilibrium (trim point)

e ldea:

» Parameterise the trim points by means of scheduling
variables

» Design a linear controller for each trim point

» Implement the entire familiy of linear controllers as a
unique linear controller, with parameters depending
on the scheduling variables.
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Main difficulties

e Ensure that the scheduled controller works exactly
like the individual local controllers in each trim
point

e Ensure that the control system is «well behaved-
also during transients between trim points
(manoeuvres).
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Gain scheduling: applications

These techniques originate from aerospace control; some examples:

e B. Clement, G. Duc, S. Mauffrey,
Aerospace launch vehicle control: a gain scheduling approach
Control Engineering Practice, Vol. 13, N. 3, pp. 333-347, 2005.

e W. Siwakosit, S. Snell, R. Hess,
Robust flight control design with handling qualities constraints using
scheduled linear dynamic inversion and loop-shaping

IEEE Transactions on Control Systems Technology, Vol. 8, N. 3, pp.
483-494, 2000.

e R. Hyde, K. Glover
The application of scheduled H. controllers to a VSTOL aircraft,

IEEE Transactions on Automatic Control, Vol. 38, N. 7, pp. 1021-1039,
1993.
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Gain scheduling: applications

e Other application examples:

» C. Bohn, A. Cortabarria, V. Hartel et al.
Active control of engine-induced vibrations in automotive vehicles using
disturbance observer gain scheduling,
Control Engineering Practice, Vol. 12, N. 8, pp. 1029-1039, 2004.

» K. Hong, H. Sohn, J. Hedrick,
Modified skyhook control of semi-active suspensions: A new model, gain
scheduling, and hardware-in-the-loop tuning,
Journal of Dynamic Systems, Measurement and Control-Transactionsof the ASME
Vol. 124, N. 1, pp. 158-167, 2002.

» J. Carusone, G. Deleuterio,
Tracking control for end-effector position and orientation of structurally flexible
manipulators,
Journal of Robotic Systems, Vol. 10, N. 6, pp. 847-870, 1993.

» F. Previdi, E. Carpanzano,

Design of a gain scheduling controller for knee-joint angle control by using
functional electrical stimulation,

|IEEE Transactions on Control Systems Technology,

Vol. 11, N. 3, pp. 310-324, 2003.

e Gain scheduling has always been used by practitioners, but its formal study is
recent.
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An example

Consider the system
r = —z|x| + u
y=x+d

and the set of equilibria given by

(X=Xp>0, u=-X5|%X,1, d=0).

We want to design a control system to regulate x to a
desired value x°.
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An example

Linearising in the neighborhood of a generic
equilibrium we get

rs = —2x0xs + Ug

ys = x5 + ds
and for the generic equilibrium we can choose the
linear controller

Zs = Y5 — T§
us = —z5 — (B — 2x9)ys, B >0

(note that it depends on Xx;).
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An example

The local closed-loop system is given by

s = —Prs — z5 — (B — 2x0)ds

25 = x5+ ds — x§

Ys = x5 1 ds
from which

det(A\] —A) = X2+ 81+1
and
1 _s(2zg—p) -1

RE Dy S By R

so we have a solution for each trim point.
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An example

Let’s now turn to the gain-scheduling implementation
of the controller.
A possibility is to go from the local controller

Zs = Y5 — TF
us = —zs — (B —2xg)ys, B >0

to the scheduled one (using a=y as a scheduling
variable)

=y —x°
u=—z—(8-2y)y, B>0

What happens?
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An example

Let’s close the loop between the original system and
the scheduled controller:
z = —zlz|—z— (8- 2y)y
2=y —x°
y=x+d
and linearise; we get
s = (=B + 2zg)zs — 25 — (B — 4x0)ds
zs = x5 + ds — .’L‘g
Ys = x5 + ds
Let’s now analyse the local dynamics.
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An example

The closed-loop characteristic polynomial is
det(M — A) = N2 + (220 — BN+ 1

and the closed-loop transfer functions are
1 s(4xg—3) — 1

(;$5$g

TPt Qoo A1 T T T4 (200 — s+ 1
Therefore:

e The gain scheduled controller does not guarantee
the desired closed-loop poles;

e The closed-loop transfer functions may also be
different from the desired ones.
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An example

A possible improvement could be to schedule with the
set-point rather than with y.

This however does not solve all the problems, as the
closed-loop system is

= —zlz| -2 — (8 — 22y
=y —x°

y=x+d
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An example

And linearising we get

t5 = —Bxs — 25 — (B — 2z0)ds + 2z075§
25 = x5 + ds — 5§
Ys = x5 + ds

SO

e the closed-loop poles now coincide with the desired ones

e but the closed-loop transfer functions do not coincide
with the desired ones also in this case.
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An example

How can the problem be solved?

We have to ensure that the transition from constant «
to the scheduling variable does not alter the dynamics
of the system.
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The velocity algorithm

The so-called velocity implementation can solve the
problem:

z=—y+z°— (8- 2y)y

U — =

e Advantage: it solves the problems caused byt the
previous implementation (verify!);

e Disadvantage: it requires the calculation of the
derivative of y, but this is a problem which can be
overcome (more on this later).

6/7/2017 - 31-



Interpretation of velocity algorithm

e The controller integrator is moved “before” the
plant

e [Ihis ensures that:

» the control variable does not depend directly on the
scheduling variable;

» The linearisation of the controller does not introduce
additional dynamics.

e Block diagrams.
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Outline of the design procedure

Linearise the plant in the neighborhood of the trim points,
parameterised by the scheduling variables.

Design a parametric set of linear controllers which guarantees
the desired performance in each trim point.

Build the gain-scheduled controller to obtain, in each trim
point:
» Zero error regulation

» Local dynamics for the nonlinear closed-loop identical to
the desired one.

Verify (in simulation) the local behaviour of the control
system.

6/7/2017 - 33-



Scheduling for the integrator/observer scheme

Consider the system
= f(x,u,w)
y = h(z)
where w is a scheduling variable.
We want to desigh a controller to make the error
e=y-yr small with respect to the input

YR
w

=

We formulate the problem by trying to obtain e=0
when v=o=constant.
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Parameterisation of the equilibria

Let
a=[a] of]"

and assume that there exist a unique pair of functions X
and U such that

0 = f(X (o), U(a), aw)

0 =h(X(a)) — ag
I.e., we parameterise the equilibria as functions of the
set-point y; and of the scheduling variable w.
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Linearisation

Under the previous assumption, we consider the
equilibria
r=X(a),u =U(a), w=ay
and the parametric class of linearised models
s = A(a)zs + B(a)us + E(a)ws

ys = Cla)zs
where
Ala) = Of(x,u,w) | B(a):(?f(cc,u,’w)‘
Or | x(a) U () Ou | x(a) U(a) o
Cla) = Oh(x)  B(a) = Bf(x,u,w)‘
0T | x(a) Ow | x(a) U (a),cu
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Linearisation

5 = A(a)zs + B(a)us + E(a)wg
ys = Cla)zs

with the variables for the linearised models defined as
x5 = — X(x)
us = — U(a)

Ws = W —

Finally, let

w=[ Y =
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Gain scheduling design

e We use the approach to regulation with integral
action for LTI systems;

e More precisely, we choose K(a) and H(a) such that
(A(a)+B(a)K(a)) and (A(a)+H(a)C(a)) are
asymptotically stable for all the values of interest
for a (more on this later).

e And we consider the linear controller
us = K1(a)Zs + Ko(a)o
o=€e=Y—YRr
Zs = A()Zs + B(a)us + H(a)(Cla)zs — y5)

6/7/2017 - 38-



Gain scheduling design

e Clearly for all constant values of a the gain
scheduled controller ensures:

» Asymptotic stability (local);
» Null tracking error;

e We then adopt as gain scheduled controller the
following:

u= Kq1(v)Z + Ky(v)o
o=c¢e

z = A(v)z + B(v)u+ H()(C(v)z —y)
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Properties of the obtained closed-loop system

e Closed-loop dynamics

T = f(xa I{I(U)f + KQ(U)O-a UJ)
o= h(x) —ygr
z = (A(v) + B(v)K1(v) + H(v)C(v))Z + B(v)K2(v)o — H(v)h(x)

e |t can be verified that the equilibria of the feedback
system coincide with the desired ones (v=a);
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Properties of the obtained closed-loop system

e The linearised closed-loop systems have the
following properties:
» Local stability is guaranteed;
» Zero tracking error is also guaranteed;

» The transfer functions from ry and w; to y; may be
different from the desired ones.

e Therefore a general form for the velocity algorithm
must be worked out.
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General form for the velocity algorithm

e As in the preliminary example, we assume that the
derivative of y is measurable.

e Consider the state equation for the observer:

= (A+ BK{+ HC)z + BKyo — Hy

¢ And write it as:
= (A+ BK{+ HC)z + [BKQ —H} A= F7 4+ G\

y]:‘b

A=
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General form for the velocity algorithm

e The transfer function from v to u is given by

{Ki(sT - F)"'G+ Kz |1 0]} 1
S
e This function may be also written by moving the
integrator forward:

% {Ki(sI - F)7'G + K2 |1 0|}

e Which corresponds to the realisation

¢ = Fo~+ G
n = Ki¢+ Koe

U =1
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General form for the velocity algorithm

e As in the preliminary example, it can be shown that
the desired local behaviour is obtained.

e Estimate of the derivative of y: the approximate
differentiator
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What happens when v is not constant?

e The feedback system becomes time-varying;

e Prectice shows that gain scheduling works as long as
the variation of v is “sufficiently slow”;

e Given bounds on the rate of change of v it is
possible to guarantee:

» Bounded tracking error during transients;
» Null tracking error when v is constant.

e Rigorous treatment: see Khalil, chapters 5 and 11.
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Simulations (B=2): step-wise set-point
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Simulations (B=2): local step responses
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Simulations (B=2): sinusoidal set-point
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Further references

e |. Kaminer, A. Pascoal, P. Khargonekar, E. Coleman, A
velocity algorithm for the implementation of gain-
scheduled controllers, Automatica, Vol. 31, N. 8,
pp. 1185-1191, 1995.

e D. Lawrence, W. Rugh, Gain scheduling dynamic
linear controllers for a nonlinear plant, Vol. 31, N.
3, pp. 381-390, 1995.

e D. Leith, W. Leithead, Survey of gain-scheduling
analysis and design, International Journal of
Control, Vol. 73, N. 11, pp. 1001-1025, 2000.
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