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In many practical problems one encounters feedback 
systems which can be modelled as follows:

Frequently the linear part of the system is known and 
the problem is to study the effect that inserting a 
nonlinearity in the loop might have on the system’s 
response. 

Introduction

LTI
system

(t,y)
- y
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We have already looked at stability analysis for this 
type of feedback systems (circle criterion).

The goal now is to study a related problem: the 
existence of limit cycles in the dynamics of such 
feedback systems.

Introduction

LTI
system

(t,y)
- y
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Example: saturation
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Example: dead zone
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Limit cycle prediction

Limit cycles can reduce the performance of control 
systems

Oscillations may cause fatigue damage to 
mechanical components

Limit cycles may also affect comfort and ultimately 
safety

Aim: develop tecniques to detect the potential for 
limit cycles and to study their stability.



Why is this relevant? 
Analysis of Pilot-Induced Oscillations

MIL-STD 1797A defines PIO as “sustained or 
uncontrollable oscillations resulting from efforts of the 
pilot to control the aircraft” 

PIOs are often sudden or unexpected, and range in 
severity from annoying to catastrophic. 

Predicting PIO is difficult due to the adaptive nature of 
the human pilot. 

The possible consequences of a PIO necessitate the 
need for analysis by flight control designers. 
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Why is this relevant? 
Analysis of Pilot-Induced Oscillations

Definitions of PIOs:

Category I: linear oscillations. Caused by, e.g., 
excessive time delay or phase loss due to filters, 
improper control/response sensitivity, etc. 

Category II: Quasi-linear events with some nonlinear 
contributions, such as rate or position limiting. 

Category III: Nonlinear PIOs with transients. 
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Why is this relevant? 
Analysis of Pilot-Induced Oscillations

Typical cause of Category II PIOs: rate-limiting in the 
implementation of flight control laws: 

(from Duda, 1997)

Main analysis tool: the describing function approach
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General idea

The approach consists in generalising the concept of 
gain to nonlinear elements:

LTI
system

(¢)

-
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General idea: example

Saturated sinusoinds:
The «gain» depends on the amplitude of the input!
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We study systems described by the block diagram

where
(A,B) controllable
(A,C) observable
(.) is a time-invariant static nonlinearity

Considered model class
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Problem statement

The system can be represented in state space form as

We aim at studing this systems to verify whether it 
admits periodic solutions.

Approach: harmonic balance.
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Harmonic balance method

Represent the output as a periodic signal

And look for a set of Fourier coefficients and a 
frequency  which satisfy the equations of the system. 

Through the nonlinear function we have



5/24/2017 - 16-

Harmonic balance method

For y(t) to be a solution we have to impose

or equivalently

And recalling the Fourier expansion



5/24/2017 - 17-

Harmonic balance method

This must hold for all k therefore

is the set of conditions for the existence of periodic 
solutions. 

This is an infinite number of equations! 
However, if G(s) is strictly proper we have that
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Harmonic balance method

Assume now that there exists an integer q such that 

And in particular consider q=1 (assumption G(s) 
has a low-pass filter frequency response function).
The conditions for the existence of periodic solutions 
reduce to

in the unknowns , a0 and a1 (complex): 3 equations 
and 4 unknowns.



Harmonic balance method
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Further assumptions: the nonlinearity is odd:

So we can write y(t) as 

where a1=a/2j and we are down to 3 unknowns.

Further note that in this case c0=a0=0 is a solution of 

so only a and  have to be determined.



5/24/2017 - 20-

Harmonic balance method

Next, note that c1 can be written as

and letting 

we can write   as 
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Describing function: definition

The function

is the describing function associated with the 
nonlinear function (.). 

Physical meaning: under the considered assumption, 
the describing function relates the Fourier coefficients 
of the first harmonic of y and (y).
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Harmonic balance equation

Consider again the equation

and note that if we look for non-zero solutions (a  0) 
we can write it as

which is known as the harmonic balance equation.

Therefore under the previous assumptions this 
equation allows us to find, if they exist, periodic 
solutions of the system. 
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Computation of the describing function

To use the equation of harmonic balance, we need 
to know the describing function (a);

Computation of the describing function:
Analytical: in some simple (but relevant) cases;
Numerical: whenever the analytical approach is not 
feasible.
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Examples of common nonlinearities (1)

Relay:

The describing function is given by:
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Examples of common nonlinearities (1)

Relay (Y=1):
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Examples of common nonlinearities (2)

Saturation:

The describing function can be computed as follows.

If a < Y then (y)=y=a sin() and therefore
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Examples of common nonlinearities (2)

Saturation:

If instead a > Y, then letting =asin(Y/a)
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Examples of common nonlinearities (2)

Saturation (Y=1):
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Examples of common nonlinearities (3)

Sector-bounded nonlinearities:

The describing function satisfies the bounds

from which
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Solution of the harmonic balance equation

Since (a) is real, we can write

as 

from which

Therefore:
 corresponds to intersections with the real axis of 
the polar plot of G(j);
Solutions can be found graphically!
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Solution of the harmonic balance equation

Indeed note that the harmonic balance equation 

can be written as

so the procedure is:
Draw the polar plot of G(j);
Draw the (locus of critical points) -1/(a);
Intersections provide limit cycles (amplitude a);
Angular frequencies provide the period of oscillations.
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Example 1

Consider the system

under feedback with a relay of unit amplitude.

We want to:

Compute the amplitude of the steady state 
oscillation of y(t);
Compute the period of the oscillation.
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Example 1
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Example 1
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Example 1

Intersection with the real axis at -0.123;

Therefore a=0.123*4/=0.156;

Angular frequency of the intersection =1.73 rad/s;

Therefore period T=2/=3.64 s
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Example 1

Let’s check…
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Example 2

Consider the system

under feedback with a saturation of unit amplitude.

Again, we want to:

Compute the amplitude of the steady state 
oscillation of y(t);
Compute the period of the oscillation.



5/24/2017 - 38-

Example 2
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Example 2
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Example 2

Intersection with the real axis at -2.22;

Therefore (a)=0.45; from the plot we read a=2.8;

Angular frequency at the intersection =1.41 rad/s;

Therefore, period
T=2/=4.45 s
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Example 2

Let’s check…
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Stability of periodic solutions

Besides existence we would like to study stability of 
periodic solutions;

This can be done by combining the graphical 
solutions of the equation

with the Nyquist criterion;

Let’s consider an example.
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Stability of periodic solutions
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Stability of periodic solutions

As a conclusion we have that:

Every solution of the equation

corresponds to a limit cycle.

If the points of -1/(a) near the intersection in the 
direction of increasing a are NOT encircled by the 
polar plot of G(j), then the limit cycle is stable. 
Otherwise, the limit cycle is unstable.
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Conclusions

Analysis of linear systems with static nonlinear 
feedback;

Definition of the describing function for common 
static nonlinearities;

Application to existence and stability analysis of 
limit cycles;

Approximate method, but very easy to use.


