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Sighal norms

Some common signal norms:

u = sup |lu(t
ull 2o Sur Ju(t)]

lullz, = \/ [OOO wl (Hu(t)dt

Extended signal spaces:

Ee:{uuTE£,VTEO}

where u(t), 0<t<r
ur(t) = O, t>r7
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Sighal norms

Be careful about the distinction between signal norms

_ _ T
Jullc.. = sup u(O)] ||u||£2—\/ | T u(tat

and vector norms applied to the value of a signal at a

given time instant. For ol
up(t)
u(t) =
we define un(t)
lu(®)lloo = max fu;(t)]

gecey

lu(llo = Vu®) Tu(®) = Va3 (&) + ... + u2(0).
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Input/output representations for systems

Systems can be represented as operators specifying y
as a function of u according to

y = Hu
with u belonging to a suitable sighal class (e.g., bounded,

finite energy...).

We want to study under which conditions on the operator
H, properties of the input u (such as finite energy, bounded
etc.) hold also for the output v.

This leads to the definition of L£-stability.
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L-stability

Operator H: £ — L is L-stable if there exist a
strictly increasing function a(-), a(0)=0 and a constant
B > 0 such that
[(Hu)rllz < a(llurllz) + 8
forallu e £ and t € [0, o0).

Furthermore, H is L-stable with finite gain if there
exist y, f > 0 such that

[(Hu)rllz < llurllec+ 8

forallu € £ and t € [0, o0).
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L-gain

¢ When
|(Hu)r ||z < vllurllz + B

holds, it is useful to characterise the smallest
possible y that satisfies it.

e If the minimum vy is well defined, it is called the
gain of the system.

e If the above can be verified for a y > 0 we say that
the system has £-gain less or equal than vy.
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L, gain

e The £, gain plays a significant role in many control
problems, as it can be used to
» Guarantee L, stability of the feedback system:;

» Maximise the attenuation of disturbances.

e Therefore, it is useful to find ways to compute or at
least upper bound the £, gain for some classes of

systems.

4/20/2018 -7-



L, gain: linear time-invariant systems

Consider the asymptotically stable LTI system
r = Ax + Bu
y=Cxz+ Du

with transfer function

G(s)=C(sI— A~ B+ D

The L, gain of the system is given by

sup ||G(jw)||2
WER
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L, gain: linear time-invariant systems

SISO systems:  su

is nothing but the maximum over frequency of the
magnitude of the frequency response of G(s).

MIMO systems:

sup [[G(w)]l2 = sup VAmaz[GT (—jw)G(w)] = omaz[G(iw)]

This quantity is also known as the H__ norm of the
transfer function G(s).
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L, gain: linear time-invariant systems

Let’s prove that the gainis < than SU%HG(jw)HQ
weE

Let x(0)=0 and introduce the Fourier transforms of
uey:

Y (jw) = fo T e, Uljw) = /O ~ () et

which are related by
Y(jw) = Gw)U(jw)

The £, norm of y(t) is by definition

12, = [~ v Oybar
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L, gain: nonlinear systems

Consider the nonlinear system
r= f(x) + G(x)u, x(0)=xg
y = h(z)

such that f(0)=0 and h(0)=0.

For y>0, the system is £, stable with finite gain less than
y and for all x, if there exists a function V(x) > 0
such that

1 oV

D@+ 5

<K@G(@(£J + ST (@)h(z) < O
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L, gain: nonlinear systems

PROOF
Consider a function V(x) > 0 and compute its derivative

along the trajectories of the system:

oV oV
Viz) = —f(z) + —G(@)u
Ox x
Now use the H-J inequality
OV ooy o L OV o me y(OVNT Lo o |
A 22 g O IG(@) | o ) = Shh (@)h(z)

to upper bound the derivative as

. 1 oV T ovaT 1 . oV
V(@) < —5 55 G@)E (@) (a—x) — SHT@)h() + =G (@)
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L, gain: nonlinear systems

1
and next add and subtract the term szuTu
to complete the square

2 NN\ 1 2
' ) L ( ) > Ll.p ;T
% < - S - - — -+

and further upper bound

: 1 7 v
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L, gain: nonlinear systems

Now note that

ulu=|lul3 A" (@)h(x) = |yl3
and integrate the inequality over time to get

2V (@(r)) = 2V (@(0)) < — [ llyliBdt + 2 [ [lull3e

21 "2 ' AY7/7 AN
vollUuTlig, T2V Z(U)).

|\

I 12 _ AT77 £ N\ ' A~Y7r/ AN\ 1 I 12
lyrliz, < =2V (x(1)) + 2V (x(0)) + v*|lurllz, )
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L, gain: nonlinear systems

To complete the proof recall that for all non-negative a
and b

\/a2—|-62§a-|-b

and therefore

lyrley < 72 llurlZ, + 2V (2(0)) < llurllc, + y/2V (2(0)).
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Hamilton-Jacobi inequality: LTI systems

Consider the LTI system
r = Ax + Bu
y = Cx+ Du
and choose as Hamilton-Jacobi function
Vix) = ;QCTPCC
then V(x) satisfies the H-J inequality iff P satisfies the
inequality:

1
PA4+ ATP 4+ —QPBTBP +cto<o
/Y
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Hamilton-Jacobi inequality: LTI systems

Therefore the system is £, stable with finite gain less
than vy if (and only if) this condition holds.

The £, gain (H__ norm) for LTI systems can be therefore
characterized also in the time domain.
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Performance of LTI systems

Recall that for the SISO feedback system performance

was defined as the inequality
1

SGw)| < Vw.

SIS TGy ™

The inequality can be also written as

Wp(jw)S(jw)| <1 Vw
which is equivalent to

sup [Wp(jw)S(jw)| < 1
wWER
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Performance of LTI systems

But
[Wp(8)S(s)]lec = sup |[Wp(jw)S(jw)]
weER

therefore denoting with [A,B,C,0] a state-space
representation of the cascade w,(s)S(s) we can check
the performance of the feedback system against the
requirement given by the frequency response of 1/W,(s)

in terms of the algebraic inequality

1
PA+ ATP 4+ —QPBTBP +clto<o
f}/
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Performance of LTI systems

Since the inequality provides only an upper bound to
the actual gain of the system, the problem must be
formulated as an optimisation one:

Find the minimum y such that there exists P = PY >0
for which

PA—I—AIP—!——QPBIBP—I—CICSO.
Y

4/20/2018 - 21-



Performance of LTI systems

Note that the performance inequality

PA+ ATP + %PBTBP +clfe<o
Y
which is quadratic in the unknown P can be proved to
be equivalent to a linear inequality using the so-called

Schur complement Lemma.
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Schur complement Lemma

Consider the symmetric matrix given by

r— |f11 12|
Fo1 Foo

Then F <0 if and only if 1
Similarly, if F22 <0 then

F<0 ifandonlyif Fi1— FioFy5 Fo <O.
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Performance of LTI systems

Application of the Lemma to the inequality

1
PA4+ ATP + —QPBTBP +cfc<o
Y

with
i1 =PA+ATP+CTC Fos = —~21
Fi» = PB, F»=B!P

gives

[PA +ATp4+cTc PB

<
BT'p —y2I| — 0

which is now linear in P.
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Performance of LTI systems

The problem can be solved numerically for a given Y as follows

Bode Diagram
T

A=[0 1; -1 -0.02];

: o '
B=[0;1]; / \ ]

=11 01 - =

P = sdpvar(2,2); ' —T T T St
] |

F =[P >=0]; | |

gamma=60; M B N N

F2=[[P*A+A*P+C™*C, P*B; B*P, -gamma"2]<=0];

F = [F, F2]
solvesdp(F)
double(P)
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Performance of LTI systems

The optimal 7Y can be computed as follows
A=[0 1; -1 -0.02];

B=[0;1];

Magnitude (dB)

C=[10];

P = sdpvar(2,2);

gamma2=sdpvar(1,1); I,

F =[P >=0];
F2=[[P*A+A"P+C"C, P*B; B*P, -gamma2]<=0];

F=[F, F2]
solvesdp(F)
double(P)

4/20/2018

- 26-



