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2Control systems performance

• Aim of control: once stability is guaranteed, make the control error e 
“small”

• The performance of the control system is expressed in terms of the 
“closeness” of e to zero

• How can performance be measured?

• Let’s first review how this is done for SISO LTI system and then we 
will try to generalize as much as possible.

• In SISO LTI system we usually focus on two different aspects (static 
and dynamic performance).
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3The SISO control loop – stability analysis tools

Consider the SISO control loop described by the block 

diagram

How do we check closed-loop stability and/or design R(s) for 

closed-loop stability?

R(s) G(s)

n(t) d(t)

y(t)yo(t)

-

-++ + +
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4The SISO control loop – stability analysis tools

Classical tools: 
• Nyquist criterion: wide validity, extremely impractical
• Bode criterion: 

 restricted to R(s)G(s) without RHP poles
 not suitable for rotorcraft work – most helicopters are open-loop 

unstable
• Root-locus analysis.

R(s) G(s)

n(t) d(t)

y(t)yo(t)

-

-++ + +
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Frequency  (rad/sec)

The SISO control loop – stability robustness

We recall the classical indicators, 

phase and gain margin.

R(s) G(s)

n(t) d(t)

y(t)yo(t)

-

-++ + +
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6The SISO control loop – defining performance

Consider the SISO control loop described by the block 

diagram

And assume that n(t)=d(t)=0 and yo(t)=step(t).

What will y(t) look like?

R(s) G(s)

n(t) d(t)

y(t)yo(t)

-

-++ + +
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7The SISO control loop – defining performance

Assumption: the closed-loop system is asymptotically stable.

We then have

L(s)

n(t) d(t)

y(t)yo(t)

-

-++ + +
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8The SISO control loop – defining performance

y(t) will:

• Tend to a constant value

• Have a transient depending on the shape of the transfer function from 
yo to y, which will affect

 the shape of the transients (e.g., delay, rise time, presence or 
absence of oscillations);

 the duration of transients (settling time).
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9The SISO control loop – defining performance
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10Static and dynamic performance

• Static performance: the behaviour of the control system at steady 
state i.e., for t !1.

• Dynamic performance: the behaviour of the control system during 
transients, defined in terms of 

 shape and 

 duration of transients.

• Goal: understanding how performance can be characterised in terms 
of L(s).



Marco Lovera

11Sensitivity functions

Note that the loop is completely described by the following 

relations

so the loop performance is completely described by two 

transfer functions only.

n(t) d(t)

L(s)
y(t)yo(t)

-

-++ + +e(t)
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12Sensitivity functions

Let

L(s)

n(t) d(t)

y(t)yo(t)

-

-++ + +e(t)
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13Sensitivity functions

S(s) describes:

 The effect of yo on e (ideally: 0)

 The effect of d on e (ideally: 0)

F(s) describes:

 The effect of n on e (ideally: 0)… but also

 The effect of yo on y (ideally: 1)!

NOTE THAT: S(s) and F(s) are not indipendent but
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14Static performance

For analysis purposes, assumptions on the classes of inputs to be 

considered are needed.

Let’s consider the two following cases:

• Canonical inputs (step, ramp, parabola…)

• Sinusoidal inputs.

As mentioned previously, it will be assumed that the closed-loop system 

is asymptotically stable.
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15Static performance: canonical inputs 

We study S(s) (effect of yo and d on e).

Assume e.g., that yo has a Laplace transform of the type

(canonical input) then the Laplace transform of e will be given by
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16Static performance: canonical inputs (2)

As the closed-loop system is asymptotically stable we can study the limit

using the final value theorem, so

How can the above limit be computed?
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17Static performance: canonical inputs (3)

Let’s consider the most general possible form for L(s)

and note that for  s! 0

so the static error is given by
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18Static performance: canonical inputs (4)

Let’s analyse the result in detail

r=1 (step)

r=2 (ramp)
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19Static performance: canonical inputs (5)

Comments:

• In order to achieve zero static error the type of L(s) must be at least 
equal to the type of the considered canonical input (g=r).

• If the type of L(s) is strictly lower (g=r-1) finite static error is obtained, 
which can be reduced by acting on  (as long as this is possible).
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20Static performance: canonical inputs (6)

Let’s now study F(s) (effect of n on e).

Assume that the Laplace transform of n is given by

(canonical input) then the Laplace transform of e will be given by
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21Static performance: canonical inputs (7)

So the static error is given by

r=1 (step)

r=2 (ramp)
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22Static performance: canonical inputs (8)

Comments:

• If n  0 it is not possible to achieve zero static error.

• If n(t)=step(t) the static error is finite and can be reduced by acting on 
 in the case g=0.

• If n is of type greater than zero then the static error is not finite.
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23Static performance: sinusoidal inputs

Consider again the SISO control loop

and assume that n(t)=d(t)=0 and yo(t)=sin(t).

What will the time history of y(t) look like?

R(s) G(s)

n(t) d(t)

y(t)yo(t)

-

-++ + +
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24Static performance: sinusoidal inputs (2) 

Assumption: the closed-loop system is asymptotically stable.

We then have

L(s)

n(t) d(t)

y(t)yo(t)

-

-++ + +
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25Static performance: sinusoidal inputs (3)

Let’s study the transfer function S(s) (effect of yo and d on e).

Assume that the Laplace transform of yo is given by

(sum of a sine and a cosine) then the Laplace transform of e

will be given by
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26Static performance: sinusoidal inputs (4)

How can we study the behaviour of e(t) for t!1?

E(s) has two poles on the imaginary axis, so the final value theorem 

cannot be applied. 

However, the frequency response theorem can be used:
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27Frequency response of S(s)

Assume that the magnitude of the frequency response of L(s) has a 

Bode plot of the form:
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28Frequency response of S(s) (2)
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29Frequency response of S(s) (3)
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30Static performance: sinusoidal inputs (5)

Let’s now study F(s) (effect of n on e).

Assume again that the Laplace transform of n is given by

then the Laplace transform of e wil lbe given by
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31Frequency response of F(s)
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32Frequency response of F(s) (2)
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33Comments

• The effect of a sinusoidal input on the control error can be analysed 
directly from the Bode plots of the frequency response of L(s).

• The crossover frequency c provides important information about the 
performance of the control system.

• Need for accurate tradeoffs between disturbance attenuation and 
tracking performance.
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34Dynamic performance: problem statement

We focus on F(s), i.e., on the shape and duration of transients due to 

variations of yo.

Goal: to relate transient characteristics to suitable parameters of the 

frequency response of L(s).

L(s)

n(t) d(t)

y(t)yo(t)

-

-++ + +e(t)
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35Dynamic performance: second order analysis

We will see a second order approximation for F(s):

Recall that |F(j)| looks like

how can we choose n and  to model F(s) in an accurate way?
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36Dynamic performance: second order analysis

In order to get a slope change at =c we choose n=c

We then choose  such that 

i.e., in order to have that F2(s) has the same (possible) resonant peak as 

F(s).

We get
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37Dynamic performance: second order analysis

Recall now that

so 

from which
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38Dynamic performance: second order analysis

Therefore:

• the settling time of the approximate second order model will be given 
by

• The second order model also makes it possible to predict the shape of 
the transient and the overshoot of oscillations (if any):
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39An example

R(s) G(s)

n(t) d(t)

y(t)yo(t)

-

-++ + +
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40An example (2)

c=4 rad/s

m=44o
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41An example (3)

The approximate analysis leads to F2(s) given by

and so to the estimated settling time and overshoot
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42An example (4)

Comparison between the step responses of F(s) and F2(s):
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43An example (5)

Comments:

• The step response of F2(s) is not identical to the F(s) one but…

• …the relevant parameters are estimated in a fairly accurate way.

• Similar conclusions can be reached by analysing the resonance peak 
of S(s). 
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44Control sensitivity 

So far only the effect of inputs on e and y has been studied;

Undertainding how u behaves is also important, particularly during 

transients (risk of saturation). 

To this purpose, the control sensitivity function Q(s) is introduced.

R(s) G(s)

n(t) d(t)

y(t)yo(t)

-

-++ + +u(t)
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45Control sensitivity (2)

Q(s) is defined as

and so represents:

 the effect of yo on u

 the effect of d on u

R(s) G(s)

n(t) d(t)

y(t)yo(t)

-

-++ + +u(t)
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46Frequency response of Q(s)
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47Frequency response of Q(s) (2)

An example:
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Performance requirements as frequency weights

• In summary, one can say that the shape of the frequency response of 
the sensitivity function defines the actual closed-loop performance of 
the feedback system.

• Different aspects of performance relate to different properties of the 
frequency response, but it should be possible to represent 
requirements concisely as frequency-dependent weights on the 
response.

• Consider the sensitivity function as an example.  

48
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Performance requirements as frequency weights

• Consider the sensitivity function as an example

• And assume a transfer function Wp(s) can be found with the property
that:   

49
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Performance requirements as frequency weights

• Transfer function Wp(s) can be chosen to have

• The desired slope or value at low frequency (which defines the 
steady-state error for canonical inputs)

• The desired magnitude over the control system bandwidth (which
defines the steady-state error for sinusoidal/periodic/finite-energy
inputs)

• The desired crossover frequency and peak amplitude (which
define settling time and maximum overshoot of the step response)

• The set of inequalities however can be 

only verified qualitatively if a graphical approach is used.
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