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In many problems of practical interest feedback 
systems can be modelled as

A frequent problem is to study the effect of inserting  
a nonlinearity in an otherwise known linear feedback 
system. 

Introduction

LTI
system

(t,y)
- y



Absolute stability
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Problem statement

Consider the feedback system given by

where u,y 2 R and (¢,¢) satisfy a condition like

(sector-bounded nonlinearity)

where , , a, b ( > , a < 0 < b) are constant.

Aim: study stability of the equilibrium at x=0.
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Sector-bounded nonlinearities

Example of a sector-bounded nonlinearity:

y

y

y

(y)
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Absolute stability

The feedback system is called absolutely stable if  
x=0 is globally (uniformly) asymptotically stable for 
all (¢, ¢) in the assigned sector.

Stability analysis using Lyapunov methods allows to 
relate absolute stability to properties of the linear 
loop trasfer function.
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PR and SPR transfer functions

Consider a LTI system described by the transfer 
function:

G(s) is 
Positive real (PR) if:

G(s) is real for all real s;
Re[G(s)] ¸ 0 for all s: Re[s] > 0;

Strictly positive real (SPR) if:
there exists >0 such that G(s-) is PR.



3/15/2018 - 8-

PR and SPR transfer functions

Geometrically the PR condition means that function 
G(s) maps the closed right-half plane to itself;

Origin of the definition: circuit theory. 
It can be proved that passive electrical networks 
(resistors+inductors+capacitors) always have PR 
transfer functions. 

In general:
Linear systems that do not generate energy are PR;
Dissipative linear systems are SPR.
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A condition for PR

Theorem:
A transfer function G(s) is PR if and only if:

G(s) is real for all real s;

G(s) is stable;

Poles of G(s) with null real part are either distinct or 
have real and non-negative residuals.;

Re[G(j)] ¸ 0  8  such that j is not a pole of G(s).
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Note: PR and Nyquist plots

If G(s) is PR, then the Nyquist plot of  G(j) is in the 
closed right-half plane.

This implies that if G(s) has relative degree > 1 then 
it is not PR (the Nyquist plot violates the previous 
condition).

Therefore the relative degree of a PR G(s) is 0 or 1.
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A sufficient SPR condition

Theorem:
A transfer function G(s) is SPR if:

G(s) is asymptotically stable;
Re[G(j )] >  8 ,  > 0;

Main difference between PR and SPR: in the PR case 
poles on the imaginary axis are «allowed»; a SPR G(s) 
must be asymptotically stable.
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A SPR condition (grel=0)

Theorem:
A transfer function G(s) with relative degree 0 
is SPR if and only if:

G(s) is asymptotically stable;

Re[G(j)] > 0 8 .
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A SPR condition (grel=1)

Theorem:
A transfer function G(s) with relative degree 1 
is SPR if and only if:

G(s) is asymptotically stable;

Re[G(j)] > 0  8 ;
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Examples

G(s)=1/s is PR:

G(s)=1/s however is not SPR, as

has a pole with positive real part for all  > 0.
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Examples

G(s)=1/(s+a), a>0, is PR

G(s)=1/(s+a) is also SPR, as

has a pole with negative real part for all  < a.
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The Kalman-Yakubovich-Popov Lemma

Lemma: the controllabile and observable LTI system

with asymptotically stable A, and transfer function

is SPR if and only if there exist matrices P=PT>0, W and 
L and a constant  > 0 such that
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The Kalman-Yakubovich-Popov Lemma (2)

When D=0 the Lemma becomes simpler:

Lemma: the controllabile and observable LTI system

with asymptotically stable A, and transfer function

is SPR if and only if there exist matrices P=PT>0 and L  
such that
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The Kalman-Yakubovich-Popov Lemma (3)

This Lemma characterises the SPR property in state 
space form;

It is useful to construct Lyapunov functions to study 
absolute stability;

It can be generalised 
to the PR condition;
to the study of MIMO systems.
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Absolute stability analysis

The KYP Lemma allows to relate absolute stability 
and the PR, SPR properties.

The frequency-domain interpretation of SPR allows 
to work out a sufficient condition for absolute 
stability, based on the Nyquist criterion, known as 
the circle criterion.

We start from a particular case with asymptotically 
stable A and =0. 
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Sufficient condition for absolute stability
(A a.s. and =0)

The system 

with A asymptotically stable, (A,B) controllable, 
(A,C) observable, and (t,y) sector-bounded with 
=0, is absolutely stable if

is SPR, where
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Proof

The sector-bound condition (=0) can be written as

Indeed for α=0 the sector condition reduces to

and dividing by y we have

for positive y and  

\beta y
for negative y. 
Combining the two pairs of inequalities one gets
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Proof

Consider now the Lyapunov function candidate

The derivative along the trajectories is given by
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Proof

Applying the Lemma KYP to Z(s), which has state 
space form [A, B, C, 1] (grel=0), we have

Substituting in the expression for the derivative we 
get

The last three terms form a quadratic form
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General case

The =0 requirement on the nonlinearity can be 
removed:

G(s)(t,y)
-



- -

T(t,y) GT(s)

G(s)(t,y)
- y
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General case

where

and T is now sector-bounded with =0.
The upper bound of the sector for T is of course -.

G(s)(t,y)
-



- -

T(t,y) GT(s)



G(s)(t,y)
-



- -

T(t,y) GT(s)
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General case

Assuming that GT(s) is a.s. we can conclude that the 
feedback system is asymptotically stable if the 
transfer function

is SPR.
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Sufficient condition for absolute stability
(general case)

The system

with (A,B) controllable, (A,C) observable, and (t,y) 
sector-bounded is absolutely stable if:

is asymptotically stable;

is SPR.
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The circle criterion

Since ZT(s) has grel=0, the condition

is equivalent to  

A geometric interpretation can be given.



The circle criterion

Let

Then
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The circle criterion

Evaluating the real part 
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The circle criterion

Therefore we have that the condition

Can be written as

So, for  >  > 0

And for  > 0 > 
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The circle criterion: case  >  > 0

Assume that  >  > 0; then

In the complex plane:
- < /2
)

G(j)

must not enter the  
circle D(,).

-1/-1/  Re

Im

D(,)
G(j)

 
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The circle criterion: case  >  > 0

A.s. of ZT(s) is equivalent to a.s. of

So ZT(s) is a.s. if and only if G(s) satisfies the 
Nyquist criterion with respect to point (-1/,0).



3/15/2018 - 34-

The circle criterion: case  >  = 0

Assume that  >  = 0; then the condition is

In the complex plane:
G(j)
must lie to the right 
of the line with 
abscissa -1/.

-1/ Re

Im
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The circle criterion: case  >  = 0

A.s. of G(s) can be checked directly.



Assume that  > 0 > ; then

In the complex plane: 
G(j)

must lie inside the
circle D(,).
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The circle criterion: case  > 0 > 
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The circle criterion: case  > 0 > 

If G(j) is inside D(, ) then it can’t encircle -1/;

Therefore GT(s) is a.s. if G(s) is.
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Example 1

Consider the system

Since G(s) is a.s. we can apply the criterion in two 
cases:

 > 0 > ;
 >  = 0;
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Example 1

With =-= we construct a circle enclosing the 
Nyquist diagram:
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Example 1

With >0 costruct a line limiting the Nyquist diagram 
to the left:
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Example 1

Consider now a saturation nonlinearity; as  >1, the 
feedback system 

will have a GAS equilibrium at x=0.

Limiter1

uMax={1}

Limiter1

TransferFunct...

b(s)

a(s)
k={-1}

Gain1
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Example 1
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Example 2

Consider the system 

under feedback with u=-sat(y):

and study for which values of  x=0 is GAS.

Limiter1

uMax={1}

Limiter1

TransferFunct...

b(s)

a(s)
k={-1}

Gain1
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Example 2

u=-sat(y) is sector bounded with =1 and =0.

So we must check that:

G(s) is a.s.;

The Nyquist diagram of G(j) is to the right of the 
line with abscissa -1.
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Example 2
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Example 2

G(s) is a.s. regardless of ;

The Nyquist diagram of G(j) is to the right of the 
line with abscissa -1 for sufficiently small  (es. =2).
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Example 2

Simulation for =2. 
What happens for larger values of ?
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Example 2

Simulation for =5 and =10: 
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Notes

Absolute stability can be extended to MIMO systems.

In the MIMO case the graphical interpretation 
becomes less intuitive.

However one can solve numerically the SPR 
conditions given by the KYP Lemma in a very 
efficient way.

All the above results apply to locally sector-bounded 
nonlinearities.


