

Advanced Aerospace Control: Absolute Stability

Marco Lovera Dipartimento di Scienze e Tecnologie Aerospaziali Politecnico di Milano marco.lovera@polimi.it

Advanced Aerospace Control

In many problems of practical interest feedback systems can be modelled as

A frequent problem is to study the effect of inserting a nonlinearity in an otherwise known linear feedback system.

Absolute stability

Consider the feedback system given by

$$\dot{x} = Ax + Bu$$
$$y = Cx$$
$$u = -\psi(t, y)$$

where $u, y \in \mathbb{R}$ and $\psi(\cdot, \cdot)$ satisfy a condition like (sector-bounded nonlinearity) $\alpha y^2 \leq y \psi(t, y) \leq \beta y^2, \quad \forall t \geq 0, \forall y \in [a, b]$ where α , β , a, b ($\beta > \alpha$, a < 0 < b) are constant.

Aim: study stability of the equilibrium at x=0.

Sector-bounded nonlinearities

Example of a sector-bounded nonlinearity:

- The feedback system is called absolutely stable if x=0 is globally (uniformly) asymptotically stable for all $\psi(\cdot, \cdot)$ in the assigned sector.
- Stability analysis using Lyapunov methods allows to relate absolute stability to properties of the linear loop trasfer function.

PR and SPR transfer functions

Consider a LTI system described by the transfer function:

$$G(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_0}, \quad m \le n$$

G(s) is

- Positive real (PR) if:
 - ► G(s) is real for all real s;
 - ▶ Re[G(s)] ≥ 0 for all s: Re[s] > 0;
- Strictly positive real (SPR) if: there exists ε>0 such that G(s-ε) is PR.

PR and SPR transfer functions

- Geometrically the PR condition means that function G(s) maps the closed right-half plane to itself;
- Origin of the definition: circuit theory.
 It can be proved that passive electrical networks (resistors+inductors+capacitors) always have PR transfer functions.
- In general:
 - Linear systems that do not generate energy are PR;
 - Dissipative linear systems are SPR.

Theorem:

A transfer function G(s) is PR if and only if:

- G(s) is real for all real s;
- G(s) is stable;
- Poles of G(s) with null real part are either distinct or have real and non-negative residuals.;
- $Re[G(j\omega)] \ge 0 \quad \forall \ \omega \ such \ that \ j\omega \ is \ not \ a \ pole \ of \ G(s).$

- If G(s) is PR, then the Nyquist plot of $G(j\omega)$ is in the closed right-half plane.
- This implies that if G(s) has relative degree > 1 then it is not PR (the Nyquist plot violates the previous condition).
- Therefore the relative degree of a PR G(s) is 0 or 1.

A sufficient SPR condition

Theorem:

A transfer function G(s) is SPR if:

- G(s) is asymptotically stable;
- Re[G(j ω)] > $\delta \forall \omega, \delta > 0$;

Main difference between PR and SPR: in the PR case poles on the imaginary axis are «allowed»; a SPR G(s) must be asymptotically stable.

A SPR condition (grel=0)

Theorem:

A transfer function G(s) with relative degree 0 is SPR if and only if:

- G(s) is asymptotically stable;
- $\operatorname{Re}[G(j\omega)] > 0 \quad \forall \omega$.

A SPR condition (grel=1)

Theorem:

A transfer function G(s) with relative degree 1 is SPR if and only if:

- G(s) is asymptotically stable;
- Re[G(jω)] > 0 ∀ ω;

$$\lim_{\omega^2 \to \infty} \omega^2 Re[G(j\omega)] > 0$$

• G(s)=1/s is PR:

$$Re[G(s)] = Re[G(\sigma + j\omega)] = \frac{\sigma}{\sigma^2 + \omega^2}$$

• G(s)=1/s however is not SPR, as $G(s-\epsilon) = \frac{1}{s-\epsilon}$

has a pole with positive real part for all ε > 0.

• G(s)=1/(s+a), a>0, is PR

$$Re[G(s)] = Re[G(\sigma + j\omega)] = \frac{\sigma + a}{(\sigma + a)^2 + \omega^2}$$

• G(s)=1/(s+a) is also SPR, as

$$G(s-\epsilon) = \frac{1}{s-\epsilon+a}$$

has a pole with negative real part for all ε < a.

•
$$\lim_{\omega^2 \to \infty} \omega^2 Re[G(j\omega)] = \lim_{\omega^2 \to \infty} \omega^2 \frac{a}{a^2 + \omega^2} > 0$$

Lemma: the controllabile and observable LTI system

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

with asymptotically stable A, and transfer function

$$G(s) = C(sI - A)^{-1}B + D$$

is SPR if and only if there exist matrices $P=P^T>0$, W and L and a constant $\varepsilon > 0$ such that

$$A^{T}P + PA = -L^{T}L - \epsilon P$$
$$PB = C^{T} - L^{T}W$$
$$W^{T}W = D + D^{T}$$

The Kalman-Yakubovich-Popov Lemma (2)

When D=0 the Lemma becomes simpler:

Lemma: the controllabile and observable LTI system $\dot{x} = Ax + Bu$ y = Cx

with asymptotically stable A, and transfer function

$$G(s) = C(sI - A)^{-1}B$$

is SPR if and only if there exist matrices $P=P^{T}>0$ and L such that $A^{T}P + PA = -L^{T}L$ $PB = C^{T}$

The Kalman-Yakubovich-Popov Lemma (3)

- This Lemma characterises the SPR property in state space form;
- It is useful to construct Lyapunov functions to study absolute stability;
- It can be generalised
 - to the PR condition;
 - to the study of MIMO systems.

- The KYP Lemma allows to relate absolute stability and the PR, SPR properties.
- The frequency-domain interpretation of SPR allows to work out a sufficient condition for absolute stability, based on the Nyquist criterion, known as the *circle* criterion.
- We start from a particular case with asymptotically stable A and α =0.

Sufficient condition for absolute stability (A a.s. and α =0)

The system

$$\dot{x} = Ax + Bu
 y = Cx
 u = -\psi(t, y)$$

$$\dot{x} = Ax - B\psi(t, y)
 y = Cx
 y = Cx$$

with A asymptotically stable, (A,B) controllable, (A,C) observable, and $\psi(t,y)$ sector-bounded with α =0, is absolutely stable if

 $Z(s) = 1 + \beta G(s)$

is SPR, where

$$G(s) = C(sI - A)^{-1}B$$

Proof

• The sector-bound condition (α =0) can be written as

$$\psi(t,y)[\psi(t,y)-\beta y] \leq 0, \quad \forall t \geq 0, \forall y$$

• Indeed for α =0 the sector condition reduces to

$$0 \le y\psi(t,y) \le \beta y^2, \quad \forall t \ge 0, \forall y$$

and dividing by y we have

$$\begin{array}{lll} 0 \leq \psi(t,y) & \\ \psi(t,y) \leq \beta y, & \forall t \geq 0, \forall y > 0 & \Rightarrow & 0 \leq \psi(t,y) \\ \text{for positive y and} & \\ 0 \geq \psi(t,y) & \\ \psi(t,y) \geq \beta y, & \forall t \geq 0, \forall y < 0 & \Rightarrow & 0 \geq \psi(t,y) \\ \psi(t,y) \geq \beta y, & \forall t \geq 0, \forall y < 0 & \Rightarrow & \psi(t,y) - \beta y \geq 0, & \forall t \geq 0, \forall y < 0 \\ \text{for negative y.} \end{array}$$

Combining the two pairs of inequalities one gets

$$\psi(t,y)[\psi(t,y)-\beta y] \leq 0, \quad \forall t \geq 0, \forall y$$

Consider now the Lyapunov function candidate

$$V(x) = x^T P x, \quad P = P^T > 0$$

• The derivative along the trajectories is given by

$$\dot{V}(x) = x^T (PA + A^T P)x - 2x^T PB\psi(t, y) \leq \\ \leq x^T (PA + A^T P)x - 2x^T PB\psi(t, y) - 2\psi(t, y)[\psi(t, y) - \beta y] = \\ = x^T (PA + A^T P)x - 2x^T [C^T \beta - PB]\psi(t, y) - 2\psi(t, y)^2$$

Proof

• Applying the Lemma KYP to Z(s), which has state space form [A, B, β C, 1] (grel=0), we have

$$A^{T}P + PA = -L^{T}L - \epsilon P$$
$$PB = \beta C^{T} - \sqrt{2}L^{T}$$

Substituting in the expression for the derivative we get

$$\dot{V}(x) \leq x^T (PA + A^T P) x - 2x^T [C^T \beta - PB] \psi(t, y) - 2\psi(t, y)^2$$
$$= -\epsilon x^T P x - x^T L^T L x + 2\sqrt{2} x^T L^T \psi(t, y) - 2\psi(t, y)^2$$

• The last three terms form a quadratic form $\dot{V}(x) \leq -\epsilon x^T P x - [Lx - \sqrt{2}\psi(t, y)]^T [Lx - \sqrt{2}\psi(t, y)] \leq -\epsilon x^T P x < 0$ General case

The α =0 requirement on the nonlinearity can be removed:

General case

where

$$\psi_T(t,y) = [\psi(t,y) - \alpha y]$$
$$G_T(s) = \frac{G(s)}{1 + \alpha G(s)}$$

and ψ_T is now sector-bounded with α =0.

The upper bound of the sector for ψ_T is of course β - α .

Assuming that $G_T(s)$ is a.s. we can conclude that the feedback system is asymptotically stable if the transfer function

$$Z_T(s) = 1 + (\beta - \alpha)G_T(s) = \frac{1 + \beta G(s)}{1 + \alpha G(s)}$$

Sufficient condition for absolute stability (general case)

The system

$$\dot{x} = Ax + Bu$$
$$y = Cx$$
$$u = -\psi(t, y)$$

with (A,B) controllable, (A,C) observable, and $\psi(t,y)$ sector-bounded is absolutely stable if:

•
$$G_T(s) = \frac{G(s)}{1 + \alpha G(s)}$$
 is asymptotically stable;
• $Z_T(s) = \frac{1 + \beta G(s)}{1 + \alpha G(s)}$ is SPR.

The circle criterion

• Since $Z_T(s)$ has grel=0, the condition

$$Z_T(s) = \frac{1 + \beta G(s)}{1 + \alpha G(s)} \quad \text{SPR}$$

is equivalent to

$$Z_T(s)$$
 a.s.
 $Re\left[rac{1+eta G(j\omega)}{1+lpha G(j\omega)}
ight] > 0, \quad \forall \omega \quad \mathsf{SPR}$

• A geometric interpretation can be given.

• Let
$$G(j\omega) = Re(j\omega) + jIm(j\omega)$$

• Then

$$Re\left[\frac{1+\beta G(j\omega)}{1+\alpha G(j\omega)}\right] = Re\left[\frac{1+\beta (Re(j\omega)+jIm(j\omega))}{1+\alpha (Re(j\omega)+jIm(j\omega))}\right] = Re\left[\frac{1+\beta Re(j\omega)+j\beta Im(j\omega)}{1+\alpha Re(j\omega)+j\alpha Im(j\omega)}\right] = Re\left[\frac{(1+\beta Re(j\omega)+j\beta Im(j\omega))(1+\alpha Re(j\omega)-j\alpha Im(j\omega))}{(1+\alpha Re(j\omega))^2+(\alpha Im(j\omega))^2}\right]$$

• Evaluating the real part

$$Re\left[\frac{(1+\beta Re(j\omega)+j\beta Im(j\omega))(1+\alpha Re(j\omega)-j\alpha Im(j\omega))}{(1+\alpha Re(j\omega))^2+(\alpha Im(j\omega))^2}\right]=$$

$$= Re\left[\frac{(1 + \alpha Re(j\omega))(1 + \beta Re(j\omega)) + \alpha\beta Im(j\omega)^2}{(1 + \alpha Re(j\omega))^2 + (\alpha Im(j\omega))^2}\right]$$

The circle criterion

• Therefore we have that the condition

$$Re\left[rac{1+eta G(j\omega)}{1+lpha G(j\omega)}
ight] > 0$$

• Can be written as

$$(1 + \alpha Re(j\omega))(1 + \beta Re(j\omega)) + \alpha\beta Im(j\omega)^2 > 0$$

• So, for
$$\beta > \alpha > 0$$

 $(\frac{1}{\alpha} + Re(j\omega))(\frac{1}{\beta} + Re(j\omega)) + Im(j\omega)^2 > 0$

• And for
$$\beta > 0 > \alpha$$

 $(\frac{1}{\alpha} + Re(j\omega))(\frac{1}{\beta} + Re(j\omega)) + Im(j\omega)^2 < 0$

The circle criterion: case $\beta > \alpha > 0$

• Assume that $\beta > \alpha > 0$; then

$$Re\left[rac{1+eta G(j\omega)}{1+lpha G(j\omega)}
ight] > 0, \quad \Rightarrow Re\left[rac{1/eta + G(j\omega)}{1/lpha + G(j\omega)}
ight] > 0$$

The circle criterion: case $\beta > \alpha > 0$

• A.s. of $Z_T(s)$ is equivalent to a.s. of

$$\frac{G(s)}{1 + \alpha G(s)}$$

• So $Z_T(s)$ is a.s. if and only if G(s) satisfies the Nyquist criterion with respect to point (-1/ α ,0).

The circle criterion: case $\beta > \alpha = 0$

• Assume that $\beta > \alpha = 0$; then the condition is

$$Re\left[1+\beta G(j\omega)\right] > 0, \quad \Rightarrow Re\left[G(j\omega)\right] > -\frac{1}{\beta}$$

The circle criterion: case $\beta > \alpha = 0$

• A.s. of G(s) can be checked directly.

The circle criterion: case $\beta > 0 > \alpha$

• Assume that $\beta > 0 > \alpha$; then

$$Re\left[\frac{1+\beta G(j\omega)}{1+\alpha G(j\omega)}\right] > 0, \quad \Rightarrow Re\left[\frac{1/\beta + G(j\omega)}{1/\alpha + G(j\omega)}\right] < 0$$

In the complex plane:
 G(jω)
 must lie inside the
 circle D(α,β).

The circle criterion: case $\beta > 0 > \alpha$

- If $G(j\omega)$ is inside $D(\alpha, \beta)$ then it can't encircle $-1/\alpha$;
- Therefore $G_T(s)$ is a.s. if G(s) is.

$$G_T(s) = \frac{G(s)}{1 + \alpha G(s)}$$

Consider the system

$$G(s) = \frac{1}{(s+1)(\frac{1}{2}s+1)(\frac{1}{3}s+1)}$$

Since G(s) is a.s. we can apply the criterion in two cases:

•
$$\beta > 0 > \alpha;$$

• $\beta > \alpha = 0;$

With $\beta = -\alpha = \gamma$ we construct a circle enclosing the Nyquist diagram:

With $\beta > 0$ costruct a line limiting the Nyquist diagram to the left:

3/15/2018

- 40-

Consider now a saturation nonlinearity; as $\beta > 1$, the feedback system $Gain1 \qquad TransferFunct... \qquad b(s) \\ a(s) \qquad a(s) \qquad b(s) \\ a(s) \\ a(s) \qquad b(s) \\ a(s) \\ a(s)$

will have a GAS equilibrium at x=0.

uMax={1}

3/15/2018

- 42-

Consider the system

$$G(s) = \frac{\mu}{(s+1)^2(0.5s+1)^2}$$

under feedback with u=-sat(y):

and study for which values of μ x=0 is GAS.

u=-sat(y) is sector bounded with β =1 and α =0.

So we must check that:

- G(s) is a.s.;
- The Nyquist diagram of $G(j\omega)$ is to the right of the line with abscissa -1.

3/15/2018

- 45-

- G(s) is a.s. regardless of μ;
- The Nyquist diagram of $G(j\omega)$ is to the right of the line with abscissa -1 for sufficiently small μ (es. μ =2).

Simulation for μ =2. What happens for larger values of μ ?

Simulation for μ =5 and μ =10:

3/15/2018

- 48-

- Absolute stability can be extended to MIMO systems.
- In the MIMO case the graphical interpretation becomes less intuitive.
- However one can solve numerically the SPR conditions given by the KYP Lemma in a very efficient way.
- All the above results apply to *locally* sector-bounded nonlinearities.