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Introduction

In many problems of practical interest feedback
systems can be modelled as

V\<

vty O -

system

A frequent problem is to study the effect of inserting
a nonlinearity in an otherwise known linear feedback
system.
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Absolute stability




Problem statement

Consider the feedback system given by

r = Ax + Bu
y=Cx
U = __1p(:t73/)

where u,y € R and y(-,-) satisfy a condition like

(sector-bounded nonlinearity)
ay? < yy(t,y) < By?, V> 0,Vy € [a,b]

where a, B, a, b (B > o, a < 0 < b) are constant.

Aim: study stability of the equilibrium at x=0.

3/15/2018 - 4-




Sector-bounded nonlinearities

Example of a sector-bounded nonlinearity:

w(y)

[
>

By

oy
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Absolute stability

e The feedback system is called absolutely stable if

x=0 is globally (uniformly) asymptotically stable for
all y(-, -) in the assigned sector.

e Stability analysis using Lyapunov methods allows to
relate absolute stability to properties of the linear
loop trasfer function.
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PR and SPR transfer functions

Consider a LTI system described by the transfer

function:

bns™ + by _18m L 4+ .. 4 by

G(s) = s 4 an_ls”—l + ...+ ag

? m —

G(s) is
e Positive real (PR) if:

» G(s) is real for all real s;
» Re[G(s)] > O for all s: Re[s] > O;

e Strictly positive real (SPR) if:
there exists £>0 such that G(s-¢) is PR.
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PR and SPR transfer functions

e Geometrically the PR condition means that function
G(s) maps the closed right-half plane to itself;

e Origin of the definition: circuit theory.

It can be proved that passive electrical networks
(resistors+inductors+capacitors) always have PR
transfer functions.

e In general:

» Linear systems that do not generate energy are PR;
» Dissipative linear systems are SPR.
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A condition for PR

Theorem:
A transfer function G(s) is PR if and only if:

e G(s) isreal for all real s;
e G(s) is stable;

e Poles of G(s) with null real part are either distinct or
have real and non-negative residuals.;

e Re[G(jw)] > 0 V w such that jo is not a pole of G(s).
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Note: PR and Nyquist plots

e If G(s)is PR, then the Nyquist plot of G(jw) is in the
closed right-half plane.

e This implies that if G(s) has relative degree > 1 then
it is not PR (the Nyquist plot violates the previous

condition).

e Therefore the relative degree of a PR G(s) is 0 or 1.
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A sufficient SPR condition

Theorem:

A transfer function G(s) is SPR if:
e G(s) is asymptotically stable;
e Re[G(jw)] >0 Vw,d>0;

Main difference between PR and SPR: in the PR case
poles on the imaginary axis are «allowed~»; a SPR G(s)
must be asymptotically stable.
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A SPR condition (grel=0)

Theorem:
A transfer function G(s) with relative degree 0
is SPR if and only if:

e G(s) is asymptotically stable;

e Re[G(jm)] > 0 Y o.
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A SPR condition (grel=1)

Theorem:
A transfer function G(s) with relative degree 1
is SPR if and only if:

e G(s) is asymptotically stable;
e Re[G(jw)] >0 V w;

e lim w2 Re[G(Gw)] > 0

Ws—00
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Examples

e G(s)=1/s1is PR:

%
g2 4+ w2

Re|G(s)] = Re[G(o + jw)] =

e G(s)=1/s however is not SPR, as
G(s—¢€)= 1

S — €

has a pole with positive real part for all € > 0.
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Examples

e G(s)=1/(s+a), a>0, is PR

, o+ a
Re[G(s)] = Re[G(o + jw)] = (o + a)2 + w2
e G(s)=1/(s+a) is also SPR, as
1
Gls—e) = s—e+a

has a pole with negative real part for all € < a.

: 2 : T 2 a
wélinoow Re[G(jw)] = wéli]ww T2 > 0
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The Kalman-Yakubovich-Popov Lemma

Lemma: the controllabile and observable LTI system
r = Ax + Bu
y = Cx -+ Du

with asymptotically stable A, and transfer function
G(s)=C(s[ — A 'B+ D

is SPR if and only if there exist matrices P=P™>0, W and
L and a constant ¢ > 0 such that

AlP4+PA=—LTL —¢cP

PB=cl - Tw

wiw =D+ DT
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The Kalman-Yakubovich-Popov Lemma (2)

When D=0 the Lemma becomes simpler:

Lemma: the controllabile and observable LTI system
r = Az + Bu
y=Cuzx

with asymptotically stable A, and transfer function
G(s) =C(sl — A7 1B

is SPR if and only if there exist matrices P=P™>0 and L

such that ATp4 pA=_1T]
pB=c"

3/15/2018 -17-



The Kalman-Yakubovich-Popov Lemma (3)

e This Lemma characterises the SPR property in state
space form;

e It is useful to construct Lyapunov functions to study
absolute stability;

e It can be generalised
» to the PR condition;
» to the study of MIMO systems.
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Absolute stability analysis

e The KYP Lemma allows to relate absolute stability
and the PR, SPR properties.

e The frequency-domain interpretation of SPR allows
to work out a sufficient condition for absolute
stability, based on the Nyquist criterion, known as
the circle criterion.

e We start from a particular case with asymptotically
stable A and a=0.
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Sufficient condition for absolute stability
(A a.s. and a=0)

The system
r = Ax + Bu _
r= Az — By(t,y)
y = Cx = — s
U = __Qlj(iﬂ 3/) Y

with A asymptotically stable, (A,B) controllable,
(A,C) observable, and y(t,y) sector-bounded with
ao=0, is absolutely stable if

Z(s) =14 pG(s)
is SPR, where

G(s) =C(sl — A7 'B
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Proof

e The sector-bound condition (a=0) can be written as

Y(t,y)[(t,y) — Byl <0, Vt>0,Vy
e Indeed for a=0 the sector condition reduces to
0 < yi(t,y) < By?, Vt>0,Vy
and dividing by y we have

0 <Y(t,y) 0 <¥Y(t,y)

$(ty) < By, VE>O0Vy>0 w(ty)—pBy<O,
for positive y and

0> (t,y) N 0> y(t,y)

Y(t,y) > Py, VE>0,Vy<O Y(t,y) — By > 0,

for negative .
Combining the two pairs of inequalities one gets

Y(t,y)[yv(t,y) — Byl <0, VL>0,vy

vVt > 0,Vy >0

vVt > 0,Vy <0
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Proof

e Consider now the Lyapunov function candidate

V(z)=2'Pz, P=PL >0

e The derivative along the trajectories is given by

Vi(z) =21 (PA+ AT PYx — 221 PBy(t,y) <
<zl (PA+ AT P)x — 22" PBy(t,y) — 2¢(t, v) [¥(t,y) — By] =
= ol (PA+ AT P)z — 221 [CT3 — PBlY(t,y) — 29(t,y)°
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Proof

e Applying the Lemma KYP to Z(s), which has state
space form [A, B, BC, 1] (grel=0), we have

Alp4+pPA=_11L _cP
PB =p3Cct —v2L"

e Substituting in the expression for the derivative we
get

V(z) <z’ (PA+ A" P)z —22"[C" 8 — PBIy(t,y) — 24(t,y)*
= —ex! Pr — 2T LT Lo 4+ 2vV22 LTy (t,y) — 29(¢, y)?

e The last three terms form a quadratic form
V(z) < —ex’ Pz — [Lo — V29 (t, 9)]" [Le — V2¢(t,y)] < —ex’ Pz <0

3/15/2018 - 23-



General case

The a=0 requirement on the nonlinearity can be
removed:

V\<

A 4

vty =~ GG

yi(t,y) G1(s)

4
Q
R

Y

A 4

y(ty) —»O— —> G(s) >
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General case

where Yp(t,y) = [ (t,y) — ay]
_ G(s)
GT(S) - 1 _I_ OéG(S)

and y-is now sector-bounded with a=0.
The upper bound of the sector for y; is of course B-a.

yi(t,y) G1(s)

4
Q
J—_|
I
]
R

A 4

vity)  ——(O>(O—

o
—_—
wn
~—
v
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General case

Assuming that G(s) is a.s. we can conclude that the
feedback system is asymptotically stable if the
transfer function

1 G
Zr(s) =1+ (8~ )Gr(s) = | ifj GE%
is SPR.
v(t,y) G(s)

v

vity) (OO G
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Sufficient condition for absolute stability
(general case)

The system
r = Az + Bu
y=Cx
U — __1l’(15 Z/)

with (A,B) controllable, (A,C) observable, and y(t,y)
sector-bounded is absolutely stable if:

G
e Gr(s) =1 n 622(8) is asymptotically stable;
o Zp(s) =~ 0G0) 4o opr

1+ aG(s)
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The circle criterion

e Since Z.(s) has grel=0, the condition

1+ B8G(s)
Zp(s) = ol () SPR
is equivalent to
Zr(s) a.s.
Re {1 T 6G('7:w)] >0, VYw SPR
1+ aG(jw)

e A geometric interpretation can be given.
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The circle criterion

e Let G(iw) = Re(jw) + jIm(jw)

e lhen

B [1 + 5G(JW)] Re [1 + B(Re(jw) +,71m(3w))]
14+ aG(jw) 1+ a(Re(jw) + jIm(jw))
1+ BRe(jw) + gmmuw)] _
1 4+ aRe(jw) + jalm(jw)
(14 BRe(jw) + j8Im(jw))(1 + aRe(jw) — jafm(jw))]
(1 + aRe(jw))? + (aIm(jw))?

— Re

— Re
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The circle criterion

e Evaluating the real part

o | (Lt BRe(jw) + jBIm(jw))(1 + aRe(jw) — Jafm(Jw))]
(1 + aRe(jw))? + (alm(jw))?

— Re [(1 + aRe(jw))(1 + BRe(jw)) + aﬁlm(gw)T
(1 4+ aRe(jw))?2 + (aIm(Gw))?
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The circle criterion

e [herefore we have that the condition

14 8G(jw)
fie [1 + aG(jw)] >0

e Can be written as
(1 + aRe(jw))(1 + BRe(jw)) + afIm(jw)? > 0
e So,forfp>a>0
(é + Re(jw))(% + Re(jw)) + Im(jw)? > 0

e Andforp3>0>
-+ Re(e) G + Re(j)) + Im(jw)? < 0
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The circle criterion: case > a > 0

e Assume that B > o > 0; then

. [1 + BG(jw)

]>o, ;»Rell/ﬁ_"G(jw)] >0

1+ aG(jw) 1/ 4+ G(jw)
e In the complex plane: Im 4
()fs-()CL < TC/,:Z
= D(@,§)

G(jo)
must not enter the V¢
circle D(a, ).
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The circle criterion: case > a > 0

e A.s. of Z,(s) is equivalent to a.s. of
G(s)
1+ aG(s)

e S0 Z.(s) is a.s. if and only if G(s) satisfies the
Nyquist criterion with respect to point (-1/a.,0).
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The circle criterion: case > a =0

e Assume that § > a = 0; then the condition is

Re[l + BG(jw)] >0, = Rel[G(jw)] > —%

e In the complex plane: : Im 4
G(jo) '

must lie to the right
of the line with /\ .
abscissa -1/p. B K\/ e
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The circle criterion: case > a =0

e A.s. of G(s) can be checked directly.
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The circle criterion: case > 0> «

e Assume that § > 0 > a; then

1 4 BG(jw) 1/8 + G(jw)
fie [1 n aG(jw)] 20 Tk ll/a + G(jw)] <P

e In the complex plane:
G(jo)
must lie inside the
circle D(a, ).
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The circle criterion: case > 0> «

e If G(jo) is inside D(a, B) then it can’t encircle -1/q;

e Therefore G¢(s) is a.s. if G(s) is.

G(s)

Gr(s) = 1+ aG(s)
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Example 1

Consider the system

G(s) 1

T+ DG+ DEs+ 1)
Since G(s) is a.s. we can apply the criterion in two
cases:

e >0>q;
e B>a=0;
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Example 1

With B=-a=y we construct a circle enclosing the
Nyquist diagram:
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Example 1

With >0 costruct a line limiting the Nyquist diagram
to the left:
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Example 1

Consider now a saturation nonlinearity; as § >1, the

feedback system Gain TransferFunct...
b(s)

a(s)

>

k={-1}

Limiter1

AL

uMax={1}

will have a GAS equilibrium at x=0.
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Example 1

— TransferFunction1.x[1] —— TransferFunction1.x[2] —— TransferFunction1.y
250

200+
1504
1004
50
0-
-504
-100
-150+

'200 T T T T T T T T T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20

—— TransferFunction1.inPort.signal[1]

1.2+
0.8+

0.4+

0.0
-0.4+

-0.8

'12 T T T T T T T T T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20
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Example 2

Consider the system

)
(s 4+ 1)2(0.55 4+ 1)2

G(s) =

under feedback with u=-sat(y):
Gain1 TransferFunct...

b(s)
a(s)

>

k={-1}

Limiter1

N\

uMax={1}

and study for which values of u x=0 is GAS.
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Example 2

u=-sat(y) is sector bounded with =1 and a=0.
So we must check that:
e G(s)isa.s.;

e The Nyquist diagram of G(jw) is to the right of the
line with abscissa -1.
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Example 2

Mycquist Disgram

Imaginary Az

Real Axis
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Example 2

e G(s) is a.s. regardless of p;

e The Nyquist diagram of G(jo) is to the right of the
line with abscissa -1 for sufficiently small u (es. pu=2).
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Example 2

Simulation for p=2.
What happens for larger values of u?

TransferFunction1.y

0.14

0.124

0.104

0.08+

0.06+

0.04+

0.02+

0.00+

-0.02+

-0.04+

-0.064

o 10 20 30 40 5 e 70 8 9 100
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Example 2

Simulation for pu=5 and u=10:

TransferFunction1.y TransferFunction1.y

3.0

2.5

2.0+

1.54

1.0

0.5+

0.0+

-0.54

-1.04

-1.54

-2.04

-2.54

-3.0

o 10 20 3 40 5 60 70 80 9 100
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Notes

e Absolute stability can be extended to MIMO systems.

e In the MIMO case the graphical interpretation
becomes less intuitive.

e However one can solve numerically the SPR
conditions given by the KYP Lemma in a very
efficient way.

e All the above results apply to locally sector-bounded
nonlinearities.
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