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7 challenges towards a successful helicopter 
[Leishman, 2006]

• Understanding basic aerodynamics of vertical flight
• High power-to-weight ratio engine
• Low weight (structure + engine)
• Counteract rotor torque reaction
• Stability and control
• Vibrations
• Engine fault tolerance
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Motivation and state of the art (1)

Future rotorcraft is expected to 
• meet more and more stringent performance requirements 

(agility, manoeuvrability)
• reduce pilot workload (adverse weather conditions, DVE)
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Motivation and state of the art (2)

Current helicopters AFCS: 
• stability augmentation system (SAS) 
• attitude feedback control law: fuselage motion measurements

High gain (i.e., high bandwidth) feedback control can be 
determining in achieving requirements in terms of handling 
qualities (see ADS-33 spec).

Need for 
• accurate dynamic model of rotorcraft 
• robustness with respect to model uncertainty
• simple AFCS architecture
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Objectives

Set-up of a rotorcraft attitude control design methodology
• Robustness wrt model uncertainty
• Requirements:

• Standard (ADS-33) 
• Non-standard (from literature)

• Architecture consistent with industrial practice
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Outline

• Problem formulation within the 𝑯𝑯∞ framework
• Rotor state feedback
• Robustness to model uncertainty

• Applications
• Robust helicopter attitude control design
• Multivariable tilt-rotor attitude control
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𝑯𝑯∞ framework

• 𝑢𝑢 control inputs
• y measurable outputs
• 𝑤𝑤 performance inputs (reference 

signals, disturbances, noise)
• 𝑧𝑧 performance outputs (tracking errors, 

control inputs,…) to be minimized

Control requirements → weights over the performance signals

Optimal problem

(Set of stabilizing
controllers)
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Mixed-sensitivity 𝑯𝑯∞ formulation

• Square, diagonal weight matrices on 
the performance outputs

• 𝑤𝑤1 can be interpreted both as a 
disturbance on the plant output or as 
the reference signal

Frequency weights on the sensitivity 
functions!
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Classical vs structured 𝑯𝑯∞

Classical 𝑯𝑯∞:
 Suitable to MIMO systems
 Optimal regulator which satisfies 

the control requirements encoded 
as frequency weights

 Convex optimization problem 
(global optimum)
Regulator is dynamic and high 
order (plant+weights)
Full [𝑚𝑚 × 𝑝𝑝] transfer matrix

Structured 𝑯𝑯∞:
 Define control system architecture 

w/tunable parameters→ adapt to 
existing FCS structure (e.g. 
retrofitting)

 Introduce optimization constraints 
which would not be available by 
means of classical 𝑯𝑯∞ techniques

 Multiple system configurations
Optimization problem is non-convex 
(local minima)
Sub-optimal wrt classical 𝑯𝑯∞



Simone Panza   

Software tools

Matlab Robust Control Toolbox
• Classical 𝑯𝑯∞ synthesis: hinfsyn()
• Structured 𝑯𝑯∞ synthesis: systune()

Read the documentation!
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Choice of the frequency weights

Transfer function
• Stable
• Minimum phase
• Proper

General guideline to choose (SISO) weights

Shaping function
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Approach

An optimization-based control law 
synthesis methodology is taken into
account:
• Structured control law synthesis: 

capability to impose the structure of 
control law architecture a priori and 
tune the control law parameters

• Mixed sensitivity H-infinity: cost
function to be optimized is dependent
on (closed loop) frequency weighted
sensitivity functions

• Control law requirements are 
encoded into frequency dependent
weights

• Robustness: uncertainty description is
introduced in the control law synthesis
phase so as to guarantee robustness
properties
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Formulation of the attitude control problem 
in the 𝑯𝑯∞ framework

Requirements are encoded as frequency weights and 
imposed on proper closed-loop transfer functions (mixed-
sensitivity):
• Stabilization (default)
• Performance  sensitivity function
• Control action moderation  control sensitivity function
• Robustness  complementary sensitivity function

Sensitivity

Control sensitivity

Complementary sensitivity
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Optimization problem set-up

• Structured control law
• Tunable parameters
(e.g. upper and lower bounds)

• Scalar requirements

• Scalarized cost function

weight
Closed-loop
transfer function
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Unconstrained 𝑯𝑯∞ multi-objective 
optimization problem
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Constrained 𝑯𝑯∞ multi-objective optimization 
problem

Define additional constraints (i.e., higher priority requirements):

«soft» 
requirements

«hard» 
requirements
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Role of rotor dynamics in control-oriented 
attitude models

1st order models
(quasi-steady rotor)

2nd order models 
(coupled fuselage-rotor)

• Rotor and fuselage are dynamically coupled in the attitude control 
frequency range (pitch/roll moments depend on longitudinal/lateral flap 
angle)

• Rotor dynamics introduce phase lag in the loop
• High gain control (with classical attitude control laws) results in poor

stability margin bandwidth of the attitude loop is limited

Low order equivalent system are used in attitude control design
Modeling complexity depends on bandwidth of the attitude loop:
• Low-bandwidth: rotor can be interpreted as an actuator and its (fast) 

dynamics can be simplified
• High-bandwidth: rotor dynamics should be accounted for in the model 

used in attitude control design
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Bandwidth vs damping trade-off:
[helicopter roll attitude control law]

Bandwidth is computed on 
sensitivity function of 𝜑𝜑 (−3[𝑑𝑑𝑑𝑑])
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Rotor state feedback

In addition to fuselage measurements (attitude angles and 
rates), flap angle measurement is introduced into control 
law (RSF)

Example: helicopter roll attitude control law

RSFfuselage
measurements
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Rotor state feedback: performance

• Feedback from rotor
states introduces
phase lead in the loop

• RSF allows to increase
bandwidth while
maintaining adequate
stability margin

• Overcome the trade-off 
between 
bandwidth/damping 
ratio

S. Panza and M. Lovera (2015) Rotor state 
feedback in the design of rotorcraft attitude 
control laws, in 3rd CEAS Specialist 
Conference on Guidance, Navigation and 
Control, Toulouse, France.
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Rotor state feedback: safety (1)

Rotor flapping is related to 
cyclic (1/rev) yoke chord 
bending loads, both in 
helicopter and airplane 
modes [Manimala et al., 
2004; King et al, 1993]

Enforce safety constraints: 
reduce amount of flapping
• reduce fatigue on structural 

components
• avoid contact between blade 

and wing Manimala et al. (2004) Load alleviation in tilt rotor 
aircraft through active control; modelling and 
control concepts. The Aeronautical Journal, 108, 
169-184.
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Rotor state feedback: safety (2)

Load limiting control laws were developed to 
alleviate V-22 structural issues

D.W. King, C. Dabundo, R.L Kisor and A. 
Agnihotri. V-22 load limiting control law 
development, 49th AHS annual forum, 1993
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Uncertainty description in the frequency domain

Idea: to represent model uncertainty by 
• A nominal LTI model (with no uncertainty)
• A set of perturbed models
• The generic perturbed model in the set

A particular model in the set of 
perturbed models can be obtained
by the combination of
• A nominal branch
• An uncertain branch
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Uncertainty description in the frequency domain

The uncertain branch is made up of
• An uncertain, stable transfer function bounded in magnitude
• A stable transfer function

which can be interpreted as a weight which determines the 
amount of uncertainty as a function of frequency (namely, the 
uncertainty description)
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Choice of the uncertainty description: SISO case

In the multiplicative uncertainty
case, the uncertainty description
can be computed as follows:
• For each of the perturbed

models, compute

• Get the magnitude upper
envelope

• Find a rational transfer 
function which approximates
the upper envelope
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Robust stability (RS)

The closed loop system is stable for any perturbed
system in the set

Complementary sensitivity
function

Complementary sensitivity
function (SISO)

Loop transfer function

Maximum singular value
operator
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Application case #1
Robust helicopter attitude control
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Helicopter model

• FLIGHTLAB (http://www.flightlab.com)
• 58 states, linearized in hover (parameters: forward speed, 

mass, altitude, CG position, …)
• Fully-coupled

Fuselage dynamics: 
• translational (𝑢𝑢, 𝑣𝑣,𝑤𝑤) (low frequency)
• attitude (𝜑𝜑,𝜃𝜃,𝜓𝜓) and rates (𝑝𝑝, 𝑞𝑞, 𝑟𝑟) (medium frequency)

Main rotor dynamics: (medium-high frequency)
• MBC flap+lag (+ derivatives) → LTI model
• Inflow+wake

Tail rotor dynamics (collective flap+inflow)
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MBC transformation

New DOFs (expressed in body axes frame):
• 𝛽𝛽0 coning angle
• 𝛽𝛽1𝑐𝑐 cone axis tilt angle in forward direction
• 𝛽𝛽1𝑠𝑠 lateral tilt
• …other reactionless DOFs

Objective: to represent the rotor blades motion as a whole
Rotor DOFs transformation: coordinate change
• From the frame rotating with the hub…
• … to the frame fixed in the fuselage

Tip path
plane (TPP)
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Actuators & sensors

• Two actuators (lateral/longitudinal cyclic), both of them 
can be modeled as a 3rd order system 
– bandwidth 𝜔𝜔 ∼ 50 𝑟𝑟𝑟𝑟𝑑𝑑/𝑠𝑠

• Two sensors (roll/pitch rate), both of them can be 
modeled as a 2nd order system 
– bandwidth 𝜔𝜔 ∼ 50 𝑟𝑟𝑟𝑟𝑑𝑑/𝑠𝑠
– damping ratio 𝜉𝜉 ∼ 0.7

• Pure time delay (10[ms] due to ZOH + 10[ms] due to 
signal processing)

Overall augmented system: +10 states, 20[ms] time delay
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Actuators & sensors (eigenvalues)
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Actuators & sensors (ideal vs augmented)
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Model reduction (25 states)

• In order to focus on the pitch/roll attitude 
dynamics, we consider a reduced-order model

• 25 states (+10 due to actuator&sensor)
• Obtained by truncation: we neglect 

translational velocities (𝑢𝑢, 𝑣𝑣,𝑤𝑤), and the 
yaw/heave dynamics

• Focus on lateral attitude
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Reduced model (25 vs 58 states)
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Modal decomposition

• Starting from the 25 states model, we obtain a 
reduced order model (2 states) which 
approximates the lateral attitude dynamics

• Modal decomposition of the 25 states model
• Retain only the most significant modal 

components
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Modal decomposition: lateral attitude 
(magnitude)

Regressive flap (1&2)

Rotor-fuselage 
coupling
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2 states model: lateral attitude

• Lateral attitude 
dynamics can be 
approximated by the 
only two regressive 
flap components 
(frequency response 
magnitude)

• In order to keep into 
account the phase 
delay due to 
actuators&sensors, an 
equivalent pure time 
delay has been 
estimated to be 71[ms] 
@ 10[rad/s]
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2 states model: lateral flap

• Also, the lateral flap 
(𝛽𝛽1𝑠𝑠) frequency 
response is well 
approximated by 
the regressive flap 
mode (fitting 
routine) + 
equivalent time 
delay 23[ms]

• Non-minimum 
phase zero

• Ideal flap 
measurement (no 
sensor dynamics)
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Control requirements

Objectives:
• Set-point tracking (attitude)
• External disturbances rejection (wind gusts)
• Inter-axes decoupling
• Alleviate pilot workload
• Dynamics of the response to pilot inputs (model reference)

In addition:
• Robustness w/ respect to uncertainty
• Robustness w/ respect to sensor fault (fault tolerance)

Finally:
• FCS architecture is fixed 

ADS-33 
spec
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Flight control system architecture [Takahashi 1994]

•Decoupling: pitch-roll and 
yaw-heave; focus on pitch-
roll axes

•Inner loop: high 
bandwidth, rejection of 
high frequency 
disturbances → static 
output gain

•Outer loop: lower 
bandwidth, damp the low 
frequency fuselage 
modes, regulate the 
tracking error to zero → PI

•Fuselage-related 
measurements: IMU 
(attitude, rates, 
accelerations)



Simone Panza   

Rotor state feedback

• Low bandwidth: models are 
needed, which describe 
only fuselage dynamics, 
quasi-steady rotor

• To achieve high bandwidth 
implies incurring into a 
frequency range in which 
fuselage and rotor are 
dynamically coupled

• Using rotor state 
measurements in the 
feedback control law (RSF) 
gives access to rotor 
dynamics

• MBC measurements of flap 
(𝛽𝛽1𝑠𝑠,𝛽𝛽1𝑐𝑐)
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Control law structure: inner loop

Baseline (only fuselage 
measurements)
• Attitude (𝜑𝜑,𝜃𝜃)
• Attitude rate (𝑝𝑝, 𝑞𝑞)

RSF
• (same measurements as 

baseline)
• MBC flap (𝛽𝛽1𝑠𝑠 ,𝛽𝛽1𝑐𝑐)

• Attitude (inner) loop is a static gain matrix
• No decoupling between axes
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𝑯𝑯∞ choice of weights: sensitivity (1)

Sensitivity function is associated to 
closed-loop performance:
• Disturbance rejection bandwidth 

(DRB)
• Peak in magnitude → damping 

ratio

Attitude hold: the attitude angle shall 
return to its initial value as a response 
to external disturbance

Performance requirements  weight 
on the sensitivity function (inverse of 
the weight can be interpreted as an 
upper bound on the sensitivity 
magnitude)

(SISO)
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𝑯𝑯∞ choice of weights: sensitivity (2)

𝑾𝑾𝑺𝑺 parameters Soft Hard
Desired bandwidth
[rad/s]

1.5 2

DC gain 500 500
High frequency
gain

0.9 0.5
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𝑯𝑯∞ choice of weights: control sensitivity

• Control sensitivity weight is 
necessary in order to limit 
control action (actuator 
range is bounded)

• Limit control action outside 
actuator bandwidth

• Control sensitivity can be 
interpreted as the tf from 
measurement noise to 
control action: it is 
important to bound control 
action as a response to 
high frequency noise

• Small gain at low frequency 
to avoid interferences with 
sensitivity

𝑾𝑾𝑹𝑹 parameters Soft Hard
High frequency
gain

3.5𝐸𝐸 − 3 12𝐸𝐸 − 3

Pole frequency
[rad/s]

50 50

Ratio high/low
frequency gains

5𝐸𝐸5 5𝐸𝐸5
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𝑯𝑯∞ choice of weights: complementary sensitivity

• Complementary sensitivity 
weight may be interpreted 
as a multiplicative 
uncertainty description 
𝑊𝑊𝑂𝑂 𝑠𝑠

• Robust stability condition 
(w/respect to multiplicative 
uncertainty)

• … however, in this example 
no weight was imposed on 
complementary sensitivity 
in control law synthesis
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𝑯𝑯∞ control requirements formulation

Hard 
performance

Soft 
performance

Hard control 
moderation

RSF soft

Soft control 
moderation

RSF hard Baseline

𝐾𝐾𝛽𝛽1𝑠𝑠
%
𝑟𝑟𝑟𝑟𝑑𝑑 𝐾𝐾𝑝𝑝

%
𝑟𝑟𝑟𝑟𝑑𝑑/𝑠𝑠 𝐾𝐾𝜑𝜑

%
𝑟𝑟𝑟𝑟𝑑𝑑

RSF 
hard 88 76 259

RSF soft 12 45 91

Baseline 0 65 119
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Comparison bw controllers: step responses

Drift – unstable low 
frequency modes
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Parameters perturbations

• 𝑛𝑛 models were 
generated (𝑛𝑛 ∼ 300) by 
perturbing the 
parameter (mass, 
altitude, CG offset) 
values about the 
nominal value, in 
different combinations

• A multiplicative 
uncertainty 
description was then 
obtained, based on the 
nominal model

• Robustness analysis 
(a posteriori)

Min Max Pace Nominal
Mass 
[kg] - - - -

Altitude 
[ft] - - - -

CGX [m] - - - -

CGY [m] - - - -

CGZ [m] - - - -
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Nominal vs perturbed models
(lat cyclic to roll rate, hover)
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SISO multiplicative uncertainty description

SISO uncertainty description (one-channel at a time)

1 input, 3 outputs:
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SISO uncertainty description, hover (1)

High peak at low frequency, 
due to lateral oscillation mode

Low uncertainty (and good 
agreement) in the attitude 
dynamics frequency range
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SISO uncertainty description, hover (2)
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MIMO multiplicative uncertainty description (1)

SISO uncertainty description (one-channel at a time)

Stack weights into a diagonal matrix
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MIMO multiplicative uncertainty description (2)

Diagonal (structured) delta        VS Full-block (unstructured) delta

Full-diagonal uncertaintyintroduce conservatism
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A posteriori robustness analysis: frequency domain 
(hover)

• Robust stability condition 
(w/respect to multiplicative 
uncertainty) is checked a 
posteriori on the system closed 
in loop with the regulator 
obtained by means of H-inf
synthesis:

• MIMO complementary sensitivity 
(based on non-robust control law 
synthesis) was weighted with 
uncertainty description

• Largest singular value plot 
shows that the peak remains 
under 0dB (or low in any case)
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Uncertainty description, hover+forward flight

• Analysis was extended to the case of forward flight
• Uncertainty is larger (being the set of perturbed

models larger)
• No robustness issues were detected as for the 

attitude control loop
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A posteriori robustness analysis: frequency domain
(hover + forward flight)
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A posteriori robustness analysis: time domain 
(hover + forward flight)

Step response, roll angle
(RSF hard, hover)

Step response, lateral flap
(RSF hard, hover)

Variability in time response due 
to mass perturbations
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Application case #2
Multivariable tilt-rotor attitude control
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Tilt-rotor control strategy (hover)

Control on the 4 axes: modulate 
thrust on the 2 rotors 
• common
• differential

Mixing matrix

No lateral cyclic

Heave velocity 
Common 
collective

Roll angle 
Differential 
collective

Pitch angle 
Common 
longitudinal cyclic

Yaw rate 
Differential 
longitudinal cyclic

Rotor commands 
(swashplate 
commands of 
L/R rotors)

Pilot 
commands
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Modeling – bare airframe model

XV-15 linearized 32 states model 
in hover
• Generated by MASST
• Fully coupled (6 axes)

Body dynamics
• Attitude angles & rates
• Linear speeds and 

displacements
Rotor dynamics
• (gimbal) MBC flap angles
• MBC blade pitch angles

Inputs: 6(=3x2) rotor commands
4 pilot commands

+ actuator/sensor dynamics
+ time delay (signal processing)

Mode Eigenvalue [rad/s]

Blade pitch progressive (x2) −15.70 ± 251.97𝚥𝚥

Blade pitch collective (x2) −15.59 ± 205.06𝚥𝚥

Blade pitch regressive (x2) −15.70 ± 126.10𝚥𝚥

Flap progressive (x2) −17.87 ± 120.20𝚥𝚥

Flap regressive (x2) −17.62 ± 5.72𝚥𝚥

Roll subsidence (RS) −1.05

Longitudinal phugoid (LP) +0.18 ± 0.434𝚥𝚥

Pitch subsidence (PS) −0.609

Vertical displacement (VD) −0.470

Lateral displacement (LD) −0.0635

Dutch roll (DR) +0.0187 ± 0.153𝚥𝚥
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Modeling – model order reduction

Frequency range of interest: 
[0.1, 10][rad/s]

Multi-stage model order 
reduction
1. Residualization of fast rotor 

states (blade pitch 
dynamics)

2. Model reduction driven by 
modal decomposition

*an alternative version of the 
model contains the regressive 
flap mode, in addition to those 
listed in table

Four-axes fully coupled model  2 
two-axes models*
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Modeling – actuator and sensor dynamics

Actuator and sensor dynamics 
were cascaded to the model
• Actuators: first order models, 

one for each input
• Sensors (sampling frequency 

100Hz):
• Angle: first order
• Angular rate: second order

• Time delay (signal processing)
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Attitude control loop design –
requirements & measurements

AFCS must accomplish requirements 
of:
• Stabilization
• Performance (disturbance 

rejection)
• Control action moderation (SCAS 

authority is limited)
• Safety

Subject to
• Constraints on the control law 

architecture

No standard document for tilt-rotor 
handling qualities specification…
Inspiration was taken from ADS-33

Measurements available:
• IMU

• Angular rates
• Attitude angles
• Linear speeds

• Rotor (L/R)
• Longitudinal flap

(related to pitch/yaw dynamics)

Fundamental trade-off between performance and safety
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Attitude control loop design –
control law architecture (lateral-directional)

2 classes of control law architectures:
• Baseline: only fuselage

measurements
• RSF: fuselage + rotor

measurements
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Formulation of the control problem in the 
𝑯𝑯∞ framework: choice of weights

Weights are first order
• DC gain
• HF gain
• Bandwidth/crossover 

frequency

Inverse of weight upper
bound on magnitude

Weights on (SISO) 
components of
• Sensitivity
• Control sensitivity
• TF from to
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Formulation of the control problem in the 
𝑯𝑯∞ framework: performance weights

Sensitivity function is associated to 
closed-loop performance:
• Bandwidth → disturbance rejection
• Peak in magnitude → damping ratio

Disturbance rejection bandwidth (DRB): 
-3[dB] bandwidth of the (SISO) 
sensitivity function

Inverse of the (order 1) weight can be 
interpreted as an upper bound on the 
sensitivity magnitude
• DC gain
• HF gain
• bandwidth
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Formulation of the control problem in the 
𝑯𝑯∞ framework: control moderation weights

Control action needs to be limited:
• actuator range is limited
• outside actuator bandwidth
• as a response to high 

frequency noise (control 
sensitivity is the TF from 
measurement noise to control 
action)

• Small weight at low frequency 
to avoid interferences with 
sensitivity function

• Large weight at high frequency
• HF cut @ actuator’s bandwidth
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Formulation of the control problem in the 
𝑯𝑯∞ framework: safety weights

Limit out-of-plane blade motion

Longitudinal flap is associated to 
motion about pitch and yaw axes

Weight on 
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Reduction of results in reduced yaw (pitch) moment 

 reduced performance in the yaw (pitch) channel

Trade-off between performance and safety

In the frequency range interested 
by yaw (pitch) attitude control, flap 
dynamics can be regarded as at 
steady state
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Control law synthesis - results

3 control laws
• Baseline: only fuselage 

measurements 
• RSF
• RSF - 2 step procedure:

1. Close the loop on 
baseline gains

2. Tune 
• Sub-optimal
• Can be implemented 

on top of existing 
attitude control law

Performance Control
moderation

Safety

Baseline X X
RSF X X X
RSF 2 
step

X X X



Simone Panza   

Simulation results: step responses
(pitch/yaw)

Step responses
• Small amplitude (linear model)
• Reasonable control action

Degradation in 
settling time
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Simulation results – flap response

Reduction of the amount of flapping
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Conclusions (1)

Optimization-based methodology for the tuning of rotorcraft attitude
control laws
• Multivariable
• Structured
• Based on 𝑯𝑯∞ framework
• Multiple requirements multi-objective optimization problem

• Performance (bandwidth)
• Control action moderation
• Safety
• Robustness to uncertainty

Choice of frequency weights can be time-consuming…
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Conclusions (2)

RSF allows to address requirements of:
• Safety
• Performance

• A trade-off shows up between performance vs safety
• Overcome intrinsic trade-off of classical control laws (bandwidth

vs damping ratio)

Practical issues: a flap sensor is to be mounted on each of the 
blades (to compute MBC transformation)
• Heavy
• Expensive
• Space in the rotor head is limited…
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